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Abstract

The description of stress transmission in an unsaturated granular material in the
low water saturation range (pendular regime) is studied within the micromechan-
ics of a three-phase medium. Considering an REV (Representative Element Vol-
ume) comprised of solid grains and isolated inviscid water menisci whose sta-
tistical distributions are known, micro- and macro-relationships can be derived
using a volume-averaging of stress for each one of the phases in a manner anal-
ogous to the derivation of Love-Weber equation defining stress in a dry granular
medium. The main difference with respect to previous works in the literature lies
in the homogenization technique whereby singular surfaces such as an air-water
interface exhibiting surface tension are treated as an additional phase for which a
so-called membrane stress is defined. Well-known contractile skin effects and the
anisotropy of capillary stresses in unsaturated soils can be formally identified in
the proposed tensorial expression that encompasses the statistics of not only grain
contact normals, but also that of menisci spatial orientations and their surfaces,
including water saturation. Solid grains are considered strictly incompressible
with water being also an incompressible and inviscid liquid. An effective stress
tensor that controls the strength of unsaturated granular media is hence proposed
and verified based on discrete element modelling (DEM) numerical simulations
of triaxial compression and simple shear tests on pendular-state granular soils
at different confining pressures and matric suctions. The non-sphericity of the
so-called capillary stress is also numerically demonstrated.

Keywords: pendular regime, effective stress, interfacial tension,

wetting-drying, suction
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1. Introduction1

The derivation of a tensorial stress field in a continuum representation2

of an unsaturated particulate medium like a geomaterial is well studied3

in the literature; see [33, 13, 26], among others. While microstructural as-4

pects have lately been subject of considerable interest, a largely theoretical5

issue that is often evoked is the definition of a single-valued effective stress6

[8, 32, 42] that controls both deformation and strength in such unsaturated7

media, and which replaces the celebrated Terzaghi’s effective stress in the8

fully saturated case. This question takes on a more practical importance9

in geotechnical/geo-environmental engineering, motivated by the shrink-10

age, swelling, yielding and collapse of unsaturated soils at low water sat-11

uration upon drying and wetting cycles associated with weather change12

or the natural hydrologic cycle, e.g. [29].13

Herein, we are particularly interested in the pendular regime where14

water saturation is low and the water phase is held in between the inter-15

stices of the granular material (soil) in the form of isolated menisci [4, 38].16

In this case, the solid phase is comprised of a grain skeleton whose inter-17

stices are occupied by air as a continuous phase and water as a discon-18

tinuous phase, with interfaces that separate the various phases. Hence,19

the mechanics of the unsaturated granular system is invariably governed20

by the different phases whose individual behaviours are well defined,21

and also interfaces that are endowed with thermodynamics properties22

[20, 30]. Problems associated with unsaturated soil mechanics and related23
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fields specifically involve fluid flow, stress, thermal, chemical and defor-24

mation phenomena which are essentially coupled. Here in this paper, we25

are specifically interested in stress phenomena that encompass classical26

geotechnical problems under unsaturated conditions where the question27

of stress transport and strength are of critical concern, but yet difficult to28

discern.29

Historically, Bishop’s stress [5] as an extension to Terzaghi’s effective30

stress has been a commonly used stress in unsaturated soils according to31

the following tensorial form:32

σ1
ij = σij ´ (1 ´ χ)uaδij ´ χuw δij

= σij + χ(ua ´ uw) δij

(1)

where σ1
ij is the Bishop’s stress tensor, σij = (σij ´ ua δij) is the so-called33

net stress, χ is generally assumed to be a function of degree of saturation34

and is zero for dry soil and unity for saturated soil, and the term (ua ´35

uw) represents matric suction s. Herein, soil mechanics sign convention36

is adopted throughout the paper, i.e. compressive stresses and strains are37

positive.38

Over the years, Bishop’s equation has been the subject of controversy39

[23] and even Bishop and Blight [6] admitted that there are uncertainties40

over the definition of parameter χ, although much later on, Gray and Has-41

sanizadeh [18] proved that Bishop’s stress is thermodynamically consis-42

tent when χ is associated with degree of saturation. Moreover, Blight [7]43
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argued that the value of χ depends on stress and strain levels; whereas44

nowadays, Wan et al. [44], Duriez and Wan [15] have established its link45

to fabric and meniscus spatial distribution which furthermore destroys the46

isotropic character of the matric suction in the original Bishop’s equation.47

Uncertainties in finding a single-valued stress variable prompted the48

idea that the behaviour of unsaturated soils should be governed inde-49

pendently by two variables: the net stress (σ ´ ua) and matric suction50

(ua ´ uw). Fredlund and Morgenstern [17] went on further to suggest51

that any two of the stress state variables σ = (σ ´ ua), σ1 = (σ ´ uw),52

and s = (ua ´ uw) could be employed. Furthermore, Houlsby [21] devel-53

oped the concept of power input into unsaturated soils, and hence intro-54

duced the notion of work conjugate stress and strain increment variables55

for constitutive modelling, but without including the energy of the inter-56

faces. The idea of average soil skeleton thus emerged.57

More recent studies have focused on the understanding of unsaturated58

soil behaviour through continuum approaches such as mixture theory [9,59

40]. As such, there has been a number of stress measures defined for unsat-60

urated granular media and which have made their way to soil mechanics61

and reservoir engineering. These are the total stress, the skeleton stress62

[19], the net stress [1], the generalized Bishop [5] stress, and the Skemp-63

ton [41] stress. Approaches that are based on total stresses have even been64

proposed for triphasic media, but then, they would necessitate the writ-65

ing of equations of equilibrium and associated boundary conditions for66
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each phase; see [30] which circumvents this latter requirement. Given67

