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SHARP DECAY ESTIMATES FOR CRITICAL DIRAC EQUATIONS

WILLIAM BORRELLI AND RUPERT L. FRANK

Abstract. We prove sharp pointwise decay estimates for critical Dirac equations on Rn

with n > 2. They appear for instance in the study of critical Dirac equations on com-

pact spin manifolds, describing blow-up profiles, and as effective equations in honeycomb

structures. For the latter case, we find excited states with an explicit asymptotic behav-

ior. Moreover, we provide some classification results both for ground states and for excited

states.

1. Introduction

1.1. Main results. This paper is devoted to the study of solutions of the nonlinear Dirac

equation

Dψ = |ψ|2]−2ψ on Rn (1)

with the critical exponent

2] :=
2n

n− 1
,

as well as to certain extensions of this equation of the form

Dψ = h(ψ)ψ on Rn , (2)

where h is a matrix-valued function which is (approximately) homogeneous of degree 2#−2.

We will always assume that n > 2.

As we describe below in more detail, there are at least two motivations for studying

these equations, one coming from the spinorial analogue of the Yamabe problem in geo-

metric analysis and the other one from an effective description of wave propagation in

two-dimensional systems with the symmetries of a honeycomb lattice.

We are interested in two different aspects of solutions of equations (1) and (2). The

first one concerns sharp bounds on the decay of solutions. The second one concerns the

classification of solutions possessing some extra symmetry. The link between these two

aspects is that our classification results show that our decay estimates are always sharp

for ‘ground state solutions’ but, on the other hand, that ‘excited state solutions’ in general

exhibit a faster decay, at least if n = 2.

We proceed to a precise description of our results. For n > 2 let N = 2[n+1
2 ], where [·]

denotes the integer part of a real number, and let α1, . . . , αn be N ×N Hermitian matrices

satisfying the anticommutation relations

αjαk + αkαj = 2δj,k , 1 6 j, k 6 n . (3)
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Such matrices exist and form a representation of the Clifford algebra of the Euclidean space

(see e.g. [20]). Different choices of matrices satisfying (3) correspond to unitarily equivalent

representations. Given a choice of matrices αj , the Dirac operator is defined as an operator

acting on functions on Rn with values in CN by

D := −iα · ∇ = −i
n∑
j=1

αj∂xj . (4)

A more detailed presentation of Dirac operators and Clifford algebras can be found, for

instance, in [20, 28]. We say that ψ ∈ L2](Rn,CN ) is a weak solution to (1) if∫
Rn
〈Dϕ,ψ〉 dx =

∫
Rn
|ψ|2]−2〈ϕ,ψ〉 dx, ∀ϕ ∈ C∞c (Rn,CN ). (5)

We will give below some explicit examples of solutions of (1). Under appropriate conditions

on h one can define similarly the notion of a weak solution to (2) and, modifying the

arguments in [11] in a straightforward way, one can show existence of solutions also for the

latter equation.

The following is the first main result of this paper.

Theorem 1.1. Let ψ ∈ L2](Rn,CN ) be a weak solution of (1). Then

ψ ∈ C∞(R2,C2) if n = 2

and

ψ ∈ C1,α(Rn,CN ) for any α < 2/(n− 1) if n > 3 .

Moreover, there is a constant C <∞ such that

|ψ(x)| 6 C

1 + |x|n−1
for all x ∈ Rn . (6)

The decay estimate (6) is best possible. Indeed, in (12) and (13) below we will give explicit

solutions of (1) for which |ψ(x)| ∼ const |x|−n+1 as |x| → ∞. Thus, (6) can be saturated.

The C∞ regularity for n = 2 was previously shown by a different argument in [40]. A

weaker version of regularity for n > 3, namely C1,α with some unspecified α, appears in

[26].

Note also that the theorem implies that

ψ ∈ Lp(Rn,CN ) for all
n

n− 1
< p 6∞ (7)

and

ψ ∈ L
n
n−1

,∞(Rn,CN ) . (8)

(We refer to Subsection 3.1 for the definition of weak Lebesgue spaces.) The optimality

just mentioned shows that, in general,

ψ /∈ L
n
n−1 (Rn,CN ). (9)

In some applications it is crucial whether solutions of (1) are square-integrable or not. Our

result shows that square-integrability holds always in n > 3 and may not hold in n = 2.

We will investigate the case n = 2 below in more detail.
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We also note that if one replaces D by the massive Dirac operator then solutions exhibit

exponential decay. This was shown in [9] for n = 3 and extended in [12] to arbitrary n;

see also [15]. The fact that there are indeed solutions to the massive analogue of (1) was

shown in [10].

Our proof of Theorem 1.1 consists of two steps. In a first step we prove (8) by writing

(1) as an integral equation and using a bootstrap argument in Lorentz spaces. We adapt

and simplify arguments by Jannelli and Solimini [27], see also [39], who studied the case of

second order equations. In a second step we upgrade (8) to the pointwise bound (6). Here

we prove a first order analogue of the second order result by Loiudice [31] which, in turn,

is based on ideas from [38]. We refer to these papers for more references.

Remark 1.2. For the sake of simplicity, we have stated Theorem 1.1 for equation (1). The

same decay bound (4.2) holds, with the same proof, for solutions of (2) provided h is an

N ×N matrix-valued function satisfying

‖h(ψ)‖ 6 c|ψ|2#−2 for all ψ ∈ CN

with some c < ∞. In fact, for equation (1) one can make use of conformal invariance and

by means of a Kelvin-type transform compute the precise asymptotics of solutions. Our

argument is more robust and works also for equation (2) which, in general, is not conformally

invariant. This is important for applications in connection with graphene, where typically

equation (2), but not (1) arises.

We now describe a class of well-known solutions of (1). For n = 2 we will choose

α1 =

(
0 1

1 0

)
, α2 =

(
0 −i

i 0

)
. (10)

For n > 3 we will choose the αj of a particular block-antidiagonal form, namely, let

σ1, . . . , σn be N
2 ×

N
2 Hermitian matrices satisfying analogous anticommutation relations as

in (3), namely,

σjσk + σkσj = 2δj,k, 1 6 j, k 6 n.

Then the matrices

αj =

(
0 σj

σj 0

)
, 1 6 j 6 n, (11)

satisfy (3) and we shall work in the following with this choice. We write σ = (σj)
n
j=1 and

a · σ :=
∑n

j=1 ajσj for a ∈ Rn. For n = 2, we define a · σ = a1 + ia2 for a ∈ R2.

We fix a vector n ∈ CN/2 with |n| = 1 and a parameter λ > 0 and consider

ψ(x) = λ−(n−1)/2

(
V (r/λ)n

iU(r/λ)
(
x
r · σ

)
n

)
(12)

with

U(r) = n(n−1)/2(1 + r2)−n/2r , V (r) = n(n−1)/2(1 + r2)−n/2 . (13)
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These functions appear, for instance, in [4]. A straightforward computation shows that

they are solutions of (1). Moreover, they satisfy

|ψ(x)| = λ−(n−1)/2
√
V (r/λ)2 + U(r/λ)2 = λ−(n−1)/2n(n−1)/2(1 + (r/λ)2)−(n−1)/2 , (14)

which proves the optimality statement made after Theorem 1.1.

The solutions (12), (13) are ‘ground state solutions’ or ‘least energy solutions’ of (1) in

the sense that any solution ψ 6≡ 0 of (1) satisfies

1

2

∫
Rn
〈Dψ,ψ〉 dx− 1

2]

∫
Rn
|ψ|2] dx > 1

2n

(n
2

)n
|Sn|

with equality exactly for (12), (13). This bound was shown in [26, Proposition 4.1] and

is based on inequalities by Hijazi [25] and Bär [6] after mapping equation (1) conformally

to the sphere. (The equality statement made above is not explicitly stated in [26], but

follows from the same arguments, taking the corresponding equality statements in Hijazi’s

and Bär’s inequalities into account.) We also note that a simple extension of [11] to higher

dimensions shows the existence of a non-trivial least energy solution. This argument does

not give the above minimal value, but has the advantage of working for a more general class

of nonlinearities.

Here we present a different characterization of the solutions (12), (13). Given n ∈ CN/2

with |n| = 1 we consider solutions of (1) of the form

ψ(x) =

(
v(r)n

iu(r)
(
x
r · σ

)
n

)
, r = |x|, u, v : (0,∞) −→ R . (15)

This form of solutions is sometimes [13] called the Soler/Wakano-type ansatz. It leads to

the following system u′ +
n− 1

r
u = v(u2 + v2)1/(n−1) ,

v′ = −u(u2 + v2)1/(n−1) ,
(16)

which needs to be supplemented by boundary conditions at the origin. To have ψ regular at

the origin it is natural to require u(0) = 0 and then, to have a non-trivial solution, v(0) 6= 0

(see, e.g. [11]). We will see, however, that weaker boundary conditions suffice.

Theorem 1.3. Let n > 1 and let u, v be real functions on (0,∞) satisfying (16) as well as

lim
r→0

r(n−1)/2u(r) = lim
r→0

r(n−1)/2v(r) = 0 .

