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Abstract

We consider steady flows of ideal incompressible fluids in two-dimensional domains.
These flows solve the Euler equations with tangential boundary conditions. If such a
flow has no stagnation point in the domain or at infinity, in the sense that the infimum
of its norm over the domain is positive, then it inherits the geometric properties of the
domain, for some simple classes of domains. Namely, if the domain is a strip or a half-
plane, then such a flow turns out to be parallel to the boundary of the domain. If the
domain is the plane, the flow is then a parallel flow, that is, its trajectories are parallel
lines. If the domain is an annulus, then the flow is circular, that is, the streamlines
are concentric circles. The results are based on qualitative properties and classification
results for some semilinear elliptic equations satisfied by the stream function.

1 Steady flows of a two-dimensional ideal fluid

We consider the incompressible Euler equations{
v · ∇ v +∇p = 0 in Ω,

div v = 0 in Ω,
(1.1)

in smooth two-dimensional connected subsets (domains) of R2. The vector field v is denoted
by

v = (v1, v2)
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A*MIDEX project (ANR-11-IDEX-0001-02), funded by the “Investissements d’Avenir” French Government
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has also received funding from the European Research Council under the European Union’s Seventh Frame-
work Programme (FP/2007-2013) ERC Grant Agreement n. 321186 - ReaDi - Reaction-Diffusion Equations,
Propagation and Modelling and from the ANR NONLOCAL project (ANR-14-CE25-0013).
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and the scalar function p stands for the pressure. Both v and p are assumed to be (at least)
of class C1(Ω) and the equations (1.1) are actually satisfied in Ω. The flow v is assumed to
satisfy the boundary conditions

v · n = 0 on ∂Ω, (1.2)

where n is the outward unit normal to Ω on ∂Ω. In other words, v is tangential on ∂Ω.
Due to the boundary conditions and the incompressibility condition div v = 0, the vector

field v admits a stream function u satisfying

v = ∇⊥u =
(
− ∂u

∂x2

,
∂u

∂x1

)
. (1.3)

The function u, which is (at least) of class C2(Ω), is well-defined and unique up to an additive
constant.

By definition, u is constant along the streamlines of the flow. The streamlines are the
trajectories parametrized by the family of ordinary differential equations ξ̇(t) = v(ξ(t)).
More precisely, for x ∈ Ω, let us denote ξx the solution of{

ξ̇x(t) = v(ξx(t)),

ξx(0) = x.

The function ξx is of class C1 and it is defined in a maximal open interval Ix ⊂ R.
Throughout the paper, one assumes that the flow v has no stagnation point in Ω or at

infinity, in the sense that
inf
Ω
|v| > 0, (1.4)

where | | denotes the Euclidean norm in R2.
The goal of this review paper is to see that the smooth solutions v of (1.1)-(1.2) inherit

the geometrical properties of the domains Ω, for some simple classes of domains Ω, as soon as
they satisfy assumption (1.4) and possibly some further boundedness hypotheses. Namely,
on the one hand, the flows turn out to be parallel flows in domains which are invariant by
translation, such as strips, half-planes and the whole plane itself. On the other hand, the
flows are circular in annular domains.

2 Parallel flows in strips

We deal in this section with two-dimensional strips (with bounded cross sections). Up to
rotation and scaling, we only consider the strip Ω2 ⊂ R2 defined by

Ω2 = R× (0, 1) =
{
x = (x1, x2) ∈ R2; 0 < x2 < 1

}
(2.1)

The flow v is called a shear or a parallel flow if there is a unit vector e = (e1, e2) such that v
is parallel to e. Thanks to the incompressibility condition div v = 0, this means that v can
be written as

v(x) = V (x · e⊥) e,
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where V : R→ R is a scalar function and

e⊥ = (−e2, e1).

It is easy to see that the flow v is a shear flow if and only if the pressure p is a constant.
The first main result says that the flow is parallel to the boundary in the whole domain

under the assumption (1.4).