the overall progress of granular mechanics in the past several decades,68

renewed efforts to address the above theoretical and practical questions69

seem appropriate. With this motivation, this paper provides a systematic70

microstructural study in which a tensorial stress expression is derived for71

a triphasic material composed of air, water and solid, with the water phase72

being discontinuously distributed as isolated menisci (liquid bridges) be-73

tween particles that can be either in contact or not. As for the solid phase,74

we consider distinct idealized particles of spherical shape. Additionally,75

the air-water interface along with a jump condition at the common line is76

included in the derivation as a fourth phase .77

The proposed method uses a volume averaging of stress for each one of78

the phases in a manner analogous to the derivation of Love-Weber equa-79

tion [28, 45] defining stress in a dry granular medium to arrive at a tenso-80

rial expression for stress that encompasses the statistics of not only grain81

contact normals, but also that of menisci spatial orientations and menisci82

surfaces, including water saturation. More importantly, an effective stress83

tensor can be recognized as the difference between the total stress tensor84

and so-called capillary stresses that include contributions from suction,85

surface tension, and air-water interface associated tensors. As new re-86

sults, we identify menisci induced effects within the unsaturated granular87

medium through:88

1. a surface based fabric tensor of menisci scaled by the matric suction,89

5



2. lineal surface tension force contributions along wetted grain con-90

tours, and91

3. a spatial distribution of surface tension force field (tensorial) within92

air-water interfaces.93

The validity of the proposed effective stress equation, including other94

features such as the non-sphericity of the capillary stresses are verified via95

discrete element modelling (DEM) simulations.96

2. Micromechanics of a triphasic medium97

2.1. Preliminaries98

The notion of stress within a continuous body goes as far back to Cauchy

who introduced this abstract conceptual scheme where the mutual action

of two bodies in contact, or two parts of the same body separated by an

imaginary surface is contemplated [28]. This powerful conceptual idea

can be extended to the definition of a stress tensor under quasi-static con-

ditions for a heterogeneous body consisting of discrete particles of vol-

ume Vp. These are considered rigid, endowed with stress σp, and interact

through contact points c with pairwise interparticle force fp in a granular

assembly of volume V. Thus, the celebrated Love-Weber formula gives:

σ =
1
V

ÿ

p

ż

BVp

(σ p¨ n) b xp dS (2a)

=
1
V

ÿ

p

ÿ

c

fp b xp (2b)

6



where (σ p¨ n) is the traction vector on the particle p with outward normal99

n, and the vector xp represents the spatial position of applied traction with100

respect to an arbitrary origin.101

When sweeping over all contacts for every particle in volume V and102

by expressing the position vector xp as a function of the particle’s centroid103

and radius vector, we get the classic expression given by:104

σ =
1
V

ÿ

αβ

fαβ b ℓ
αβ (3)

where the summation is carried out over distinct pairs of particles αβ105

in V, fαβ and ℓ
αβ denote, respectively, the pairwise interaction force and106

branch vector giving distance of separation.107

Equation (3), derived with the assumption of a quasi-static medium in108

the absence of any body forces, serves as the basis for calculating volume-109

average stresses in heterogenous media. For the case where the discrete110

particles are embedded into a matrix which includes singular surfaces111

over which surface tension occurs, the integral term in Eq. (2a) has to112

be amended. This is because some components of the stress tensor suffer113

a discontinuity associated with surface tension, as will be seen next when114

calculating the volume-average stress in a triphasic medium.115

2.2. Averaging process with stress discontinuities116

Consider a representative element volume (REV) of volume V contain-117

ing a statistically significant number of particles and water menisci as il-118

lustrated in Fig. 1.119
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Figure 1: REV of pendular unsaturated medium

It also represents an averaging volume whose dimensions are large120

compared with the characteristic microscale (particle and water meniscus121

sizes) of the unsaturated granular material, but still arbitrarily small com-122

pared to the dimension of the soil domain. The solid particles are assumed123

to be strictly rigid interacting with incompressible air and inviscid water.124

In practical terms, we wish to know what stress is generated within125

the REV when loads (mechanical or hydraulic) are applied on its external126

boundary. Since the actual stress σij varies with position x in the REV, the127

‘bulk stress’ can be defined from an ensemble (volume) averaging. How-128

ever, a closer look at the REV reveals that we are faced with a three-phase129

system composed of solid (s), air (a) and water (w) separated by interfacial130

surfaces upon which a singularity in the stress distribution exists due to131

surface tension. A volume integral of the stress over such a region is then132

strictly speaking improper, and must be thus interpreted appropriately.133
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As such, the average stress Σij is computed just as volume averages of134

stress in all phases concerned, including the interfaces, i.e.135

Σij =
1
V

"
ż

Vp
σij dV +

ż

Vw
σij dV +

ż

Va
σij dV +

ż

V int
σij dV

*

(4)

Herein, it is appropriate to regard the interface between air and water136

as a layer of small thickness ǫ, and to subsequently take the limit ǫ Ñ 0.137

For a given point on the interface, if the local normal is denoted by unit138

normal n, then the surface tension force field tensor can be written in the139

form γ(δij ´ ninj) where γ is the coefficient of surface tension. On the other140

hand, the stress components along directions in the tangent plane of the141

air-water interfacial surface are very large in the interface layer. Therefore,142

the correct stress integral properties can be obtained by taking the singular143

part of the stress tensor in the interface layer to be in the form σij = γ(δij ´144

ninj)/ǫ.145

Noting the above, the contribution of the volume integral in Eq. (4)146

from the portion of the interfacial surface Saw lying within the REV is then147

lim
ǫÑ0

ż

V int
σij dV =

ż

Saw
γ(δij ´ ninj) dS (5)