Then either u = v = 0 or

u(r) = σλ−(n−1)/2U(r/λ) , v(r) = σλ−(n−1)/2V (r/λ)

for some λ > 0 and σ ∈ {+1,−1} with U and V from (13).

Remark 1.4. The boundary conditions at the origin are necessary for the result to hold,

since u(r) = v(r) =
√

(1/2)((n− 1)/2)n−1 r−(n−1)/2 is also a solution of the equation.
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Moreover, the same result holds, with the same proof, if the boundary condition at the

origin is replaced by the condition

lim
r→∞

r(n−1)/2u(r) = lim
r→∞

r(n−1)/2v(r) = 0 .

at infinity.

We next discuss ‘excited state solutions’ of (1) and, more generally, of (2) in the case

n = 2. When n = 2, we have N = 2 and we write ψ = (ψ1, ψ2). We consider the

nonlinearity in (2) of the form

h(ψ) =

(
(β1|ψ1|2 + 2β2|ψ2|2) 0

0 (β1|ψ2|2 + 2β2|ψ1|2)

)
with given parameters β1, β2 > 0. As we will explain below, this particular nonlinearity

arises in a problem from mathematical physics. More explicitly, we are studying the system{
(−i∂x1 − ∂x2)ψ2 = (β1|ψ1|2 + 2β2|ψ2|2)ψ1 ,

(−i∂x1 + ∂x2)ψ1 = (β1|ψ2|2 + 2β2|ψ1|2)ψ2 .
(17)

Given S ∈ Z we look for solutions of (17) of the form

ψ(x) =

(
ψ1(x)

ψ2(x)

)
=

(
v(r)eiSθ

iu(r)ei(S+1)θ

)
, x = (r cos θ, r sin θ), u, v : (0,∞) −→ R . (18)

Plugging this ansatz into (17) gives the system
u′ +

S + 1

r
u = v(β1v

2 + 2β2u
2) ,

v′ − S

r
v = −u(β1u

2 + 2β2v
2) .

(19)

The following theorem shows that there is a unique (up to symmetries) solution of this

system and provides precise asymptotics of u and v. In particular, we see that solutions

with S 6= 0 have a polynomially faster decay than the ground state solution (12), (13).

Theorem 1.5. Let β1, β2 > 0 and S ∈ Z and put

a =

(
|2S + 1|
β1 + 2β2

)1/2

and τ = sgn(S + 1/2) .

(1) Let (u, v) = (Q,P ) be the solution of (19) with

Q(1) = a and P (1) = τa .

Then (Q,P ) exists globally and satisfies for some ` ∈ (0,∞), if S + 1/2 > 0,

lim
r→∞

rS+1Q(r) = lim
r→0

r−SP (r) = `

and

lim
r→∞

r3S+2P (r) = lim
r→0

r−3S−1Q(r) =
β1`

3

2(2S + 1)
,

and if S + 1/2 < 0,

lim
r→0

rS+1Q(r) = − lim
r→∞

r−SP (r) = `
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and

lim
r→0

r3S+2P (r) = − lim
r→∞

r−3S−1Q(r) = − β1`
3

2(2S + 1)
,

Moreover,

τ Q(r)P (r) > 0 for all r > 0

and

P (r) = (τ/r)Q(1/r) for all r > 0 .

(2) If (u, v) is a solution of (19) satisfying

lim
r→0

r1/2u(r) = lim
r→0

r1/2v(r) = 0 ,

then there are λ > 0 and σ ∈ {−1,+1} such that

u(r) = σλ−1/2Q(r/λ) v(r) = σλ−1/2P (r/λ) for all r > 0 .

In the special case β1 = 2β2 = 1, that is, for (1), we will be able to write down all the

solutions explicitly, see Theorem 7.1.

The methods that we develop to prove Theorems 1.3, 1.5 and 7.1 have further applica-

tions, of which we mention two. First, the methods show uniquenss up to symmetries of

solutions of the form (15) for the more general equations (2) also in dimensions n > 3 under

suitable assumptions on the nonlinearity h. Second, it allows one to classify all functions

of the form (15) which satisfy (1) in Rn \ {0}. Recall that we mentioned already one such

solution in Remark 1.4. This is relevant to the spinorial analogue of the singular Yamabe

problem [35, 29]. Solutions are probably of the form r−(n−1)/2 times a periodic function

of ln r. This seems to be a universal feature of conformally invariant equations which, for

instance, has been recently verified for a fourth order equation [19].

1.2. First motivation: Spinorial Yamabe and Brézis–Nirenberg problems. Equa-

tions of the form (1) appear, for instance, in the blow-up analysis of solutions of the equation

Dψ = µψ + |ψ|2]−2ψ on M , (20)

where (M, g,Σ) is a compact spin manifold, that is, a compact Riemannian manifold (M, g)

carrying a spin structure Σ [28, 20]. In that case one can define a Dirac operator D and

show that its L2-spectrum is discrete and composed of eigenvalues of finite multiplicities

accumulating at ±∞ (see, e.g., [20, 28]).

In (20), µ ∈ R is a parameter. For µ = 0 the equation is referred to as the spinorial

Yamabe equation and its study has been initiated by Ammann and collaborators [1, 4, 3, 2];

see also [24, 23, 34, 32] and references therein. Equation (20) with general µ ∈ R is

reminiscent of the Brézis–Nirenberg problem [14] and has been studied, for instance, in [26]

and [8].

In particular, in [26] Isobe proved the spinorial analogue of Struwe’s theorem [36] for the

Brézis–Nirenberg problem. To describe this in more detail, we note that solutions of (20)

are critical point of the functional

L(ψ) =
1

2

∫
M
〈Dψ,ψ〉d volg−

µ

2

∫
M
|ψ|2d volg−

1

2]

∫
Rn
|ψ|2]d volg (21)
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defined on H
1
2 (ΣM), the space of H

1
2 -sections of the spinor bundle ΣM of the manifold.

Here d volg stands for the volume measure of (M, g). Then [26, Theorem 5.2] states that

any Palais–Smale sequence (ψn)n∈N ⊆ H
1
2 (ΣM) for the functional L satisfies

ψn = ψ∞ +
M∑
j=1

ωjn + o(1) in H
1
2 (ΣM), (22)

where ψ∞ is the weak limit of (ψn)n and the ωjn are suitably rescaled spinors obtained by

mapping solutions to (1) to spinors on the manifold M . In that sense, equation (1) that

we study in this paper describes bubbles in the spinorial Yamabe and Brézis–Nirenberg

problems.

1.3. Second motivation: Effective equation for graphene. Critical Dirac equations

also appear as effective models for two-dimensional physical systems related to graphene.

More precisely, if V ∈ C∞(R2,R) possesses the symmetries of a honeycomb lattice, then,

as proved in [16], the dispersion bands of Schrödinger operators of the form

H = −∆ + V (x) in L2(R2)

exhibit generically conical intersections (the so-called Dirac points). This leads to the

appearance of the Dirac operator as an effective operator describing, for instance, the

dynamics of wave packets spectrally concentrated around such conical degeneracies. Let

u0(x) = uε0(x) be a wave packet spectrally concentrated around a Dirac point, that is,

uε0(x) =
√
ε(ψ0,1(εx)Φ1(x) + ψ0,2(εx)Φ2(x)) (23)

where Φj , j = 1, 2, are Bloch functions at a Dirac point and the functions ψ0,j are some

(complex) amplitudes to be determined. One expects that the solution to the nonlinear

Schrödinger equation with parameter κ ∈ R \ {0},

i∂tu = −∆u+ V (x)u+ κ|u|2u , (24)

with initial conditions uε0 evolves to leading order in ε as a modulation of Bloch functions,

uε(t, x) ∼
ε→0+

√
ε (ψ1(εt, εx)Φ1(x) + ψ2(εt, εx)Φ2(x) +O(ε)) . (25)

As suggested by Fefferman and Weinstein in [17] the modulation coefficients ψj satisfy the

following effective Dirac system,{
∂tψ1 + λ(∂x1 + i∂x2)ψ2 = −iκ(β1|ψ1|2 + 2β2|ψ2|2)ψ1 ,

∂tψ2 + λ(∂x1 − i∂x2)ψ1 = −iκ(β1|ψ2|2 + 2β2|ψ1|2)ψ2 ,
(26)

with

β1 :=

∫
Y
|Φ1(x)|4 dx =

∫
Y
|Φ2(x)|4 dx , β2 :=

∫
Y
|Φ1(x)|2|Φ2(x)|2 dx . (27)

Here Y denotes a fundamental cell of the lattice and λ ∈ C \ {0} is a coefficient related to

the potential V . The large, but finite, time-scale validity of the Dirac approximation has

been proved in [18] in the linear case κ = 0 for Schwartz class intial data (23). The case

of cubic nonlinearities, corresponding to (24) with κ 6= 0, is treated in [5] for high enough

Sobolev regularity Hs(R2) with s > 3.
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For stationary solutions (that is, ∂tψ1 = ∂tψ2 = 0) we can write the system (26) as

(α1(−i∂x1) + α2(−i∂x2))

(
ψ̃2

ψ1

)
=
|κ|
|λ|

(
(β1|ψ̃2|2 + 2β2|ψ1|2)ψ̃2

(β1|ψ1|2 + 2β2|ψ̃2|2)ψ1

)
with α1 and α2 from (10) and with

ψ̃2 = − κ

|κ|
λ

|λ|
ψ2 .