Theorem 2.1 [14] Let Ω = Ω2 be the strip defined by (2.1) and let v ∈ C2(Ω2) solve the
Euler equations (1.1) in Ω = Ω2 together with the boundary conditions (1.2) on ∂Ω2. If v
satisfies the assumption (1.4) in Ω2, then v is a parallel flow, that is,

v(x) = (v1(x2), 0) in Ω2. (2.2)

The conclusion states that all streamlines of the flow are parallel lines which are parallel
to ∂Ω2 and therefore parallel to the x1-axis. Equivalently, this means that the stream function
u defined in (1.3) depends only on the x2 variable.

Theorem 2.1 means that any C2(Ω2) non-parallel flow which is tangential on ∂Ω2 must
have a stagnation point in Ω2 or at infinity. These stagnation points may well be in Ω2 or
only at infinity. For instance, on the one hand, for any α 6= 0, the non-parallel cellular flow
of the type

v(x) = ∇⊥
(

sin(αx1) sin(πx2)
)

=
(
− π sin(αx1) cos(πx2), α cos(αx1) sin(πx2)

)
, (2.3)

which solves (1.1)-(1.2) with pressure given by

p(x) =
π2

4
cos(2αx1) +

α2

4
cos(2πx2),

has a countable number of stagnation points in Ω2. On the other hand, the non-parallel flow

v(x) = ∇⊥
(

sin(πx2) ex1
)

=
(
− π cos(πx2) ex1 , sin(πx2) ex1

)
,

which solves (1.1)-(1.2) with

p(x) = −π
2

2
e2x1

has no stagnation point in Ω2 (|v| > 0 in Ω2), but infΩ2 |v| = 0.
The condition (1.4) is then a simple condition for a flow solving (1.1)-(1.2) to be a parallel

flow in a two-dimensional strip. We should however keep in mind that this condition is
obviously not equivalent to being a shear flow, since any parallel flow v(x) = (v1(x2), 0) in Ω2

for which v1 does not have a constant strict sign does not satisfy the condition infΩ2 |v| > 0
(however, under the conditions of Theorem 2.1, the first component v1(x) = v1(x2) in (2.2)
has a constant strict sign in Ω2).

The C2 smoothness of the flow v is a technical assumption which plays a role in the
proof. It implies that the stream function u defined by (1.3) is of class C3(Ω2) and that the
function f appearing in the elliptic equation

∆u+ f(u) = 0
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satisfied by u is itself of class C1 and therefore locally Lipschitz-continuous, see (6.2) below.
This smoothness property of f is used to guarantee that u satisfies some qualitative mono-
tonicity and symmetry properties based on the maximum principle. We refer to Section 6
for further details.

Remark 2.2 Notice that in Theorem 2.1 the flow v is not assumed to be a priori bounded
in Ω2. However, since v is (at least) continuous in Ω2 and the interval [0, 1] is bounded, the
conclusion of Theorem 2.1 implies that v is necessarily bounded.

Remark 2.3 Theorem 2.1 does not hold in dimension 3. More precisely, consider the cylin-
der

Ω =
{
x = (x1, x2, x3) ∈ R3; x2

2 + x2
3 < 1

}
together with the vector field

v(x) = (1,−x3, x2)

and the scalar function p(x) = (x2
2 +x2

3)/2 defined in Ω. Then the pair (v, p) solves the Euler
equations (1.1)-(1.2) with

1 ≤ |v| ≤
√

2 in Ω,

but the flow v is not a parallel flow.

3 Parallel flows in half-planes

Up to rotation and translation, we consider in this section the case of the half-plane Ω = R2
+

defined by
R2

+ = R× (0,+∞) =
{
x = (x1, x2) ∈ R2; x2 > 0

}
.

As in the strip Ω2, the flows v solving (1.1)-(1.2) turn out to be parallel to the boundary
of the half-plane R2

+ under the assumption (1.4), here together with an additional uniform
boundedness.

Theorem 3.1 [14] Let v ∈ C2(R2
+) solve the Euler equations (1.1) in Ω = R2

+ together
with the boundary conditions (1.2) on ∂R2

+. If v satisfies the assumption (1.4) in R2
+ and if

v ∈ L∞(R2
+), then v is a parallel flow, that is,

v(x) = (v1(x2), 0) in R2
+,

and the first component v1 has a constant strict sign in R2
+.

The conclusion implies that all streamlines of the flow are parallel lines which are parallel
to ∂R2

+ and therefore parallel to the x1-axis. Equivalently, this means that the stream
function u defined in (1.3) depends only on the x2 variable.

