
HAL Id: hal-01865448
https://hal.science/hal-01865448

Submitted on 31 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Practicing Domain-Specific Languages: From Code to
Models

Laure Gonnord, Sébastien Mosser

To cite this version:
Laure Gonnord, Sébastien Mosser. Practicing Domain-Specific Languages: From Code to Mod-
els. 14th Educators Symposium at MODELS 2018, Oct 2018, Copenaghen, Denmark. pp.1-8,
�10.1145/3270112.3270116�. �hal-01865448�

https://hal.science/hal-01865448
https://hal.archives-ouvertes.fr

Practicing Domain-Specific Languages: From Code to Models
Laure Gonnord

Univ Lyon, Université Claude Bernard Lyon 1

LIP, CNRS, ENS de Lyon, Inria

F-69342, LYON Cedex 07, France

Laure.Gonnord@ens-lyon.fr

Sébastien Mosser

Université Côte d’Azur, CNRS, I3S, France

Sophia Antipolis

mosser@i3s.unice.fr

ABSTRACT
This paper describes our experience in constructing a new Domain-

Specific Language course at the graduate level whose objectives

is to reconciliate concepts coming from Language Design as well

as Modeling domains. We illustrate the course using the reactive

systems application domain, which prevents us to fall back in a

toy example pitfall. This paper describes the nine stages used to

guide students through a journey starting at low-level C code to

end with the usage of a language design workbench. This course

was given as a graduate course available at Université Côte d’Azur
(8 weeks, engineering-oriented) and École Normale Supérieure de
Lyon (13 weeks, research-oriented).

CCS CONCEPTS
• Software and its engineering→Compilers;Designing soft-
ware; Development frameworks and environments;

KEYWORDS
Software Modeling, Domain-Specific Languages, Code Generation,

Code Abstraction, Reactive Systems

ACM Reference Format:
Laure Gonnord and Sébastien Mosser. 2018. Practicing Domain-Specific

Languages: From Code to Models. In ACM/IEEE 21th International Con-
ference on Model Driven Engineering Languages and Systems (MODELS ’18
Companion), October 14–19, 2018, Copenhagen, Denmark. ACM, New York,

NY, USA, 8 pages. https://doi.org/10.1145/3270112.3270116

1 INTRODUCTION
The foundation of the course we propose is the observation that

the numerous concepts behind “Language Design” and “Software

Modeling” are difficult to apprehend for students. From the point

of view of educators, numerous difficulties arise when we build on

a new instance of each of these two courses.

On the one hand, teaching language design (at both graduate

or undergraduate level) is a necessary but painful task. Students

struggle to understand why do they need to know how to design

languages: writing a compiler (or an interpreter) is a tedious task,

and the large number of existing programming languages ensure

that at least one will implement the feature needed for a given

purpose. In addition, this kind of courses are often implemented

under the name “Compilation”, and usually focus on lexical analysis,

ACMacknowledges that this contributionwas authored or co-authored by an employee,

contractor or affiliate of a national government. As such, the Government retains a

nonexclusive, royalty-free right to publish or reproduce this article, or to allow others

to do so, for Government purposes only.

MODELS ’18 Companion, October 14–19, 2018, Copenhagen, Denmark
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5965-8/18/10. . . $15.00

https://doi.org/10.1145/3270112.3270116

attributed grammars or symbol resolution [1, 8], and forgets the

most relevant parts, namely, abstractions and semantics. It is then

hard to focus on the part related to Language Design when students

are ensnared in a difficult (from a theoretical point of view) and

technical (from a practical point of view) context. However, we

defend that in addition to the underlying foundations related to

this field, it is important for student to understand how to design a

language. It will help them to create their own when relevant, but

also help them to classify existing ones and support their choices.

On the other hand, teaching modeling is also a necessary but

painful task [5, 6]. We defend it as necessary considering that the

essence of modeling is abstraction, i.e., the ability to remove un-

necessary details from a complex situation. But finding the right

way to teach modeling is complicated [2]. Students might strug-

gle with complicated technological stacks, syntactical issues in the

UML [7] and have difficulties to understand the differences between

models and meta-models when applied to simple toy examples. We

defend that software developers must be confronted to modeling

during their studies to identify the strength of abstraction-driven

approaches. Clearly, a “modeling for modeling” approach does not

work, and the infamous “UML to Java” example [4] cannot reason-

ably be used in 2018 to support model-based courses.

