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Abstract. We address the problem of phase inpainting, i.e. the recon-
struction of partially-missing phases in linear measurements. We thus
aim at reconstructing missing phases of some complex coefficients as-
suming that the phases of the other coefficients as well as the modulus
of all coefficients are known. The mathematical formulation of the in-
verse problem is first described and then, three methods are proposed:
a first one based on the well known Griffin and Lim algorithm and two
other ones based on positive semidefinite programming (SDP) optimiza-
tion methods namely PhaseLift and PhaseCut, that are extended to the
case of partial phase knowledge. The three derived algorithms are tested
with measurements from a short-time Fourier transform (STFT) in two
situations: the case where the missing data are distributed uniformly and
indepedently at random and the case where they constitute holes with
a given width. Results show that the knowledge of a subset of phases
contributes to improve the signal reconstruction and to shorten the con-
vergence of the optimization process.

Keywords: audio, time-frequency, missing data, inpainting, phase re-
construction, SDP optimization , short-time Fourier transform, PhaseLift,
PhaseCut.

1 Introduction

Time-frequency inpainting is an inverse problem where the goal is to estimate
a subset of masked coefficients in a time-frequency complex-valued matrix from
the observation of the remaining coefficients. A natural strategy consists in per-
forming a spectrogram inpainting stage, where the amplitude of the missing
coefficients are estimated, followed by a phase inpainting stage, where the miss-
ing phases are estimated. While spectrogram inpainting has been addressed in
several works [14,11,9], phase inpainting has not been addressed by advanced
methods and thus remains a challenge. Indeed, phase reconstruction is known to
be a difficult task generally posed as a non-convex problem. Many works have
been proposed to reconstruct the phase of all the time-frequency coefficients
from their amplitude and may be extended to the phase inpainting problem. A
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first set of phase reconstruction methods relies on alternate projections [7,5,6,8]
among which the Griffin and Lim (GL) algorithm [8] is widely used in audio
processing. Its success may be due to the simplicity of its implementation and
the low computational cost of its iterations. However, its performance is limited
by a slow convergene towards a local minimum. Higher reconstruction perfor-
mance has been reached by semidefinite programming (SDP) approaches, at the
cost of much higher time and space complexities. In particular, PhaseLift [3]
and PhaseCut [15] methods have been proposed for any linear operator and fur-
ther studies [10,2] have established their good performance in the case of the
short-time Fourier transform (STFT). While yet other phase reconstruction al-
gorithms have been recently proposed [12,4,13], we focus on extending original
GL and SDP approaches to phase inpainting.

The organization of the paper is as follows. In Section 2, the phase inpaint-
ing problem is formalized and we propose three dedicated algorithms: Griffin
and Lim for phase inpainting (GLI), PhaseLift for phase inpainting (PLI) and
PhaseCut for phase inpainting (PCI). These three algorithms are the extensions
of existing algorithms, in which we add the knowledge of the partially observed
phases. While the algorithms are introduced in the general case of any linear
operator, Section 3 is dedicated to their specific implementation with the STFT
operator. In Section 4, some experiments in small dimensions with various ratios
of missing data and several mask shapes illustrate their performance and their
limitations. Finally, conclusions and perspectives are drawn in Section 5.

2 Proposed phase inpainting algorithms

2.1 Phase inpainting problem

For a signal x ∈ CN , we consider K complex linear measurements Ax =
[〈ak,x〉]Kk=1 ∈ CK where a1, . . . ,aK ∈ CN and A = [a1, . . . ,aK ]

H
. While the

specific case of the STFT operator is used in Sections 3 and 4, the general case
of any linear operator is addressed throughout Section 2. We assume that we
observe both the magnitude and the phase of a subset of measurements while
only the magnitude of the remaining measurements is available. The location
of these subsets is given by a binary mask m ∈ {0, 1}K : m [k] = 1 if both the
magnitude and the phase of measurement k are known and m [k] = 0 if only its
magnitude is known.