Some comments are now in order on the conditions (1.4) and v ∈ L∞(R2
+), namely,

0 < inf
R2
+

|v| ≤ sup
R2
+

|v| < +∞. (3.1)
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None of the two strict inequalities in (3.1) can be dropped for the conclusion to hold in
general. More precisely, first, any cellular flow v of the type (2.3), which solves (1.1)-(1.2)
with Ω = R2

+, satisfies supR2
+
|v| < +∞ and infR2

+
|v| = 0, and it is not a parallel flow.

Second, the flow

v(x) = ∇⊥
(
x2 cosh(x1)) = (− cosh(x1), x2 sinh(x1)),

which solves (1.1)-(1.2) with

p(x) = −cosh(2x1)

4
+
x2

2

2
,

satisfies infR2
+
|v| > 0 and supR2

+
|v| = +∞, and it is not a parallel flow.

Question 3.2 An interesting open question would be to see whether the conclusion of Theo-
rem 3.1 still holds if condition (3.1) is replaced by the following weaker one

∀A > 0, 0 < inf
R×(0,A)

|v| ≤ sup
R×(0,A)

|v| < +∞.

4 Parallel flows in the plane

Theorems 2.1 and 3.1 show that, in strips and in half-planes, the C2 flows solving the
Euler equations (1.1) and the boundary conditions (1.2), together with the no-stagnation-
point assumption (1.4) (and a boundedness assumption in half-planes), are automatically
parallel flows whose streamlines are all parallel lines to the boundary. Actually, in these two
geometrical configurations, since the flows are assumed to be tangential on the boundary and
to satisfy (1.4), the boundary ∂R2

+ (for Theorem 3.1) and each connected component of ∂Ω2

(for Theorem 2.1) are streamlines of the flow. The conclusions of Theorems 2.1 and 3.1 mean
that all other streamlines are parallel to these obvious streamlines.

Let us now consider in this section flows solving the Euler equations (1.1) in the whole
plane

Ω = R2.

In this case, there is no boundary and there is no obvious streamline. However, the following
result implies that, under the only conditions (3.1) in the plane R2, the C2(R2) solutions
of (1.1) are still parallel flows, which are parallel to some non-zero vector e (the vector e
depends on the flow v, and it can be now any vector unlike in strips or half-planes).

Theorem 4.1 [15] Let v be a C2(R2) flow solving (1.1) with Ω = R2. If v satisfies the
assumption (1.4) in R2 and if v ∈ L∞(R2), then v is a parallel flow, that is, there exist a
non-zero vector e and a function V : R→ R with constant strict sign such that

v(x) = V (x · e⊥) e in R2.

The conclusion means that all streamlines of the flow are parallel lines which are parallel
to the direction e. In other words, the stream function u defined in (1.3) depends only on
the orthogonal variable x · e⊥. Like Theorems 2.1 and 3.1, Theorem 4.1 can also be viewed
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as a Liouville-type rigidity result since the conclusion says that the argument of the flow is
actually constant (the argument of the flow is any continuous function φ : R2 → R satisfying

v(x)

|v(x)|
= (cosφ(x), sinφ(x)) in R2,

see (6.3) in Section 6 for further details), and that the pressure p is constant as well.
Let us now comment the two main assumptions (1.4) and v ∈ L∞(R2) made in Theo-

rem 4.1. Firstly, the assumption (1.4) means that the flow v has no stagnation point in R2

or at infinity. In other words, Theorem 4.1 implies that any C2(R2) ∩ L∞(R2) flow which is
not a parallel flow must have a stagnation point in R2 or at infinity, that is, it must satisfy
infR2 |v| = 0). Without the condition (1.4), the conclusion of Theorem 4.1 does not hold in
general. For instance, for any (α, β) ∈ R∗×R∗, the C2(R2)∩L∞(R2) cellular flow v defined
in R2 by

v(x1, x2) = ∇⊥
(

sin(αx1) sin(βx2)
)

=
(
− β sin(αx1) cos(βx2), α cos(αx1) sin(βx2)

)
,

which solves (1.1) with

p(x) =
β2

4
cos(2αx1) +

α2

4
cos(2βx2),

has countably many stagnation points in R2, and it is not a parallel flow. However, as for
Theorems 2.1 and 3.1, the sufficient condition (1.4) is obviously not equivalent to being a
shear flow. Indeed, any continuous shear flow v(x) = V (x · e⊥) e for which V changes sign
(or more generally if infR |V | = 0) does not satisfy the condition (1.4).