During a conference dedicated to software engineering and pro-

gramming languages hosted in Besançon in 2016, the two authors

met and exchanged the views described in the two previous para-

graphs. During this discussion, it was clear that the main issue was

to consider Software Language Engineering (SLE) and Model-driven
Engineering (MDE) as two disjoint sets. We decided to leverage our

experience in teaching languages and models to create a common

syllabus for a course shared by École Normale Supérieure de Lyon
(ENSL) and Université Côte d’Azur (UCA). This course uses the point
of view of Domain-specific Languages (DSLs) to support the teach-

ing of language design and abstraction, using a practical approach.

We used as foundations a case study dedicated to embedded devices

from a language point of view [3], coupled to our experience in

teaching embedded systems from a reactive programming point of

view. The goal of this paper is not to describe the syllabus of the

course
1
but to share the rationale of the course, with the description

of a lab session that goes through multiple level of abstractions and

different technological stacks.

The paper is organized as follows: in Section 2 we depict the

objectives we identified for this course, and the lab examples it is

built on. In Section 3, we develop the objectives of each of the first

steps of the “Minimal and Viable example”, that illustrate different

levels of abstractions, from code to models (of code). Then, in Sec-

tion 4, we show alternative approaches working at the language

1
Available online: https://github.com/mosser/sec-labs

https://doi.org/10.1145/3270112.3270116
https://doi.org/10.1145/3270112.3270116
https://github.com/mosser/sec-labs

MODELS ’18 Companion, October 14–19, 2018, Copenhagen, Denmark L. Gonnord, S. Mosser

design level to illustrate modeling concepts. Finally, the last sec-

tion (Section 5) gives more information about how the course was

implemented in both universities.

2 COURSE OVERVIEW
The keystone of the pedagogical approach we follow is to use

the predisposition of students to work with code to catch their

curiosity and make them work on the concepts that drive this

course: identifying abstractions to design languages. Considering

DSLs as the object under study, the course we propose has then the

following objectives:

O1 Illustrate how to abstract code into models;

O2 Identify how to operationalize models according to different

targets (e.g., ease of development, intended users);

O3 Study the relationships that exist between concepts and

tools;

O4 Acquire experience in modeling through hands-on lab ses-

sions.

The course is implemented in a “two-phases” fashion. The first

phase relies on a minimal and viable lab example, developed in

Section 3 and 4: the rationale of this phase is to discover and exper-

iment the DSL main concepts in a guided way. The second phase

consists in the creation of a complete language for a new domain in

an unguided way. The approach we propose is entirely open source,

with lightweight technology, and low cost embedded devices for the

lab material. Thanks to this approach, the students progressively

acquire the following knowledge and skills:

• The definition and practical use of the following concepts:

model, meta-model (and their synonyms in language theory:

languages, grammars), and object-orientation and reflexivity;

• A methodology to design a new language for a specific ap-

plication domain: identify what is reusable, and what needs

extensions, make rational implementation choices, test;

• An experience in designing a real-life DSL, targeting a business-

driven case study.

Minimal & Viable Lab Example
The lab example we propose is based on the Arduino

2
open-source

technology, and the use of some sensors and actuators: one 7-

segment display, a button, a led per platform. The platform can be

designed around a breadboard as in Fig. 1 or thanks to a pre-built

Arduino shield (Fig. 2). An Arduino Uno micro-controller costs 20€.

To build the breadboard version, one must buy small electronic

hardware (a breadboard, a LED, a button and a display) for approxi-

mately 10€. The shield version is more expensive, as the shield can

cost up to the price of the Arduino board according to vendors. A

platform can be used by one group of up to four students, where

two is the right team size based on our experience.

In this lab, we propose a sequence of “stages”, each stage being

built in the same “2-steps”way:

(1) Students are given a minimal working example (switching

the LED on and off) of the language/technology used in the

stage. They experiment and begin to criticize the solution in

terms of performance, readability, usage, . . .

2
https://en.wikipedia.org/wiki/Arduino

Figure 1: Arduino board and electronic breadboard

Figure 2: Using a pre-built shield on top of an Arduino board

(2) Then, they modify the example in a non trivial way to trans-

form it in a viable example, representative of the domain. We

here propose to use a 7-segments display to count time and

reset. This example is non trivial since it requires to introduce

memory states. The two applications need to be composed

on the very same board: pushing the button changes the

LED state, and also reset the counter to 0.