The integral on the right hand side of Eq. (5) can be alternatively written148

as149

ż

Saw
γ(δij ´ ninj) dS =

ż

Saw
γ ni div n xj dS (6)

by applying Stokes’s theorem to the quantity ǫkil xinl , regarded as a vector150

with components given by the different values of k [36].151
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The term, div n, is in fact the curvature of the interficial surface contain-152

ing the local normal n, and hence (γ ni div n), which is the normal curva-153

ture force per unit area, represents the jump in the normal stress across the154

air-water interface due to surface tension, i.e. (ua ´ uw)ni .155

Noting the above and considering the pressures of the water and air156

phases to be hydrostatic, the volume-average stress in Eq. (4) can be re-157

written as:158

Σij =
1
V

ÿ

p

ż

Vp
σijdV +

1
V

ż

Vw
uwδijdV +

1
V

ż

Va
uaδijdV

+
1
V

ÿ

l

ż

Saw
γ ni div n xj dS

(7)

where p and l are the number of particles and liquid bridges respectively,159

Va and Vw are the volume occupied by air and water phases respectively,160

while ua and uw are the air and water pressures respectively.161

Applying the divergence theorem to the volume integral concerning162

each particle in Eq. (7) leads to a surface integral just like in the opening163

Eq. (2a), except that the tractions exerted on the particle’s surface with164

outward normal n have now various origins. For instance, we will find165

contributions from pair-wise particle contact forces due to external load-166

ing, as well as actions of air and water pressures on dry (BVa
p ) and wetted167

surfaces (BVw
p ) respectively. Based on the above and noting Eq. (3), it168
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follows that169

Σij =
1
V

ÿ

αβ

f
αβ
i ℓ

αβ
j +

uw

V

ÿ

p

ÿ

l

ż

BVw
p

nixjdS +
ua

V

ÿ

p

ż

BVa
p

nixjdS

+
Vw

V
uwδij +

Va

V
uaδij +

1
V

ÿ

l

ż

Saw

γni div n xj dS

(8)

where tractions acting on vanishing surface area over the contour BVp of170

each particle p have been transformed into point (contact) forces f
αβ
i be-171

tween pairs of particles αβ joined by branch vector ℓαβ
j .172

By applying Stokes’s theorem (see Appendix A), the interface integral173

can be re-written as174

1
V

ż

Saw
γni div n xj dS = ´ 1

V

ż

C

Taw
i xj dℓ+

1
V

ż

S

Bγ

Bxi
xj dS (9)

where Taw
i = γtaw

i refers to the surface tension force acting at the intersec-175

tion of the liquid bridge and the particle, i.e. the interface solid-air-water176

which creates the so-called contractile skin within the unsaturated granu-177

lar assembly.178

Furthermore, noting that the surface area of a particle BVp can be de-179

composed as a union of dry (air) surfaces BVa
p and wetted surfaces over180

l liquid bridges, i.e. BVp = BVa
p Y BVw

p , the surface integral over the dry181

surfaces of a particle can be written as:182

ż

BVa
p

nixj dS =

ż

BVp

nixjdS ´
ÿ

l

ż

BVw
p

nixjdS (10)

Finally, in the absence of any gradient in surface tension force (Bγ/Bxi =183
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0) we get:184

Σij =
1
V

ÿ

αβ

f
αβ
i ℓ

αβ
j ´ (ua ´ uw)

V

ÿ

p

ÿ

l

ż

BVw
p

nixjdS

+
ua

V

ÿ

p

ż

BVp

nixjdS +
Vw

V
uwδij +

Va

V
uaδij

´ 1
V

ÿ

p

ÿ

l

ż

C

Taw
i xj dℓ

(11)

For a granular system consisting of particles of radius Rp, xi = Rp ni,185

and noting φ = (Va + Vw)/V and Sr = Vw/(Va + Vw) , with V = Vs +186

Vw + Va, it follows after some manipulations that:187

Σij = uaδij +
1
V

ÿ

αβ

f
αβ
i ℓ

αβ
j ´ χij(ua ´ uw) ´ Bij

where

χij =
1
V

ÿ

p

Rp

ÿ

l

ż

BVw
p

ninj dS + φSrδij

Bij =
1
V

ÿ

p

Rp

ÿ

l

ż

C

Taw
i nj dℓ

,
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(12)

Equation (12) serves to establish an equivalence between a non homo-188

geneous granular system with discontinuous air-water interfaces and an189

equivalent homogeneous REV through the volume-average stress tensor190

Σ. In fact, this relation bears some resemblance to Bishop’s equation, but is191

more complex in three major distinct aspects. First, the matric suction is no192

longer an isotropic quantity, but is now governed by a Bishop-like param-193

eter which is a tensor χ whose explicit form is known with dependences194
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on liquid bridge spatial distribution and degree of saturation, among oth-195

ers. Second, the influence of air-water interfacial tension on the granu-196

lar system behaviour is included through the new term B which involves197

integration of lineal surface tension forces over contours defined by the198

wetting of liquid bridges with the solid particles. Third, the expression199

makes a clear distinction between point forces at particle contacts and lin-200

eal forces arising from surface tension. In fact, these point forces are ex-201

erted at contacts of particle pairs αβ to give rise to a so-called contact stress202

tensor σcont through the Love-Weber formula which is clearly recognizable203

in the first line of Eq. (12).204

To make particular reference to the liquid bridge contributions to the205

total stress Σ, we conveniently define a so-called capillary stress tensor206

taken to be:207

σcap = ´(s χ + B) = Σ ´ ua δ ´ σcont (13)

