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Abstract

A discussion is led on a constitutive modelling of granular soils and soil-structure
interfaces for which large changes in their internal state are likely to take place
throughout loading. Relevant variables accounting for this internal state are
discussed. They must include the effects of both the specific volume and the
mean pressure and also the influence of the contact directions of the granular
assembly related to induced anisotropy in the granular material. Two elasto-
plastic constitutive models for the volume element of soil and for soil-structure
interfaces are presented. They were designed in such a way that with a unique set
of model parameters, very different internal states can be addressed throughout
cyclic loadings. The validation of the constitutive models was performed on the
basis of experimental tests performed using Fontainebleau sand. Finally, the
validation is achieved studying a boundary value problem involving cyclic axially
loadings on a pile located in a sand massif. The simulations showed results in a
fairly good agreement with the results obtained from corresponding centrifuge
tests confirming the predictive capability of the two constitutive models.

Keywords: elasto-plasticity, critical state mechanics, cyclic loading, soil-pile
interaction, granular soils

Complex loading paths such as cyclic loadings are handled by the constitutive
models of soils with difficulty. The problem arises from the extensive changes in
the internal structure of the material during such loading paths. Generally, the
constitutive models give fair prediction of the soil behaviour when the initial
state and the loading path are not too far from those used for the identification
of the model constants. When the loading path has induced great changes in
the internal structure, the set of parameters is no more adapted to the actual
material properties of the material. Such cyclic loadings are nevertheless typical
in civil engineering. We can cite the dynamical forces induced by earthquakes
but also the repeated actions of wind and wind waves on off-shore energy pro-
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duction plants. Similar loading affects eolian in-shore power plants and their
soil foundation.

If great changes take place within the granular material, it is therefore im-
portant that the associated constitutive model reflects these changes in a certain
way. The first part of this work is thus dedicated to the definition of appropriate
variables that could be introduced in a constitutive model for soil in order to
better take into account the great evolution of the internal structure.

First, concerning the constitutive modelling itself, decades of scientific work
took place since the first adaptations of elasto-plasticity to soils by Lade for
example in the case of granular material [1]. Because mechanical deformations
in soils are fundamentally different than those in metals, large developments
have been required to better capture the behaviour of soils. The assumptions
of a yield surface enclosing an elastic regime and of a plastic potential ruling
plastic deformations were abandoned by different authors working outside the
elasto-plasticity framework. For example, Dafalias adapted its bounding sur-
face concept for clays [2]. This model still has in common with the classical
elasto-plasticity that the compliance tensor has also two values, one for incre-
mental stresses pointing outside the bounding surface, and another one in the
other cases. More complex dependencies of the compliance tensor with respect
to the incremental loading direction were also proposed. For example, incre-
mental non-linear models were obtained assuming a direct non-linear relation
between the increments of the stress tensor and of the strain tensor [3]. Other
incremental non-linear (INL) models were proposed e.g. by Chambon [4] or
by Darve [5] (see also, respectively, [6] and [7]) by interpolating the material
response from known responses along some given loading paths. Note that the
bounding surface plasticity can also lead to INL constitutive relations [8]. Such
non-linear relations are generally more capable to handle complex loadings paths
with changing incremental stress directions [9, 10].

Nevertheless, geomaterials may reveal complex behaviours on simple loading
paths, such as axisymmetric (“triaxial’) paths, as soon as cyclic loadings are
involved. For example, the volumetric behaviour of a sand sample can drastically
change during cycles if the density is sufficiently affected [11, 12, 13, 14].

Since the design of Cam-Clay model [15], the density of soils is recognized
as a key parameter ruling their behaviour. In fact, the void ratio e and the
mean pressure p, though of different kinds, cannot be dissociated. Indeed, a
sand that can be qualified as dense since exhibiting dilation for p = 100 kPa
can only show contractive volumetric deformations for a confining stress of 2000
kPa [16]. Then, one should better use the terms of contractive, poorly dilative
and dilative sands which are more correct than loose, medium dense and dense
sands since the nature of the behaviour also depends on the mean pressure.
Figure 1 schematizes the typical behaviours of contractive and dilative sands
in drained conditions. On this figure, s;;/p is the stress ratio, ratio between
the second invariant of the stress tensor and the mean pressure, i.e. one third



of the first invariant of the stress tensor. Different works have included the
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Figure 1: Compression drained triaxial test: idealized behaviours of dilative and contractive
sands.

joint influence of density and mean pressure, either in Kolymbas hypoplasticity
framework [17, 18], or in bounding surface plasticity framework [19, 20], for
example.

But some experiments have also revealed different features for samples with
same (e, p) values. In undrained experiments on Hostun sand, samples having
faced different pre-loading histories show different behaviours, even if the void
ratio is nearly constant for a same confining stress [21]. Similar results were
also obtained for Toyoura sand [13] using drained torsional simple shear tests.
Indeed, samples with a same void ratio and same confining pressure contracted
very differently depending on the previous shear history. These experiments
evidence the key role of the stress history and among other the key influence of
the induced anisotropy created during a previous loading phase. Therefore, pre-
viously quoted works, designed for initially isotropic materials, have in this case
to be improved. Different authors proposed to encompass both effects of dense
state and induced anisotropy either in the classical elasto-plasticity framework
[22, 23] or in Dafalias bounding surface plasticity [24, 25, 26]. Note that the
density effects are included in the MIT-S1 model of [24] only through e-values,
without considering p. However, the validation of such formulations with cyclic
deviatoric loadings are not systematically presented. This is one purpose of the
work presented herein. A second purpose is to present a comprehensive study,
proposing both a soil and a soil-structure constitutive model, and a validation
of the models through a boundary value problem.

