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Abstract8

The Discrete Element Method is used to study crack propagation in intact

rock from pre-existing flaws of different natures. Damage mechanisms occurring

during open and closed cracks propagation are analyzed at the local scale using

an innovative micromechanical investigation. Different micromechanisms are

captured, due to the development of either tensile or deviatoric states of stress in

the vicinity of the flaw, which are shown to be dependent on the flaw properties.

In turn, crack propagation patterns, as strength, are greatly affected by the

mechanical and geometrical characteristics of the initial flaw.

Keywords: Rock, Discrete Element Method, Mixed mode fracture9

1. Introduction10

Rock failure occurs after little plastic deformation under unconfined condi-11

tions. Such brittle failure involves catastrophic crack propagation that results12

from stress concentration around flaws of different natures. These flaws may13

result from rock genesis, e.g. joints between rock minerals, or loading history,14

e.g. cracks. Among the numerous possible configurations leading to fracture15

generation and growth, the focus is set here on a classical configuration where16

a rock sample is submitted to an unconfined compressive loading in presence17

of a unique flaw (see Fig. 1). This corresponds to mode I+II loading, and18

pioneering experiments based on this configuration were undertaken mainly on19
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model materials (gypsum, PMMA, glass, etc...) as presented in [1, 2, 3]. These20

authors observed what is now classicaly denoted as wing or primary cracks and21

secondary cracks.22
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Figure 1: Compression of a pre-cracked sample.

Wing cracks are localized crack patterns propagating along the most com-23

pressive stress direction from the flaw tips. Secondary cracks are located near24

the flaw tips, forming after the wing cracks and extending in a more restrained25

and diffuse manner compared to the latters (see e.g. [2, 4]). Generally, a tensile26

nature is associated to wing cracks, whereas secondary cracks, sometimes de-27

noted as shear cracks, would arise from a shear mechanism [5, 6, 4]. However,28

some authors may state that these secondary cracks appear through the coales-29

cence of local tensile cracks oriented along a different direction than the wing30

cracks [7, 8].31

Wing and secondary cracks have been observed with distinct shapes in model32

materials [1, 3, 9, 4], fragile polymers [10, 11, 12] or marble [8]. Their occurrence33

might be less remarkable in other rock types such as e.g. granite [12]. Nonethe-34

less, wing and secondary cracks are now commonly used by geomechanicians to35

describe crack propagation and coalescence in rocks [5, 8, 13].36

Because of their consequence on the overall behavior of rock and other brit-37

tle materials, numerous models have been proposed to study crack propagation.38

Analytical derivations have been led, generally at the cost of elasticity hypothe-39

sis [14, 15, 16]. More complex mechanical behaviors can be handled more easily40

using continuous numerical modellings, such as in [17]. Nevertheless, propagat-41

ing cracks are difficult to describe with continuous numerical modellings; though42

this can still be done using meshless methods such as XFEM [18].43

2



44

On the other hand, discrete multi-scale models describe efficiently by nature45

both crack propagation and complex mechanical behavior. The inherent discrete46

structure of rock involving a cohesive assembly of minerals as in granite, or47

grains as in sandstone, is one reason to use such discrete models. Furthermore,48

the Discrete Element Method for instance (DEM, [19]) has proven to be an49

efficient modelling approach for crack propagation analysis in brittle materials50

[20, 21, 22, 23, 24], including rock [25]. For this reason, many recent works51

rely on the DEM to study damage in rock, in order to reproduce experimental52

results such as accoustic emissions [26, 27] or constitutive behavior [28, 29].53

Crack propagation from an open flaw has been studied with DEM, mainly in54

2D [30, 12, 31]. In the regular lattice model of [30], wing cracks could be55

generated, with a limited kink. The damage patterns obtained in [12, 31] were56

less marked: this may arise from the heterogeneous strength parameters in these57

models, which might be related to the differences obtained experimentally for58

different materials.59

One can note that less studies consider crack propagation from closed flaws.60

Experimentally, it is difficult to generate closed flaws with controlled properties61

[9], but some results suggest similar crack propagation patterns from open or62

closed flaws [9, 6, 4]. Closed flaws were simulated in DEM in 2D [32] and in63

3D [33], with, however, contradictory conclusions regarding the numerical re-64

quirements for wing crack simulations. This will be discussed in section 5.2,65

considering different approaches to model closed flaws. As it will be empha-66

sized in the paper, modelling closed flaws with DEM may be biaised due to the67

spherical shape of the discrete particles if the formulation is not upgraded.68

69

Aiming to study crack propagation in rock with various flaw properties, our70

objective is twofold. First, we aim to propose an approach that is valid for either71

open or closed planar flaws. Second, we seek to get micro-mechanical insights72

on the damage mechanisms associated to wing and secondary cracks.73

First, the DEM model used to simulate the rock matrix is presented in sec-74
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tion 2. The model relies on previous developments [29], and its limitations75

are discussed. The micro-mechanical tools are also introduced. Section 3 dis-76

cusses how closed flaws are simulated in the DEM model. In section 4, crack77

propagation is studied considering the case of open flaws, comparing the numer-78

ical results with available experimental ones. Section 5 presents mechanically79

consistent simulations of crack propagation from closed flaws with different me-80

chanical properties. Finally, section 6 provides micro-mechanical insights into81

wing and shear cracks propagation.82

All simulations are performed with the open-source code Yade [34, 35], and83

the geomechanics sign convention is used throughout the whole paper, consid-84

ering compressive stresses and strains as positive.85

2. Rock matrix modeling86

2.1. Model formulation87

Rock matrix is simulated using a packing of bonded spherical discrete ele-88

ments (also denoted particles in the present article). The core of the model,89

previously presented in [29], is to some extent similar to other DEM models for90

rock [25, 28]. A major difference relies in the consideration, here, of near neigh-91

bour interactions through a controlled interaction range. Indeed, interparticle92

bonds are created between each pair of particles A and B for which equation93

(1) is fullfilled:94

D0
AB ď γintpRA `RBq (1)