Secondly, without the boundedness of v, the conclusion of Theorem 4.1 does not hold
either in general. For instance, the C2(R2) flow v defined in R2 by

v(x) = ∇⊥
(
x2 cosh(x1)) = (− cosh(x1), x2 sinh(x1)),

which solves (1.1) with

p(x) = −cosh(2x1)

4
+
x2

2

2
,

satisfies infR2 |v| = 1 > 0 but it is not bounded in R2, and it is not a parallel flow.
Theorem 4.1 has some immediate consequences regarding non-vanishing periodic flows

and the stability of non-vanishing parallel flows under small L∞ perturbations. These conse-
quences are stated in the following corollary. In the statement, we say that a flow v is periodic
if there is a basis (e1, e2) of R2 such that v(x) = v(x + k1e1 + k2e2) in R2 for all x ∈ R2

and (k1, k2) ∈ Z2.

Corollary 4.2 (i) Let v be a C2(R2) periodic flow solving (1.1) in Ω = R2. If |v(x)| 6= 0 for
all x ∈ R2, then v is a parallel flow. In other words, if v is not a parallel flow, then it has
stagnation points.
(ii) Let v be a bounded parallel flow solving (1.1) in Ω = R2 and satisfying (1.4). There
is ε > 0 such that, if v′ is a C2(R2) flow solving (1.1) in Ω = R2 and satisfying

‖v′ − v‖L∞(R2) ≤ ε,

then v′ is a parallel flow.
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Remark 4.3 Other Liouville-type and rigidity theorems are known for the Navier-Stokes
equations in the plane R2, namely any bounded solution of the Navier-Stokes equations in
the plane is constant, see [18].

5 Circular flows in two-dimensional annuli

Let us finally consider the case of two-dimensional annuli defined by

Ωa,b =
{
x ∈ R2; a < |x| < b

}
, (5.1)

where a < b are two positive real numbers. Let us also define

er(x) =
x

|x|
and eθ(x) = er(x)⊥ =

(
− x2

|x|
,
x1

|x|

)
for any x = (x1, x2) ∈ R2\{(0, 0)}. In the circular domains Ωa,b, one still considers the Euler
equations (1.1) together with the tangential boundary conditions (1.2), meaning that v·er = 0
on ∂Ωa,b.

Here, the notion of parallel flows does not make sense anymore. A meaningful notion is
that of circular flows. Namely, a flow v in Ωa,b is called a circular flow if v(x) is parallel to the
vector eθ(x) for every x ∈ Ωa,b, that is, v · er = 0 in Ωa,b. Together with the incompressibility
assumption, this means that v can be written as

v(x) = V (|x|) eθ(x) in Ωa,b,

for some function V : [a, b]→ R.

Theorem 5.1 [16] Let v ∈ C2(Ωa,b) solve the Euler equations (1.1) in Ω = Ωa,b together
with the boundary conditions (1.2) on ∂Ωa,b. If |v| > 0 in Ωa,b, then v is a circular flow, and
the function v · eθ has a constant strict sign in Ωa,b.

The conclusion means that all streamlines of the flow are concentric circles. In other
words, the stream function u defined in (1.3) is radially symmetric and, thanks to the con-
dition |v| > 0 and the continuity of v in Ωa,b, the function u is also strictly monotone with
respect to the radial variable |x|.

The assumption |v| > 0 in Ωa,b means that the flow v has no stagnation point in Ωa,b.
Theorem 5.1 then implies that any C2(Ωa,b) flow which is tangential on ∂Ωa,b and is not a
circular flow must have at least one stagnation point in Ωa,b.