In the next two sections, we focus on the description of the nine

stages identified in this minimal and viable example. The idea is to

describe what we give to the students to kick-off the work for each

stage, and the questions we use to drive the associated “step back”

discussions and guide their report writing.

3 FROM CODE TO MODELS
To prevent falling back in the toy example pitfall, we illustrate the

course using the reactive systems application domain. This domain

is pertinent since there is a long tradition in designing specialized
languages and development processes for these kind of software,

especially in the area of critical embedded systems. Here we choose a
less ambitious subdomain, namely, programming a micro-controller

reacting to tiny sensors and operating on actuators. However, the

modeling and code issues that arise from this simplified case are

representative and a good abstraction of the real one.

This section illustrates both objectives O1 and O2 of the course.

Indeed, the first three stages of the lab illustrate different levels

of abstractions one can use while programming an Arduino-based

reactive system. From these stages, we start discussions about tools

and methods to gain abstraction in a piece of code (O1) and also

the pros and the cons of the different approaches according to

https://en.wikipedia.org/wiki/Arduino

Practicing Domain-Specific Languages: From Code to Models MODELS ’18 Companion, October 14–19, 2018, Copenhagen, Denmark

Listing 1: Minimal example: Plain C code
1 #include <avr/io.h>

#include <util/delay.h>

int main(void) {
DDRB |= 0b00100000;

6 while(1) {
PORTB ^= 0b00100000; _delay_ms(1000);

}
return 0;

}

many criteria (e.g., expressivity, facilities to extend, maintain, debug,

identity of the end-user), targeting O2.

3.1 Plain Code (C)
The first stage uses C codeworking at themicro-controller registries

level. We provide a running piece of code (Lst. 1), as well as the

environment to compile it (thanks to avr-gcc) and upload the

compiled image to the micro-controller (thanks to avr-dude) with
a Makefile. The given code enables a LED plugged on pin 13 to

blink forever at a frequency of 1Hz. At this low level of abstraction,

accesses to sensors and actuators consist in injecting an electrical

current in the micro-controller physical pins. At the code level,

this is done thanks to parallel writes to ad-hoc registers called

PORTx (x being B, C or D), that are configured with the help of the

corresponding DDRx registers (input:0 or output:1). For instance, in

Lst. 1 at line 5, we setup the LED plugged to pin 13 as an actuator

by setting to 1 the 5
th

bit of the DDRB registry (the first 8 pins being
handled by DDRA, 13 = 5 + 8). Then, thanks to an infinite loop, we

switch it on and off with the help of a xor applied to the very same

bit in the PORTB registry.
Considering this piece of code, students are asked to answer to

the following questions and invited to elaborate and argument their

answers on paper:

• What can we say about readability of this code? What are

the skills required to write such a program?

• Regarding the application domain, could you characterize

the expressivity? The configurability of the code to change

pins or behavior? Its debugging capabilities?

• Regarding the performance of the output code, what kind of

parallelism is expressed by the use of the DDRx registers?
• What if we add additional tasks in the micro-controller code,

with the same frequency? With a different frequency?

3.2 Using the Arduino Library (C)
The second step uses the Arduino library

3
which is a C++ library

provided by the Arduino designers. This library provides higher-

level access to each pin individually, for example to support con-

figuration in write or read mode with a function called pinMode,
or to control the electrical current sent to a given pin with a call

to digitalWrite. The code given to students is depicted in Lst. 2.

This code is an iso-functional version of the one depicted in List-

ing 1, using the Arduino library. Based on the given example and

3
https://www.arduino.cc/reference/en/

Listing 2: Minimal example: ArduinoLib code
#include <avr/io.h>
#include <util/delay.h>
#include <Arduino.h>

5 int led = 13;

int main(void) {
pinMode(led, OUTPUT);
while(1) {

10 digitalWrite(led, HIGH); _delay_ms(1000);
digitalWrite(led, LOW); _delay_ms(1000);

}
return 0;

}

the realization of the 7-segments counter, we ask students to discuss

about the following questions in their report:

• Is the readability problem solved?

• What kind of parallelism can still be expressed?

• Who is the public targeted by this “language”?