Note that the “capillary stress” terminology, also used elsewhere in208

[39], is equivalent to the “suction stresses” alluded in Lu and Likos [29].209

We will next endeavour to investigate the nature of capillary stresses210

σcap, as well as check whether the contact stress σcont can be regarded as an211

effective stress in Terzaghi’s sense. To achieve such a goal, we will adopt212

a DEM calculation approach to determine the water phase distribution213

within an unsaturated granular system so that Eq. (12), the central piece214

of this study, can be formally evaluated.215
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3. Discrete modelling of a triphasic medium216

3.1. The discrete model217

Generally speaking, numerical simulation of the mechanics of granular218

material based on DEM consists of calculating the motion of a collection219

of particles, the so-called discrete elements (DE), under the action of solely220

point forces. Deformation of the granular ensemble then comes out of the221

relative displacements of particles calculated following Newton’s law of222

motion under interaction forces and torques. The numerical simulations223

can describe quite accurately salient behavioural features of real granular224

materials, although particle shapes are idealized as disks or spheres and225

the number of particles is relatively small compared to actual granular226

masses.227

For the discrete modelling of granular multiphasic systems, liquid and228

gas phases are included through the forces they impose on solid particles229

as described in [35, 39, 31] for the unsaturated case, and in [11] for the230

fully saturated case. It is worth noting that an embedded flow model [12]231

is used in [11] to compute spatially varying water pressure field. How-232

ever, if an homogeneous distribution of matric suction is assumed within233

an unsaturated granular material, the water phase characteristics can be234

readily computed. It is under such an assumption that the liquid bridge235

distribution specific to the pendular regime can be determined by solv-236

ing Laplace’s equation [25] for all particle pairs. Following this approach,237

Scholtès et al. [39] proposed a discrete model for unsaturated conditions,238
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within Yade open source code [43]. Therefore, the characteristics of liq-239

uid menisci being determined from Laplace’s equation for a zero contact240

angle, so-called capillary forces due to the water and air phases can be241

readily determined from the radius R of the particle, surface tension γ,242

matric suction s, and filling angle α (Fig. 2), i.e.243

fcap = πR sin2 α (2γ + R s) x (14)

α x

Figure 2: Liquid bridge geometry

244

Other discrete models for unsaturated granular materials differ mainly245

in the way the capillary force is computed, using often approximations246

based on assumptions made for the liquid volume [35, 31].247

In this study, we use the discrete model proposed by Scholtès et al. [39]248

which is already implemented in the open source computer code YADE.249

In addition to the capillary forces, contact interaction forces are computed250

from three basic numerical parameters and particles relative displacements.251

Classically, the contact behavior is elastic in the normal direction (tensile252

states being ruled out), and elastic-plastic in the tangential direction. Two253

first parameters, namely Y and P, refer to the normal and tangential con-254
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tact stiffnesses kn, kt for an interaction between particles A and B:255

kn =
2 Y RA RB

RA + RB

kt = P kn

(15)

Expressing kn and kt according to the particles radii RA and RB leads to a256

size independent behavior of the model in dry conditions. The third con-257

tact parameter is the local contact friction angle ϕ that restricts the tangen-258

tial force: ||~Ft|| ď Fn tan(ϕ). A fourth numerical parameter enters as the259

particle size as discussed in Duriez and Wan [16] where the capillary force260

computations between contacting and distant particles make the response261

of the unsaturated granular system particle size dependent.262

We herein choose a granular ensemble with a uniform particle size dis-263

tribution whose characteristics appear in Table 1 with other model param-264

eters.265

Y P ϕ Dmax D50
(MPa) (-) (0) (mm)

Dmin

50 0.5 30 3 0.04

Table 1: Model parameters

The packing procedure used to generate the granular assembly involves266

the isotropic compression of an initial particles gas with the desired par-267

ticle size distribution. During this compression, the local contact friction268

angle is very low. The procedure outputs a sample with an isotropic fabric,269

a mean coordination number of 4.8 and a low porosity n « 0.369, under 1270
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kPa of isotropic pressure. On the other hand, the confining pressures con-271

sidered here in the shearing phase range in the tens of kPa and the DEM272

sample displays a typically dense behaviour [15].273

3.2. Hydraulic behaviour of the discrete model274

In the pursuit of fundamentals, the wetting and drying of a granu-275

lar material is examined through DEM and provides a framework within276

which we can verify the proposed stress equation derived from homoge-277

nization.278

Computing the water phase distribution, the discrete model allows us279

to readily construct the Soil-Water Characteristic Curves (SWCC) numer-280

ically. Hydraulic hysteresis is herein introduced through different liquid281

bridge assumptions. As water vapour condensates primarly over solid282

surfaces, initial wetting paths are simulated creating liquid bridges be-283

tween contacting particles only. On the other hand, drying path simula-284

tions involve liquid bridges between distant particles as well as contact-285

ing particles, with the only condition being the existence of a solution to286

Laplace’s equation.287

Fig. 3 depicts the drying and wetting SWCC of the discrete model to-288

gether with some experimental data point for an Ottawa sand with a mean289

diameter Dmean « 0.172 mm [27].290

A limited hysteresis between drying and wetting is simulated because291

known hysteresis mechanisms are not included in the numerical model.292

First, the same contact angle value is considered upon drying and wetting.293
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Figure 3: SWCCs of the discrete model. Ottawa sand data from [27]