In equation (1), RA and RB are the radii of the two particles, D0
AB the initial95

distance between the two centröıds of A and B, and γint ě 1 a parameter of96

the model. With such controlled near neighbour interactions, first proposed97

in [36], the average number of bonds per particle, N , can be predefined. This98

feature is motivated by the inadequate UCS/UTS ratios provided by classical99

DEM using spherical particles [25, 37], UCS (resp. UTS) being the uniaxial100

compressive (resp. tensile) strength. The mean contact number N being related101

to the UCS/UTS ratio [29], the γint-parameter provides the possibility to define102

precisely N and to simulate various rock types.103
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As an alternative, the use of clumps (rigid aggregates) of spheres has been104

proposed as a solution for 2D simulations [38], but the same method might105

lead to less significant improvements in 3D [39]. Other solutions would be to106

adapt the contact laws of the parallel bond model of [25], introducing up to 10107

parameters [39], or using the so-called flat joint contact model which has been108

developped up to now for the 2D case [40]. The use of a controlled interaction109

range with one scalar parameter γint provides an efficient approach simple to110

formulate.111

The behavior of the medium is defined through normal and tangential in-112

teraction forces acting between interacting particles. Within DEM, interac-113

tion forces are classically computed from the relative displacement between114

particles. DAB being the current value of the distance between the two cen-115

tröıds, the normal force Fn is computed from the normal relative displacement116

un “ D0
AB ´ DAB (un increases when spheres get closer to each other). Both117

repulsive (compressive), and cohesive (tensile), normal forces are considered. In118

tension, normal forces can develop up to a threshold Fmax
n such that:119

Fn “ kn un while kn un ą ´Fmax
n ; Fn “ 0 otherwise (2)

with Fmax
n “ t Aint ą 0 computed from the tensile strength t (in Pa) and120

Aint “ π minpRA, RBq2, a surface related to the interacting particles. The121

normal stiffness kn is computed as a function of the particles radii and Y , a122

parameter of the model expressed in Pa:123

kn “ 2 Y RARB

RA `RB

(3)

Equation (3) expresses the normal stiffness as the one of two spring series with124

stiffnesses Y 2RA{B, that can be interpreted as the stiffnesses of two elastic125

particles. In the end, Y is related, though different, with the bulk modulus of126

the numerical sample.127

The tangential local stiffness kt is deduced from the second elastic parameter128

of the model, P (dimensionless) such as:129

kt “ P kn (4)
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The tangential force ~Ft is linearly incremented using kt and the incremental130

relative tangential displacement ~∆ut. Tangential forces can increase in norm up131

to a cohesive-frictionnal threshold Fmax
t computed from the local friction angle132

ϕ and the cohesion parameter c (in Pa): Fmax
t “ cAint ` Fn tanpϕq .133

Interparticle bonds may fail through tension or shear when the normal force134

or the tangential force reach respectively ´Fmax
n or Fmax

t . Then, the interaction135

disappears in the tensile regime if Fn ă 0, or keeps going in a compressive regime136

if Fn ě 0. For the latter case, the behavior becomes purely frictionnal: t and c137

are set to zero. From this point, Fn ě 0 (Fmax
n “ 0) and Fmax

t “ Fn tanpϕq.138

The same purely frictional behavior rules the interactions appearing during the139

simulation when spheres come in strict geometrical contact (i.e. γint “ 1).140

An explicit time-domain integration scheme is used to solve the equations141

of motion. The discrete elements are thus translated and rotated according to142

the interaction forces and their resulting torques using Newton’s second law.143

Because of the dynamic formulation of the method, damping is used in the144

model to dissipate kinetic energy, as described in the following section.145

Table 1 presents the retained parameter values. The resulting UCS, UTS146

and Young’s modulus are respectively 70 GPa, 6 GPa and 55 GPa (see next147

sections), which corresponds to a Carboniferous Limestone [41]. A detailed148

presentation of the calibration process can be found in [33, 29]. Note however149

that a complete quantitative description of this specific rock is out of the scope150

of our qualitative analysis.

N Y (GPa) P ϕ (0) c (MPa) t (MPa)
12 50 1/3 18 45 4.5

Table 1: Considered model parameters for the intact rock.

151

2.2. Numerical damping152

A local non-viscous damping [42] is used, introducing a damping force ~F d
153

in Newton’s second law such that:154

~F d “ ´α sign

ˆ

Σ~F ptq ¨
ˆ

~vptq ` dt

2
~aptq

˙˙

Σ~F ptq (5)
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~F d depends on the damping parameter α P r0; 1s, α “ 0 corresponding to an155

undamped system. This damping method facilitates quasi-static simulations,156

by dissipating kinetic energy in the model. Note that energy dissipation is also157

included in the model through sliding and brittle failure processes. Few authors158

present damping as an indirect modelling of other physical energy dissipation159

sources [26, 25]. In this case, α should be considered as a model parameter160

that would require experimental measurements such as seismic quality factor161

for calibration. However, retained α values are in the end not consistent with162

this approach (see e.g. [25]).163

Here, damping is considered only as a convenient numerical treatment that164

reduces computational costs, since it allows quasi-static conditions with higher165

loading rates. Then, its possible influence on the results is assessed by simulating166

uniaxial compression tests for different values of α, with the parameters of Table167