The work in this paper is based on CJS elasto-plastic model, denoted this
way from the names of its authors [27, 28|. Section 1 details the general formula-
tion of this constitutive model, comparing its main features with some classical
results. Section 2 extends the discussion about variables that could describe the
internal state of the soil, and details the changes that are made to CJS rela-
tions in order to take into account this internal state, as to the limits of these
changes. Section 3 presents a soil-structure interface model, which is derived
from the enhanced soil volume model. Finally, an application which is also a



validation of these two models is performed solving a soil-structure problem in
section 4 which is the main contribution of this work. Experimental results
obtained during a benchmark which involved cyclically and axially loaded piles
are compared to the blind-predictions obtained using the constitutive relations
for soils and soil-structure interfaces. This benchmark was performed during
the French national project SOLCYP!.

1. Elasto-plastic relations for soils

This section presents the general formulation of CJS model [28] (or [27, 29] in
French publications) comparing its features with classical results in geomechan-
ics. Like other constitutive models for soils, the equations describe phenomena
related to the intrinsic part of the soil, i.e the solid skeleton. Therefore, if the
material is saturated, stresses must be understood as effective stresses but, for
convenience, the superscript ’ is omitted in the following equations.

1.1. Hypoelastic mechanism

Inside a given stress domain (which is clearly defined in sections 1.2.2 and 1.3),
incremental stresses do are computed from incremental strains de according to
a non-linear Hooke’s law:

2
do =2G°de + (K© — 3 G°) tr(de) I (1)
< do=K°tr(de)I +2G°de
with I the identity second order tensor and de the deviatoric part of de. The
formulation for moduli K and G° are given in section 2.1.

Once the limit of the hypoelastic domain is reached, irreversible strain mech-
anisms are initiated. Experiments on granular soils show that both deviatoric
and isotropic parts of the stress tensor may lead to irreversible deformations
[30, 31, 13, 32].

1.2. Deuviatoric plastic mechanism

Additional strains, de®P, appear when the stress state reaches a given sur-
face, the yield criterion, and at the same time when the increment of loading
is directed outward. Since a precise determination of the yield surface would
require complex experiments, this surface is generally stated to be similar to the
plastic limit condition (also denoted failure or limit surface) that bounds the
possible material stress states.

IBehaviour of piles subjected to cyclic loadings



1.2.1. Plastic limit condition

The plastic limit condition of an initially isotropic soil depends on the three
stress invariants which involve the mean pressure, the intensity of the stress
deviatoric tensor and the relative magnitude of the intermediate principal stress.
Different existing criteria were developed for geomaterials, for example Mohr-
Coulomb (M-C), Matsuoka and Nakai (M-N) [33] and Lade and Duncan [1]
criteria. M-N and Lade surfaces have the advantage to be differentiable without
restriction, contrary to M-C surface.

The three criteria induce a direct link between failure in axisymmetric ex-
tension (with principal stresses o3 < o2 = o7) and failure in axisymmetric
compression (o7 > o2 = 03). M-C and M-N are identical from this point
of view and are not able to predict extension failure from compression failure
data correctly. Several studies involving a Discrete Element Method confirmed
Lade’s description of the influence of the intermediate principal stress [34, 35, 36]
and particularly the prediction of the extension strength from the compression
strength (both strengths are defined using the ratio between the second and the
first invariant of the stress tensor, denoted I; and sy; respectively).

Contrary to before-mentioned criteria, the deviatoric plastic limit criterion
of CJS model [27, 29] presents two parameters in case the extension and com-
pression strengths are calibrated separately (see Figure 2). The equation of the
criterion in the deviatoric plane is written:

srr h(8s) — Ry It = 0 (2)

with
h(Bs) = (1 — cos(36,))"° (3)

Angle 0, is the Lode angle (for example 6, = 0° for axisymmetric compression,
and 0, = 60° for axisymmetric extension), and I; = tr(o) = 3p is the first
invariant of the stress tensor. The model parameter ~ rules the dissymetry of the
criterion evidenced by the ratio between compression and extension strengths
which is different from unity. For v = 0 the criterion is circular in the deviatoric
plane, which is not adapted to a three-dimensional description of soil behaviour.
Finally, Ry, corresponds to the mean radius of the limit surface in the deviatoric
plane; this parameter is discussed more in detail in section 2.2.

The limit surface of CJS model, plotted in Figure 3, is compared to Lade
criterion for a set of parameters leading to the same values for the extension and
compression strengths for both models. One can note that the departure be-
tween the two criteria is very small for any other intermediate principal stresses
(Figure 3(b)). The plot for Lade criterion in Figure 3 was obtained using the
polar expression of this criterion derived in [37].

1.2.2. Yield criterion

The elastic domain is strictly included inside the plastic limit surface, with
a similar shape as already stated but is written according to a “local” devia-
toric stress, q. Indeed, a kinematic hardening can move the center of the yield
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Figure 2: Predictions, Mohr-Coulomb (M-C), Matsuoka-Nakai (M-N), or Lade, criteria of
the triaxial extension strength, for a given compression strength. The common value of the
compression strength is expressed through Mohr-Coulomb parameter: the internal friction
angle ¢. No such constraint between extension and compression strengths exists for CJS
model.
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Figure 3: Comparison between Lade |1, 37] and CJS criterion in the deviatoric plane, in the
case of common extension and compression strengths.



criterion away from the hydrostatic axis. We can write: ¢ = s — I X, with
X a non-dimensional tensor positioning the center of the yield surface within
the principal stress space. Figure 4 depicts the yield criterion in the octohedral
plane. The corresponding equation is written:

f=air (1 =7 cos(30,))"° = RT, = 0 (4)

Angle 6, has to be understood as a local Lode angle (see Figure 4), belonging

Figure 4: Cross-section in the octohedral plane of the yield surface. The surface, centered at
X, restricts the local deviator q.

to the whole interval [0°; 360°].

