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A SPLITTING METHOD ADAPTED TO THE SIMULATION OF MIXED

FLOWS IN PIPES WITH A COMPRESSIBLE TWO-LAYER MODEL

Charles Demay1, 2, Christian Bourdarias2, Benôıt de Laage de Meux1,
Stéphane Gerbi2 and Jean-Marc Hérard1, 3

Abstract. The numerical resolution of the Compressible Two-Layer model proposed in [27] is ad-
dressed in this work with the aim of simulating mixed flows and entrapped air pockets in pipes. This
five-equation model provides a unified two-phase description of such flows which involve transitions
between stratified regimes (air-water herein) and pressurized or dry regimes (pipe full of water or air).
In particular, strong interactions between both phases and entrapped air pockets are accounted for.
At the discrete level, the coexistence of slow gravity waves in the stratified regime with fast acoustic
waves in the pressurized regime is difficult to approximate. Furthermore, the two-phase description re-
quires to deal with vanishing phases in pressurized and dry regimes. In that context, a robust splitting
method combined with an implicit-explicit time discretization is derived. The overall strategy relies
on the fast pressure relaxation in addition to a mimetic approach with the shallow water equations for
the slow dynamics of the water phase. It results in a three-step scheme which ensures the positivity
of heights and densities under a CFL condition based on the celerity of material and gravity waves.
In that framework, an implicit relaxation-like approach provides stabilization terms which are acti-
vated according to the flow regime. Numerical experiments are performed beginning with a Riemann
problem for the convective part. The overall approach is then assessed considering relevant mixed flow
configurations involving regime transitions, vanishing phases and entrapped air pockets.
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January 5, 2018.

Introduction

This work is devoted to the simulation of the so-called mixed flows in pipes. The latter are encountered in
several industrial areas such as nuclear and hydroelectric power plants or sewage pipelines. They are multi-
regime flows featuring stratified regimes (air-water in the sequel) and pressurized or dry regimes (pipe full of
water or air). In particular, transitions occur between these regimes which potentially result in entrapped air
pockets. This transient nature may lead to strong constraints on industrial facilities. For instance, the transitions
between stratified and pressurized regimes induce strong pressure variations. In addition, the presence of air,
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especially entrapped air pockets, is usually unwanted as it may lead to a reduced efficiency, geysering and
damages for pumping systems [43]. In a larger extent, these flows are also involved in the interactions between a
free surface and a floating structure such as an iceberg, an off-shore wind turbine or a buoy [39]. Consequently,
a particular interest is paid to mixed flows through both modelling and experimental studies.

Regarding the modelling of mixed flows, numerous challenges are raised due to the different nature of each
regime. Indeed, the stratified regime is driven by slow gravity waves compared to the fast acoustic waves
characterizing the pressurized regime. Furthermore, strong interactions between the water phase and the air
phase may also be involved, especially in the presence of entrapped air pockets. Modelling studies have been
conducted with the aim of proposing a 1D description adapted to the large time and spatial scales involved
in industrial facilities. As presented in a recent literature review [12], several approaches have been proposed.
They are mainly single-phase models which focus on the transitions between stratified and pressurized regimes
neglecting the air phase. Among them, the most natural (and popular) approach relies on a unified description
of the different regimes. This approach was introduced in [24] with the so-called Preissmann Slot model. In
the latter, the shallow water equations [7,32], usually dedicated to the modelling of free-surface flows, are used
for both stratified and pressurized regimes assuming that there is a narrow slot at the top of the pipe. The
width of the slot is then calculated to obtain gravity waves with the same celerity as acoustic waves. This
technique is validated against experimental data in [5, 14] for example. Recently, another unified approach has
been proposed in [33] where the shallow water equations are supplemented with a constraint on the water height
describing a roof, i.e. the top of the pipe in our framework. With these approaches, sub-atmospheric pressures
in the pressurized regime cannot be modeled as they are, by construction, associated with a transition to the
stratified regime. These sub-atmospheric pressures may nevertheless be involved in some configurations such as
high points of an hydraulic circuit or water hammer phenomena. Thus, more sophisticated models, also based
on a unified single-phase description, have been proposed to account for these pressure levels [11,38,50]. Some
of them have also been extended to the modelling of entrapped air pockets in simplified configurations [40,49].
Beyond this physical classification, the different nature of each regime and the associated transitions also
induce numerical challenges. In the literature, Finite Volume approaches are principally adopted and strategies
relying on Godunov-type schemes [38], Roe-type schemes [11, 50] or kinetic schemes [10] may be proposed.
However, the transition points are often associated with spurious oscillations due to the discrepancy of wave
speeds characterizing each regime, see [51] for a related study. Lastly, even if these models with their associated
numerical method may provide a satisfactory single-phase description of mixed flows, they are unable to account
for strong interactions between the air and water phase in all the regimes. As recently pointed out in a literature
review [12], the development of a 1D model which accounts for these interactions is still needed. Some attempts
based on two-fluid models have been proposed assuming an incompressible liquid and a compressible gas, see
particularly [4, 37]. However, the resulting models are not hyperbolic and the management of the pressurized
regime is not clearly defined nor the associated transitions.