1.168

Uniaxial tests simulations consist in the loading of a parallellepipedic sample169

of spherical particles between two rigid platens (see the Fig. 3). Deformation of170

the sample is caused by the movement of one platen toward the other at a con-171

stant speed. The platens are frictionless to favour a homogeneous deformation172

inside the sample. Details about the simulation procedure and the influence of173

the platen friction angle were given in [29]. Here, stresses deduced from the174

force acting on the moving platen, and the one deduced from Love-Weber ho-175

mogeneization formula [43, 44] are equal, confirming an acceptable level of the176

homogeneity and quasi-staticity within the model.177

As shown in Fig. 2, the pre-peak behavior is not affected by damping, but178

the UCS increases (up to 30 % here) according to α. Failure occurs along with a179

brutal increase in the number of broken bonds (Fig. 2). At the stress peak, the180

perturbations induced by the rupture of one interaction trigger a chain reaction181

leading to the failure of a set of bonds that will consequently bisect the sample182

[26]. Such chain reaction is inhibited by the damping, thus delaying failure and183

increasing the stress that may be reached (Fig. 2). Similar trends were reported184

in [26, 45, 28]. Note that different simulations run with different loading rates185
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show the same trends, which means that quasi-staticity is ensured up to the186

peak in every case.187
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Figure 2: Damping influence for uniaxial compression test simulation.

The significant UCS variations reveal an inherent problem of the model188

formulation, due to the introduced damping and the brittleness of the contact189

law; even though such model is quite classical for rock simulations [26, 25, 45,190

28, 29]. As such, a constant low-level damping is used throughout this study:191

α “ 0.2, which is rather limited compared to other works: α “ 0.7 in [25],192

α “ 0.4 in [29]. Doing so, we approach the behavior of an undamped model,193

keeping reasonnable computational costs.194

2.3. Discrete element size influence195

As, e.g. for computational cost reasons, the particles used in the simulations196

do not correspond in number and in size to real physical entities, the influence of197

particle size on the results has to be considered. Uniaxial compressive tests were198

performed on three different numerical samples (Table 2) using the parameters199

presented in Table 1.200

Samples 1 and 2 contain around 21000 particles with a mean diameter D «201

22 cm‹. However, they do not involve the same packing due to the random202

‹ Length units are given for consistency, but they do not matter and absolute dimensions
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Designation Number of elements Mean diameter (m)‹

Sample 1 20689 0.215
Sample 2 20689 0.215
Sample 3 124137 0.118

Table 2: Samples used for studying size dependency. For all samples, Lx « 5.4m, Ly « 2.4m,
Lz « 10.8m, and a uniform distribution of radii is used with Dmax{Dmin « 1.86. The
px, y, zq framework is depicted in Fig. 3, z being the loading direction.

generation process. Sample 3 contains around 124000 particles, with a mean203

diameter D1 « 12 cm. In accordance with Table 1, the mean coordination204

number N is set to 12 in every case, which requires slight changes in parameter205

γint among the different samples. The three samples contain enough particles206

(ą 10000) to ensure a representative behavior and to focus on the influence of207

the mean diameter only.

(a) Samples 1 or 2 (b) Sample 3

Figure 3: Different samples loaded in uniaxial compression.

208

As shown in Fig. 4, the same macroscopic elastic stiffness is obtained what-209

ever the mean diameter. This results from the introduction of the radii of the210

particles in equation (3). Concerning the plastic behavior, both samples with211

the same mean diameter D exhibit a similar strength with a difference of about212

5% for the stress peak. However, greater differences appear for the third sample213

that involves smaller particles with mean diameter D1 ă D. The stress peak214

are not intended to correspond to physical entities.
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Figure 4: Uniaxial compressive test for different samples (D’ « D/2) with same parameters.

is here reduced by about 13% when the mean diameter decreases. This is re-215

lated to the elastic-brittle interaction laws that induce an influence of the mean216

diameter on the fracture toughness, explained as follows.217

For illustrative purposes, let us consider a monodisperse packing of bonded218

spheres of diameter D (Fig. 5). A crack of surface Ac exists in the packing, due219

to previous bond breakages (Fig. 5(a)). The rupture of another bond induces220

a growth of the crack surface by dAc (Fig. 5(b)). Under pure tensile loading221

(no shear forces), the energy released during this bond breakage is equal to222

E “ 1{2 pFmax
n q2{kn.223

Ac

(a) Before crack prop-
agation

Ac dAc

cohesive

interaction

broken (former

cohesive) int.

(b) After crack propagation

Figure 5: Crack propagation in a DEM model.

Within our model, the critical fracture energy [46] Gc “ E{dAc9E{D2 de-224

pends finally on the model parameters t, Y and on the sphere diameter D such225

that:226

Gc 9 t2

Y
D (6)

Thus, for what concerns localized failure mechanisms, the discrete model suffers227
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from a size dependency: the critical surface energy is proportional to the mean228

diameter D, or, equivalently, the fracture toughness is proportional to
?
D.229

Using a different approach, the same conclusion has been drawn in [25]. If the230

toughness was to be set without any particle size-dependency, the interaction231

law should be modified, introducing another parameter, as suggested in [21].232

Nevertheless, the following sections will show that the model still has advantages233

to study qualitatively crack propagation. Quantitative comparisons can also be234

led as long as the same discretization size is kept.235

2.4. Micro-mechanical insight236

For any material system, it is possible to define a symmetric tensor that237

expresses the power of internal forces, that is thus related to a stress tensor238

[47, 48, 49]. For a system made up of one particle p at equilibrium under239

interaction forces related to several contact points c, the symmetric internal240

moment tensor Mp [48, 49] can be used, expressed by:241

M
p “

ÿ

c

~xc b ~f c (7)

with ~xc the position of the interaction points (from the center of the particle242

p) where the interaction forces ~f c apply. A stress tensor at the particle scale,243

denoted as particle stress tensor, is then derived as:244

σ
p “ ´1{V p

M
p (8)

with V p the volume of the particle (the minus sign is set to obey the geome-245

chanical sign convention). For illustration purpose, Table 3 gives two examples246

of σp values.247

Considering a set S of particles, the related internal moment tensor MS is248

the sum of the internal moment tensors of each particle included in S. If S249

contains enough particles so that it can be considered as a REV, a direct link250

appears between M
S and the Cauchy stress tensor [49], which may justify the251

definition of σp. However, one particle can not constitute a REV for a DEM252

assembly, then σ
p is a local value that relates to the mechanical state of the253

assembly in a qualitative manner only.254
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Table 3: σ
p for two given micro-mechanical loadings: opposite forces, or uniform pressure.