Second, liquid bridges are uniformly distributed according to uniform ma-294

tric suction and particles distances and radii. As such, the control that295

smaller pores exert on the filling of larger pores according to the hydraulic296

loading path – the so-called ink-bottle effects – cannot be reproduced. Sim-297

ulation of such effects would certainly require the actual calculation of the298

flow of the two fluid phases inside the pore space, which is outside the299

scope of this paper.300

4. Discussion of discrete modelling for multiphasic media301

DEM may be considered as a numerical homogenization approach,302

where the stress tensor for a DEM sample arises from the interaction forces303

between discrete elements. However, when applied to multiphasic ma-304

terials, we argued in another work [16] that DEM provides an inconsis-305

tent average stress description, especially in the case where mechanical306
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actions corresponding to the fluid phases deviate significantly from be-307

ing point forces. This inconsistency arises from the fact that actions of the308

fluid phases on the solid phase are replaced by a resultant force, ignoring309

the nature of their spatial distribution. Indeed, our volume-average stress310

equation (12) reveals lineal forces due to surface tension and surface forces311

due to fluid pressures, besides point forces at particle contacts. The above312

important issue is next examined in greater details.313

4.1. Biphasic case314

For the fully saturated case involving a uniform water pressure uw315

within the pore space, replacing the action of liquid phase on the solid316

phase with resultant forces would lead to the following within DEM cal-317

culations:318

• boundary DE (such as rigid platens) would sustain added forces319

fw = ´uw S n, with S the adequate surface and n the inwards ex-320

ternal normal,321

• no extra forces would be imposed on any other DE since the water322

phase induces no resultant forces on the solid phase in this case.323

As such, total stresses defined from the resulting forces acting on bound-324

ary DE are consistent with applied external loads. However, homogeniza-325

tion of the forces interior to the discrete model towards these total stresses326

is impossible, since the interior forces reflect the skeleton behaviour only,327

corresponding to Terzaghi effective stress [11].328
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4.2. Triphasic case329

As for the present unsaturated discrete model, the contact and capil-330

lary forces interior to the model may be exactly homogenized to the total331

stresses acting along the boundaries [39, 16], showing an additivity quali-332

tatively similar to the one of the homogenization approach presented Sec-333

tion 2.2. In the end, the total stress Σ for the unsaturated discrete model is334

the sum of σcont, the same term as within the homogenization approach,335

function of contact forces, and another stress tensor denoted again as a336

capillary stress tensor σcap = Σ ´ σcont.337

Within DEM, this capillary stress tensor is computed from the capil-338

lary forces exerted by the fluid phases on the solid phase. However, fluid339

phases are not simulated themselves, and point forces consideration does340

not conform with both surface and lineal characters of the mechanical ac-341

tions (fluid pressures and surface tension forces) exerted by the fluids on342

the solid. For these reasons, the total stresses description of an unsaturated343

soil as provided by the discrete model is not consistent with the averaging344

approach of Section 2.2 in the general case. In fact, both approaches are345

consistent when liquid volume and wetted surfaces as well as contours346

tend to vanish, which is the case with a very good approximation for very347

low degrees of saturation (few percents); otherwise substantial differences348

appear [16].349

To illustrate here this point, hydraulic loadings are imposed to the dis-350

crete model. Wetting and drying paths are simulated by varying the ma-351
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tric suction under an isotropic stress state p = 10 kPa kept constant on the352

boundaries.353

First, capillary stresses as described by the DEM, denoted σ
cap
DEM, are354

directly computed from capillary forces [39, 16]:355

σ
cap
DEM =

1
V

ÿ

l

f
cap
β b ℓαβ (16)

Equation (16) considers all particles pairs αβ linked by a liquid bridge l,356

with f
cap
β the capillary force as sustained by β, and ℓαβ the so-called branch357

vector from the center of α to the center of β as defined earlier in the paper.358

Second, we take advantage of the output the discrete model gives such359

as features of the liquid phase (filling angles α, menisci volumes) as it360

would exist in the simulated unsaturated soil. Hence, another capillary361

stress tensor σ
cap
hom is computed using the homogenization formula (Eq.362

12):363

σ
cap
hom = ´s χ ´ B (17)

During hydraulic loading, both tensors σ
cap
DEM and σ

cap
hom turn out to364

be spherical (isotropic), with B = 0 with regard to σ
cap
hom. Indeed, the365

packing of the DEM sample is here isotropic leading to an isotropic liq-366

uid bridge distribution, irrespective of whether a meniscus exists between367

contacting particles only (along the wetting path) or not (along the dry-368

ing path). Taking advantage of the sphericity of both capillary stress ten-369

sors in the above, the mean capillary pressures p
cap
DEM = 1/3 tr(σcap

DEM) and370

p
cap
hom = 1/3 tr(σcap

hom) are compared.371
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The discrepancies between p
cap
DEM and p

cap
hom mentionned earlier appear372

in Fig. 4. As in [16], the DEM model overestimates (in absolute value)373

the mean capillary pressure in the general case. For a common value at374

very low water contents (Sr Ñ 0), when both approaches are equivalent,375

p
cap
DEM deviates more and more from p

cap
hom, up to 40-50% for Sr = 15%.376

It is seen that this discrepancy increases according to the wetted surfaces377

which the discrete model does not directly take into account, contrary to378

the homogenization approach (Fig. 5). While qualitative trends are similar379

along wetting, influences of Sr on p
cap
DEM and p

cap
hom are even different along380

the drying path. This corresponds to greater wetted surfaces along drying381

rather than wetting (Fig. 5).382
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Figure 4: Capillary pressure from DEM or homogenization approach along hydraulic
loadings (for both approaches pcap is discontinuous at the origin, with pcap(Sr = 0) = 0,
not represented)