• Is this language extensible enough to support new features?

What is the price for the developer?

3.3 Programming a Finite State Machine (C)
The two applications to be developed for the micro-controller helps

students to identify the need for abstraction when targeting a spe-

cialized domain. They easily identify that the LED and 7-segments

functionalities can be modeled thanks to a Finite State Machine
(FSM). Before moving to a model-driven approach, we use in this

stage a convention-based approach to reify abstractions at the code

level. Considering a system where one can express transitions
between states, it is possible to implement such an FSM using

functions as states, and conditional instructions coupled to termi-

nal function call for transitions (see Lst. 3). Using this abstraction,

we raise the following questions to help students understand the

importance of abstraction at the code level:

• Does introducing a convention solve the readability issue?

• How to extend an appwith a new feature? Does the approach

prevent one to perform invasive changes in the existing

behavior to introduce a new one?

• How to extend the code so that to support new features, e.g.,
memory-less tasks, state-full tasks, different frequencies?

3.4 Modeling an ArduinoApp (UML & Java)
We use this stage to leverage the insights gained at the previous

one, and emphasize the importance of working at the model level

when dealing with abstractions. The idea here is to show firstly, that

working with models free the user from the syntax, and secondly,

that code generation mechanisms can be used to reach the previ-

ously defined operational target. Using a model-driven approach,

it becomes clear to the students that the user is now restricted to

the vocabulary available in the meta-model, and cannot deviate

from it. It helps to position the meta-model as the abstract syntax

of the language, defining what concepts needs to be exposed to the

user. With respect to code generation, we show how the concepts

https://www.arduino.cc/reference/en/

MODELS ’18 Companion, October 14–19, 2018, Copenhagen, Denmark L. Gonnord, S. Mosser

Listing 3: Minimal example: functional FSM
#include <avr/io.h>
#include <util/delay.h>
#include <Arduino.h>

int led = 13;

void state_on() {
digitalWrite(led, HIGH); _delay_ms(1000);
state_off();

}

void state_off() {
digitalWrite(led, LOW); _delay_ms(1000);
state_on();

}

int main(void) {
pinMode(led, OUTPUT);
state_on();
return 0;

}

Figure 3: Minimal FSM meta-model

defined in the meta-model can be operationalized using classical

object-oriented design patterns (e.g., Visitor, Observer) to reach an

executable target.

We provide to the students a minimal FSM meta-model, as de-

picted in Fig. 3. We also provide a running Java implementation of

the meta-model and a simple Visitor implementation supporting

naive code generation from a given model to C code (Lst. 4). We

use the code manually written by the students during the previous

stage to illustrate code templating and the underlying concepts

associated to the Visitor design pattern.

Based on their extension of this example to support the 7-segments

counter, we ask the student to discuss the following questions:

• What are the pros/cons associated to the meta-modeling

approach? What is the cost of defining a meta-model? What

is difficult in this activity?

Listing 4: Simple FSM Visitor implementation
public class ToC extends Visitor<StringBuffer> {

@Override public void visit(App app) {
4 c("#include␣<avr/io.h>");

c("#include␣<util/delay.h>");
c("#include␣<Arduino.h>");
c("");
c("void␣setup(){");

9 for(Actuator a: app.getActuators()){
a.accept(this);

}
c("}\n");

14 for(State state: app.getStates()){
h(String.format("void␣state_%s();",

state.getName()));
state.accept(this);

}
19

if (app.getInitial() != null) {
c("int␣main(void)␣{");
c("␣␣setup();");
c(String.format("␣␣state_%s();",

24 app.getInitial().getName()));
c("␣␣return␣0;");
c("}");

}
}

29

@Override public void visit(Actuator actuator) { ... }
@Override public void visit(State state) { ... }
@Override public void visit(Action action) { ... }

34 private void c(String s) {
this.code.append(String.format("%s\n",s));

}
}

• From the user point of view, what does it change? Is the

approach usable for large apps?

• Consider the LED app and the counter one as two separate

models. Is it possible to automate the creation of the final

app based on these two models?

• What about the readability of the generated code compared

to the previous one “by hand”? Its debugging capabilities ?

Its extensiveness?

• Explain the interest of modeling in terms of genericity, func-

tional property verification.