The field of major (most compressive) principal stresses σp
I computed during255

the pseudo elastic phase (pre-peak) of a uniaxial compression test is presented256

in Fig. 6 (details about such representations are given in Appendix A). Firstly,257

it can be observed that the principal directions of σp
I , at the particle scale,258

conform to the principal stress direction imposed at the macroscopic scale (Fig.259

6(a)). Secondly, the major principal particle stresses are here in a certain extent

(a) Direction of major principal
stress (most compressive)

 

 

|σ
I
p − <σ

I
p>| / <σ

I
p>

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(b) Heterogeneity of the ma-
jor principal stress

Figure 6: Micro-mechanical state of the DEM model in the pseudo-elastic phase of an uniaxial
compression test.

260

uniform, as might be expected from such homogeneous test (Fig. 6(b)). Indeed,261

σ
p
I values differ from the mean ă σ

p
I ą by 50% maximum. Finally, the data262
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set shows that both other principal stresses are similar and negligible compared263

with σp
I , for all particles.264

These results support the use of σp as a qualitative micro-mechanical insight265

to evaluate the stress distribution at the particle scale. The method will thus266

be used in section 6 to analyze crack propagation.267

3. Rock discontinuities modeling268

Pre-existing discontinuity surfaces are handled in a specific manner inside269

the rock model. A smooth-joint model (SJM, [50]) is applied to the joint inter-270

actions that concern particles located on both sides of any discontinuity surface.271

Using the SJM, the normal and tangential vectors of the interaction are rotated272

and defined according to the surface of interest, rather than upon the contact273

geometry of the spherical particles. The elastic-plastic constitutive relations274

presented in section 2 hold for joint interactions, with adequate expressions of275

normal and tangential relative displacements. Namely, for such interactions276

un “ p ~AB0 ´ ~ABq.~n with ~n the normal vector to the discontinuity surface, from277

center A to center B. ~n is thus different from ~AB{|| ~AB||. The plastic behavior,278

defined according to a friction angle φ and a dilatancy angle ψ, is independent279

of the discretization of the model [33]. In order to get rid of the size dependency280

also in the elastic domain, the elastic local stiffnesses kn and kt are given by:281

kn “ Kj
n Aint

kt “ K
j
t Aint

(9)

with the interface parameters Kj
n and Kj

t expressed in Pa/m.282

Compression and shear tests were conducted on a numerical rock joint to283

confirm the discretization-independence. A planar joint is defined in a par-284

allelepipedic sample by assigning a SJM to all interactions located across the285

corresponding surface (Fig. 7). The particles lying on each side of the surface286

are clumped together, in order to form two rigid blocks on each side of the rock287

joint. With this method, different from the ones used in [51, 33], the local pa-288

rameters of the joint can be tested directly without any influence of the matrix289
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parameters (the latter is considered as a rigid body). The joint normal and

(a) Model A (b) Model B

Figure 7: Particles (spheres) and joint interactions (lines) of the rock joint discrete models.
Model A describes the joint surface with particles of mean diameter D « 0.63. Model B
involves particles with D « 0.29.

290

tangential stresses, denoted σ and τ , are directly deduced from the interact-291

ing forces occurring between the clumps. The normal and tangential relative292

displacements are denoted u and γ respectively.293

The rock joint is first normally loaded through a compression along the ~z294

axis (Fig. 7): du “ cst ą 0; dγ “ 0. The compression is performed at constant295

speed up to σ « 1 MPa. A second phase of constant normal displacement (CND)296

shear mode pdu “ 0; dγ “ cst ą 0q is then applied along the ~x axis, Fig. 7. The297

constitutive behavior of the model is presented in Fig. 8. It corresponds to an298

elastic-plastic rock joint with two elastic stiffnesses pKglob
n ;Kglob

t q and a plastic299

behavior with constant yield surface τ “ σ tanpφq and flow rule dup{|dγp| “300

´ tanpψq. The plastic behavior is obtained during shear displacement from301

pγ, τq « p9 mm, 0.7 MPaq. Appendix B derives the equations of the curves that302

are plotted along the model’s response in Fig. 8.303

As shown in Fig. 8(a) and 8(b), the macroscopic elastic stiffnesses Kglob
n and304

K
glob
t can be considered to be unaffected by the mean diameter of the numerical305

sample. They depend on the micro-parameters Kj
n and K

j
t , and on the ratio306

between the sum of all interaction surfaces Aint and the apparent joint surface;307

which is directly related to the density of the packing. This dependence on the308
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Figure 8: Behavior of two rock joint discrete models involving two different samples. All
computations are made with Kj

n “ 50 MPa/m, Kj
t “ K

j
n{2, φ “ 350, ψ “ 100.
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packing density induces a difference between Kj
n and Kglob

n such that: Kglob
n «309

155˘5 MPa/m whileKj
n “ 50 MPa/m. However, equality between other micro-310

parameters and induced macro-properties is obtained: Kglob
t {Kglob

n “ K
j
t {Kj

n “311

0.5, and the macro-plastic parameters φ and ψ are the same as those introduced312

at the interaction scale. This direct correspondance is remarkable in DEM and313

has to be pointed out.314

4. Crack propagation from an open flaw315

DEM simulations of open pre-existing cracks is straightforward: the particles316

are simply removed at the flaw location. Here, the three samples presented in317

Table 2 are subjected to uniaxial compression, including a flaw located at their318

center and persistent through the ~y direction. The flaw length, in the p~x, ~zq319

plane, is 20% of Lz.320

4.1. Strength of pre-cracked samples with open flaws321

The uniaxial compressive tests performed on samples with an open flaw show322

a continuous increase of the strength with the flaw orientation θ (Fig. 9(a)).323