Thus, we arrive at (17) for the vector (ψ̃2, ψ1) with coefficients (|κ|/|λ|)βj instead of βj .

1.4. Outline of the paper. The proof of the Theorem 1.1 is achieved in several steps.

First, we rewrite (1) as an integral equation, as explained in Section 2. This allows us in

Section 3 to provide weak decay estimates, expressed in terms of suitable Lorentz norms.

Then the desired pointwise estimates are proved in Section 4, while boundedness and reg-

ularity are the object of Section 5. Section 6 is devoted to the proof of the classification in

Theorem 1.3. The remaining two sections deal with the faster decay for excited states in

the two-dimensional case, first establishing an explicit family of solutions for β1 = 2β2 = 1

and then proving existence, uniqueness and asymptotics for general β1, β2 > 0.

2. An integral equation

We begin with a Liouville-type lemma.

Lemma 2.1. Let p > 1 and assume that ψ ∈ Lp(Rn,CN ) satisfies Dψ = 0 in Rn in the

sense of distributions. Then ψ ≡ 0.

Proof. The corresponding result for scalar functions u satisfying ∆u = 0 is well-known; see,

e.g., [22]. The present result can be obtained by a simple modification of those arguments.

An even simpler way is to deduce it from the scalar result. Namely, if ϕ ∈ C∞c (Rn,CN ),

then, since Dψ = 0 in the sense of distributions and since Dϕ ∈ C∞c (Rn,CN ),

−
∫
RN
〈∆ϕ,ψ〉 dx =

∫
RN
〈D2ϕ,ψ〉 dx =

∫
RN
〈D(Dϕ), ψ〉 dx = 0 .

This means that ∆ψ = 0 in the sense of distributions. Applying the scalar result to each

component of ψ, we obtain the assertion. �

We now use the above lemma to rewrite (1) as an integral equation. The Green’s function

Γ of the Dirac operator D is given by

Γ(x− y) = − i

nωn
α · x− y
|x− y|n

, (28)

where ωn is the volume of the unit ball in Rn and α = (αj)
n
j=1. One easily checks that this

function satisfies for each fixed y ∈ Rn the equation

Dx Γ(x− y) = δ(x− y)IN in Rnx (29)

in the sense of distributions.
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Lemma 2.2. If ψ ∈ L2#(Rn,CN ) solves (1) in the sense of distributions, then

ψ = Γ ∗ (|ψ|2]−2ψ) .

Proof. We note that Γ ∈ L
n
n−1

,∞. Since ψ ∈ L2] , we have |ψ|2]−2ψ ∈ L
2n
n+1 and therefore,

by the weak Young inequality (a special case of Lemma 3.2 below)

ψ̃ := Γ ∗ (|ψ|2]−2ψ)

satisfies

ψ̃ ∈ L2](Rn,CN ) .

Moreover, it is easy to see that

Dψ̃ = |ψ|2#−2ψ in Rn

in the sense of distributions. This implies that

D(ψ − ψ̃) = 0 in Rn

in the sense of distributions and therefore, by Lemma 2.1, ψ − ψ̃ = 0, as claimed. �

Corollary 2.3. If ψ ∈ L2#(Rn,CN ) solves (1) in the sense of distributions, then ψ is

weakly differentiable and ∇ψ ∈ L2n/(n+1)(Rn).

We recall that ψ being weakly differentiable means that all distributional derivatives ∂jψ,

j = 1, . . . , n, are L1
loc functions.

Proof. Since |ψ|2#−2ψ ∈ L2n/(n+1), this follows immediately from Lemma 2.2 by the Calde-

ron–Zygmund inequality; see, e.g., [1, Lemma 3.2.2] for the corresponding statement for

Dirac operators. (Since the inequality there is stated for bounded open sets with a constant

independent of the domain, it also holds for Rn.) �

3. A weak decay estimate

Throughout this section we consider a distributional solution ψ ∈ L2#(Rn,CN ) of (1).

Our goal is to show that ψ ∈ L
n
n−1

,∞(Rn,CN ). This should be understood as an integral

version of a decay estimate. In the next section we will improve this to a pointwise decay

estimate.

While the overall strategy in this section is similar to that in [27] (see also [39]) in the

second order case, we believe that our arguments are more direct than in those papers.

3.1. Reminder on Lorentz spaces. In this subsection we collect some definitions and

results about Lorentz spaces needed in the paper. We refer, for instance, to [21] and [33]

for a detailed presentation.

For σ ∈ (0,∞), τ ∈ (0,∞] the Lorentz space Lσ,τ (Rn) = Lσ,τ is defined as the set of

(equivalence classes of) measurable functions f : Rn → C such that ‖f‖Lσ,τ (Ω) < +∞,
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where

‖f‖Lσ,τ :=


(
τ

∫ ∞
0

hτ−1 |{|f | > h}|τ/σ dh
)1/τ

if τ <∞ ,

sup
h>0

(
h |{|f | > h}|1/σ

)
if τ =∞ .

(30)

Here |A| denotes the n-dimensional Lebesgue measure of a measurable set A ⊆ Rn. We

note that ‖f‖Lσ,τ is, in general, not a norm. Clearly,

Lσ,σ(Ω) = Lσ(Ω), ∀σ ∈ (0,∞) , (31)

and it is easy to see that

Lσ,τ2(Ω) ⊆ Lσ,τ1(Ω), ∀σ ∈ (0,∞), ∀τ1, τ2 ∈ (0,∞], τ1 6 τ2. (32)

The following results due to O’Neil [33] extend Hölder’s and Young’s inequalities to

Lorentz spaces. We use the convention that 1/∞ = 0.

Lemma 3.1 (Hölder inequality). Let σ1, σ2, σ ∈ (0,∞), τ1, τ2, τ ∈ (0,∞] such that

1

σ1
+

1

σ2
=

1

σ
,

1

τ1
+

1

τ2
>

1

τ
.

Then there is a C > 0 such that for any f1 ∈ Lσ1,τ1 and f2 ∈ Lσ2,τ2 one has f1f2 ∈ Lσ,τ

with

‖f1f2‖Lσ,τ 6 C‖f1‖Lσ1,τ1‖f2‖Lσ2,τ2 . (33)

Lemma 3.2 (Young inequality). Let σ1, σ2, σ ∈ (1,∞), τ1, τ2, τ ∈ (0,∞] such that

1

σ1
+

1

σ2
=

1

σ
+ 1,

1

τ1
+

1

τ2
>

1

τ
.

Then there is a C > 0 such that for any f1 ∈ Lσ1,τ1 and f2 ∈ Lσ2,τ2 one has f1 ∗ f2 ∈ Lσ,τ

with

‖f1 ∗ f2‖Lσ,τ 6 C‖f1‖Lσ1,τ1‖f2‖Lσ2,τ2 . (34)

Lemma 3.3 (A limit case of the Young inequality). Let σ ∈ (1,∞). Then there is a C > 0

such that for any f1 ∈ L1 and f2 ∈ Lσ,∞ one has f1 ∗ f2 ∈ Lσ,∞ with

‖f1 ∗ f2‖Lσ,∞ 6 C‖f1‖L1‖f2‖Lσ,∞ . (35)

In the following we will typically apply these bounds to functions with values in CN or in

CN×N . These can be reduced to the case considered above by bounding |〈f1(x), f2(x)〉| 6
|f1(x)||f2(x)| and |f1(x)f2(x)| 6 ‖f1(x)‖|f2(x)| when f1 has values in CN and in CN×N ,

respectively, and f2 has values in CN . (In the second case ‖f1(x)‖ denotes the operator

norm of f1(x).)
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3.2. Proof of the weak decay estimate. Again we assume that ψ ∈ L2#(Rn,CN ) is a

distributional solution of (1). We first improve the a priori information L2#(Rn,CN ) in the

Lorentz scale by lowering the second exponent.

Lemma 3.4. For any r > 0,

ψ ∈ L2#,r(Rn,CN ) .

Proof. By the definition of the Lorentz norm (30), one easily finds

‖|ψ|q−2ψ‖rq′,r = r

∫ ∞
0
|{|ψ|q−1 > τ}|r/q′τ r−1 dτ = r(q − 1)

∫ ∞
0
|{|ψ| > τ}|r(q−1)/q dτ

= ‖ψ‖r(q−1)
q,r(q−1) . (36)

From now on, we abbreviate q = 2#. By the integral equation for ψ from Lemma 2.2 and

O’Neil’s convolution inequality (34) we have

‖ψ‖q,r = ‖Γ ∗ (|ψ|q−2ψ)‖q,r . ‖Γ‖n/(n−1),∞‖|ψ|q−2ψ‖q′,r = ‖Γ‖n/(n−1),∞‖ψ‖
q−1
q,r(q−1) .