It is interesting to note that the higher wetted surfaces developed along383

the drying path than along the wetting path come from a higher number of384
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liquid bridges. For a degree of saturation of 10% for instance, considering385

a drying path leads to 50% more liquid bridges between both distant and386

touching particles when compared with wetting. The average volume of387

these liquid bridges is consistently one third smaller, however each liquid388

bridge extends roughly along the same solid surface for both hydraulic389

loading paths. For these configurations, the average filling angle is 30.50
390

along drying, and 34.80 along wetting.391

It is worth noticing that classical (“dry”) DEM simulations also encom-392

pass the current discussion of the validity of this method if actual physical393

forces are distributed. Indeed, the use of resultant forces is arguably pre-394

sented in [3] as adequate when contact areas (in reality), i.e. overlaps (in395

DEM models), are negligible–which is a classical assumption for the va-396

lidity of DEM [14, 34, 37, 22]. As for the homogenization approach, this397

assumption enters directly into the computations, so that
ş

σn b xdS can398

be replaced by
ř

f b x [2].399

23



Finally, we wish to conclude from these results that DEM applied to400

multiphasic materials provides in some cases an inconsistent description401

of the average, or total, stresses. Obviously, such description is in fact402

not relevant for saturated cases for which the behaviour is known to be403

governed by Terzaghi’s effective stress, provided that both fluid and solid404

phases are incompressible. However, it is in our opinion that searching for405

a single-valued effective stress for the unsaturated case through numerical406

experiments, total stresses have first to be adequately simulated.407

5. Hydraulic loading408

We focus now on the capillary stress tensor, as computed from the ho-409

mogenization approach. First, we consider the same hydraulic loading410

paths as in Section 4.2. Regarding the discussion on the comparison be-411

tween DEM and the homogenization approach, only wetting paths are412

considered, up to a maximum degree of saturation Sr = 10 %, so that413

DEM and the homogenization approach are consistent, qualitatively and414

to some extent quantitatively.415

5.1. Isotropic packings416

The initial isotropic packing of the sample confers an isotropy to the417

liquid phase, given that liquid bridges appear at every geometrical con-418

tacts. As mentioned earlier, this makes the capillary stress tensor to be419

spherical, with σcap = ´s χ since B = 0 for isotropic packings, under a420

zero contact angle assumption.421
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Figure 6: Wetting of an isotropic sample

A significant capillary stress (pcap « ´5 kPa for Sr Ñ 0) is developed at422

the drying-wetting transition (Fig. 6(a)). Further wetting makes the capil-423

lary stress decrease (in absolute value) because of the decrease in suction424

that is not counterbalanced by the increase in wetted surfaces upon which425

χ depends. As for the strains, pure volumetric strains are induced dur-426

ing wetting of the isotropic sample. The drying-wetting transition causes427

the sample to contract due to the development of attractive internal forces.428

The volumetric response is thereafter dilatant upon further wetting (Fig.429

6(b)), because at the meniscus scale liquid bonding decreases in intensity430

when suction decreases for menisci between contacting particles [16].431

This behaviour is qualitatively consistent with the trends of pcont =432

p ´ pcap (Fig. 6(a)), if an elastic behaviour were assumed between strains433

and the particle contact stress σcont = σ ´ σcap. For later reference, Section434

7 investigates more carefully whether this stress tensor can be regarded as435
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an effective stress or not.436

5.2. Induced anisotropic packings437

Non-isotropic packings are now considered, for the induced anisotropy438

case. An initially isotropic DEM sample is compressed along the vertical439

direction under dry triaxial (axisymmetric) conditions with a confining440

pressure σlat = 10 kPa. Axial compressions up to 0.1, 0.2 and 0.3% define441

three states A, B and C as given in Table 2 and Fig. 7.442

Designation Axial strain after the initial η = q/p
dry compression (%) (-)

State A 0.1 0.85
State B 0.2 1.03
State C 0.3 1.06

Table 2: Anisotropic states
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Figure 7: Initial dry axisymmetric compression defining States A, B and C

After an axial strain of 0.1%, plastic deformations with particle rear-443

rangement has not yet fully developed; thus State A is almost isotropic444
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(Fig. 8(a)). On the other hand, States B and C are close to the peak stress,445

and thus induced anisotropy appears clearly in Fig. 8(b) and 8(c), with the446

State C being more marked due to a greater plastic deformation. However,447

differences in SWCC are negligible between the three states (Fig 9).
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Figure 8: Contact directions in a plane of symmetry (y-direction corresponds to 900)
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Figure 9: SWCC for the anisotropic states

Although wetting is being imposed to the three different states under449

a constant total stress, a deviatoric component for the capillary stresses in-450

terestingly appears due to the induced anisotropy (Fig. 10(b)). As such,451

the deviatoric capillary stress increases (in absolute value) from State A to452
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State C, irrespective of the water content. Except for the dry-wet transition,453

variations in water content have generally little effect on the deviatoric454

capillary stress. Indeed, an increasing degree of saturation reduces the de-455

viatoric component of ´s χ on one hand, and increases that of ´B on the456

other hand (Fig. 11). An increase in the deviatoric component of ´B (i.e.457

its norm) upon saturation corresponds to greater menisci contours along458

which surface tension forces act. On the other hand, the decrease in suc-459

tion associated with saturation is responsible for decreasing the deviatoric460

part and the mean pressure (Fig. 10(a)) of ´s χ. Considering the differ-461

ent states, the mean capillary stress is observed to decrease (in absolute462

value) from State A to State C. This comes from a decreasing coordination463

number between State A and C, creating here less liquid bridges.464
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Figure 10: Capillary stresses during wetting of anisotropic packings