Such trend is in qualitative agreement with experimental results obtained in [12]324

(Fig. 9(b)), and with discrete modelings performed by [12, 31]. One can note325

moreover that this result is not affected by the discretization of the model, i.e.326

the numerical assembly.327
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Figure 9: Strength of pre-cracked samples (open cracks) with different crack inclinations.
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Quantitatively, different values of the UCSpθ “ 900q{UCSp00q ratio may be328

obtained: around 2 in the present numerical study, 1.2 in [31] and 1.3 to 1.7 in329

[12]. This difference may be related to the geometry of the open flaw that is330

different in every case.331

4.2. Crack propagation patterns from open flaws332

For flaw inclinations less than 600, distinct wing and secondary cracks can333

be observed (Fig. 10), resulting from the coalescence of local bond breakages334

(hereafter denoted as microcracks). This result is in accordance with previous335

experimental works [2, 4, 8, 13]. The location of the wing crack initiation de-336

pends on the inclination of the pre-existing flaw towards the direction of the337

major principal stress. For θ “ 00, the crack propagates from the middle of the338

flaw. For increasing θ-values, the initiation of the wing crack moves along the339

flaw to finally reach the flaw tip as observed experimentally [8, 4].340

For higher inclinations (θ ě 600 here), damage first initiates with a localized341

pattern, at the flaw tips. Then, secondary cracks appear nearby and prevent342

localization, so that an unique diffuse pattern develops afterwards (Fig. 10).343

In our DEM simulations, all microcracks correspond to local tensile bond344

failures. This is directly related to the interparticle bond strength properties345

which were calibrated to ensure the macroscopic behavior to be representative346

of a brittle rock (carboniferous limestone), with the local tensile strength that is347

significantly smaller than the local shear strength. Such a result would support348

the idea that the secondary cracks, or shear cracks, appear in fact through the349

coalescence of local tensile cracks oriented along another direction than the wing350

cracks [7, 8]. This point will be discussed in section 6.1.351

Note that the obtained crack propagation patterns do not depend on the352

discrete element size (Fig. 11).353

5. Crack propagation from a closed flaw354

Closed flaws can be simulated in DEM by removing the cohesive feature of355

all interactions located along the flaw surface as proposed by [52, 25, 32]. For356
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(a) θ “ 00 (29 MPa) (b) θ “ 150 (31 MPa) (c) θ “ 300 (31 MPa) (d) θ “ 450 (37 MPa)

(e) θ “ 600 (40 MPa) (f) θ “ 750 (48 MPa) (g) θ “ 900 (56 MPa)

Figure 10: Crack propagation patterns from open flaws: blue dots correspond to broken
interparticle bonds locations. For σ values all in the range [0.64 UCS; 0.71 UCS]. Strengths
for each case are indicated in parenthesis in corresponding labels.

(a) θ “ 00, sample 1:
D (29 MPa)

(b) θ “ 00, sample 3:
D’ă D (25 MPa)

(c) θ “ 300, sample 1:
D (31 MPa)

(d) θ “ 300, sample
3: D’ă D (28 MPa)

Figure 11: Crack propagation pattern from open flaws, obtained for different model discretiza-
tions. At σ “ 21 ˘ 1 MPa (peak stresses of each case are indicated in label).
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such approach, due to the spherical geometry of the particles, the influence of357

the discretization of the model is questionable since the simulated flaw surface358

present a roughness that depends on the size distribution of the particles located359

on each side of the discontinuity surface. To discuss this point, the use of the360

SJM is compared with this existing approach.361

Again, uniaxial compression tests are considered, using the assemblies pre-362

sented in Table 2. Because the flaw is closed, its mechanical properties have363

to be determined. All simulations were performed here with Kj
n “ K

j
t “ 5364

GPa/m, ψ “ 00 and different values of φ for the interactions making up the flaw365

surface. Whatever the approach considered, classic contact model or smooth366

joint model, all simulations were performed using the same non-cohesive local367

properties along the flaw interactions. Using the SJM, the contact geometry of368

these interactions was additionally rotated according to the flaw geometry (see369

section 3).370

5.1. Strength of pre-cracked samples with closed flaws371
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Figure 12: Strength of the pre-cracked sample, considering two closed flaw models (φ “ 180).
Strength of the intact sample was 71 MPa.

As expected, depending on the approach chosen for describing the closed372

flaw, the responses are different (Fig. 12). For low flaw inclinations (θ ď 150),373

the use of the SJM leads to higher strengths, compared to the classical con-374

tact model. With the SJM, the joint interactions are all oriented perpendicular375

to the flaw and are thus all parallel to the direction of the loading. With-376
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out the SJM, the orientations of the interactions along the flaw are randomly377

distributed, which leads to a lower resistance against the vertical loading. For378

intermediate inclinations, a drastic decrease of the strength, explained hereafter,379

is captured using the SJM. Without the SJM, there is a continuous, slight, in-380

crease of the strength according to θ, which is in fact similar to the open flaw381

case (see previous Fig. 9). In addition, the results obtained without the SJM are382

significantly affected by the discretization. Indeed, the strength variation with383

the flaw inclination shows different trends depending on the numerical sample384

(Fig. 13).385
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Figure 13: Strength of the pre-cracked sample for different orientations θ (see Fig. 1): closed
flaw (φ “ 180) described removing cohesive interactions across the flaw, without SJM.