In the last equality, we used (36). We apply this inequality repeatedly. We have, by

assumption, ψ ∈ Lq = Lq,q. This and the above inequality give ψ ∈ Lq,q/(q−1). The next

application gives ψ ∈ Lq,q/(q−1)2 and iterating this procedure, since q/(q − 1)n → 0 as

n→∞, we obtain the claim. �

Lemma 3.5. ψ ∈ Ln/(n−1),∞(Rn,CN )

Proof. Again, we write q = 2#. We show that there is a constant C > 0 such that for any

M > 0 we have

SM := sup

{∣∣∣∣∫
Rn
〈ϕ,ψ〉 dx

∣∣∣∣ : ‖ϕ‖n,1 6 1 , ‖ϕ‖q′ 6M
}
6 C . (37)

This implies that

sup

{∣∣∣∣∫
Rn
〈ϕ,ψ〉 dx

∣∣∣∣ : ‖ϕ‖n,1 6 1 , ϕ ∈ Lq′
}
6 C ,

and therefore, by density and duality, ψ ∈ Ln/(n−1),∞, as claimed.

We now fix M > 0 and aim at proving (37). Moreover, let ε > 0 be a parameter to

be specified later. According to Lemma 3.4 we know that ψ ∈ Lq,q−2 and therefore, by a

computation as in (36), |ψ|q−2 ∈ Ln,1. Therefore there is a bounded function fε, supported

on a set of finite measure, such that

‖|ψ|q−2 − fε‖n,1 6 ε .

We denote gε := |ψ|q−2 − fε. Let ϕ ∈ Ln,1 with ‖ϕ‖n,1 6 1 and ‖ϕ‖q′ 6M . We claim that∫
Rn
〈ϕ,ψ〉 dx =

∫
Rn
〈ϕ, (Γ ∗ (fεψ))〉 dx+

∫
Rn
〈χε, ψ〉 dx (38)

with

χε := |ψ|q−2Γ ∗ (gε(Γ ∗ ϕ)) .
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Indeed, by the integral equation from Lemma 2.2 we have∫
Rn
〈ϕ,ψ〉 dx =

∫
Rn
〈ϕ, (Γ ∗ (fεψ))〉 dx+

∫
Rn
〈ϕ, (Γ ∗ (gεψ))〉 dx .

Using Fubini’s theorem and the fact that for all x, y ∈ Rn with x 6= y, Γ(x − y) is an

anti-Hermitian matrix one rewrites the second term on the right side as follows,∫
Rn
〈ϕ,Γ ∗ (gεψ)〉 dx =

∫
Rn
〈ϕ(x),

∫
Rn

Γ(x− y)(gε(y)ψ(y)) dy〉 dx

=

∫
Rn
dy

∫
Rn
dx 〈ϕ(x),Γ(x− y)(gε(y)ψ(y))〉

= −
∫
Rn
dy

∫
Rn
dx 〈Γ(x− y)ϕ(x), gε(y)ψ(y)〉

= −
∫
Rn
dy 〈

∫
Rn

Γ(x− y)ϕ(x) dx, gε(y)ψ(y)〉

=

∫
Rn
〈(Γ ∗ ϕ)(y), gε(y)ψ(y)〉 dy .

Then (38) follows using again ψ = Γ ∗ (|ψ|q−2ψ) in the last integral, and applying the same

argument as above.

We now estimate the two integrals appearing on the right side of (38). By Lemmas 3.1

and 3.3 we have∣∣∣∣∫
Rn
〈ϕ, (Γ ∗ (fεψ))〉 dx

∣∣∣∣ . ‖ϕ‖n,1‖Γ ∗ (fεψ)‖n/(n−1),∞ 6 ‖ϕ‖n,1‖Γ‖n/(n−1),∞‖fεψ‖1

6 ‖ϕ‖n,1‖Γ‖n/(n−1),∞‖fε‖q′‖ψ‖q .

Thus, ∣∣∣∣∫
Rn
〈ϕ, (Γ ∗ (fεψ))〉 dx

∣∣∣∣ 6 Cε , (39)

where Cε depends, besides ε, only on n and ‖ψ‖q.
We now claim that

‖χε‖n,1 6 C ′‖gε‖n,1‖ϕ‖n,1 , ‖χε‖q′ 6 C ′‖gε‖n,1‖ϕ‖q′ (40)

with a constant C ′ depending only on n and ‖ψ‖q. Once this is shown, we infer from the

definition of SM that ∣∣∣∣∫
Rn
〈χε, ψ〉 dx

∣∣∣∣ 6 C ′‖gε‖n,1SM .

We now choose ε = 1/(2C ′) and recall that ‖gε‖n,1 6 ε. In view of (38) and (39) we obtain∣∣∣∣∫
Rn
〈ϕ,ψ〉 dx

∣∣∣∣ 6 C ′′ + 1

2
SM ,

where C ′′ is Cε with the above choice of ε. Taking the supremum over all ϕ, we obtain

SM 6 C
′′ +

1

2
SM .

We note that SM <∞ (in fact, since ψ ∈ Lq, we have SM 6M‖ψ‖q). Therefore, the above

inequality yields SM 6 2C ′′, which proves (37).
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Thus, it remains to show (40). We have

‖χε‖n,16 ‖|ψ|q−2‖n,1‖Γ ∗ (gε(Γ ∗ ϕ))‖∞ . ‖|ψ|q−2‖n,1‖Γ‖n/(n−1),∞‖gε(Γ ∗ ϕ)‖n,1
6 ‖|ψ|q−2‖n,1‖Γ‖n/(n−1),∞‖gε‖n,1‖Γ ∗ ϕ‖∞ . ‖|ψ|q−2‖n,1‖Γ‖2n/(n−1),∞‖gε‖n,1‖ϕ‖n,1.

(Here we used ‖f ∗g‖∞ . ‖f‖n/(n−1),∞‖g‖n,1, which is a consequence of Hölder’s inequality

in Lemma 3.1 and the translation invariance of the Lorentz norms.) Since |ψ|q−2 ∈ Ln,1 by

Lemma 3.4 with norm bounded by a power of ‖ψ‖q, we obtain the first inequality in (40).

Similarly, we have

‖χε‖q′ 6 ‖|ψ|q−2‖n‖Γ ∗ (gε(Γ ∗ ϕ))‖q . ‖|ψ|q−2‖n‖Γ‖n/(n−1),∞‖gε(Γ ∗ ϕ)‖q′

6 ‖|ψ|q−2‖n‖Γ‖n/(n−1),∞‖gε‖n‖Γ ∗ ϕ‖q . ‖|ψ|q−2‖n‖Γ‖2n/(n−1),∞‖gε‖n‖ϕ‖q′ .

Since ‖gε‖n . ‖gε‖n,1, this implies the second inequality in (40) and concludes the proof. �

4. Pointwise decay estimate

Our goal in this section is to prove the following pointwise decay estimate.

Theorem 4.1. If ψ ∈ L2#(Rn,CN ) solves (1) in the sense of distributions, then there are

constants C,R > 0 such that

|ψ(x)| 6 C|x|−(n−1) for all |x| > R .

We will deduce this theorem from the following result about scalar functions.

Theorem 4.2. Let 0 6 W ∈ Ln,1(Rn) and let u ∈ Ln/(n−1),∞(Rn) be weakly differentiable

with

|∇u| 6W |u| in Rn .

Then there are constants C (depending only on n) and R > 0 (depending only on W and

n) such that

|u(x)| 6 C(1 + ‖W‖n,1)‖u‖n/(n−1),∞|x|−n+1 if |x| > R .

Before turning to the proof of Theorem 4.2, let us show that it implies Theorem 4.1.

Proof of Theorem 4.1. According to Corollary 2.3, ψ is weakly differentiable. This implies

that |ψ| is also weakly differentiable and satisfies

|∇|ψ|| 6 |∇ψ| almost everywhere .

(For C-valued functions this is [30, Theorem 6.17]; the CN valued case is handled similarly.)

On the other hand,

|∇ψ| = |Dψ| = |ψ|2#−1 almost everywhere ,

where we used the fact that (1) holds almost everywhere, which follows from Corollary 2.3.

This means that the inequality in Theorem 4.2 is satisfied for u = |ψ| and W = |ψ|2#−2.

The fact that u ∈ Ln/(n−1),∞ follows from Lemma 3.5 and the fact that W ∈ Ln,1 follows

from Lemma 3.4. Thus the claimed decay bound follows from that in Theorem 4.2. �
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It remains to give the proof of Theorem 4.2. We will make use of some ideas from [31]

which, in turn, is based on ideas from [38]. Those papers deal with differential inequalities

involving the Laplacian, for instance, |∆u| 6W |u| with W ∈ Ln/2,1, u ∈ Ln/(n−2),∞, n > 3,

and yield decay bounds |u| . |x|−n+2. Our Theorem 4.2 is the first order analogue of these

results.

The following lemma is probably well-known, but we provide a proof for the sake of

completeness.

Lemma 4.3. Let Ω ⊂ Rn be open, let u ∈ L1
loc(Ω) be weakly differentiable and let ρ > 0.

Then almost everywhere in {x ∈ Ω : dist(x,Ωc) > ρ},

u(x) =
1

|Bρ(x)|

∫
Bρ(x)

u(y) dy +
1

|Sn−1|

∫
Bρ(x)

(
x− y
|x− y|n

− x− y
ρn

)
· ∇u(y) dy .