3.5 Remodeling an ArduinoApp (UML & Java)
During the previous stage, students understand quickly that work-

ing with the meta-model defined in Fig. 3 is not suitable for large

applications: the final FSM is the cartesian product of the two apps

(led and counter). We offer them here two choices:

• Creating a composition operator to support the combination

of elementary applications to produce complex ones;

• Switch to another kind of abstraction that will provide a

better support for end-users.

Practicing Domain-Specific Languages: From Code to Models MODELS ’18 Companion, October 14–19, 2018, Copenhagen, Denmark

Listing 5: Composition operator skeleton in Java
public class CompositionLaw extends BinaryLaw<App>{

@Override public App compose(App left, App right) {
3 // ...

}
}

Listing 6: Reactive version of the ArduinoLib code
#include <avr/io.h>
#include <util/delay.h>
#include <Arduino.h>

5 int led = 13;
bool is_high = false;

void led_change_state() {
if (is_high) { digitalWrite(led, LOW); }

10 else { digitalWrite(led, HIGH); }
is_high = !is_high;

}

int main(void) {
15 pinMode(led, OUTPUT);

while(1) {
led_change_state(); _delay_ms(1000);

}
return 0;

20 }

For the sake of concision, we will not focus in this paper on the

contents of the composition method, as it is basically the implemen-

tation of classical FSM composition (considering shared actuators

and sensors based on pin locations). We provide to the students a

Java skeleton described in Lst. 5. We prefer to focus on the meta-

modeling of the reactive system programming model, considering

an infinite loop with a global state (memory). After reading the

sensors, the new state is computed, then all actuators are updated.

Listing 6 depicts a minor modification of Listing 2 following this

paradigm. We provide to the students a starting meta-model for

this paradigm, depicted in Fig. 4.

Students are then asked to write the extended state-full version,

and discuss the following points in their report:

• Compare how this modeling solution and the previous one

match the domain, especially regarding expressiveness and

scalability.

• What is the cost (e.g., modeling, code generation) of a new

feature for the developer?

• What about scalability of the modeling paradigm itself?

3.6 Conclusions
In this sectionwe depicted how, from low-level Arduino code, where

a single programmingmodel is promoted, we abstracted the domain-

specific features by modeling it in different ways. We also showed

that the choice of themodeling paradigmhas a substantial impact on

the expressivity and extensibility of further developments. Thanks

to a code-first approach and a journey through abstraction levels,

Listing 7: Minimal example: Lustre code
node cpt(reset: bool) returns (led_on: bool) ;
let

led_on = false -> not(pre(led_on));
tel

we manage to lead the students to a point where they recognize

the value of models, and see the benefits of using such artifacts.

From now on, we will no longer change the abstraction level,

but make a tour on different domain-specific language and meta-

modeling paradigms that will permit to generate domain-specific

code.

4 FROMMODELS TO DSLS
Thanks to the previous stages, we are now working at the model

level. The following stages explore how models relate with tools

(O3), and how such models and tools can target different users (O2).

Contrarily to the previous stages that were sequential, these stages

are independent, as they address different paradigm in an hands-on

fashion (O4).

4.1 Integrating an existing DSL (Lustre)
In Section 3 we ended up with the conclusion that using a reactive

system representation was a suitable way to model the domain in

a scalable way, avoid costly code generation, without sacrificing

expressivity or end-user usage. As a consequence, now that we

came with this new paradigm for modeling, why not searching

for an existing (possibly domain-specific) language implementing

reactive systems, so that to reuse it for our particular purpose?

The Lustre
4
synchronous language was intended to be used for

the design of critical real-time embedded systems. However, some

educational-driven experiences have been made for real-time pro-

gramming courses
5
. This stage takes inspiration from them.

The minimal code depicted in Lst. 7 illustrates the key feature

of this DSL: only the functionality of the infinite loop is described,

avoiding implementation details as well as non logical time. Here,

the node describes the actuator “led_on” as a boolean output whose
value is false during the first period, then the negation of its value

during the preceding period (pre(led_on)) forever. The infinite
loop depicted in Listing 8 (where ctx depicts the context, i.e., the
current state) is compiled from this description (and the desired

frequency). The user should also encode the glue code in a separate

file.

The compilation chain and its relationship with the application

domain being depicted in Figure 5, the students are invited to argu-

ment their answers to the following questions:

• Who is the intended user for such a language?