On the contrary, using the SJM, very few differences appear using different386

samples (Fig. 14(a)). Moreover, a mechanically consistent description of the387

flaw is clearly obtained. In every case, the strength reaches a minimum for388

an orientation related to the flaw friction angle (Fig. 14(b)). This results389

from the compressive loading, that imposes mainly vertical chains of contact390

forces between discrete elements (see e.g [53]). And, for θ ą φ, sliding occurs391

for all joint interactions carrying vertical contact forces. Whereas there is no392

restriction for vertical contact forces along the flaw while θ ď φ. For this reason,393

an approximatively constant strength is obtained in the inclination range θ ď φ,394

while the strength of the sample is significantly reduced for θ ą φ. This sound395

result can not be retrieved without the SJM, as shown in Fig. 12 and 13.396
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Figure 14: Strength of the pre-cracked sample using the SJM.

5.2. Crack propagation patterns from closed flaws397

Simulating closed flaws using the SJM, crack propagation depends on both398

θ, the flaw inclination, and φ,the flaw friction.399

The fracturing patterns obtained for φ “ 00 and different values of θ are400

shown in Fig. 15. No localized wing cracks form from a horizontal closed flaw,401

as opposed to the open flaw case. For other inclinations the patterns obtained402

with the closed flaw are in a certain extent similar to the ones obtained for403

an open flaw. Again, fracturing localizes through wing cracks for intermediate404

orientations (00 ă θ ă 600). However, the wing cracks here always initiates from405

the tips of the flaw and show a limited kink. Using another numerical method406

(the displacement discontinuity method), Shen et al. [9] showed an influence of407

the stiffness of the flaw surface on the curvature of the wing crack: softer flaws408

were shown to induce more curved wing cracks patterns, the extreme case being409

the case of an open flaw.410

Delayed with respect to the straight localized wing cracks, zones of secondary411

cracks can also be observed.412

For higher inclinations (θ ą 600 here), fracturing is diffuse throughout the413

whole sample, almost as if there was no flaw.414

415

Using other values for the flaw friction angles (φ ą 00) demonstrates that416

the SJM describes wing cracks propagation for intermediate orientations if and417
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(a) θ “ 00 (55 MPa) (b) θ “ 150 (33 MPa) (c) θ “ 300 (41 MPa) (d) θ “ 450 (41 MPa)

(e) θ “ 600 (48 MPa) (f) θ “ 750 (58 MPa) (g) θ “ 900 (58 MPa)

Figure 15: Closed crack propagation patterns at different inclinations for φ “ 00, using the
SJM. σ values are all in the range [0.6 UCS; 0.7 UCS]. Strengths for each case are indicated
in parenthesis with the corresponding labels. The closed flaw appears in black at the middle
of the sample.
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only if sliding occurs along the flaw (φ ă θ ă 600). When sliding along the flaw418

is prevented because φ ě θ, diffuse damage takes place throughout the whole419

sample and no localized crack develops, as for high inclinations and φ “ 00 (Fig.420

15). Such behavior is in agreement with several experiments [9, 6, 4].421

422

When sliding is enabled (φ ă θ), the fracturing pattern is modified by the423

frictional strength along the flaw. While increasing φ value, microcracks tend424

to propagate from the flaw tips in a unique diffuse manner. The two fracturing425

steps (localized wing cracks followed by diffuse secondary cracks) observed for426

open flaws or frictionless closed flaws can hardly be distinguished. Fig. 16427

illustrates the differences observed for θ “ 450 with φ “ 0 and 300.428

(a) εz 0.04 %; σz P [19;20] MPa.
Left: φ “ 00. Right: φ “ 300.

(b) εz 0.06 %; σz P [28;29] MPa.
Left: φ “ 00. Right: φ “ 300.

Figure 16: Flaw friction angle influence on the propagation of a closed flaw (θ “ 450). UCS
is 41 MPa for φ “ 00 and 46 MPa for φ “ 300.

429

This influence of the flaw friction angle emphasizes the advantage of using430

the SJM for simulations of closed crack propagation using spherical discrete431

elements. Without the SJM, the flaw friction angle can not be precisely assigned432

to the model, and inadequate fracturing patterns might be obtained.433

This may explain why here, as in [33], wing cracks are obtained without434

taking into account a transfer moment law in the DEM; contrary to what has435

been deduced from a previous discrete study [32] where closed flaws are simu-436

lated without the SJM, by only debonding the elements. Without any friction437
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defined at the contact scale along the flaw, the strength data from this previous438

study suggest finally a resultant flaw friction angle belonging to r30; 450s (Fig.439

17). According to our results, such value of the flaw friction angle prevents wing440

crack to develop.
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Figure 17: Strengths of pre-cracked samples with closed flaws simulated without the SJM.
From data by [32].

441

6. Micromechanical discussion442

The micro-mechanical quantities presented in section 2.4 are used here to443

give some insights into crack propagation processes. While the model includes444

damage through microcracking occurring at contacts, i.e. at an interparticle445

scale, σp is defined at the particle scale, describing the mechanical state of one446

given particle surrounded by a set of contacts. However, these micro-mechanical447

fields represent a valuable meso-scale characterization of the stress state in the448

medium.449

6.1. Micro-mechanics of open flaw propagation450

First of all, using the micro-mechanical values, the DEM model is able to451

capture the stress concentration caused by the flaw, similarly to any continuous452

method (e.g. [54]). Let’s consider, for instance, the sample with an open flaw453

inclined at 300 (Fig. 18). The heterogeneity of the major particle stress, quanti-454

fied by |σp
I ´ ă σ

p
I ą | { ă σ

p
I ą, reaches 3 here (Fig. 18(b)), while it was limited455

to 0.5 for a homogeneous sample (Fig. 6(b)). The presence of the pre-existing456
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flaw severely disturbs the stress distribution inside the material, with high stress457

concentrations at its tips and reduced stresses in some shielded areas. As shown458

in Fig. 10, fracturing initiates in the zones corresponding to these extreme stress459

values, with shear and wing cracks being different in nature.