Apart from changes of X, shearing also affects the value of the mean radius
R of the surface through an isotropic hardening. Both internal variables R and
X tend to a finite value in such a way that the yield surface strictly remains
inside the plastic limit domain. For this purpose, a non-linear link between R
and its hardening variable v is used:

AR,

dR = — 7t
(Av+ Rp,)?

dv (5)
Equation (5) introduces two model parameters: A and R,,. R,, is the final
value of R when v tends to infinity. The evolution of hardening variable v is
obtained according to equation (6) which is partly deduced from the generalized
standard material (GSM) approach from Halphen and Son Nguyen [38]. The
GSM approach was introduced to satisfy the second thermodynamical principle
that rules irreversible phenomena.
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In equation (6), dA? is the plastic multiplier corresponding to the deviatoric
yield criterion, and the extra term (po/p)'-®, with po=100 kPa, was introduced
after experimental comparisons to damp out the strong influence of the mean
pressure in the hardening process [28]. Concerning the evolution of X, a linear
relation with its kinematic hardening variable « is used but da is computed in
such a way that finite limits for both a and X exist:

1.5
dX = ada and do = —d\* (dev (5—3’;) +1 ¢X) (%) (7)

In equation (7), a is a hardening model parameter, and we denote dev(T) the
deviatoric part of any tensor T. ¢ is not a model parameter but defined so that
da tends to zero when the yield criterion reaches the plastic limit condition.
For example, in axisymmetric conditions, ¢ = 1/(Rjim — Rm)-

1.2.3. Plastic potential

Because plastic volumetric strains for soils can be either contractive or dila-
tive and depend on the magnitude of the deviator stress, the additional strains
de? are computed through the following dilatancy rule:

. dp
de® = 8 (Sl - 1) s : de?] (8)

851 SIT

A characteristic state [30] (or Phase Transformation State [39]) separating
the contractancy and the dilatancy domains is introduced through s¢;. s¢;
is the corresponding value of the second invariant of the stress tensor on the
characteristic surface associated to the actual mean pressure. For convenience,
the characteristic surface has the same shape as the plastic limit or the yield
surface and is characterized by a mean radius Repqr:

S (1=~ cos(305))"% = Repar 11 = 0 (9)

The value for radius Rcpqr is discussed in section 2.2. Negative values for
model parameter 3 have to be used so that both dilative (de{ < 0 for de? > 0)
or contractive (da"i,p > 0 for da'lip > 0) behaviours are obtained for s;; > s¢; or
srr < s¢;. Irrespective of the contractive or the dilative nature of the behaviour,
when |3| decreases (under same stress states), the intensity of the plastic devi-

atoric volumetric strains (slope |del /defP|)

decreases.

The flow rule is not associated, then the plastic potential is different from
the yield surface. The details for the computation of the plastic strain tensor,
which actually does not require to know the expression of the plastic potential
but just the normal to this surface, can be found in [27, 28].

1.3. Isotropic plastic mechanism

A second plastic mechanism which allows closing the stress space along
the hydrostatic axis is introduced. The corresponding yield surface is a plane



and the criterion is defined by p = peons, where peons corresponds to the pre-
consolidation pressure. The activation of this plane generates a plastic strain
de™ computed according to an associated flow rule (see Figure 5).

(0=0,=0,)

Figure 5: Isotropic plastic mechanism: corresponding yield criterion and flow rule.

The hardening or this plastic surface is ruled by a “plastic compressibility
modulus” K?: .
dpeons = KP tr(de*P) (10)

Parameter I'¢/, relates K? to modulus K¢ K? = K¢/T'.;,. From equation
(10), one can note that the evolution of p.ons obeys the formulation of standard
generalized materials.

To conclude, the constitutive model CJS gives a relationship between the
increment of stress and the increment of total strain as do = F(de® + de +
de®P) with de® corresponding to the hypoelastic mechanism and de?P and de®?
to the deviatoric and isotropic plastic mechanism respectively.

2. Adaptation of CJS relations to the changes in the internal state of
the soil

CJS relations are adapted to take into account different initial densities and
changes within the structure of the soil due to repeated loadings.

2.1. Properties inside the yield criteria

Experimental tests suggest that both moduli K¢ and G¢ depend on the
mean pressure p [40]. This dependency being non linear, a power dependency
involving a parameter n (e.g K°oc(p)™) is introduced. For an isotropic granular
material, the values of moduli K¢ and G° are also affected by large variations
of density. Thus, a dependency with respect to the void ratio e is also adopted.
The formulation proposed by Hardin & Richart [41] is used. Then, to warrant
that a constant Poisson is obtained in any case K¢ and G are written:

_ )2 n _ )2 n
G = GeO (2117+ ee) <£> K¢ = KeO (2117 6) (ﬁ) (11)
bo +e Do



Three model parameters are involved: n, G0, K. G and K are reference
values for the moduli under a reference pressure py equal to 100kPa. The value
of this reference pressure is not an additional parameter and is arbitrarily cho-
sen equal to the atmospheric pressure.

In fact, the dependency with respect to the void ratio introduces a coupling
between elastic and plastic behaviours since the plastic mechanisms of defor-
mation affect also the void ratio. Due to this coupling, the terms of “elastic”
or “plastic” strains have to be dealt with carefully. They are no more directly
equivalent to “reversible” or “irreversible”; as pointed out by Hueckel and Maier
[42], and Houlsby and Collins [43, 44]. Indeed, the strain induced by the plastic
mechanisms cannot be considered as the difference between the total strains for
two states at the same stress anymore. Figure 6 illustrates this. In this Figure,
“elastic” strain is defined as the strain associated to an increase of stress through
a compliance tensor, which is a possible choice among others.