Without the assumption |v| > 0 in Ωa,b, the conclusion of Theorem 5.1 does not hold in
general. Indeed, for every given C1(R) function f , any non-radial solution u ∈ C3(Ωa,b) of

∆u+ f(u) = 0 in Ωa,b (5.2)

which is constant on each connected component of ∂Ωa,b and which has a critical point gives
rise to a non-circular solution

v = ∇⊥u ∈ C2(Ωa,b)
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of (1.1)-(1.2) with a stagnation point (notice that v defined as above solves (1.1) for some
pressure p ∈ C2(Ωa,b) because v · ∇v is curl-free thanks to (5.2) and because the integral
of (v · ∇v) · eθ over the circle {x ∈ R2; |x| = a} is equal to zero). For instance, let
λ ∈ R and ϕ ∈ C∞([a, b]) denote the principal eigenvalue and eigenfunction of the eigenvalue
problem

−ϕ′′(r)− r−1ϕ′(r) + r−2ϕ(r) = λϕ(r) in [a, b]

with ϕ > 0 in (a, b) and Dirichlet boundary condition ϕ(a) = ϕ(b) = 0. The function
u ∈ C∞(Ωa,b) defined by

u(x) = ϕ(|x|) x1

|x|
(that is, u(x) = ϕ(r) cos θ in the usual polar coordinates) satisfies

∆u+ λu = 0 in Ωa,b

and has some critical points in Ωa,b (since minΩa,b
u < 0 < maxΩa,b

u and u = 0 on ∂Ωa,b).

Then the flow v = ∇⊥u ∈ C2(Ωa,b) is a non-circular flow solving (1.1)-(1.2) and it has some
stagnation points in Ωa,b.

However, the sufficient condition |v| > 0 in Ωa,b is obviously not equivalent to being a
circular flow, in the sense that there are circular flows with stagnation points. The trivial
flow v = 0 is an obvious example! More generally speaking, any C2(Ωa,b) circular flow

v(x) = V (|x|) eθ(x)

solving (1.1)-(1.2) with Ω = Ωa,b and for which V ∈ C2([a, b]) does not have a constant strict
sign, is then such that minΩa,b

|v| = 0. For instance, if µ ∈ R and φ ∈ C∞([a, b]) denote the
principal eigenvalue and eigenfunction of the eigenvalue problem

−φ′′(r)− r−1φ′(r) = µφ(r) in [a, b]

with φ > 0 in (a, b) and Dirichlet boundary condition φ(a) = φ(b) = 0, then the vector field v
defined by

v = ∇⊥u, with u(x) = φ(|x|),
is a C2(Ωa,b) non-trivial circular flow solving (1.1)-(1.2) with infinitely many stagnation points
in Ωa,b: more precisely, if r∗ ∈ (a, b) denotes the real number such that φ(r∗) = max[a,b] φ
(from elementary arguments, r∗ turns out to be the only critical point of φ in [a, b]), then
the set of stagnation points of the flow v is the whole circle

{
x ∈ R2; |x| = r∗

}
, since

v(x) = φ′(|x|) eθ(x) in Ωa,b.

Remark 5.2 Further results similar to Theorem 5.1 are proved in [16] for the solutions v
of (1.1)-(1.2) with Ω = Ωa,b when a = 0 < b <∞ (Ω0,b is a punctured disc, and no boundary
condition are imposed on the set {0} ⊂ ∂Ω0,b) and when 0 < a < b = ∞ (Ωa,∞ is the
complement of a closed disc), together with some a priori bounds on the growth of |v(x)|
as |x| → 0 or as |x| → ∞, respectively. We also mention other rigidity results for the
stationary solutions of (1.1), such as the analyticity of the streamlines under a condition
of the type v1 > 0 in the unit disc [17], and the local correspondence between the vorticities
of the solutions of (1.1) and the co-adjoint orbits of the vorticities for the non-stationary
version of (1.1) in annular domains [5].
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6 Semilinear ellliptic equations satisfied by the stream

function

In this section, we explain the main lines of the proofs of Theorems 2.1, 3.1, 4.1 and 5.1.
They are based on the study of the geometric properties of the streamlines of the flow v,
that is, on the qualitative planar or radial symmetry properties of the stream function u
defined in (1.3). The streamlines are indeed the connected components of the level sets of u.
In the strip Ω2 defined in (2.1) and in the half-plane R2

+, the goal is to show that the stream
function u depends only on the variable x2. In the whole plane R2, Theorem 4.1 means that
the function u is one-dimensional. Lastly, in the annulus Ωa,b defined in (5.1), the goal is to
show that u is radially symmetric.