• What is the cost of reusing this existing DSL for the developer

in terms of code?

• What is the cost of adding a new task of our domain?

• Was is the cost of adding a new hardware target?

4
http://www-verimag.imag.fr/The-Lustre-Programming-Language-and?lang=en

5
http://perso.univ-lyon1.fr/thierry.excoffier/COURS/COURS/TEMPS_REEL/tr_

lustre.pdf, http://laure.gonnord.org/pro/teaching/SysTR1516_M1/tr_lustre.pdf

http://www-verimag.imag.fr/The-Lustre-Programming-Language-and?lang=en
http://perso.univ-lyon1.fr/thierry.excoffier/COURS/COURS/TEMPS_REEL/tr_lustre.pdf
http://perso.univ-lyon1.fr/thierry.excoffier/COURS/COURS/TEMPS_REEL/tr_lustre.pdf
http://laure.gonnord.org/pro/teaching/SysTR1516_M1/tr_lustre.pdf

MODELS ’18 Companion, October 14–19, 2018, Copenhagen, Denmark L. Gonnord, S. Mosser

Figure 4: Minimal reactive meta-model

Lustre
Program (.lus)

Lustre
Compiler

Bob

Glue
Code

.c avr-gcc Elf (binary) Board

Reactive System Embedded (Arduino)

End-user involvment

Lustre ecosystem

Domain tooling

Figure 5: Lustre Compilation chain for Arduino

Listing 8: Generated C code from Lustre, and glue code
1 // cpt.c - Generated

void cpt_step(cpt_ctx* ctx){
//...
cpt_O_led_on(...);

}
6 // main.c - Generated

int main(){
// ...
while(1){
cpt_step(ctx);

11 _delay_ms(1000);
}
return 1;

}
//Glue code (Arduino target) - Hand written

16 void cpt_O_led_on(void* cdata, _boolean _V) {
if (_V == 1)
digitalWrite(led, HIGH);

else
digitalWrite(led, LOW);

21 }

• The Lustre language impose the memory to be bounded by

construction. Is this a limitation for our (sub) domain?

Listing 9: Minimal example: Reactive code using ANTLR

App: Blinking

led is an actuator bound to pin 13

producer: quartz
emit "tick" at 1Hz

consumer: blinker
bool state initialized as true
state : led is HIGH
!state: led is LOW
state is !state

blinker listens to quartz

• The Lustre language comes with its own ecosystem (test,

formal verification), what are the generic properties we can

imagine to prove from our domain?

4.2 Designing an External DSL (ANTLR)
The Lustre stage illustrates how to find and reuse an existing DSL

that might fit a given purpose. In this stage, we ask the student to

define a dedicated external language, reifying the domain concepts

associated to their choice (FSM & composition or reactive system)

directly in a dedicated syntax. We give to the student a kick-off

implementation of an external grammar (using Antlr 6
), and an

evaluation of the Abstract Syntax Tree that produce an instance

of the previously defined meta-model (as a Java object). We also

provide a program conform to the defined syntax (Lst. 9), and the

command line script to call the compiler and produce a reactive

code associated to such a program.

Based on their extension of the grammar to support the counter

application, students are asked to discuss the following points:

• Who is the intended user ?What about the tooling associated

to the language?

6
http://www.antlr.org/

http://www.antlr.org/

Practicing Domain-Specific Languages: From Code to Models MODELS ’18 Companion, October 14–19, 2018, Copenhagen, Denmark

Listing 10: Embedding the DSL inside the Scala syntax
object Switch extends ArduinoML {

val button = declare aSensor() named "button" boundToPin 9
val led = declare anActuator() named "led" boundToPin 12

val on = state named "on" executing led --> high
val off = state named "off" executing led --> low
off.isInitial

transitions {
on -> off when (button is high)
off -> on when (button is high)

}
}

• More generally, what is the cost of such an approach?

• To what extent is the language fragile to the introduction of

new features?

• What is the relationship between the meta-model and the

grammar?

• How to validate that the defined syntax is the right one?

4.3 Designing an Embedded DSL (e.g., Groovy)
Considering the cost of defining an external language, we explore

here how to embed abstractions in an existing language instead of

creating a new one from scratch. At this stage, we let the students

free to chose their technological stack, an we only provide a link

to the embedded directory of the ArduinoML zoo of syntax
7
. The

idea of the ArduinoML zoo is to provide alternative syntaxes (11

embedded ones and 4 externals, provided by 9 contributors) to

the FSM meta-model described in the previous section. Students

can then pick-up one familiar language example in the zoo, and

implement the counter application using their favorite language.