(0}
— bl
SA—B - 8A-B B
i
%/ *: changes in
A ’ E, from E to
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FE s * € of plastic
deformation
E, E,
1 1

Figure 6: One-dimensionnal example of a material with elastic-plastic coupling: parameter
E evolves (only) according to plastic deformation. There is no more equivalence between
"elastic/plastic" and "reversible/irreversible" terms. (Inspired by Figure 2 in [43])

Secondly, the pressure-dependency of G leads to some thermodynamical
inconsistencies. Indeed, as shown in [45], equations (1) and (11) do not cor-
respond anymore to a behaviour ruled by a potential energy, function of the
strains. Thermodynamical consistent formulations have been proposed by sev-
eral authors: the discussion by Niemunis & Cudny[46] summarizes many of the
oldest ones. More recently, such formulations can also be found in [47, 48].
In these cases, the constitutive relations are necessarily coupled: the spherical
part of the stress tensor depend both on the spherical and deviatoric parts of
the strain tensor, contrary to equation (1) which is herein adopted.

In fact, the stress domain inside which equation (1) holds true is not con-
sidered in this work as an elastic domain where no irreversibilities take place.
Strictly speaking, the elastic behaviour for soils is restrained to strains in a very
small domain, for example below 10~5 for clays under triaxial paths [49, 50|,
which is much smaller than the domain of strains we are interested in in this
work.
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For these reasons, there is no real shortcoming to use the hypoelastic (as
defined by Loret [51]) equations (1) and (11). The corresponding constitutive
relations are to be understood as describing a behaviour that may reveal some
irreversibilities, nevertheless reduced compared to what occurs outside this hy-
poelastic domain.

Let us finally emphasize that granular soils can probably not be adequately
simulated by a sound elasto-plastic theory. In this kind of medium, elastic
deformations come from reversible deformations of grains and grain contacts.
Then, elastic deformations are ruled by the features of the set of contacts be-
tween grains. On the other hand, plastic deformation involve mainly changes in
this set of contacts. Then, reversible and irreversible deformations are coupled:
an evolving plastic deformation induces changes in the elastic deformation. In
elasto-plasticity theory, for a given stress increment, the changes in elastic and
plastic deformations are uncoupled.

2.2. Influences of void ratio and mean pressure

As stated in the introduction, the whole mechanical behaviour of granular
soils, and not only the hypoelastic domain is influenced by the density of the ma-
terial. Nevertheless, after large deformations, a unique critical state is supposed
to be reached [52]|, where both stresses and volumetric strains do not evolve
anymore. In fact, the existence of a unique stable state holds also true for the
fabric within the material [53]. For triaxial compression tests, this critical state
is completely defined by the value of the mean pressure p (or I7): whatever the
initial state of the soil, the final values for the deviatoric stress s;; and the void
ratio e only depend on I;. Especially, a unique material parameter R..;; exists,
such that, at critical state, s;; h(0s) = Rerie I1. Here again, the shape of the
critical state surface is derived from the shape of the limit surface.

It has long been recognized that the curve e..;+(p) discriminates the soils
between pure contractive and dilative soils [52]: both void ratio e and mean
pressure p are to be considered to qualify the behaviour of soils. Soils with an
initial state (e,p) such that e < eq.;+(p) can contract and dilate, if e > eq.;t(p)
they can only contract. Been and Jefferies [54] proposed a state variable ¢ that
should rule the mechanical behaviour of the soil:

Y =v(e,p) = e — ecrit(p) (12)

According to Equation 12, dilative soils (which can contract and dilate) present
negative values of v, whereas positive values correspond to purely contractive
soils. The constitutive models for soils proposed by [19, 20, 26] use the variable
1 to describe the influences of both the void ratio and the mean pressure on
the behaviour of soils. The critical state line (CSL) e..;+(p) is here supposed to
obey the power-law equation (12)

3
ecrit(p) = egrit - )\crit (%) (13)
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with €2 .,, Acrit and € model parameters defining the critical state line. As large

changes in the internal state of the soil (variable ¥) may occur throughout load-
ings, the mechanical properties of the sand can significantly evolve. Then, the
mean radii of the different surfaces corresponding to different reference states
(characteristic state, plastic limit state) of CJS counstitutive model are set de-
pendent on . For an initially dense sand which dilates due to shearing and
hence gets looser, Ry;,, decreases towards R.,;;, and Rcpq, increases until R,
so that the properties of the critical state are retrieved. That also means that
the softening observed for a dense sand after the peak of shear resistance is mod-
eled since the plastic limit condition here collapses towards the critical surface
(see Figure 7). Experiments by [55, 16] attest the changes in Rcpqr according
to the void ratio and the confining stress and those by [56, 57] attest the depen-
dency of the internal friction angle (and thus of Ry;;,) with the void ratio and
the confining stress. Bi-linear evolutions for the mean radii R.pq, and Ry, are

Limit surface (R“m) ——  Characteristic Limit / critical / characteristic surfaces
Critical — - -- surface lim = ' crit ~ ' char -
surface (Rcm) char’

(a) Dilative sand (¢ < 0) (b) Purely contractive sand (¢ > 0)

Figure 7: The different constitutive surfaces, in different cases (a common value for Ryt
exists between the two cases).

proposed, introducing two positive model parameters oy, and qcpqr (see also
Figure 8):

Rchar = min (Rcrit (1 + Qchar w)a Rcrit) (14)
Ry = max (Rcrit (1 — Qlim 1/))7 Rcm’t) (15)

Within a different framework, similar dependencies were introduced by [26] for

R
. Blim(ll—’)
/&
Ra(W) P

Figure 8: Changes in the characteristic and limit surfaces of the CJS model, according to .
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the size of the bounding strength surface, and of the dilatancy rule. Moreover,
some numerical simulations involving the Discrete Element Method showed that
both radii Rjin, and Reper also depend on induced anisotropy [58, 59]. But for
the sake of simplicity, the dependency with respect to the density of the soil is
only considered in this work.