(a) Major principal stress
(most compressive) map

(b) Variations of the major
principal stress

(c) Directions of the major prin-
cipal stress around the flaw

Figure 18: Micro-mechanical stress for a sample with an open flaw (θ “ 300) under compression
(σ « 22 MPa). See Fig. 10 for corresponding crack pattern.

460

On one hand, shear – or secondary – cracks tend to develop in highly com-461

pressed zones, i.e. zones sustaining high deviatoric stresses for such unconfined462

loading. Figure 19 depicts a direct comparison between the crack pattern and463

the particles sustaining the greatest deviatoric stresses sp throughout the model,464

emphasizing the shear nature of the secondary cracks. On the other hand, wing465

cracks are clearly not related to shear local stresses.466

As a matter of fact, wing cracks develop where particles sustain a tensile467

loading. To emphasize this point, we now consider the quantity pσp
III ` σ

p
I q468

for each particle. Negative values correspond to particles with the most tensile469

stress σp
III negative (i.e. corresponding actually to tension) and greater in470

absolute value than the most compressive stress σp
I . As seen in Fig. 20, there471

is a very good agreement between the wing crack locations and the particles472

predominantly loaded in tension. First, before fracturing initiates, a lens of473
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(a) σ « 14 MPa
(maxp||sp||q « 64 MPa)

(b) σ « 22 MPa
(maxp||sp||q « 100 MPa)

Figure 19: Crack patterns and particles with ||sp|| ą 0.35maxp||sp||q for a sample with an
open flaw (θ “ 300, UCS = 31 MPa) under compression. The external plattens are visible to
show the extent of the sample.

tensily loaded particles exists around the flaw. Then this lens deforms into474

a wing pattern along which microcracking occurs. Some stress relaxation is475

captured after the cracks form: some particles at mid-length of the wing cracks476

do not obey σ
p
III ` σ

p
I ă 0 anymore and hence are no longer displayed (Fig.477

20(c) and 20(d)). Finally, it is important to note that secondary cracks are478

definitely not associated with tensile-loaded particles.479

In case of high inclination (θ ě 600), the localized damage initiation evo-480

cated in Section 4.2 is also associated with tensile stresses. However, tensile481

loaded zones, i.e., wing cracks do not propagate due to the proximity of highly482

deviatoric loaded zones where secondary cracks arise afterwards (Fig. 21).483

In addition, the rotation of the local major principal stress directions due to484

the presence of the flaw is captured in Fig. 18(c). On one hand, wing cracks485

propagate conforming to the deflected local major principal stress directions486

confirming here their mode I opening nature. On the other hand, secondary487

cracks occur in areas with local major principal directions oriented almost ver-488

tically and seem to propagate along no defined direction.489
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(a) σ « 2.5 MPa (b) σ « 9.5 MPa

(c) σ « 14 MPa (d) σ « 22 MPa

Figure 20: Crack patterns and particles with σp
III

` σ
p

I
ă 0 for a sample with an open flaw

(θ “ 300, UCS = 31 MPa) under compression. The external plattens are visible to show the
extent of the sample.
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(a) σ « 14 MPa (b) σ « 28 MPa

Figure 21: Crack patterns and particles with σp
III

` σ
p
I

ă 0 for a sample with an open flaw
(θ “ 750, UCS = 48 MPa). The external plattens are visible to show the extent of the sample.

6.2. Micro-mechanics of closed flaw propagation490

In section 5, it has been shown that from closed flaw, crack propagation491

localizes in wing crack for more specific conditions than from open flaws. When492

wing cracks occur, a very good correlation can again be found between the493

wing crack locations and the particles sustaining a mainly tensile state of stress494

(σp
III ` σ

p
I ă 0) as illustrated in Fig. 22. For such cases, with θ ą φ, because495

sliding occurs along the flaw, tensile stresses develop in the sample above each496

flaw tip. Again, during wing crack extension, tensile stresses develop at the tip497

of the wing cracks whereas stress relaxation occurs along the wing crack branch498

(Fig. 22(c)). Once the wing cracks have reached the sample ends, secondary499

cracks develop due to the concentration of compressive stresses (Fig. 23).500

501

For increasing φ values, wing crack propagation is inhibited because sliding502

along the flaw is reduced, limiting the development of tensile stresses at the tip503

of the flaw. Indeed, particles sustaining tensile stresses (with σ
p
III ` σ

p
I ă 0)504

are much fewer and are closer to the flaw with φ “ 300 than with φ “ 00, for505

θ “ 450 (Fig. 24). Ultimately, when φ ą θ, tensile stresses no longer develop in506
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(a) σ « 3.0 MPa (b) σ « 8.3 MPa

(c) σ « 12 MPa (d) σ « 22 MPa

Figure 22: Crack patterns and particles with σp
III

` σ
p
I

ă 0 for a sample with a frictionless
closed flaw (θ “ 300, UCS = 41 MPa) under compression.
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Figure 23: Micro-mechanical field of major principal stress σp
I

for a closed flaw with (θ “
300;φ “ 00) at σ « 22 MPa. The corresponding crack pattern appears in Fig. 22(d)