To achieve this goal, one uses the trajectories of the gradient flow, which are parametrized
by the solutions of the equations{

σ̇x(t) = ∇u(σx(t)),

σx(0) = x,

with x ∈ Ω and σx(t) ∈ Ω. These trajectories are orthogonal to the streamlines, since
v = ∇⊥u. An important observation is that, due to (1.4), the function

g : t 7→ u(σx(t))

is increasing on its interval of definition, and furthermore

g′(t) ≥ (inf
Ω
|v|)2 > 0.

When Ω is the strip Ω2, it is shown in [14] that the stream function u is bounded in Ω2

and that each function σx is defined in a compact interval. The same property holds if Ω
is the annulus Ωa,b, see [16]. When Ω is the half-plane R2

+, each function σx is defined in
a closed semi-infinite interval. Finally, if Ω is the whole plane R2, then each function σx is
defined in the whole interval R, see [15].

Furthermore, in all these four cases, it is shown that the streamlines foliate the set Ω is
a monotone way, in the sense that

Ω =
⋃
y∈Σx

Γy, (6.1)

where x is any point in Ω, Σx is the trajectory of the gradient flow in Ω and containing x,
and Γy is the streamline containing y. The above formula, which is a key-point is the proofs,
is based on a continuation argument and on the property that, due to (1.4), the streamlines
of two close points stay close to each other in the sense of the Hausdorff distance. It follows
from these arguments that, when Ω is the strip Ω2 or the half-plane R2

+, then the projection
on the x1-axis of each streamline is equal to that whole axis and furthermore that each
streamline is bounded in the x2 direction when Ω = R2

+. However, this property does not
imply yet that each streamline is a line parallel to the x1-axis.
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Another key-observation is the fact that, due to (1.1), the vorticity

∂v2

∂x1

− ∂v1

∂x2

= ∆u

is constant along any streamline of the flow v. Since u is strictly monotone along any
trajectory Σx of the gradient flow, it then follows from (6.1) that the stream function u
satisfies a semilinear elliptic equation of the type

∆u+ f(u) = 0 in Ω, (6.2)

where f is a C1 function defined on the range of u in Ω (the range of u in Ω is a compact
interval when Ω = Ω2 or Ωa,b, it is a closed semi-infinite interval when Ω = R2

+ and it is
equal to R when Ω = R2).

Regarding the case of the strip Ω2 = R × (0, 1), each trajectory Σx of the gradient flow
in Ω2 ends on the two connected components of the boundary. Since u is strictly monotone
along Σx and is constant along the two connected components of ∂Ω2, it follows that u
is bounded from above and below in Ω2 by its two constant values on the two connected
components of ∂Ω2. Therefore, up to changing v into −v and up to normalization of u,
Theorem 2.1 reduces to the following Liouville type result.

Theorem 6.1 [14] Let c > 0, let f : [0, c]→ R be a Lipschitz continuous function and let u
be a C2(Ω2) solution of the equation (6.2) in the strip Ω2, such that

u = 0 on {x2 = 0}, u = c on {x2 = 1},

and
0 < u < c in Ω2.

Then u depends only on the variable x2, that is, there is a function U : [0, 1]→ R such that

u(x1, x2) = U(x2) in Ω2,

and U ′ > 0 in (0, 1).

As a matter of fact, under the assumptions of Theorem 6.1, it follows from [3, Theo-
rem 1.1’] applied to u, resp. to c− u(x1, 1− x2), that

ux2 =
∂u

∂x2

> 0 in
{

(x1, x2) ∈ R2; 0 < x2 < 1/2
}
,

resp.
ux2 > 0 in

{
(x1, x2) ∈ R2, 1/2 < x2 < 1

}
(notice that such a monotonicity is known only in dimension 2 without any further assump-
tions on f). Therefore, ux2 ≥ 0 in Ω2. The new result in Theorem 6.1 is the fact that the
monotonicity property ux2 ≥ 0 in Ω2 implies that u is one-dimensional, that is, u depends
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only on x2. The proof of this property is based on the maximum principle and on a sliding
method [4], namely one can show that

u(x) ≤ uλτ (x) := u(x1 + λτ1, x2 + λτ2)

for every (τ1, τ2) ∈ R× (0,+∞), λ ∈ (0, 1/τ2) and x ∈ R× [0, 1−λτ2]. By letting τ2 → 0+, it
then immediately follows that u is both non-decreasing and non-increasing with respect to
the variable x1 in Ω2, that is, u depends only on x2. As a consequence, the flow v is parallel
to the x1-axis.