Dilative materials show specific features like the existence of a peak of shear
resistance and softening with a stiffer behaviour before the peak than observed
for purely contractive material [16]. Then, the properties of the plastic be-
haviour must also take into account a dependency with respect to ¥. For ex-
ample, the parameter a (Equation 7) involved in the kinematic hardening is
written as:

a = ag exp (—ag 1)

with ap and o, two positive model parameters.

Finally, the intensity of dilation increases when the value of ¢ decreases (]|
increases). This intensity is directly related to the value of the model parameter
B (see section 1.2.3) which absolute value must increase with |¢|. Then, § is
written:

B = Bo exp (ap 1)

with By and ag two negative parameters.

2.3. Induced anisotropy

Different experiments or numerical studies involving the Discrete Element
Method have evidenced that the set (e, p) is not the only variable that influences
the mechanical response of a sand. Indeed, the behaviour of granular materi-
als also depends on the direction of the loading with respect to the contact
directions of grains. Physical experiments on rolled cylinders performed by [60]
revealed that the stiffness of the sample can be divided by ten depending on
the contact directions in the sample. The volumetric behaviour is also affected,
especially the amount of contractive volumetric deformations. Numerical ex-
periments (e.g. [61]) showed also different responses depending on the contact
direction of grains within the samples. Irrespective of the initial anisotropy (that
can be caused by the construction of the sample under gravity), the orientation
of normals at contact conforms the direction of the major principal stress when
shearing [62, 63, 60]. Recently, micro-computed tomography on sand confirmed
it again [64]. For this reason, Wan & Guo [25] proposed a model which properties
rely on a “fabric tensor” computed proportionally to the deviatoric stress tensor.

In CJS model, induced anisotropy is described through the non-dimensional
tensor X related to the kinematic hardening. Indeed, for equal principal stresses
(01,02 = 03) and loading, e.g. (doy > 0,dos = dos = 0), the mechanical re-
sponse can be either hypo-elastic, or elasto-plastic (Figure 9). In Figure 9, con-
sider the center X I, of the yield criterion at location X *I; and let us consider an
increment of stress so that (doy = do.. > 0,dos = doy, = 0,dos = doy, = 0).

13



¥ Stress state
— Yield crit. 1
o x!
- = -Yield crit. 2
o X2

—————————

Figure 9: Induced anisotropy: from a given stress state, the response is different depending on
X, i.e. the previous history. Here the major principal direction corresponds to the physical
direction z, and the two minor principal directions to x and y.

The actual stress state being inside the hypo-elastic surface, the material re-
sponse is hypo-elastic, with a high stiffness and contractive volumetric defor-
mations. In a second case, for another location of XI; (XI; = X2I;), the
actual stress state is on the yield criterion with an increment of stress directed
outward. The response to the same increment do is elasto-plastic, with lower
stiffness and volumetric deformations that can be dilative.

Then, the prediction of the behaviour through CJS model depends not only
on the value of principal stresses, but also in the most elementary way, on the
principal directions of o (compared to the principal directions of X'). This ap-
proach that uses the kinematic hardening is also used for example in MIT-S1
model [24] and was briefly explained in [28]. Tensor X is supposed to model
the influence of the induced anisotropy on the behaviour of the material. In
fact, discrete simulations by [65] showed that strong correlation exists between
X and the fabric (anisotropy of normals’ directions at contact grains).

Finally, CJS model requires 17 independent parameters. An example of
calibration and validation of CJS model is provided for Fontainebleau sand in
section 4.1.

3. Interface constitutive model for soil-structure

In geotechnical problems involving any structure in contact with a soil, the
zone of soil in contact with the structure exhibits specific features different from
both the structure and the soil. In this zone, the soil particles are indeed neither
glued to the structure, nor prone to free relative displacements (without any re-
sisting forces). Thus, the behaviour of this zone must be modelled using specific
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constitutive equations. They relate the increments of normal and tangential
stresses acting along the interface to the increments of normal and tangential
relative displacements. Only one tangential direction is generally considered,
like in [66, 67, 68, 69, 70].

Experiments showed that the behaviour of this interface is qualitatively ruled
by the ratio between the roughness of the structure and the representative parti-
cle size of the soil [71]. Different experiments on sand - steel interfaces [66, 72, 71]
revealed that the behaviour of smooth interfaces is elastic-plastic, with no rela-
tive normal displacements [71] or reduced ones [66, 72] whereas a more complex
behaviour was obtained for rough interfaces. The complex behaviour for such in-
terfaces is confirmed by other works [73, 67, 74]. We can draw a parallel between
the behaviour of a rough interface and the behaviour of a granular soil provided
that a normal stress dependency of the behaviour replaces the mean pressure
dependency [73, 67]. Indeed, like for soils, some experiments have shown both
the influence of the normal stress and of the void ratio inside the interface on
the behaviour of the rough interfaces [66, 74].

For rough interfaces, a constitutive model accounting for the internal state of
the interface is then clearly advantageous. While modellings proposed by [66, 68]
require different parameters for loose or dense samples, works by [67, 69] take
into account both the influence of density and of the constant normal stress.
However, these authors have only validated their models using monotonic load-
ings. Liu & Ling [70], extending their previous work [69], presented validations
of their model regarding cyclic tests. Their formulation, within the generalized
plasticity framework, included the ) state parameter that is used for soil mod-
elling in section 2.2. However, Liu & Ling considered that the cyclic response
of the interface is ruled by particle breakage. Hence, in their model, the CSL
of the interface shifts along e-axis during the cyclic loading, according to the
evolution of the plastic work. Then, a densification is obtained in the interface
due to the filling of voids by new fine particles created after the breakage of
larger particles. The peak stress ratio is also considered to evolve according
first to v but also to the plastic work.