When a language is not present, students are encouraged to publish

a pull-request on the GitHub repository to update the zoo. Often,

students chose the Groovy language to support their work at this

stage, considering the large amount of documentation available

(and maybe biased by their previous knowledge of Java).

Based on their work to adapt the ArduinoML example to the

counter application, students are asked to discuss the following

questions:

• How to chose between embedded or external?

• What is the impact of the host language choice?

• What about the maintainability of the concrete syntax?

• Who is targeted as an audience by this class of languages?

4.4 Using a Language Workbench (e.g., MPS)
Considering the cost of designing an external language from scratch,

and the intrinsic limitations of the embedded approach, we pro-

pose here to explore how dedicated workbenches can be used to

model language. The key point here is to make students under-

stand that language design is “simply” another domain, and that

domain-specific tooling can be defined to support them, follow-

ing the very same approach that they just use to support Arduino

7
https://github.com/mosser/ArduinoML-kernel/tree/master/embeddeds

application designers. We chose the Meta Programming System8

(MPS) to support this step, and also provide a link to the Xtext
9

version of the ArduinoML syntax for interested students. We give

to the student a reference structure, and the associated projection to

reach a concrete syntax (Fig. 6). Students can immediately use the

generated environment and experiment code completion, syntax

coloring, type constraints, which came for no additional costs.

When the implementation of the counter app is finished, we ask

to the students the following set of questions:

• What is the cost/benefits ratio of using a workbench?

• What are the limitations of such an approach?

• What about vendor lock-in?

4.5 Conclusions
In this section, we described four versions of the same language,

using alternative modeling approach to support its implementation.

First, reusing a dedicated language helped us to discuss the concept

of domain scope and model integration (through glue code). Then,

we explored three different ways to create new languages captur-

ing domain abstractions. These different ways help us to discuss,

among others, domain evolution, meta-modeling principles, and

user relevance.

5 LOGISTICS & EVALUATION
This course follows up a 5 years old course about Domain-specific

languages taught at UCA. This new version is part of two different

curricula: “Fundamental Computer Science” Master of Science at

ENS and “Software Architecture” Master of Engineering at UCA. In

Lyon, the format is 24 hours, supervised, including closely related

lectures and labs (13 weeks, 4 credits). The course was attended by a

small number of students which never attended any software engi-

neering course, and are inexperienced in language design. However,

they have a broad knowledge in semantics and program abstrac-

tions. At UCA, the course is classically attended by a large number

of students (35), and lengths 8 weeks for 2 credits. The evaluation

differs, as UCA values an engineering approach (thus evaluating a

project) and ENSL is a research-oriented environment (half of the

evaluation is made on a bibliographic study about DSLs, models and

languages). We consider as a prerequisite basic notion of software

development and modeling.

5.1 Case study examples for Phase #2
The nine different implementations of the reactive language are

used in the course to support the first phase, where students explore

in a guided way how to work with abstractions on a given domain.

As educators, we guided their journey by providing reference code,

and step back questions. The second phase of the course relies

on the capture of a new domain, based on the experience learned

during the first phase. We briefly describe here several cases studies

used in the past to support DSLs and meta-modeling teaching.

• Sensor simulation: create a language supporting the mod-

eling of sensors to support load testing of data collection

middleware. Students have to model sensors based on poly-

nomial interpolations, Markov chains, replay from legacy

8
https://www.jetbrains.com/mps/

9
https://www.eclipse.org/Xtext/version

https://github.com/mosser/ArduinoML-kernel/tree/master/embeddeds
https://www.jetbrains.com/mps/
https://www.eclipse.org/Xtext/version

MODELS ’18 Companion, October 14–19, 2018, Copenhagen, Denmark L. Gonnord, S. Mosser

Figure 6: Modeling a concrete syntax using MPS

dataset, and define an execution environment to send the

simulated data to a time-series database (e.g., InfluxDb).
• Application deployment: create a language to support the de-

ployment of services in a distributed environment. Students

have to capture what is a service, how services relate to each

others, create a deployment plan and upload the different

codes to the modeled topology in order to setup a running

ecosystem.