Denoting by supp (m) the support of m, let b ∈ CK be the vector containing
the fully known coefficients b[k] for k ∈ supp (m), and the known amplitudes
b[k] for k ∈ supp (em). Then the phase inpainting problem is given by

Find x ∈ CN s.t.

{
〈ak,x〉 = b[k],∀k ∈ supp (m)

|〈ak,x〉| = b[k],∀k supp (em)
(1)

2.2 Griffin and Lim algorithm for phase inpainting (GLI)

We propose an extension of the Griffin and Lim algorithm [8] to solve approxi-
mately problem (1) by taking into account the known phases. The algorithm is
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described in Algorithm 1, ◦ denoting the Hadamard product. It mainly relies on
alternating a projection onto the span of the linear operator using projector Πa

and a projection onto the known magnitude and phase constraints. The initial-
ization of this algorithm may be done with random phases for coefficients with
unknown phase.

Algorithm 1 Griffin and Lim algorithm for phase inpainting (GLI)

Require:
binary mask m ∈ {0, 1}K

observation b ∈ CK such that

{
b[k] ∈ C, ∀k ∈ supp (m) (fully known coefficients)

b[k] ≥ 0, ∀k ∈ supp (em) (known magnitudes)

projector onto the span of the linear operator Πa

initial phases ϕ0 ∈ [0, 2π[K

number of iterations niter

Output: complete estimated measurements y(niter)

ϕ←m ◦ ∠b + (1−m) ◦ϕ0 ∀k ∈ supp (m)
y(0) ← b ◦ exp (ıϕ) ∀k ∈ supp (em)
for i ∈ {1, 2, . . . , niter} do

z(i) ←Πa

(
y(i−1)

)
ϕ(i) ←m ◦ ∠b + (1−m) ◦ ∠z(i) {Project onto phase constraints}
y(i) ← b ◦ exp(ıϕ(i)) {Project onto magnitude constraints}

end for

2.3 PhaseLift for phase inpainting (PLI)

The second proposed approach is based on lifting and SDP. The quadratic con-
straints in problem (1) become linear by means of a projection in a large di-
mensional space where the variable is a semidefinite positive matrix X � 0. The
PhaseLift method [3] is adapted in order to address phase inpainting, which
results in proposition 1.

Proposition 1. With notations of problem (1), let Alk = ala
H
k for l, k ∈

{1, . . . ,K}. Using the lifting X = xxH , problem (1) is equivalent to:

min
X∈CN×N

Rank(X) s.t.


Trace(AlkX) = b[k]b̄[l], ∀l, k ∈ supp (m)

Trace(AkkX) = b2[k], ∀k ∈ supp (em)

X � 0

(2)

and can be relaxed as :

min
X∈CN×N

Trace(X) s.t.


Trace(AlkX) = b[k]b̄[l], ∀l, k ∈ supp (m)

Trace(AkkX) = b2[k], ∀k ∈ supp (em)

X � 0

(3)
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Proof. The proof can be conducted in three steps:

1. Assume that x satisfies (1). For k, l ∈ supp (m), the phase constraint is
obtained by considering that

b[k]b̄[l] = Trace(aHk xxHal) = Trace(ala
H
k xxH) = Trace(AlkX)

For k ∈ supp (em), the magnitude constraint is obtained similarly.
2. Problem (1) can then be reformulated as

Find X ∈ CN×N s.t.


Trace(AlkX) = b[k]b̄[l], ∀l, k ∈ supp (m)

Trace(AkkX) = b2[k], ∀k ∈ supp (em)

Rank(X) = 1

X � 0

which is equivalent to problem (2).
3. Since the rank is not convex, one may finally relax the rank by the nuclear

norm to obtain Problem (3).

Formulation (3) is called PhaseLift for phase inpainting (PLI). The objective
function and equality constraints are linear and the domain X � 0 is a convex
cone. One may notice that only phase differences appear, in the first contraint,
to exploit the known phases. In the particular case supp (m) = ∅, the original
PhaseLift problem [3] is obtained.