In this work, the dependency of the behaviour with respect to the void
ratio in the interface and the normal stress will only be kept. The design of
a constitutive model for a rough interface from a constitutive model for soil is
performed replacing on the one hand the mean pressure p by the normal stress
o and the deviatoric stress tensor s by the (scalar) tangential stress 7. On the
other hand, the normal relative displacement v is considered as equivalent to
the volumetric strain ey, whereas the tangential relative displacement  replaces
the deviatoric strain. Positive signs for o and wu still correspond to compression.
A critical state line is also identified. For the sake of simplicity, it is chosen as
linear in (e, In(o)) plane:

. . o
etzzm't = e(c)riilf — Cerit In <_> (16)

0o
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Figure 10: CJSi constitutive model for rough interfaces: different domains in the Mohr plane
for a dense interface.

The interface void ratio evolves according to the interface normal relative dis-
placements, from an initial value that is supposed to be the one of the sur-
rounding soil. Moreover, a given thickness for the interface must be assumed.
Different authors measured this interface thickness analyzing the displacement
field along an interface experiencing shearing, e.g. [71, 75]. In these studies,
the deformations caused by the structure displacements seemed to concentrate
in a layer as thick as 5-10 times the mean diameter of the sand involved in the
interface. Here, like in [67], the interface thickness ¢ is supposed to be equal to
ten times the mean diameter of the sand in the interface (Dso ~ 0.22 mm for
Fontainebleau sand studied in section 42). Then, the variation of the interface
void ratio can be determined from the incremental relative normal displacements
through equation (17):
du

de = —7(1 +e) (17)

Figure 10 summarizes the main features of the constitutive model CJSi, for
rough interfaces, derived from CJS model. Being cohesionless, the material in
the interface cannot bear traction and the ratio |7|/c is limited by the maximum
value |7|/o = tan(¢um). The density of the interface affects both angles @i,
and @cpqr that rule the plastic behaviour (see also section 3.2). The stress ratio
at critical state is deduced from the parameter pg,;:

I7|/o = tan(perit) (18)

Angles pepar and @y, which are distinct for dilative interfaces are equal to peit

2Note that for Fontainebleau sand, Dso’s value may be fairly considered as constant even
considering particle crushing (that is not the case here). Various interface experiments show
indeed that particle crushing in Fontainebleau sand affects the smallest particles, that is: D1o;
while Dso variations remain more limited (< 15 %) than for other sands [76, 77].
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for purely contractive interfaces:

tan(@Char) = { tan(wcmt) (1 + aCharw) if 1/) <0

tan(@erit) ‘ ify>0 (19)
tan(ppim) = tan(perit) (1 — o) i <0
Phim tan(@cm’t) if¢p >0

Both parameters o, and of, in Equation (19) are positive. This way, dila-
tive interfaces exhibit a stress peak and dilatancy when sheared, while purely
contractive ones do not exhibit a distinct peak and with only contractive normal

relative displacements.

The behaviour can be hypo-elastic depending on the value of the local tan-
gential stress 7,4:
Ty =T — 0 tan(px) (20)

A kinematic hardening is considered: the hardening parameter ¢, corresponds
to the center of the yield surface (Figure 10). Equation (21) defines the yield
surface boundaries (see also Figure 10):

|74] — o tan(pe) = 0 (21)

An isotropic hardening is also considered through the evolution of ¢.. The
equations that rule the evolution of ¢ x and . involve two parameters, a’ and
A® respectively. They are similar to those for X and R in CJS model (see [78]
for more details).

3.1. Hypoelastic mechanism

Inside the yield surface previously defined, a linear relation links do =
(do,dr) to dl = (du,dy). It is an uncoupled relation, with stiffnesses depending
both on the normal stress and on the relative density Ip (see also [69, 79]):

do = ky, du dr = ky dry

a\" ao\"  (22)
= dUan0(1+IOID) — dT2k50(1+1OID) —

ago ago

Equation (14) includes two parameters: k,o and ks whose values are related to
op that is a reference stress and thus not an additional parameter.

3.2. Plastic mechanism

For a stress state on the yield surface, when the stress increment is di-
rected outward, plastic yield occurs. The plastic normal displacement can be
contractive if |7|/o < tan(@enar) or dilative for |7]/o > tan(@epar). Equation
(19) involving the parameter 1 modifies the value of @.pq» and allows purely
contractive or dilative interfaces to be modeled. The intensity of the normal
displacements is ruled by a parameter 5° through an equation similar to equa-
tion (8) previously presented for the element of soil volume. The internal state
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of the interface is considered as affecting not only .pq, but also the intensity
of normal displacements:

B' = By exp(ajs ¥) (23)
Equation (23) involves two parameters 3§ and a%. Note that, like for 8 in CJS
model, 5° is negative.

Finally, CJSi model has 13 parameters, including two of them describing the
CSL. It is designed to model the behaviour of rough soil-structure interfaces
irrespective of the interface density state. If ¢ < 0, for states such that 7/0 >
tan(@ehar ), the behaviour is dilative (du < 0) under elasto-plastic loading, and
a peak for the mobilized friction 7/c is exhibited. If ¢» > 0, only contractive
deformations occur (du > 0) and no peak for the mobilized friction appears.
Smooth interfaces can also be simulated setting null values for parameters 33 and
a%. Comparisons with experimental data for Fontainebleau sand are presented
in section 4.

4. Case study involving a pile-soil interaction

A boundary value problem that constitutes the subject of a blind benchmark
in the national project SOLCYP is studied. The problem to solve involves an
axially cyclic loaded pile placed in a Fontainebleau sand massif. The ruguosity
of the pile is about 0.44 times the mean diameter of the Fontainebleau sand,
Dsyp, the interface may thus be considered as rough [72]|. The constitutive model
CJS for the element of soil volume and the model CJSi for the pile-soil interface
are used. Table 1 lists the physical properties of Fontainebleau sand, and its
particle size distribution is depicted in Figure 11.

| CU | €min | €max |
| 1.49 | 0.510 | 0.882 |

Table 1: Physical properties of Fontainebleau sand.