• Scientific Workflow: create a language to support the model-

ing of scientific workflows (e.g., grid computing data process-

ing, machine learning workflow). Students have to capture

concepts like data sources, sinks, processors, and data links

to transfer data among processors. They must also reach an

execution context that respect the expected semantics for

data flows.

6 PERSPECTIVES
The course is re-offered at UCA and ENSL for the next academic year.

Discussions have started to implement it at Université du Québec à
Montréal in the upcoming years at the graduate level. We plan to

clean up the available material published on GitHub, which is for

now scattered among several repositories (one instance per course

and the ArduinoML zoo) into a single one. We also plan to start

communicating about this course in the model-driven engineering

and software-engineering communities to gather feedback from

researchers and improve the lab contents. An in-depth evaluation

of the course outcome is an ongoing work, as we plan to better

evaluate this point in the new instances of the course.

Acknowledgments
Authors want to thanks the GdR GPL to support collaboration

between researchers in France at the national level, which allow

the creation of such inter-universities initiative. We also want to

thanks Benoît Combemale for the fruitful discussions we had that

helped to classify the different stages of the labs.

REFERENCES
[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compil-

ers: Principles, Techniques, and Tools (2Nd Edition). Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA.

[2] Don S. Batory and Maider Azanza. 2017. Teaching Model-driven Engineering

from a Relational Database Perspective. Software and System Modeling 16, 2 (2017),
443–467. https://doi.org/10.1007/s10270-015-0488-7

[3] Sébastien Mosser, Philippe Collet, and Mireille Blay-Fornarino. 2014. Exploiting

the Internet of Things to Teach Domain-Specific Languages and Modeling: The

ArduinoML project. In Proceedings of the MODELS Educators Symposium co-located
with the ACM/IEEE 17th International Conference on Model Driven Engineering
Languages and Systems (MODELS 2014), Valencia, Spain, September 29, 2014. (CEUR
Workshop Proceedings), Birgit Demuth and Dave R. Stikkolorum (Eds.), Vol. 1346.

CEUR-WS.org, 45–54. http://ceur-ws.org/Vol-1346/edusymp2014_paper_3.pdf

[4] Richard Paige and Louis Rose. 2013. Lies, Damned Lies and UML2Java. Journal of
Object Technology 12, 1 (Jan. 2013). (editorial).

[5] Volkhard Pfeiffer. 2016. Teaching Domain-Specific Language Engineering and

Model-Driven Software Development: A Competence-oriented Approach. In Pro-
ceedings of the 12th Educators Symposium (EduSymp 2016). 19–26.

[6] Alfonso Pierantonio, Federico Ciccozzi, Michalis Famelis, Gerti Kappel, Leen

Lembers, Sebastien Mosser, Richard Paige, Arend Rensink, Rick Salay, Gabriele

Taentzer, Antonio Vallecillo, and Manuel Wimmer. 2018. How do we teach Mod-

elling and Model-Driven Engineering? A survey. In Proceedings of the MODELS
Educators Symposium 2018.

[7] Martina Seidl, Marion Scholz, Christian Huemer, and Gerti Kappel. 2015.

UML@Classroom: An Introduction to Object-Oriented Modeling. Springer Publishing
Company, Incorporated.

[8] Linda Torczon and Keith Cooper. 2011. Engineering A Compiler (2nd ed.). Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA.

https://doi.org/10.1007/s10270-015-0488-7
http://ceur-ws.org/Vol-1346/edusymp2014_paper_3.pdf

	Abstract
	1 Introduction
	2 Course Overview
	3 From code to models
	3.1 Plain Code (C)
	3.2 Using the Arduino Library (C)
	3.3 Programming a Finite State Machine (C)
	3.4 Modeling an ArduinoApp (UML & Java)
	3.5 Remodeling an ArduinoApp (UML & Java)
	3.6 Conclusions

	4 From Models to DSLs
	4.1 Integrating an existing DSL (Lustre)
	4.2 Designing an External DSL (ANTLR)
	4.3 Designing an Embedded DSL (e.g., Groovy)
	4.4 Using a Language Workbench (e.g., MPS)
	4.5 Conclusions

	5 Logistics & Evaluation
	5.1 Case study examples for Phase #2

	6 Perspectives
	References