(a) φ “ 00 (b) φ “ 300

Figure 24: Particles with σ
p

III
` σ

p

I
ă 0 for a closed flaw inclined at θ “ 450 with different

friction angles. Under εz 0.04 %; σz P [19;20] MPa: see the Fig. 16(a) for corresponding crack
patterns.
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the sample and wing cracks cannot grow. In such cases only a negligible amount507

of particles with σp
III ` σ

p
I ă 0 is detected.508

509

Despite the tensile local failure mode of all bond breakages in the model,510

these micro-mechanical insights support the idea of different damage mecha-511

nisms causing either primary (wing) or secondary (shear) cracks. This empha-512

sizes the advantage of intermediate- (or meso-) scale mechanical measurements,513

such as the particle stress tensors, for a better characterization of the stress514

distribution inside the material.515

7. Conclusion516

Discrete element modeling of crack propagation in rock under uniaxial com-517

pression has been discussed. The advantages of the model were presented as518

well as its limitations. It has been shown that, due to the brittle nature of519

the local interaction laws used, damping and discrete element size influence520

quantitatively the simulated strength, but not the elastic properties.521

The model enables to simulate explicitly both open and closed flaws with522

various associated properties. A special attention has been paid to use an ad-523

equate discrete model for simulating closed flaws. We showed that a realistic524

elastic-plastic behavior with controlled properties can be obtained using a SJM525

formulation with as little numerical bias as possible.526

Strengths and crack propagation patterns were obtained for open and closed527

flaws with different inclinations and favorably compared with existing experi-528

mental results. The DEM model offers micro-mechanical insights into the differ-529

ent damage mechanisms occurring in brittle materials. In particular, fracturing530

localizes in the form of wing cracks at locations where tensile stresses develop.531

Such wing cracks propagate according to the most compressive stress direction.532

Diffuse zones of secondary cracks are shown to correspond to excess deviatoric533

compressive stresses. The distribution of deviatoric compressive and tensile lo-534

cal stresses depend on the nature of the flaw (open or closed) as well as on the535

frictional strength of the flaw (if closed).536
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As such, the flaw friction angle affects crack propagation patterns, as well as537

the overall strength of the material. Ultimately, when friction increases, wing538

crack are inhibited and a more diffuse fracturing pattern is observed. That is,539

crack propagation in the intact material (the matrix) is affected by the flaw540

properties, and not only by those of the matrix.541

542

The influence of the flaw properties on crack propagation and on the overall543

behavior emphasizes the need to use the SJM for DEM simulations of closed544

flaws, unless discrete particles correspond to physical entities. Such a model545

could then be applied to study crack coalescence under confined states. It also546

suggests further improvements of the DEM, by applying SJM to newly created547

cracks. This would be useful for bonds broken in shear mode, for which contacts548

still hold after bond breakage.549

8. APPENDIX A: representations of σp field550

Micro-mechanical fields such as the one depicted in Fig. 6(b) are illustrated551

using the following procedure. Because of the reduced thickness of the sample552

along the y direction (Ly « Lx{2 « Lz{4), plane stresses in the px, zq plane are553

considered.554

For a random selection of particles, principal directions of σp can readily555

be plotted at the location x, z of particles centers (plane projection of the 3D556

model).557

A direct illustration of principal stress values for all σppx, y, zq being im-558

possible, plane representation of another related field is made as follows. The559

px, zq plane is discretized in a square grid with a cell length dx “ dz “ 0.2560

m, which is around the mean diameter of particles. All particles whose center561

lies in one given cell xi, zi are identified. Then, Fig. 6, 18 and 23 rely on a562

micro-mechanical value of the stress inside each cell, denoted σ
ppxi, ziq, that is563

derived by summing all internal moment tensors of these particles:564

σ
ppxi, ziq “

ř

V p
σ

p

dx dz Ly

(A.1)
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If dx and dz are such that one unique cell would include the whole model,565

equation (A.1) corresponds to the Love-Weber formula and the macroscopic566

stress, at the REV scale, is obtained.567

9. APPENDIX B: elastic-plastic behavior of a rock joint568

Let us consider an elastic-plastic rock joint. Equation (B.1) rules the elastic569

behavior:570
¨

˝

dτ

dσ

˛

‚“

¨

˝

K
glob
t 0

0 Kglob
n

˛

‚

¨

˝

dγe

due

˛

‚ (B.1)

The (perfectly) plastic behavior occurs on the yield surface τ “ σ tanpφq, and571

plastic deformation depends on the dilatancy angle ψ through the following flow572

rule: dup{|dγp| “ ´ tanpψq [55].573

Being loaded under constant normal displacement shear mode (du “ 0), un-574

der an initial value of normal stress σ ‰ 0, the stress state reaches the plastic575

limit condition after some elastic deformation. If loading continues, any change576

in tangential relative displacement is fully plastic from this time: dγ “ dγp.577

Thus dup “ ´|dγp| tanpψq “ ´|dγ| tanpψq. The total normal relative displace-578

ment u being constant due to the imposed CND loading, the plastic dilatant579

behavior of the joint induces changes in the normal stress σ, as derived in equa-580

tion (B.2):581

du “ due ` dup “ 0 ô dσ{Kglob
n ´ |dγ| tanpψq “ 0 ô dσ{|dγ| “ Kglob

n tanpψq
(B.2)

This equation is plotted in Fig. 8(d). For the Mohr plane pσ, τq, the Mohr-582

Coulomb plastic limit condition imposes dτ “ dσ tanpφq, see Fig. 8(c). By583

combining this last equation with equation (B.2) the theoretical line for the584

plastic regime in pγ, τq plane can be deduced, see Fig. 8(b).585
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[34] V. Šmilauer, E. Catalano, B. Chareyre, S. Dorofeenko, J. Duriez,698

A. Gladky, J. Kozicki, C. Modenese, L. Scholtès, L. Sibille, J. Stránský,699
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