Proof of Lemma 4.3. We abbreviate Ωρ := {x ∈ Ω : dist(x,Ωc) > ρ}. Since u ∈ L1
loc, the

first term on the right side is a locally bounded function in Ωρ. Moreover, since ∇u ∈ L1
loc

and since 1Bρ(0)(
x
|x|n −

x
ρn ) ∈ Ln/(n−1),∞ has compact support, we infer from Lemma 3.3

that the second term on the right side belongs to L
n/(n−1),∞
loc . Therefore, by a standard

mollification argument we may assume that u ∈ C1(Ω). In this case we fix x ∈ Ωρ and note

that for any ω ∈ Sn−1,

u(x) = u(x− ρω) +

∫ ρ

0
ω · ∇u(x− rω) dr .

Thus, averaging with respect to ω,

u(x) =
1

|Sn−1|

∫
Sn−1

u(x− ρω) dω +
1

|Sn−1|

∫ ρ

0

∫
Sn−1

rω

rn
· ∇u(x− ρω) dω rn−1 dr

=
1

ρn−1|Sn−1|

∫
∂Bρ(x)

u(y) dσ(y) +
1

|Sn−1|

∫
Bρ(0)

z

|z|n
· ∇u(x− z) dz .

By the divergence theorem we have∫
Bρ(x)

(x− y) · ∇u(y) dy = n

∫
Bρ(x)

u(y) dy − ρ
∫
∂Bρ(x)

u(y) dσ(y) .

Combining the last two identities we obtain the claimed formula for u ∈ C1(Ω). �

Proof of Theorem 4.2. Since both sides of the assumed inequality are homogenous with

respect to u, we may assume without loss of generality that ‖u‖n/(n−1),∞ = 1. We deduce

from Lemma 4.3 that

|u(x)| 6 1

|Bρ(x)|

∫
Bρ(x)

|u(y)| dy +
1

|Sn−1|

∫
Bρ(x)

(
1

|x− y|n
− 1

ρn

)
|(x− y) · ∇u(y)| dy

6
1

|Bρ(x)|

∫
Bρ(x)

|u(y)| dy +
1

|Sn−1|

∫
Bρ(x)

1

|x− y|n−1
|∇u(y)| dy

6
1

|Bρ(x)|

∫
Bρ(x)

|u(y)| dy +
1

|Sn−1|

∫
Bρ(x)

1

|x− y|n−1
W (y)|u(y)| dy .
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In the following we will need to follow some constants and therefore we denote by A the

constant (depending on n) in∣∣∣∣∫
Rn
f(x)g(x) dx

∣∣∣∣ 6 A‖f‖n/(n−1),∞‖g‖n,1 .

(This is a special case of Lemma 3.1.) By Hölder’s inequality, recalling that ‖u‖n/(n−1),∞ = 1,

1

|Bρ(x)|

∫
Bρ(x)

|u(y)| dy 6 A 1

|Bρ(x)|
‖1Bρ(x)‖n,1 =

C1

ρn−1
.

We have thus shown that

|u(x)| 6 C1

ρn−1
+

1

|Sn−1|
Iρ(x) (41)

with

Iρ(x) =

∫
Bρ(x)

1

|x− y|n−1
W (y)|u(y)| dy .

Reinserting (41) into the definition of Ir gives

Iρ(x) 6
C1

ρn−1

∫
Bρ(x)

1

|x− y|n−1
W (y) dy +

1

|Sn−1|

∫
Bρ(x)

1

|x− y|n−1
W (y)Iρ(y) dy . (42)

Again by Hölder’s inequality,∫
Bρ(x)

1

|x− y|n−1
W (y) dy 6 A‖|x|−n+1‖n/(n−1),∞‖W1Bρ(x)‖n,1 = C2‖W1Bρ(x)‖n,1 . (43)

In particular, the first term on the right side of (42) can be estimated by

C1

ρn−1

∫
Bρ(x)

1

|x− y|n−1
W (y) dy 6

C1C2‖W‖n,1
ρn−1

. (44)

The second term on the right side of (42) equals

1

|Sn−1|

∫
Bρ(x)

1

|x− y|n−1
W (y)Iρ(y) dy

=
1

|Sn−1|

∫
Bρ(x)

1

|x− y|n−1
W (y)

∫
Bρ(y)

1

|y − z|n−1
W (z)|u(z)| dz dy

=
1

|Sn−1|

∫
B2ρ(x)

Jρ(x, z)W (z)|u(z)| dz

with

Jρ(x, z) =

∫
Bρ(x)∩Bρ(z)

1

|x− y|n−1|y − z|n−1
W (y) dy .

We write Bρ(x) ∩Bρ(z) = A1 ∪A2 with

A1 = {z ∈ Bρ(x) ∩Bρ(z) : |y − x| 6 (1/2)|x− z|} and A2 = (Bρ(x) ∩Bρ(z)) \A1 .
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If z ∈ A1, then |y−z| > |x−z|−|y−x| > (1/2)|x−z|, and if z ∈ A2, then |y−x| > (1/2)|x−z|.
Thus, we can bound

Jρ(x, z) 6
2n−1

|x− z|n−1

(∫
A1

W (y)

|x− y|n−1
dy +

∫
A2

W (y)

|z − y|n−1
dy

)
6

2n−1

|x− z|n−1

(∫
Bρ(x)

W (y)

|x− y|n−1
dy +

∫
Bρ(z)

W (y)

|z − y|n−1
dy

)

6
2n

|x− z|n−1
sup

w∈B2ρ(x)

∫
Bρ(w)

W (y)

|w − y|n−1
dy

6
2nC2

|x− z|n−1
sup

w∈B2ρ(x)
‖W1Bρ(w)‖n,1 ,

where, in the last step, we used (43). To summarize, we have shown that the second term

on the right side of (42) is bounded by

1

|Sn−1|

∫
Bρ(x)

1

|x− y|n−1
W (y)Iρ(y) dy

6
2nC2

|Sn−1|
sup

w∈B2ρ(x)

‖W1Bρ(w)‖n,1
∫
B2ρ(x)

1

|x− z|n−1
W (z)|u(z)| dz

=
2nC2

|Sn−1|
sup

w∈B2ρ(x)
‖W1Bρ(w)‖n,1

(
Iρ(x) +

∫
B2ρ(x)\Bρ(x)

1

|x− z|n−1
W (z)|u(z)| dz

)

6
2nC2

|Sn−1|
sup

w∈B2ρ(x)
‖W1Bρ(w)‖n,1

(
Iρ(x) +

1

ρn−1

∫
Rn
W (z)|u(z)| dz

)
6

2nC2

|Sn−1|
sup

w∈B2ρ(x)
‖W1Bρ(w)‖n,1

(
Iρ(x) +

A‖W‖n,1
ρn−1

)
.

Inserting this together with (44) into (42) we obtain

Iρ(x) 6
C1C2‖W‖n,1

ρn−1
+

2nC2

|Sn−1|
sup

w∈B2ρ(x)
‖W1Bρ(w)‖n,1

(
Iρ(x) +

A‖W‖n,1
ρn−1

)
.

Thus, for all x ∈ Rn with

2nC2

|Sn−1|
sup

w∈B2ρ(x)
‖W1Bρ(w)‖n,1 6

1

2
(45)

we find

Iρ(x) 6
(2C1C2 +A)‖W‖n,1

ρn−1
. (46)

Let us choose R > 0 such that

2nC2

|Sn−1|
‖W1BR/4(0)‖n,1 6

1

2
.

Then for any x ∈ Rn with |x| > R the choice ρ = |x|/4 leads to

2nC2

|Sn−1|
sup

w∈B2ρ(x)
‖W1Bρ(w)‖n,1 6

2nC2

|Sn−1|
‖W1B|x|−3ρ(x)‖n,1 =

2nC2

|Sn−1|
‖W1B|x|/4(x)‖n,1

6
2nC2

|Sn−1|
‖W1BR/4(0)‖n,1 6

1

2
.



SHARP DECAY ESTIMATES FOR CRITICAL DIRAC EQUATIONS 17

Thus, (45) is satisfied and therefore (46) holds with ρ = |x|/4. Inserting this into (41) we

obtain the claimed bound. �

5. Boundedness and regularity

In order to complete the proof of Theorem 1.1 it remains to show the regularity of ψ.

Note that this, together with the decay estimate from Theorem 4.1 near infinity, also yields

the global upper bound (6). We also recall that C1,α regularity with an unspecified α has

already been shown in [26]. Our argument is different and uses the reformulation as an

integral equation from Lemma 2.2.

As before, we assume that ψ ∈ L2#(Rn,CN ) is a distributional solution of (1).

Proposition 5.1. ψ ∈ L∞(Rn,CN )

Proof. We denote again q = 2#.

Step 1. We show that ψ ∈ Lr for any q 6 r <∞ with r−1 > q−1−n−1. (More explicitly,

ψ ∈ Lr for any q 6 r <∞ if n = 2, 3 and ψ ∈ Lr for any q 6 r 6 2n/(n− 3) if n > 4.)