Actually, it turns out that the last part of the argument based on the sliding method
holds in any dimension n ≥ 2:

Theorem 6.2 [14] Let n ≥ 2, let c > 0, let f : [0, c]→ R be a Lipschitz continuous function
and let u be a C2(Ωn) solution of the equation (6.2) in the n-dimensional slab Ωn defined by

Ωn = Rn−1 × (0, 1) =
{
x = (x1, . . . , xn) ∈ Rn, 0 < xn < 1

}
,

such that
u = 0 on {xn = 0} and u = c on {xn = 1}.

Suppose also that u is non-decreasing with respect to the variable xn, namely

uxn =
∂u

∂xn
≥ 0 in Ωn.

Then u depends only on xn, that is, there is a function U : [0, 1]→ R such that

u(x1, . . . , xn) = U(xn) in Ωn,

and U ′(xn) > 0 for all 0 < xn < 1.

In the case of the half-plane Ω = R2
+, one can show from (6.1) that, up to changing v

into −v and up to normalization of u, the function u vanishes on ∂R2
+ and is positive

in R2
+, see [14]. To conclude the proof of Theorem 3.1, we use some monotonicity and

one-dimensional symmetry results [3, 10] for positive solutions with bounded gradient of
semilinear elliptic equations (6.2) in R2

+ with Dirichlet boundary conditions: namely, u then
depends only on x2 and the flow v is parallel to the x1-axis.

Regarding Theorem 4.1 in the case of the whole plane R2, there is no boundary and
therefore no boundary condition for the stream u. As a consequence, u is not constant along
a given obvious line, unlike in the case of the strip Ω2 or the half-plane R2

+. One then uses
a completely different method. Namely, one considers the C2(R2) argument φ of the flow,
defined by

v(x)

|v(x)|
= (cosφ(x), sinφ(x)) for all x ∈ R2.

The argument φ is uniquely defined in a continuous way, up to an additive multiple of 2π.
From the equation (6.2) satisfied by the stream function u, it turns out that the argument φ
satisfies the equation

div(|v|2∇φ) = 0 in R2. (6.3)
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Notice that this equation is uniformly elliptic thanks to the assumption (1.4) and the
boundedness of v in Theorem 4.1. The difficult key-point consists in proving that the ar-
gument φ grows at most as lnR in balls of large radius R, see [15]. Finally, one uses a
compactness argument and some results of Moser [19] on the at-least-algebraic growth of the
oscillations of the non-constant solutions of uniformly elliptic equations of the type (6.3) to
conclude that the argument φ is actually constant. This immediately means that the flow v
is a parallel flow.

Remark 6.3 If, in addition to the condition infR2 |v| > 0, one assumes that

v · e > 0 in R2

for some non-zero vector e, then the end of the proof of Theorem 4.1 would be much simpler:
indeed, in that case, the argument φ of the flow is automatically bounded and the results of
Moser [19] imply that φ is constant. One can also conclude with another argument which
does not use (6.3). Namely, the assumption v ·e > 0 in R2 implies that the stream function u
is monotone in the direction e⊥. Since u satisfies the semilinear elliptic equation of the type

∆u+ f(u) = 0 in R2

with f ∈ C1(R), it then follows that u is one-dimensional, as in the proof of a related
conjecture of De Giorgi [6] in dimension 2 (see [3, 11] and see also [1, 2, 7, 8, 9, 20] for
further references in that direction). Finally, since u is one-dimensional, the vector field v
is a parallel flow.

Finally, regarding Theorem 5.1 in the case of the annuli Ωa,b defined in (5.1), the stream
function u satisfies a semilinear elliptic equation of the type (6.2) in Ωa,b and it is equal to
two different constants on the two connected components of the boundary ∂Ωa,b. By using
a moving plane method as in [12, 13], one then concludes that u is radially symmetric and
strictly monotone with respect to |x|, meaning that v is a circular flow. We refer to [16] for
further details and further results in punctured discs and complements or discs.
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