Finally, from the solution X of problem (3), x can be estimated as
√
λmaxzmax

where zmax is the eigenvector associated with the largest eigenvalue λmax of X.
In order to solve the PLI problem (3), we use Matlab toolbox TFOCS [1]. Two

solvers may be used: solver_sSDP that performs trace minimization under linear
constraints as in (3), or solver_TraceLS that solves unconstrained problems of

the form minX�0 λTrace(X) + 1
2‖A(X)− β‖2 with

A : X 7→

[
vec

(
[Trace(AlkX)]l,k∈supp(m)

)
[Trace(AkkX)]k∈supp(em)

]
, β =

[
vec

([
b[k]b̄[l]

]
l,k∈supp(m)

)
[b[k]]k∈supp(em)

]
.

(4)

2.4 PhaseCut for phase inpainting (PCI)

The third and last proposed algorithm is also an SDP optimization algorithm,
namely PhaseCut for phase inpainting (PCI), which is an extension of the orig-
inal PhaseCut designed for phase retrieval [15].

As in [15], problem (1) is reformulated by explicitly splitting the amplitude
and phase variables, so that one may optimize only on the phase vector u ∈ CK
such that ∀k, |u [k] | = 1. We use the lifting U = uuH to obtain Proposition 2.

Proposition 2. Using notations of problem (1), let Γ = Diag(cH)(I−AA†) Diag(c)
with c ∈ CK is defined by c[k] = |b[k]| ,∀k. Then problem (1) is equivalent to
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min
U∈CK×K

Trace(UΓ ) s.t.


Diag(U) = 1

U[k1, k2] = b[k1]
|b[k1]|

b̄[k2]
|b[k2]| ,∀k1, k2 ∈ supp (m)

Rank (U) = 1

U � 0

(5)

and may be relaxed into a convex problem by dropping the rank constraint as

min
U∈CK×K

Trace(UΓ ) s.t.


Diag(U) = 1

U[k1, k2] = b[k1]
|b[k1]|

b̄[k2]
|b[k2]| ,∀k1, k2 ∈ supp (m)

U � 0

(6)

Proof. Using the amplitude vector c and the phase vector u, problem (1) be-
comes

Find x ∈ CN ,u ∈ CK s.t.


Ax = Diag(c)u

u [k] = eı∠b[k] ∀k ∈ supp (m)

|u [k] | = 1 ∀k
(7)

which is equivalent to

min
x∈CN ,u∈[0,2π[K

‖Ax−Diag(c)u‖22 s.t.

{
u [k] = eı∠b[k] ∀k ∈ supp (m)

|u [k] | = 1 ∀k
(8)

Given that Ax = Diag(c)u implies x = A†Diag(c)u, then ‖Ax−Diag(c)u‖22 =
uHΓu, thus (8) is equivalent to (5) which can be relaxed into (6).

Formulation (6) is called PhaseCut for phase inpainting (PCI). As for PLI,
phase differences appear in the constraints that involve known phases. In the par-
ticular case where all phases are unknown (supp (m) = ∅), contraints U[k1, k2] =
b[k1]
|b[k1]|

b̄[k2]
|b[k2]| disappear and the original PhaseCut problem [15] is obtained x.

Finally, from the solution U of problem (6), signal x is estimated as x =
A†Diag(c)eı∠umax where umax is an eigenvector associated to the largest eigen-
value of U.

In order to solve PCI problem (6), we adapt the block coordinate descent
algorithm proposed in [15] from [16], as given in Algorithm 2. By picking coor-
dinates i in supp (m) instead of {1, . . . ,K}, all unknown coefficients in U, and
only them, are updated.