The proof of this assertion is similar to, but simpler than that of Lemma 3.5. We only

sketch the main differences. Fix r with the stated properties. It suffices to show that there

is a constant C > 0 such that for any M > 0 we have

SM := sup

{∣∣∣∣∫
Rn
〈ϕ,ψ〉 dx

∣∣∣∣ : ‖ϕ‖r′ 6 1 , ‖ϕ‖q′ 6M
}
6 C . (47)

To prove this, we again decompose, for given ε > 0, |ψ|q−2 = fε + gε where fε is a

bounded function supported on a set of finite measure and where ‖gε‖n 6 ε. We define s

by s−1 = r−1 + n−1 and note that by assumption 1 < s 6 q. We start again from identity

(38) and estimate the first term there as follows,∣∣∣∣∫
Rn
〈ϕ, (Γ ∗ (fεψ))〉 dx

∣∣∣∣ 6 ‖ϕ‖r′‖Γ ∗ (fεψ)‖r . ‖ϕ‖r′‖Γ‖n/(n−1),∞‖fεψ‖s

6 ‖ϕ‖r‖Γ‖n/(n−1),∞‖fε‖qs/(q−s)‖ψ‖q .

Thus, ∣∣∣∣∫
Rn
〈ϕ, (Γ ∗ (fεψ))〉 dx

∣∣∣∣ 6 Cε ,
where Cε depends, besides ε, only on n, r and ‖ψ‖q. To complete the proof of (47), similarly

as before, it suffices to show

‖χε‖r′ 6 C ′‖gε‖n‖ϕ‖r′ , ‖χε‖q′ 6 C ′‖gε‖n‖ϕ‖q′ (48)

with a constant C ′ depending only on n, r and ‖ψ‖q. For the proof of the first inequality

we bound

‖χε‖r′ 6 ‖|ψ|q−2‖n‖Γ ∗ (gε(Γ ∗ ϕ))‖s′ . ‖|ψ|q−2‖n‖Γ‖n/(n−1),∞‖gε(Γ ∗ ϕ)‖r′

6 ‖|ψ|q−2‖n‖Γ‖n/(n−1),∞‖gε‖n‖Γ ∗ ϕ‖s′ . ‖|ψ|q−2‖n‖Γ‖2n/(n−1),∞‖gε‖n‖ϕ‖r′ .

This proves the first inequality in (48). The second inequality in (48) was, in fact, proved

while proving (40). This completes the proof of (48) and therefore that of (47).
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Step 2. We show that if ψ ∈ Lr for some q < r < n(n + 1)/(n − 1), then ψ ∈ Ls for

1/s = (n+ 1)/((n− 1)r)− 1/n.

Indeed, the assumption ψ ∈ Lr implies that |ψ|q−2ψ ∈ L(n−1)r/(n+1) and therefore, by

the weak Young inequality, Γ ∗ (|ψ|q−2ψ) ∈ Ls, where s is defined as above. (The weak

Young inequality is applicable since (n + 1)/((n − 1)r) − 1/n > 0 by the assumed upper

bound on r.) By Lemma 2.2 we obtain ψ ∈ Ls, as claimed.

Step 3. We show that if ψ ∈ Lr for some r > n(n+ 1)/(n− 1), then ψ ∈ L∞.

Indeed, the assumption implies that |ψ|q−2ψ ∈ Ls for s = (n − 1)r/(n + 1) > n. On

the other hand, since ψ ∈ Lq, |ψ|q−2ψ ∈ L2n/(n+1) and 2n/(n + 1) < n. Thus, writing Γ

as the sum of a function in Ls
′

and one in L2n/(n−1), we obtain the assertion by Hölder’s

inequality.

Step 4. Let us complete the proof of the proposition.

First assume n = 2, 3. Then according to Step 1, ψ ∈ Lr for any r < ∞ and therefore,

by Step 3, ψ ∈ L∞.

Now let n > 4. Define r−1
1 = (n−3)/(2n) and inductively r−1

j+1 = (n+1)/((n−1)rj)−1/n

for j > 1. It is elementary to check that (r−1
j ) is a strictly decreasing sequence which tends

to −∞. Thus there is a largest j, say J , such that rj < n(n+1)/(n−1). By Step 1, ψ ∈ Lr1
and, by applying Step 2 repeatedly, ψ ∈ LrJ+1 . Note that rJ+1 > n(n+ 1)/(n− 1). If this

inequality is strict, we infer from Step 3 that ψ ∈ L∞. Finally, if rJ+1 = n(n+ 1)/(n− 1)

we apply Step 2 with r−1 = r−1
J+1 + ε where 0 < ε < (n− 1)2/(n(n+ 1)2). Then

1

s
=

n+ 1

(n− 1)r
− 1

n
=

n+ 1

(n− 1)rJ+1
+

(n+ 1)ε

n− 1
− 1

n
=

(n+ 1)ε

n− 1
<

n− 1

n(n+ 1)

and therefore ψ ∈ Ls with s > n(n+ 1)/(n− 1). By Step 3, this implies again ψ ∈ L∞. �

Proposition 5.2. If n = 2, then ψ ∈ C∞. If n > 3, then ψ ∈ C1,α for any α < 2/(n− 1).

Proof. By Proposition 5.1 and the assumption ψ ∈ Lq, we have |ψ|q−2ψ ∈ Lp for any

2n/(n + 1) 6 p 6 ∞. Therefore, by standard mapping properties of Riesz potentials,

ψ = Γ ∗ (|ψ|q−2ψ) ∈ C0,α for all α < 1. This implies that |ψ|q−2ψ ∈ C0,α for all α < 1 if

n = 2 and for all α < q − 2 if n > 3. Therefore, by mapping properties of Riesz potentials,

ψ = Γ ∗ (|ψ|q−2ψ) ∈ C1,α for all α < 1 if n = 2 and for all α < q − 2 if n > 3. If n = 2,

since q − 2 = 2, we can iterate this argument and we eventually obtain ψ ∈ C∞. �

Remark 5.3. Note that the same proof shows that ψ ∈ C∞(Rn \ {ψ = 0}). It follows from

the deep results of [7] that the set {ψ = 0} has Hausdorff dimension at most n− 2.

6. Classification of ‘radial’ solutions

Our goal in this section is to prove Theorem 1.3 which classifies all solutions of (1) of

the form (15). We emphasize that once one has passed to the radial formulation (16) the

restriction that n is an integer can be dropped. Our proof works for general real n > 1.

Proof of Theorem 1.3. We pass to logarithmic variables and write

u(r) = r−(n−1)/2f(ln r) , v(r) = r−(n−1)/2g(ln r)
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for functions f, g defined on R. The equations (16) become

f ′ +
n− 1

2
f = g(f2 + g2)1/(n−1) , g′ − n− 1

2
g = −f(f2 + g2)1/(n−1)

and the boundary conditions become

lim
t→−∞

f(t) = lim
t→−∞

g(t) = 0 .

We emphasize that the equations are now autonomous. Moreover, one easily checks that

E = −fg +
1

n
(f2 + g2)n/(n−1)

is a constant. Since it tends to zero at −∞, we conclude that

fg =
1

n
(f2 + g2)n/(n−1) on R .

We abbreviate ρ = f2 + g2. Squaring the previous identity gives

f2(ρ− f2) =
1

n2
ρ2n/(n−1) .

Solving for f2 we obtain

f2 =
1

2

(
ρ±

√
ρ2 − 4

n2
ρ2n/(n−1)

)
, g2 =

1

2

(
ρ∓

√
ρ2 − 4

n2
ρ2n/(n−1)

)
.

Note that this also implies that ρ2 > (4/n2)ρ2n/(n−1) on R. The signs in the formulas for

f2 and g2 are correlated. The signs may change but they may do so only at points where

ρ2 = (4/n2)ρ2n/(n−1).

Our next goal is to derive a differential equation for ρ. Using the differential equations

for f and g we obtain

(f2 + g2)′ = −(n− 1)(f2 − g2) ,

and inserting the above formulas for f and g we obtain

ρ′ = ∓(n− 1)

√
ρ2 − 4

n2
ρ2n/(n−1) .

This equation can be solved explicitly. On an interval where ρ2 > (4/n2)ρ2n/(n−1) and

where f2 is given by the above formula with the + sign, we find

ρ(t) =
(n

2

)n−1
cosh−n+1(t− t0)

for some t0 ∈ R; see Remark 6.1 below for details. Choosing a maximal interval with theses

properties we deduce that this interval has necessarily the form (t0,∞). Analogously one

sees that any maximal interval where ρ2 > (4/n2)ρn/(n−1) and where f2 is given by the

above formula with the − sign is of the form (−∞, t1) for some t1 ∈ R and

ρ(t) =
(n

2

)n−1
cosh−n+1(t− t1)

on this interval. We conclude that t0 = t1 and therefore

ρ(t) =
(n

2

)n−1
cosh−n+1(t− t0) for all t ∈ R ,
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unless one has ρ2 = (4/n2)ρ2n/(n−1) on all of R, which means that either ρ ≡ 0 (and

therefore f ≡ g ≡ 0) or ρ = ((n − 1)/2)n−1. In the latter case, from the formulas for f2

and g2 we see that f2 = g2 = (1/2)((n − 1)/2)n−1, but these functions do not satisfy the

boundary conditions at −∞, so this case is excluded. (Note that this corresponds to the

singular solution in Remark 1.4.)