As for the strains, the wetting of anisotropic assemblies clearly induces465

deviatoric strains, in addition to the volumetric ones. The deviatoric strain466
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Figure 11: Deviatoric components of the two parts of the capillary stress tensor

appears at the dry-unsaturated transition, and can be considered as con-467

stant upon further wetting (Fig. 12(b)). The deviatoric strain values are468

greater from State A to State C. As for the volumetric strains, they show the469

same trends upon wetting as for the previous isotropic packing (Fig. 12(a)470

and 6(b)). For a given water content, the volumetric strains are reduced471

from State A to State C.
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Figure 12: Deformations (with respect to the dry states A, B or C) upon wetting of
anisotropic packings
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Both volumetric and deviatoric strain changes are qualitatively consis-473

tent with the changes of the intra-granular stress σcont = Σ ´ σcap (Fig. 13)474

but these results do show yet any quantitative comparison.475
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Figure 13: Intra-granular stress σcont = σ ´ σcap upon wetting of anisotropic packings.
Symbols correspond to σcont in the dry case, after the initial dry compression. They
correspond also to the constant total stresses during wetting

6. Mechanical loading and anisotropy of the capillary stress tensor476

The capillary stress tensor σ
cap
hom = ´(s χ + B) is now computed us-477

ing Eq. (12) along triaxial and simple shear loadings (see Fig. 14). The478

loading paths are applied to the discrete model for low degrees of sat-479

uration (Table 3), so that both approaches are quantitatively consistent:480

σ
cap
hom « σ

cap
DEM « σcap. Considering initial states resulting from a wetting481

path, menisci are created at geometrical contacts only. Hence, initial states482

show in average five menisci per particle. Then, menisci are kept when483

initially touching particles separate during loading, as long as Laplace’s484

equation can be solved. Note that triaxial simulations involve frictionless485
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rigid platens as boundary DE, while simple shear simulations use periodic486

boundaries. The periodic sample used for simple shear simulations is as487

close as possible to the non-periodic one used for triaxial simulations, see488

[15].489

x

y

z

Figure 14: Triaxial loading (left): ΣI = Σyy ą ΣI I = Σxx = ΣI I I = Σzz = Σlat = cst, and
simple shear loading (right): Bvx/By = cst, Σyy = Σzz = Σlat = cst

Table 3: Considered mechanical loading paths

Loading Σlat s Initial Sr

type (kPa) (kPa) (%)
Triaxial 10 20 3.78

“ “ 50 1.00
“ “ 100 0.32
“ “ 300 0.05

Simple shear “ 50 1.16
“ “ 300 0.05

We focus on the relative contributions of the terms s χ and B, and490

the anisotropy (deviatoric nature) of the capillary stress. Tensors are rep-491

resented using three invariants: the mean stress p, the deviatoric stress492

q = Σyy ´ Σlat (for triaxial loadings) or |q| =
?

3/2 ||s|| =
?

3/2 ||Σ ´ p δ||493

(for simple shears), and the Lode angle θ = 1/3 acos
(

27/2 det(s)/|q|3
)

.494

For instance, θ = 00 for triaxial compression.495
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Figure 15: Invariants of ´s χ for triaxial loadings with different suctions

As explained earlier, the initially isotropic packing makes the capil-496

lary stress to be spherical and equal to ´s χ (B = 0) at the start of the497

triaxial loading (Fig. 15 and 16). As the loading progresses and induced498

anisotropy develops, the deviatoric nature of the capillary stress tensor, as499

measured by |qcap|/pcap, rapidly builds up (Fig. 17). For low suctions this500

deviatoric nature arises from the tensor ´B describing the spatial distri-501

bution of surface tension forces, whereas for high suctions it is the spa-502

tial distribution of matric suction (´s χ) term that governs. Indeed, for a503

given strain value, Fig. 15(b) and 16 confirm the influence of matric suc-504

tion shown previously: the deviatoric part of (´s χ) increases according505

to suction, due to the proportionality with s, whereas the deviatoric tensor506

B decreases in norm with suction because of dwindling wetted contours.507

Changes in the mean and deviatoric parts of the capillary stress with508

suction follow the same trends for simple shear loading [15]. Furthermore,509
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Figure 16: Deviatoric stress of ´B for triaxial loadings with different suctions
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Figure 17: Deviatoric feature of σcap = ´s χ ´ B for triaxial loadings with different suc-
tions

the mechanical actions described by tensors ´s χ and ´B present the same510

Lode angles in simple shear (Fig. 18).511

7. Effective stress512

We finally focus our attention to the particle contact stress σcont which513

is essentially an intra-granular stress for very low saturation ratios Sr ă514

1% for which DEM is equivalent to the homogenization approach. The515

DEM model is used to impose various total stresses Σ and compute the516
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Figure 18: Lode angles of the two parts of the capillary stress tensor for simple shears