In this context, a two-phase flow model, namely the Compressible Two-Layer model, has been proposed
in [27]. The derivation process relies on a depth averaging of the isentropic Euler set of equations for each
phase. It leads to a five-equation system composed by a transport equation on the liquid height in addition
to averaged mass and averaged momentum conservation equations for both phases. Thus, this model belongs
to the class of two-phase two-pressure models and significant mathematical properties such as hyperbolicity
are obtained. This class of model was first introduced for separated flows with depth averaging in [44] and
mainly used afterward in a statistical framework for bubbly or granular flows, see [6,30] for instance. The main
originality of the Compressible Two-Layer model relies on the closure law of the interfacial pressure which is
derived from the hydrostatic constraint applied to the liquid. Therefore, a unified two-phase description of mixed
flows is obtained. Indeed, the model is consistent in some sense with the shallow water equations [7,32] for the
water phase (stratified regime) while the whole system degenerates formally towards a single-phase isentropic
Euler system when one phase vanishes (pressurized or dry regime). From the numerical point of view, several
challenges are raised, above all for mixed flows. The convective part of two-fluid two-pressure models is doted
with a complex wave structure which makes difficult the Riemann problem to solve regarding Godunov-type
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methods. Furthermore, the whole system includes relaxation source terms which strongly interact with the
convective part involving various time scales. When dealing with mixed flows, two additional difficulties may
be identified. Firstly, one has to approximate the slow dynamics of the stratified regime (gravity waves) as well
as the fast dynamics of the pressurized regime (acoustic waves). Secondly, dealing with a two-phase flow model,
one has to handle vanishing phases in pressurized and dry regimes which are known to raise robustness issues.

Some successful solvers for two-fluid two-pressure models are proposed in the literature. They focus on the
convective part of the system and they are mainly time-explicit methods such as Godunov-type schemes [3],
HLLC-type schemes [42,48] and relaxation schemes [2,22,23] with a particular interest paid to vanishing phases
in the latter two references. However, these methods have to comply with the usual Courant-Friedrichs-Lewy
(CFL) condition on the time step which involves the celerity of fast acoustic waves. Dealing with the water
phase, this celerity is about 1500m.s−1 for pure water so that the resulting CFL condition is very constraining
and brings too much diffusion to approximate satisfactorily the slow stratified regime. In order to relax this
constraint, a possible approach is to derive an implicit-explicit method (IMEX) where the slow dynamics is
treated explicitly while the fast dynamics is treated implicitly. This treatment is associated with a well-chosen
splitting of the system, which can be a flux splitting or an operator splitting. In this framework, interesting
results are obtained for the approximation of low Mach solutions of the Euler system, see [17, 28, 36] among
others, and a large time-step scheme for a two-fluid two-pressure model is proposed in [16]. Such an implicit-
explicit method is derived in [26] as a first attempt for the numerical resolution of the Compressible Two-Layer
model. However, it fails to approximate satisfactorily slow gravity waves resulting from a classical dambreak
problem and presents a lack of robustness with vanishing phases. Very recently, the numerical resolution of
a five-equation model which presents similarities with the Compressible Two-Layer model has been addressed
in [29]. The aim of this work is to handle slug flows which may also be interpreted as mixed flows as they
involve transitions between stratified and pressurized regimes. A Roe-type explicit scheme is proposed and
their strategy to handle the transitions consists in artificially switching from a two-phase to a single-phase
description removing gradually coupling terms and setting a zero density value to vanishing phases. Interesting
features are obtained regarding slug flow capturing but the accuracy of the explicit approach regarding slow
gravity waves is not presented and the artificial management of transitions is questionable.