4.1. Calibration and validation of CJS model for Fontainebleau sand

Triaxial tests involving samples of Fontainebleau sand [80] and performed in
Navier laboratory, partner of the project SOLCYP, are used to calibrate CJS
model. They are also used to check its predictive ability. The tests cover a wide
range of initial (e, p) values but only monotonous tests were performed.

Three tests, denoted C1, C2 and C3 in Table 2, are used to calibrate the
parameters of CJS model. Some assumptions for parameters K° and I/ are
made and verified with a back-analysis of the experimental volumetric deforma-
tion curves. For given values of these parameters, the volumetric deformation
due to the hypo-elastic and the isotropic plastic mechanisms can be analytically
computed. Then, the third part of the volumetric deformations coming from
the deviatoric plastic mechanism can be isolated from the experimental data.
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Figure 11: Particle size distribution curve of Fontainebleau sand

Test name | Initial void ratio | Ip (%) | Confining pressure (kPa)
C1 0.709 46 400
C2 0.638 66 200
C3 0.573 83 50
Vi1 0.637 66 50
V2 0.637 66 400
V3 0.579 81 100

Table 2: Triaxial tests on Fontainebleau sand used for the calibration and the validation of
CJS model.

Assumed values for K and I'c), are considered as adequate when this latter
volumetric deformation exhibits a contractive-dilative transition as expected
for poorly dilative sands. Therefore, due to the lack of experiments under an
isotropic path, the identification of these latter parameters is only provided
qualitatively.

In order to determine the CSL parameters, we use assumptions formulated by
Biarez [81]. They state that maximum and minimum void ratios €4, and enin
[82] are states belonging to the Critical State Line for approximately p = 0.1MPa
and p = 5MPa respectively.

Because only triaxial compressions tests are available, the parameter  is de-
termined assuming that the CJS yield criterion presents the same ratio between
triaxial compression and extension strengths as predicted by Lade criterion (Fig-
ure 3). The radius of the critical surface, R.,;; is then obtained thanks to the
plateau of test C1 (see Figure 12). The maximum value for the hypo-elastic ra-
dius R,, is supposed to be equal to half of R..;+ (available cyclic tests would have
allowed to investigate this point more in detail). Parameter oy, is identified in
such a way that peaks of resistance in tests C2 and C3 can be retrieved. The
hardening parameters ag, ag, A are obtained after a trial-and-error method to
get back the whole stress curves. Finally, the parameters for the plastic potential
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are also obtained through a trial-and-error method, thanks to the experimental
volumetric deformation curves.

The identification of CJS model parameters would have been of better qual-
ity on the basis of an isotropic compression test (presenting a loading and an
unloading phase), a deviatoric compression test involving an unloading until
reaching the peak in the extension domain and a one-way cyclic deviatoric test
so that the hypo-elastic domain may reach its widest extent. Despite this lack
of information, a very good agreement is obtained between the experimental
results and CJS model except for the volumetric deformation curve for test C2
(Figure 12). It means that the calibrated CJS parameters satisfactorily match
the experimental data. The values for the parameters of CJS model are sum-
marized in Table 3.

1.5
=
= || c2 --
o5 #f e —
|
Exp. -¢
% 2 4 6 8 10
&, (%)
Figure 12: Calibration of CJS model with triaxial tests on Fontainebleau sand.
| Hypo-elastic and isotropic plastic mechanisms | Critical state line |
K (MPa) | G (MPa) | n Ceyp el | Aerit ¢
250 35 0.5 2 0.899 | 0.017 | 0.8
Deviatoric plastic mechanism
Yield and plastic limit criterions Plastic potential
Y Rcrit Qlim, aop Qg A (Pail) Rm Qchar BO ag
0.686 | 0.255 | 1.8 | 16.3107° | 3 151075 | 0.125 0 -0.139 | -5

Table 3: Identified parameters for CJS model for Fontainebleau sand (po=100 kPa).

Once CJS model has been calibrated from tests C1 to C3, three other tests
V1 to V3 (Table 2) are used for validation purpose. A good agreement is then
obtained for both the deviatoric stress path and the volumetric deformations
(Figure 13) which confirms the relevance of CJS model.

4.2. Calibration of the interface parameters

Fontainebleau sand was used by [83] as an interface medium along a rough
steel structure. Two interface shear tests under constant normal load (o = 100
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Figure 13: Validation of CJS relation on triaxial tests on Fontainebleau sand.

kPa), for two soil densities, were performed. Each test presents two loading
reversals. CJSi parameters are calibrated using the experiments according to a
procedure similar to the one used for the calibration of CJS model. The result
of the calibration process is presented in Figure 14 for the parameters listed in
Table 4. The simulation curves are considered as in a good agreement with the
experiments.

Hypo-elastic mechanism | Critical state line |
kno (MPa/m) | kso (MPa/m) | n | €27 Cerit
‘ 550 200 ‘ 0.5 | 0.71 0.065 ‘
Deviatoric plastic mechanism
Yield and plastic limit criteria Plastic potential
n(Gerir) | O | @ | A Pa ) | tan(dm) | alpr | By | o
0.8 0.6 ‘ 0.015 ‘ 0.02 0.3 2 -0.308 | -2

Table 4: CJSi parameters (for oo—100 kPa) for a rough interface composed of Fontainebleau
sand.

At the time of the project, no other data for the same system were available.
Thus, CJSi model cannot have been validated at a homogeneous scale. Section
4.3 involving the interface relation in a boundary value problem contributes
in a certain extent to validate CJSi model for Fontainebleau sand interfaces.
Homogeneous scale calibration and validation were previously proposed for other
interfaces [78].