We return to the non-trivial case. Inserting the formula for ρ into the above formulas for

f2 and g2 we deduce that

f2 =
1

2

(n
2

)n−1
e−(t−t0) cosh−n(t− t0) , g2 =

1

2

(n
2

)n−1
et−t0 cosh−n(t− t0) .

(In fact, one checks these computations separately on the intervals (−∞, t0) and (t0,∞),

where one knows the signs in the formulas for f2 and g2. The change in sign at t0 is

compensated by the fact that the expression√
ρ2 − (4/n2)ρ2n/(n−1) = (n/2)n−1 cosh−n(t− t0)| sinh(t− t0)|

involves the absolute value of the sinh.)

The formula fg = (1/n)ρn/(n−1) together with the fact that ρ never vanishes implies that

f and g are either both positive or both negative. Thus, for some σ ∈ {+1,−1},

f = σ

√
1

2

(n
2

)n−1
e(t−t0)/2 cosh−n/2(t− t0) , g = σ

√
1

2

(n
2

)n−1
e−(t−t0)/2 cosh−n/2(t− t0) .

Changing back to the variable r we have obtained the claimed formulas with λ = et0 . �

Remark 6.1. In the proof above we solved the equation ρ′ = ∓(n−1)
√
ρ2 − (4/n2)ρ2n/(n−1).

This can be done as follows, treating for instance the case with the − minus. Let σ(a) =√
1− (4/n2)a2/(n−1) for 0 < a < (2/n)−n+1. Then the equation reads ρ′ = −(n− 1)ρσ(ρ).

We compute

dσ(a)

da
= − 1

n− 1
(1− (4/n2)a2/(n−1))−1/2(4/n2)a2/(n−1)−1 = − 1

n− 1

1− σ(a)2

aσ(a)
.

Thus, using the equation for ρ,

(σ(ρ))′ =
dσ

da
|a=ρρ

′ = 1− σ(ρ)2 .

Since (1− b2)−1 has anti-derivative artanh b, we obtain that for some t0,

t− t0 = artanhσ(ρ(t)) .

That is,

tanh(t− t0) =
√

1− (4/n2)ρ(t)2/(n−1) ,

which gives the claimed formula for ρ(t).
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7. Excited states in 2D

In this subsection we consider equation (1) with n = 2, which is the same as (17) with

β1 = 1 and β2 = 1/2. We make the ansatz (18) and arrive at the equationsu′ + S+1
r u = v(u2 + v2) ,

v′ − S
r v = −u(u2 + v2) ,

(49)

which, of course, need to be supplemented with boundary conditions. We will prove the

following classification result analogous to Theorem 1.3.

Theorem 7.1. Let S ∈ Z and let u, v be real functions on (0,∞) satisfying (49) as well as

lim
r→0

r1/2u(r) = lim
r→0

r1/2v(r) = 0 . (50)

Then either u = v = 0 or

u(r) = σλ−1/2U(r/λ) , v(r) = τλ−1/2V (r/λ)

for some λ > 0 and σ, τ ∈ {+1,−1}, where

U(r) =
√

2|2S + 1| rS

r2S+1 + r−(2S+1)
, V (r) =

√
2|2S + 1| r−S−1

r2S+1 + r−(2S+1)

and σ = τ if 2S + 1 > 0 and σ = −τ if 2S + 1 < 0.

We emphasize that as in Theorem 1.3 we impose rather weak boundary conditions.

In our proof we do not use the fact that S is an integer. Any real number S works. For

S = −1/2 the proof shows that u = v = 0 is the only solution satisfying the boundary

conditions.

Proof. We write again

u(r) = r−1/2f(ln r) , v(r) = r−1/2g(ln r)

for functions u, v defined on R. The equations become

f ′ +

(
S +

1

2

)
f = g(f2 + g2) , g′ −

(
S +

1

2

)
g = −f(f2 + g2)

and the boundary conditions become

lim
t→−∞

f(t) = lim
t→−∞

g(t) = 0 .

One easily checks that

E = −(2S + 1)fg +
1

2
(f2 + g2)2

is a constant. Since it tends to zero at −∞, we conclude that

fg =
1

2(2S + 1)
(f2 + g2)2 on R .

We abbreviate ρ = f2 + g2. Squaring the previous identity gives

f2(ρ− f2) =
1

4(2S + 1)2
ρ4 .
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Solving for f2 we obtain

f2 =
1

2

(
ρ±

√
ρ2 − 1

(2S + 1)2
ρ4

)
, g2 =

1

2

(
ρ∓

√
ρ2 − 1

(2S + 1)2
ρ4

)
.

Note that this also implies that ρ2 > (1/(2S + 1)2)ρ4 on R. The signs in the formulas for

f2 and g2 are correlated. The signs may change but they may do so only at points where

ρ2 = (1/(2S + 1)2)ρ4.

Our next goal is to derive a differential equation for ρ. Using the differential equations

for f and g we obtain

(f2 + g2)′ = −(2S + 1)(f2 − g2) ,

and inserting the above formulas for f and g we obtain

ρ′ = ∓(2S + 1)

√
ρ2 − 1

(2S + 1)2
ρ4 .

This equation can be solved similarly as in Remark 6.1 and we obtain, unless ρ ≡ 0,

ρ(t) = |2S + 1| cosh−1((2S + 1)(t− t0)) .

Inserting this into the above formulas for f2 and g2 we deduce that

f2 =
|2S + 1|

2
e(2S+1)(t−t0) cosh−2((2S + 1)(t− t0))

and

g2 =
|2S + 1|

2
e−(2S+1)(t−t0) cosh−2((2S + 1)(t− t0)) .

(Here one has to distinguish according to whether 2S + 1 is positive or negative.) When

2S + 1 > 0 the formula fg = (1/2(2S + 1))ρ2 together with the fact that ρ never vanishes

implies that f and g are either both positive or both negative. Thus, for some σ ∈ {+1,−1},

f = σ

√
|2S + 1|

2
e(2S+1)(t−t0)/2 cosh−1((2S + 1)(t− t0))

and

g = σ

√
|2S + 1|

2
e−(2S+1)(t−t0)/2 cosh−1((2S + 1)(t− t0)) .

Changing back to the variable r we have obtained the claimed formulas with λ = et0 . In

case 2S + 1 < 0 is similar, but f and g have opposite signs. �

8. Faster decay for excited states

The aim of this section is to prove Theorem 1.5 concerning (17) with parameters β1, β2 >

0. The case β1 = 2β2 = 1 was treated in the previous section and the case β1 = 2β2 can be

reduced to the former by scaling.

When β1 6= 2β2 we cannot provide explicit solutions, but we can still prove existence and

uniqueness (up to symmetries) of a solution and can study its asymptotic behavior rather

precisely.
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Proof of Theorem 1.5. Step 1. Introducing logarithmic variables. We set again

u(r) = r−1/2f(ln r) , v(r) = r−1/2g(ln r) (51)

for functions f, g defined on R, so that system (19) becomesf ′ +
(
S + 1

2

)
f = g(2β2f

2 + β1g
2) ,

g′ −
(
S + 1

2

)
g = −f(β1f

2 + 2β2g
2)

(52)

and the boundary conditions in the theorem read

lim
t→−∞

f(t) = lim
t→−∞

g(t) = 0 . (53)

One easily checks that

E =
β1

4
(f4 + g4) + β2f

2g2 −
(
S +

1

2

)
fg (54)

is constant. The boundary conditions (53) imply that E = 0, that is,

β1

4
(f4 + g4) + β2f

2g2 =

(
S +

1

2

)
fg. (55)

This implies, in particular, that f(t) 6= 0 for all t ∈ R and g(t) 6= 0 for all t ∈ R, unless

f ≡ g ≡ 0. (Indeed, if f(t0) = 0, then (55) implies g(t0) = 0 and then (52) implies

f ≡ g ≡ 0. The argument for g is similar.) Moreover, it implies that

τ f(t)g(t) > 0 for all t ∈ R .

Step 2. Monotonicity of the angle. We shall show that, if (f, g) 6= (0, 0) is a solution of

(52) with E = 0, then (f, g) is global and the limits

θ± := lim
t→±∞

arctan
g(t)

f(t)

exist and satisfy θ+ < θ−.

Indeed, the fact that E = 0 on the maximal interval of existence easily implies that the

solution is global. Moreover, as remarked in the previous step, E = 0 implies that f and g

never vanish and therefore we can introduce

θ(t) = arctan
g(t)

f(t)
.

Using (52) and (55) we compute

θ′ =
g′f − f ′g
f2 + g2

=
(2S + 1)gf − β1(f4 + g4)− 4β2f

2g2

f2 + g2
=
−(β1/2)(f4 + g4)− 2β2f

2g2

f2 + g2
< 0 .

This proves the claim.

Step 3. Asymptotics of solutions. We shall show that any solution (f, g) of (52) with

E = 0 is global and satisfies (53) and

lim
t→∞

f(t) = lim
t→∞

g(t) = 0 . (56)
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The global existence was already shown in the previous step. We shall deduce the

asymptotic behavior from the Poincaré–Bendixson theorem in the form given, for instance,

in [37, Theorem 7.16]. Let

ω± = {(x, y) ∈ R2 : for some tn → ±∞ , (f(tn), g(tn))→ (x, y)} .