The numerical resolution of the Compressible Two-Layer model is addressed herein with the aim of simulating
mixed flows and entrapped air pockets in pipes. The model and its properties are first recalled in Section 1 as
well as its relevance for the two-phase description of mixed flows. An (operator) splitting method associated
with an implicit-explicit scheme is then proposed in Section 2. Unlike for the first attempt proposed in [26],
the overall strategy relies on the fast pressure relaxation in addition to a mimetic approach with the shallow
water equations for the slow dynamics of the water phase. It results in a three-step scheme which ensures the
positivity of heights and densities under a CFL condition based on the celerity of material and gravity waves.
In particular, an implicit relaxation-like approach provides stabilization terms which are activated according
to the flow regime. Furthermore, the robustness of the method allows to solve both phases in pressurized and
dry regimes. Numerical experiments are performed in Section 3 beginning with a Riemann problem for the
convective part. The overall approach is then assessed considering relevant mixed flow configurations involving
regime transitions, vanishing phases and entrapped air pockets. In particular, an experimental validation is
proposed.

1. The Compressible Two-Layer model

The Compressible Two-Layer model, referred to as the CTL model hereafter, has been introduced in [27]
to deal with gas-liquid mixed flows in pipes. The latter involve stratified regimes (see Figure 1.1) as well as
pressurized or dry regimes (pipe full of liquid or gas). The governing equations of this model and its main
properties are exposed below. In the sequel, we focus on air-water flows but the general approach applies to
gas-liquid flows.
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Figure 1.1. Geometric description for horizontal channels.

1.1. Governing equations

The CTL model belongs to the class of two-fluid two-pressure models introduced by Ransom & Hicks in [44].
It results from a depth-averaging of the isentropic Euler set of equations for each phase, see [27] for details.
Considering a two-layer air-water flow through an horizontal rectangular pipe of height H, see Figure 1.1, the
model reads: 

∂th1 + UI∂xh1 = λp(PI − P2(ρ2)),

∂tmk + ∂xmkuk = 0, k = 1, 2,

∂tmkuk + ∂xmku
2
k + ∂xhkPk(ρk)− PI∂xhk = (−1)kλu(u1 − u2), k = 1, 2,

(S)

where k = 1 for water, k = 2 for air, mk = hkρk and h1 + h2 = H. Here, hk, ρk, Pk(ρk) and uk denote
respectively the height, the mean density, the mean pressure and the mean velocity of phase k. The interfacial
variables, namely the interfacial pressure and the interfacial velocity, are denoted PI and UI respectively. The
interface dynamics is represented by the transport equation on h1 while the other two equations account for
mass and momentum conservation in each phase. Regarding the source terms, λp and λu are positive bounded
functions depending on the state variable and accounting for relaxation time scales, they are detailed in Section
1.2.

The main originality of the CTL model comes from the integration of the hydrostatic constraint applied to
the water phase which results in a closure law for PI . This constraint is essential in order to account for water
gravity waves in the stratified regime. The closure law for the interfacial velocity is obtained using an entropy
inequality as in [19]. The resulting closures read:

(UI , PI) = (u2, P1 − ρ1g
h1

2
), (1.1)

where g is the gravity field magnitude. As the phases are compressible, state equations are required for gas and
liquid pressures. For instance, perfect gas law may be used for air and linear law for water:

P1(ρ1) = (ρ1 − ρ1,ref)c
2
1,ref + P1,ref, (1.2a)