capillary stress σcap = ´s χ ´ B. The intra-granular stress is finally indi-517

rectly deduced from σcont = Σ ´ σcap.518

7.1. Constitutive relevancy of the intra-granular stress519

First, two triaxial loadings in dry and wet conditions are considered.520

A confining pressure close to 25 kPa is applied in the dry test, whereas 20521

kPa of confining pressure together with 300 kPa of suction are imposed in522

the unsaturated case. This corresponds throughout the wet test to a de-523

gree of saturation Sr « 0.04% ˘ 0.01%. The intra-granular stresses σcont
524

cannot be directly controlled during wet simulations and these loading525

parameters allow σcont to be as close as possible during both simulations,526

see Fig. 19(a). It turns out that a significant discrepancy appears on the527

resulting strain paths as seen in Fig. 19(b). In fact, the stress tensor σcont
528

can arguably be considered as specific to the solid phase since it describes529

the stresses arising inside the solid grains due to other solid grains. How-530
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Figure 19: Comparable loading paths in dry and wet conditions

ever, as illustrated by our results, the straining of the solid phase inside531

the unsaturated REV (i.e. straining of the unsaturated REV itself) is af-532

fected by the behaviour of the other phases and also the coupling between533

the different phases [30]. For that reason, we observe different behaviours534

between the dry and wet cases.535

It is probable that the observed strains of the unsaturated REV could536

still be interpreted using σcont as a stress variable, through a phenomeno-537

logical elasto-plastic approach including suction hardening [10].538

7.2. A unique plastic limit criterion539

In this last section, attention is paid to the attainment of limit plastic540

stress states starting from several triaxial and simple shear loading paths541

under both dry and wet conditions. Confining pressures range between 5542

and 25 kPa and, for the unsaturated cases, suction values from 50 to 600543

kPa; which corresponds to different degrees of saturation below 1%. The544

35



limit stress states are defined as the maxima of (q f (θ)/p), with the Lode545

angle influence f (θ) is assumed to obey Lade criterion [24].546

Whereas no unique plastic limit criterion appears for the total stresses547

in both dry and wet conditions as seen in Fig. 20(a), the use of σcont makes548

all data points fit within an acceptable agreement into a unique plastic549

limit criterion corresponding (for triaxial compression) to a Mohr-Coulomb550

friction angle φMC « 290 (Fig. 20(b)). This suggests that the intra-granular551

stress defined as σcont = Σ ´ σcap is the adequate variable to express the552

strength of the DEM assembly in both dry and wet conditions.
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Figure 20: Plastic limit criterion for the granular soil in dry and wet conditions

553

8. Conclusion554

The microscopic stresses within an unsaturated pendular granular soil555

have been volume-averaged to give a tensorial form for the macroscopic556

stress. The averaging process considers in particular interfacial stress ten-557

sors specific for the discontinuity surfaces between air and water. Deriva-558
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tions led to the expression of the total net stress tensor as the sum of a cap-559

illary stress tensor, describing mechanical actions pertaining to the liquid560

bridges and interface surfaces, and a contact stress tensor, encompassing561

the contact forces between solid grains.562

These different stress tensors have been evaluated and verified using a563

DEM model for unsaturated granular soils. A major finding is that com-564

parisons between the DEM and the homogenization approach is strictly565

speaking valid only for very low degrees of saturation, at the low end of566

the pendular regime. For higher water content, internal forces such as wa-567

ter pressure and surface tension forces act on finite surfaces, whereas DEM568

can only consider resultant point forces, which leads to an inconsistent de-569

scription of total stresses for the unsaturated REV.570

Using then the DEM model in conjunction with the averaging proce-571

dure for very low water content, the capillary stresses have been shown572

to be anisotropic in the general case. Non-spherical stress tensors are thus573

required to describe these capillary stresses, in contradiction with the clas-574

sical Bishop’s equation and current modelling approaches.575

Furthermore, the effective nature of the particle contact stress tensor576

has been discussed. From a theoretical standpoint, this stress tensor can-577

not be used to assess deformations in an unsaturated sample in the same578

manner as for a dry one. However, results from triaxial and simple shear579

loading paths point to show the particle contact stress tensor does unify580

the description of failure in unsaturated and dry granular soils. Further581
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investigations of homogenization approaches wherein strains are also in-582

troduced along with the consideration of interfaces and compressibility of583

phases should provide further answers to open questions as to the exis-584

tence of a single-valued stress tensor that controls deformations in unsat-585

urated granular assemblies.586
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Appendix A.593

Recall Stokes’s theorem:594

ż

C

F. dℓ =

ż

S
n.(∇ ˆ F ) dS (A.1)

t

mn
C

S

Figure A.1: Definition of surface S, contour C and associated vectors
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Let F = f ˆ b and dℓ = m dℓ where b is a constant vector and m the595

unit vector tangent to contour C. Then,596

ż

C

(f ˆ b) . m dℓ =

ż

S
n.(∇ ˆ (f ˆ b) ) dS (A.2)

Using identities597

(f ˆ b). m = ´b.(f ˆ m)

∇ ˆ (f ˆ b) = ´b(∇.f) + b.∇f

(A.3)

and since b is an arbitrary vector,598

ż

C

(f ˆ m) dℓ =

ż

S
n(∇.f) ´ (∇f). n dS (A.4)

If we choose f = γn and recalling that n ˆ m = ´t599

´
ż

C

γt dℓ =

ż

S
n(∇.(γn) ´ (∇γn). n dS

=

ż

S
[n∇γ.n + γn(∇.n) ´ ∇γ ´ γ(∇n). n] dS

(A.5)

Since ∇γ is tangent to surface S and (∇n).n = 1
2∇(n.n) = 1

2∇(1) = 0,600

we finally get:601

ż

C

γt dℓ =

ż

S
[∇γ ´ γn(∇.n) ] dS (A.6)
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