Since the set {(x, y) : (β1/4)(x4 + y4) + β2x
2y2 = (S + 1/2)xy} is compact, it is easy to

see that the sets ω± are non-empty, compact and connected [37, Lemma 6.6]. According

to Poincaré–Bendixson, for each one of the signs ±, one of the following three alternatives

holds: (a) ω± is a fixed point, (b) ω± is a regular periodic orbit, (c) ω± consists of fixed

points and non-closed orbits connecting these fixed points.

A simple computation shows that the only constant solution of (52) with E = 0 is

(f, g) ≡ (0, 0). Thus, if alternative (a) holds for both signs ±, then we are done. Let us

rule out (b) and (c). Note that in both cases (b) and (c), the limiting periodic orbit and

the limiting homoclinic orbits, if they would exist, would have E = 0.

According to Step 2, there are no non-trivial periodic solutions of (52) with E = 0

(because for a non-trivial periodic solution (f̃ , g̃), arctan(g̃/f̃) does not have a limit). This

rules out (b).

According to Step 2, there are θ± such that

ω± ⊂ {(r cos θ±, r sin θ±) : r > 0} .

Thus, in order to rule out (c), it suffices to rule out the existence of a non-trivial solution

(f̃ , g̃) of (52) with (f̃(t), g̃(t)) → (0, 0) for |t| → ∞ and such that arctan(g̃(t)/f̃(t)) = θ±

for all t. But this is again ruled out by Step 2. This completes the proof of the assertion.

Step 4. Existence of a homoclinic orbit. Let a and τ be as in the theorem and consider

the solution (f, g) = (q, p) of (52) with initial values

q(0) = τ p(0) = a .

We shall show that this solution is global and satisfies the asymptotic conditions (53) and

(56).

Indeed, by definition of a, identity (55) is satisfied. Therefore, the solution has E = 0.

The rest now follows from Step 3.

Step 5. Exponential decay. We shall show that for any solution (f, g) of (52) satisfying

(53) there is a constant C such that

(f2 + g2)1/2 6 Ce−|S+1/2||t| for all t ∈ R .

Indeed, we compute, using (52),

(f2 + g2)′ = 2(ff ′ + gg′) = (−(2S + 1) + (2β2 − β1)fg)(f2 − g2) ,

(f2 − g2)′ = 2(ff ′ − gg′) = (−(2S + 1) + 2(2β2 + β1)fg)(f2 + g2)

and

(fg)′ = f ′g + fg′ = −β1(f4 − g4) .
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This implies that

(f2 + g2)′′ = (−(2S + 1) + (2β2 − β1)fg)(−(2S + 1) + 2(2β2 + β1)fg)(f2 + g2)

− (2β2 − β1)β1(f4 − g4)(f2 − g2) .

We set ψ = f2 + g2 and write the previous equation as

−ψ′′ + V ψ = −(2S + 1)2ψ

with

V = −(2S + 1)(6β2 + β1)fg + (2β2 − β1)2(2β2 + β1)f2g2 − (2β2 − β1)β1(f2 − g2)2 .

By (53) we have E = 0 and therefore, by Step 3, V (t) → 0 as |t| → ∞. By a standard

comparison argument this implies that for any 0 < ε 6 (2S + 1)2 there is a Cε such that

ψ(t) 6 Cεe
−
√

(2S+1)2−ε|t| for all t ∈ R . (57)

For the sake of completeness we provide the details of this argument. Given 0 < ε 6 (2S+1)2

we choose Tε <∞ such that V (t) > −ε for t > Tε. The function

ϕ(t) = ψ(t)− ψ(Tε)e
−
√

(2S+1)2−ε(t−Tε)

satisfies ϕ(Tε) = 0, limt→∞ ϕ(t) = 0 and

ϕ′′ > ((2S + 1)2 − ε)ϕ in (Tε,∞) .

By the maximum principle, this implies that ϕ 6 0 in [Tε,∞). Similarly, one proves a

bound near −∞ and the remaining bound is obtained by continuity. This proves (57).

Because of the decay (57) we can apply the Green’s function to the equation for ψ and

obtain

ψ(t) = − 1

2|2S + 1|

∫
R
e−|2S+1||t−t′|V (t′)ψ(t′) dt′ .

Using this equation and the apriori bound (57) it is easy to obtain the claimed bound for

ψ.

Step 6. Asymptotic behavior of f and g. Again, we let (f, g) 6≡ (0, 0) be a solution of

(52) satisfying (53). We shall show that

` := lim
t→τ∞

e(S+1/2)tf(t) and `′ := lim
t→−τ∞

e−(S+1/2)tg(t) exist and are non-zero and finite

and that

lim
t→τ∞

e3(S+1/2)tg(t) =
β1`

3

4(S + 1/2)
and lim

t→−τ∞
e−3(S+1/2)tf(t) =

β1`
′3

4(S + 1/2)
.

Let us prove this in case S + 1/2 > 0 (so τ = +1), the case S + 1/2 < 0 being similar.

The function F (t) = e(S+1/2)tf(t) satisfies

F ′(t) = e(S+1/2)t(f ′ + (S + 1/2)f) = e(S+1/2)tg(2β2f
2 + β1g

2) .

As shown in Step 1, either f and g are both positive or both negative. Thus, either F is

positive and increasing or it is negative and decreasing. Since it is bounded by Step 5, it

tends in any case to a finite, non-zero limit `. This proves the first assertion.
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The function G(t) = e−(S+1/2)tg(t) satisfies

G′(t) = e−(S+1/2)t(g′ − (S + 1/2)g) = −e−(S+1/2)tf(β1f
2 + 2β2g

2) . (58)

For the sake of simplicity we now assume that f and g are both positive. The case where

both are negative is treated similarly. Given 0 < ε 6 ` there is a tε < ∞ such that

f(t) > (`− ε)e−(S+1/2)t for t > tε. We bound the right side of (58) and get

G′(t) 6 −β1(`− ε)3e−4(S+1/2)t for all t > tε ,

and, since G(t)→ 0 as t→∞ by Step 5,

G(t) = −
∫ ∞
t

G′(s) ds > β1(`−ε)3

∫ ∞
t

e−4(S+1/2)s ds =
β1(`− ε)3

4(S + 1/2)
e−4(S+1/2)t for all t > tε

and

g(t) >
β1(`− ε)3

4(S + 1/2)
e−3(S+1/2)t for all t > tε .

This is the desired asymptotic lower bound on g(t). The proof of the upper bound is similar,

but slightly more complicated. Using the bounds from Step 5 in (58), we get

G′(t) > − const e−4(S+1/2)t for all t ∈ R

and therefore, by a similar argument as before,

g(t) 6 const e−3(S+1/2)t for all t ∈ R .

Now again given ε > 0 there is a t′ε < ∞ such that f(t) 6 (` + ε)e−(S+1/2)t for t > t′ε.

Inserting this and the previous bound on g in the equation for G′ we obtain

G′(t) > −β1(`− ε)3e−4(S+1/2)t − const e−8(S+1/2)t for all t > t′ε

and therefore by integration similarly as before

g(t) 6
β1(`+ ε)3

4(S + 1/2)
e−3(S+1/2)t + const e−7(S+1/2)t for all t > t′ε .

This proves the claimed asymptotics for g as t→∞.

In order to obtain the asymptotics of f and g for t → −∞, we note that the pair

(g(−t), f(−t)) solves (52). (Note that we have reversed the roles of f and g.) Therefore,

applying the previous statement to this solution we obtain the claimed asymptotics for

t→ −∞.

Step 7. Uniqueness. We show that the non-trivial solution of (52) satisfying (53) is

unique, up to translation and a sign change.

We give the argument only for S+1/2 > 0, the case S+1/2 < 0 being similar. We know

from Step 6 that

lim
t→∞

g(t)

f(t)
= 0 = lim

t→−∞

f(t)

g(t)
.

Thus, by continuity there is a t0 ∈ R such that b := f(t0) = g(t0). Assumption (53) implies

E = 0 and therefore
β1

4
2b4 + β2b

4 − (S + 1/2)b2 = 0 .



SHARP DECAY ESTIMATES FOR CRITICAL DIRAC EQUATIONS 27

Thus, b ∈ {0,−a,+a} with a defined in the theorem. Since the solution is non-trivial,

we have b 6= 0. If (q, p) denotes the solution from Step 4, then by uniqueness of the

solution of an initial value problem we have (f(t), g(t)) = (q(t− t0), p(t− t0)) if b = a and

(f(t), g(t)) = (−q(t− t0),−p(t− t0)) if b = −a. This proves the above uniqueness claim.

Step 8. Conclusion of the proof. We now prove all the statements of Theorem 1.5

translated to logarithmic variables.

Let (p, q) be the solution from Step 4 which we already know is global and satisfies

(53). Therefore Step 6 describes the asymptotic behavior of this solution. The fact that

τq(t)p(t) > 0 for all t ∈ R was already noted in Step 1 and the fact that p(t) = τ q(−t) for

all t ∈ R follows from the fact that (τ q(−t), τ p(−t)) is a solution of (52) with the same

values at t = 0 as (p(t), q(t)). This concludes the proof of part (1) of the theorem. Part (2)

follows immediately from Step 7. �
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