P2(ρ2) = P2,ref

( ρ2

ρ2,ref

)γ2
, (1.2b)

with some reference density ρk,ref and pressure Pk,ref. The celerity of acoustic waves is defined by:

ck =
√
P
′
k(ρk), (1.3)

where P
′

k(ρk) > 0. For air, γ2 is set to 7/5 (diatomic gas) and for water, c1 is constant and equal to a reference
celerity denoted c1,ref. At the end, the CTL model is the five-equation system (S) complemented by the algebraic
equation h1 + h2 = H, whose six unknowns are (h1, h2, ρ1, ρ2, u1, u2).
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In the following, the thermodynamic reference state is chosen to deal with air-water flows at 20o C: P1,ref =

1.0133 bar, ρ1,ref = 998.1115 kg.m−3, c1,ref = 1500 m.s−1, P2,ref = 1 atm and ρ2,ref = 1.204 kg.m−3 which yield
c2,ref ≈ 343 m.s−1. Note that phase 1 inherits from the fastest pressure waves.

1.2. Relaxation processes

The source terms of the CTL model (S) are represented by relaxation terms, namely pressure and velocity
relaxation terms. In the following, the associated relaxation processes at the continuous level as well as the
relaxation time scales are detailed.

1.2.1. Pressure relaxation

The interpretation of the pressure relaxation is given considering a flow homogeneous along x. Thus, (S)
yields: {

∂th1 = λp(PI − P2),

∂tmk = 0, k = 1, 2.
(1.4)

The second equation of (1.4) gives ∂tρk = (−1)k ρkhk
∂th1 such that using the closure law (1.1) for PI and (1.3),

one obtains:

∂t(PI − P2) = −(
c21ρ1

h1
+
c22ρ2

h2
)λp(PI − P2).

Therefore, Π(t) =
(
PI − P2

)
(t) satisfies Π(t) = Π0exp

(
−
∫ t

0
λp(

c21ρ1
h1

+
c22ρ2
h2

)dt
)

where Π0 = Π(t = 0). As λp is
a positive bounded function, the following asymptotic behavior is obtained:

PI − P2 −→
t→+∞

0, (1.5)

and the associated time scale, denoted τp, is defined as:

τp =
(
λp

(c21ρ1

h1
+
c22ρ2

h2

))−1

. (1.6)

Regarding λp, an analytical expression is developed in [31] describing the oscillations of an isolated bubble
(air bubble for instance) in an infinite medium (water for instance) with the Rayleigh-Plesset equation. This
approach is adopted for our framework so that λp reads:

λp =
3

4πµ1

h1h2

H
, (1.7)

where µ1 is the dynamic viscosity of phase 1. For water, µ1 = 10−3 Pa.s at T = 20o C. In practice, dealing
with air-water flows and choosing ck = ck,ref, ρk = ρk,ref, hk = H

2 with H = 1m, (1.6) yields τp ∼ 10−12 s.
Consequently, the interfacial pressure PI quickly converges toward the air pressure.

Remark 1.1 (Pressure relaxation with spatial derivatives). When taking into account spatial derivatives in

(1.4), one obtains Π(t) =
(
Π0+R

)
exp
(
−
∫ t

0
dτ
τp

)
, where R =

∫ t
0
Cexp(

∫ τ
0
dτ ′

τp
)dτ and C includes spatial derivatives

due to convection terms. The relaxation effect still exists with the same time scale τp but is in competition with
convection effects. Assuming that τp is constant and that C is bounded in time by a constant denoted M , one

obtains |R| ≤ τpM(exp
(
t
τp

)− 1
)

which provides |Rexp
(
−
∫ t

0
dτ
τp

)
| ≤ |R|exp(− t

τp
) ≤ τpM

(
1− exp(− t

τp
)
)
. Thus,

the additional contribution due to convection terms vanishes when τp → 0.
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1.2.2. Velocity relaxation

As in the previous section, a flow constant along x is considered. Thus, (S) yields:{
∂tmk = 0, k = 1, 2,

∂tmkuk = (−1)kλu(u1 − u2), k = 1, 2.
(1.8)

As mk is constant w.r.t. time, (u1 − u2)(t) immediately satisfies:

∂t(u1 − u2) = −λu
( 1

m1
+

1

m2

)
(u1 − u2),

which gives (u1 − u2)(t) = (u1 − u2)(0)exp
(
−
∫ t

0
λu
(
m1+m2

m1m2

)
dt
)
. As λu is a positive bounded function, the

following asymptotic behavior is obtained:

u1 − u2 −→
t→+∞

0, (1.9)

and the associated time scale denoted τu verifies:

τu =
(
λu

(m1 +m2

m1m2

))−1

. (1.10)

The function λu is modeled as a classical interfacial drag force which writes:

λu =
1

2
fiρ2|u1 − u2|, (1.11)

where fi is a friction factor. In order to define fi, several experimental studies have been led since the pioneer
work of Taitel and Dukler in 1976 [47]. In particular, fi should ideally depend on the flow regime. In the present
work, a constant value relying on experimental results for stratified air-water flows is chosen, that is fi ∼ 0.015
(see [41]). Indeed, the performed numerical experiments do not involve strong interfacial shear between the
phases. However, note that the numerical scheme proposed hereafter is independent of λu so that more complex
laws can be implemented.

In practice, dealing with air-water flows and choosing ρk = ρk,ref, hk = H
2 with H = 1m, (1.10) yields

τu ∼ 7.101/|u1 − u2|. With a large speed disparity between the phases, |u1 − u2| ∼ 10m.s−1 for instance, one
obtains τu ∼ 7 s. Therefore, the velocity relaxation time scale is much larger than the pressure relaxation time
scale.

1.3. Relevance of the CTL model for mixed flows

The CTL model has been developed to deal with mixed flows which involve stratified regimes as well as
pressurized or dry regimes (pipe full of water or air). In this section, details are provided regarding its ability
to handle these different regimes at the continuous level.

1.3.1. Consistency with the shallow water equations

When it comes to free-surface flows, the well-known (incompressible) shallow water equations are usually
considered in the literature, see [1,32] for instance. It is thus interesting to check the consistency of the present
model with that classical description. Focusing on the momentum conservation equation of (S) for the water
phase and smooth solutions, the last two terms of the left hand side, i.e. ∂xh1P1 − PI∂xh1, may be rewritten
using PI = P1 − ρ1g

h1

2 as:

∂xh1P1 − PI∂xh1 = ∂xh1(P1 − PI) + h1∂xPI = ∂xρ1g
h2

1

2
+ h1∂xPI .
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Thus, the water phase complies with the following system:

∂th1 + u2∂xh1 = λp(PI − P2), (1.12a)

∂th1ρ1 + ∂xh1ρ1u1 = 0, (1.12b)

∂th1ρ1u1 + ∂xh1ρ1u
2
1 + ∂xρ1g

h2
1

2
+ h1∂xPI = λu(u2 − u1). (1.12c)

If ρ1 is considered as a constant in (1.12b) and (1.12c), the convective part reads formally as the classical
(incompressible) shallow water model with an hydrostatic gradient and varying interfacial pressure PI(x, t),
see [1] for instance. Furthermore, (1.12a) provides the very fast pressure relaxation (1.5) such that the term
h1∂xPI can be read as a source term accounting for varying air pressure. In (1.12), friction effects with the air
phase are also taken into account through the velocity relaxation term. The proposed rewriting is relevant in
the stratified regime and guides the splitting method developed in Section 2.

1.3.2. Consistency with pressurized and dry flows

The case where the pipe is full of phase k is referred to as pressurized flow (k = 1) or dry flow (k = 2). In
practice, transitions from stratified to pressurized or dry regimes often occur in industrial facilities so that one
may wonder if this configuration will be correctly handled by the CTL model. Formally, considering hk = H,
k = 1 or 2, with H constant, (S) reduces to:{

∂tρk + ∂xρkuk = 0,

∂tρkuk + ∂x(ρku
2
k + Pk(ρk)) = 0,

(1.13)

as soon as the source terms vanish when hk = H, k = 1 or 2. This system is equivalent to an isentropic
Euler system which is usually used to describe a pipe with constant cross-section and full of one phase including
compressibility effects. Consequently, when hk → H, k = 1 or 2, the CTL model degenerates naturally (actually
by construction) towards a relevant model for pressurized and dry flows.