4.8. Cyclic awxial loading simulation of a pile

A cyclic axial loading of a pile built in Fontainebleau sand is finally con-
sidered. Small-scale experiments were performed with a centrifuge device in
the French Institute IFSTTAR [84], partner of SOLCYP project. Herein, a nu-
merical simulation of the experiments is proposed, using FLAC software (code
ITASCA) in which CJS and CJSi models have been previously implemented.
The set of model parameters used in the study is the one previously identified
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Figure 14: Calibration of the parameters CJSi interface model.

for Fontainebleau sand. The void ratio is initially equal to 0.555 (Ip ~ 88%),
in both experiments and simulations.

In the actual experiments, the pile is first maintained in its final position,
before filling the tank with the sand. Therefore, the pile is not driven into the
granular material. The tank width is equal to ten times the pile radius. Then,
the hypothesis of an axisymmetric isolated pile in a semi infinite sand massif
holds true. This system is depicted in Figure 15. In the model, displacements
in & direction are prohibited along AB and CD sides, while g-displacements
are prohibited along CB. The soil is discretized into zones (elements) whose
behaviour is ruled by CJS model. A sufficient number of elements is chosen
(Figure 16) to obtain a response independent of the meshing. The metallic pile is
also discretized and behaves elastically with appropriate parameters. Numerical
interfaces between pile and soil zones are ruled by the previously calibrated
CJSi model. Interfaces simulation involve a high number of nodes, related to
the number of zones. The CJSi model is applied for each node, according to the
relative displacements occuring at the node. This provides a local description
of the behaviour.

The CJS model being designed for granular soils, cases with p < 0 cannot be
handled. In order to avoid divergences of the computations at the top surface
of the sand massif because of excessive low values for p, an isotropic stress state
of 5 kPa is added to each zone of the model, together with an external pressure
of the same value along DA.

First, a monotonic compression is simulated by imposing a constant velocity
for the nodes at the top of the pile. The speed is chosen low enough so that
a quasi-static loading condition holds true. This condition was satisfied since
the stress state has not evolved when the loading was kept at a given constant
value. The numerical and experimental evolutions of the vertical force acting
on the pile are compared in Figure 16.

No clear plateau is obtained with the numerical model, while one was ob-
served in the experiments. Moreover, in spite of a discrepancy found for the
initial stiffness (the numerical stiffness overestimates the experimental one by
roughly 70%), the result can be qualified as in a good agreement with the ex-
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Figure 15: FLAC numerical model.
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Figure 16: Experimental and numerical monotonic compression tests. The two experimental
tests allow the repeatability of experiments to be catched. The two numerical curves allow
the independency with respect to the mesh discretization to be checked.

periments.

Axial cyclic loadings that were also performed on the pile are also simulated.
A stress control at the top of the pile allows to follow a two-ways cyclic loading
path between two extreme values for the vertical force, one on the compressive
side F"** and the other one on the tensile side for the pile: Fy"**, see Figure
17. F"** is approximatively equal to 2MN which is not too severe compared to
the maximum pile strength (see Figure 16). Moreover, F*%* ~ 7 |F/*%*|, thus
the cycle is mainly compressive. Six cycles of loading were simulated. During
the cycles, the pile settlement increases due to the shaft load reduction. In
Figure 17, a shaft load reduction of about 18% is indeed observed during the
first six cycles. While the maximum mobilized friction angle remains constant
in the lateral interface (Figure 18a), the tangential shear stress decreases due
to the decrease of the normal stress (Figure 18b). The normal stress reduction
is caused by contraction of the soil around the pile within a zone that extends
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approximatively up to 5 times the radius of the pile.
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Figure 18: Extreme stress states of the lateral interface during cycles.

If we extrapolate the vertical settlement changes through a linear trend,
the number of cycles of FI"** leading to a settlement equal to 10% of the pile
diameter can be estimated. The result is given in Table 5 together with the
simulated settlement after the first loading and compared to the experimental
results. For such compressive loading cycles, the agreement is found satisfactory.
In particular, the numerical model of the experimental test approximates the
number of cycles triggering “failure” in a good manner. The experimental result
is underestimated by around 36% , which is on the conservative side.

5. Conclusion

In this work, a constitutive model for granular soils and a constitutive model
for rough soil-structure interfaces involving a granular soil have been presented.
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| Num. | Exp. |
7.6 ‘ 8 ‘

Vertical displacement after first loading (mm)

Number of cyles triggering "failure" of the pile 23 36

Table 5: Numerical and experimental results for a cyclic loading of a pile. "Failure" of the
pile is defined for a vertical displacement of the pipe equal to the tenth of its diameter.

They are closely related to the internal state of the volume element of soil
or of the interface respectively. The influence of density, mean pressure and
anisotropy of contact directions within the cohesionless material which are nowa-
days quite well established, were emphasized. A unique set of model parame-
ters is used though large changes with the internal structure are likely to occur
throughout cyclic loadings. CJS model for the volume element was deeply en-
hanced in this regard and a similar interface model denoted CJSi was derived.
The introduction of a state parameter proposed by [54] with reference to the
critical state line allows to encompass the effects of density and mean pressure
for soil and interfaces. In the case of the volume element of soil, a kinematic
hardening of the yield surface is required to take into account the effects of
induced anisotropy on the behaviour of the material.

A multi-scale validation of CJS and CJSi model was provided using exper-
iments involving Fontainebleau sand. After the calibration of CJS model pa-
rameters, monotonic triaxial experiments with different initial states including
density and mean pressure could have been predicted with a good accuracy. Di-
rect shear tests of an interface between Fontainebleau sand and a rough structure
could have been reproduced for two density states and throughout two reversals
of loading direction. Finally, a boundary value problem was studied on the basis
of these two constitutive models. It was part of a benchmark where centrifuge
tests on an axially loaded pile were performed. The simulations of the mono-
tonic and cyclic loadings on the pile were predicted with fairly good accuracy
validating the constitutive models presented in this work.
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