3 Implementation issues specific to the STFT

Phase inpainting problem with STFT measurements. The STFT of a signal
x ∈ CN is defined for frame index t ∈ {0, . . . , T − 1} and frequency index ν ∈
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Algorithm 2 PhaseCut for phase inpainting (PCI) : BCD algorithm

Require:
binary mask m ∈ {0, 1}K

observation b ∈ CK such that

{
b[k] ∈ C, ∀k ∈ supp (m) (fully known coefficients)

b[k] ≥ 0, ∀k ∈ supp (em) (known magnitudes)

number of iterations niter

barrier parameter ν > 0
Output: U ∈ CK×K
{Initialization}
c←m ◦ b + (1−m) ◦ b
Γ ← Diag(cH)(I −AA†) Diag(c)

for 1 ≤ k, l,≤ K,U [k, l]←


1 if k = l
b[k]
|b[k]|

b̄[l]
|b[l]| if k, l ∈ supp (m)

0 otherwise

{Main loop}
for niter iterations do

pick i ∈ {1, . . . ,K} \ supp (m)
x← Uic,icΓic,i and γ ← xHΓic,i

Uic,i,U
H
ic,i ←

{
−
√

1−ν
γ

x if γ > 0

0 otherwise
end for

{0, . . . , F−1} as STFT[t, ν] = 〈x,at,ν〉 = aHt,νx where at,ν =
[
w[n− th]e2ıπ νF n

]N−1

n=0
∈

CK , w being the analysis window and h the so-called hop size between two suc-
cessive frames. Hence the K = FT measurements are indexed by k = (t, ν):
measurements may be seen equivalently either as a doubly-indexed vector or as
a matrix. A simple reshaping operation can be used to switch between repre-
sentations, and with a small abuse of notations, both of them are used without
explicit distinction in this paper. The STFT phase inpainting problem in time-
frequency is thus given by

Find x ∈ CN s.t.

{
〈x,at,ν〉 = b[t, ν], ∀ (t, ν) ∈ supp (m)

|〈x,at,ν〉| = b[t, ν], ∀ (t, ν) ∈ supp (em)
(9)

GLI implementation. The GLI algorithm is obtained by setting Πa : y 7→
STFT

(
STFT−1 (y)

)
where STFT−1 is the (pseudo-)inverse operator for the

STFT computed from the canonical dual window of w.

PLI implementation. We used solver_TraceLS of TFOCS library, which hap-
pened to be faster than solver_sSDP. The implementation of the direct operator
A defined in (4) and of its adjoint can be more efficient using fast Fourier trans-

forms (FFT) as follows. We have Trace(AlkX) =
(

STFTrow

(
STFTcol(X)

))H
[k, l]

for k, l ∈ {1, . . . ,K}, where STFTrow(X) denotes the STFT on the columns
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of X and STFTcol(X) the STFT on the rows of X. Hence one may compute
A (X) from only 2N STFT’s. By denoting by k0 = # supp (m) the number

of known phases, the adjoint operator A∗ : Ck20+K−k0 → CN×N is such that

A∗(y) =
(

STFT∗row

(
STFT∗col(Y)

))H
where STFT∗ is the adjoint of the STFT

operator and Y ∈ CK×K is defined by Y(m,m) = reshape(y(1 : k2
0), k0, k0)

and Y(∼m,∼m) = Diag(y(k2
0 + 1 : K)). It thus requires 2K calls to STFT∗.

PCI implementation. Each iteration of Algorithm 2 for PCI requires K calls to
one direct STFT and one inverse STFT, using FFT’s.

4 Experiments

Experiments in small dimensions are conducted on a signal with length N = 128
composed of the sum of two linear chirps with normalized frequency ranges
(0, 0.8) and (0.8, 0.6), a dirac located at sample 64 and white Gaussian noise at
a signal-to-noise ratio of 10dB. The STFT is generated with a Hann window
with length 16, a hop size of 8 samples (i.e., T = 16 frames) and F = 32
frequency bins, resulting in K = 512 measurement in a 32 × 16 time-frequency
matrix. In a first experiment, masks for missing phases are generated randomly
and uniformly among the measures, with various ratios of missing phases. In
a second experiment, the ratio of missing phases is fixed at 30% and missing
phases are grouped in holes of a given width, with randomly distributed centers,
the widths varying between 1 and 9 coefficients. Figure 1 illustrates the STFT
of the signal and of one generated mask.
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Fig. 1. Spectrogram of the signal (left, smoothed with T = F = 128; middle, with
T = 16 and F = 32 as set in the experiment ) and example of a mask with random
holes of width 5 in black (right).

Algorithms are used with the following settings. For GLI, niter = 3000. For
PLI, λ = 10−30 and TFOCS is used with a maximum of 5000 iterations, no
restart, tol = 10−10. For PCI, ν = 10−14 and niter = 50000. A baseline approach
is also used, denoted as Random Phase Inpainting (RPI) and consisting in filling
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the missing phases by drawing random values independently and uniformely in
[0, 2π[.

Performance is assessed in terms of relative reconstruction error up to a global

phase shift, defined by EdB(x, x̂) = 20 log10 minθ
‖x−eıθx̂‖2
‖x‖2 where x denotes the

original signal and x̂ the reconstructed one.

Results are shown in Figure 2, where the reconstruction errors from all meth-
ods can be compared, as a function of the ratio of missing phases, for each
experiment. The known phases clearly contribute to improve the signal recon-
struction. For isolated missing phases (left figure), one can see that between 0
and 50% missing phases, GLI and PCI achieves perfect reconstruction while PLI
performs very good but not perfect. Beyond 50% missing phases, SDP methods
PLI and PCI perform better than GLI, with a much better performance for PLI.
For holes with a larger width at 30% missing phases (right figure), one can see
that GLI may achieve perfect or poor reconstruction in an instable way, due to
local minima. SDP methods offer very good performance, with a reconstruction
error generally below −50dB.
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Fig. 2. Reconstruction error as a function of the ratio of missing phases randomly
distributed (left) or, for 30% missing phases, as a function of the width of randomly
distributed holes (right).

The convergence and running time of each method have been checked as fol-
lows. For GLI, it was checked visually and manually that the algorithm converges
before the maximum number of iterations, with a running time lower than one
second for each call. For PLI, similarly, it has been checked that the algorithm
stops before the maximum number of iterations is reached, with a running time
that is much larger when the number of missing phases increases and that can
reach about 3 hours for one call. For PCI, convergence may be observed in Fig-
ure 3 by representing the reconstruction error as a function of the iterations.
As for PLI, the running time until convergence is all the more reduced as many
phases are known, lasting about 2 hours for 50, 000 iterations.
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Fig. 3. Illustration of the convergence of PCI by representing the reconstruction error
as a function of the iterations in the same two settings as in Figure 2.

5 Conclusion and perspectives

We have considered the phase inpainting problem in which a subset of mea-
surements have missing phases that must be recovered. We have proposed three
dedicated algorithms, which are extensions of existing algorithms, namely Griffin
and Lim, PhaseLift and PhaseCut, adapted to the phase inpainting problem by
incorporating the partial phase information as constraints in the optimization
process. Those algorithms have been implemented using fast transforms in the
case of the STFT. Experiments in small dimensions confirm that SDP methods
perform better than Griffin and Lim algorithm, in particular when the problem
is difficult (more unknown phases, larger holes). Even if those methods are very
time consuming, it also appears that the knowledge of a subset of phases result
in a faster convergence.

Experiments may be extended to the noisy case where only approximate val-
ues are available known phases and amplitudes. Time and space complexity of
SDP approaches being very large, they cannot be applied to typical audio signals
for which dimensions are higher than those used in the proposed experiments. In
order to benefit from SDP results, one may investigate the adaptation of SDP al-
gorithms to process only a local time-frequency region instead of the whole STFT
matrix. Other algorithms may be designed for phase inpainting. In particular,
some recent contributions to phase retrieval [12,4,13] may be adapted and may
give good performance without the computational limits of SDP methods.
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