Remark 1.2 (Definition of λu in pressurized and dry regimes). When hk = H, k = 1 or 2, the pressure
relaxation source term effectively vanishes due to the definition (1.7) of λp while the velocity relaxation source
term does not necessarily vanish regarding the definition (1.11) of λu. This definition is nonetheless chosen
to improve the robustness of the scheme proposed in Section 2 when dealing with vanishing phases. The
corresponding parametric study is presented in [25].

Thus, the CTL model provides a unified description of stratified, pressurized and dry regimes. In particular,
the water phase is assumed compressible in every regime following a barotropic pressure law. Furthermore,
significant mathematical properties are obtained as detailed in the next section.

1.4. Mathematical properties

In this section, the main mathematical properties of (S) are recalled. Details and proofs are available in [27].

Property 1.1 (Entropy inequality for (S)). Smooth solutions of system (S) comply with the entropy inequality:

∂tE + ∂xG ≤ 0,

where the entropy E and the entropy flux G are defined by:

E = Ec,1 + Ep,1 + Et,1 + Ec,2 + Et,2,

G = u1(Ec,1 + Ep,1 + Et,1) + u2(Ec,2 + Et,2) + u1h1P1 + u2h2P2,
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with:

Ec,k =
1

2
hkρku

2
k, Et,k = hkρkΨk(ρk), Ep,1 = ρ1g

h2
1

2
,Ψ
′

k(ρk) =
Pk(ρk)

ρ2
k

.

Property 1.2 (Hyperbolicity and structure of the convective system). The convective part of (S) is hyperbolic
under the non-resonant condition:

|u1 − u2| 6= c1. (1.14)

Its eigenvalues are unconditionally real and given by:

λ1 = u2, λ2 = u1 − c1, λ3 = u1 + c1, λ4 = u2 − c2, λ5 = u2 + c2. (1.15)

The characteristic field associated with the 1-wave λ1 is linearly degenerate while the characteristic fields as-
sociated with the waves λk, k = 2, .., 5, are genuinely nonlinear. Moreover, all the Riemann invariants can be
detailed.

Note that in our applications, (1.14) should not be violated due to the large acoustic waves celerity in the
water phase.

Property 1.3 (Uniqueness of jump conditions for the convective system). Unique jump conditions hold within
each isolated field. For all genuinely non-linear fields corresponding to the k-waves, k = 2, ..., 5, the Rankine-
Hugoniot jump conditions across a single discontinuity of speed σ write:

[hk] = 0,

[hkρk(uk − σ)] = 0,

[hkρkuk(uk − σ) + hkPk] = 0,

where brackets [.] denote the difference between the states on both sides of the discontinuity.

Furthermore, note that as the field associated to the jump of h1 is linearly degenerate, the non-conservative
products u2∂xh1 and (P1 − ρ1g

h1

2 )∂xh1 in (S) are well defined. Indeed, one may use the available 1-Riemann
invariants to write explicitly the 1-wave parametrisation. Note that as the jump conditions and the Riemann
invariants can be detailed, one can build analytical solutions for the convective part of (S) including the contact
discontinuity, shock waves and rarefaction waves. This approach is used in Section 3 to verify the numerical
scheme exposed in Section 2.

Property 1.4 (Positivity). Focusing on smooth solutions of (S), the positivity of hk and ρk is verified, as soon

as λp may be written under the form λp = h1h2λ̃p, where λ̃p is a positive bounded function depending on the
state variable. The positivity property hold for discontinuous solutions of the Riemann problem associated to
the convective part of (S).

Due to Property 1.4, the height hk of each layer is naturally kept between the bounds at the continuous
level, i.e. hk ∈ [0, H], k = 1, 2, without imposing any constraint. This is an interesting feature when dealing
with mixed flow modelling as this fundamental property may be naturally transposed to the discrete level. For
comparison, the popular single-phase mixed flow models available in the literature [11,38,40,50] do not satisfy
the constraint h1 ≤ H so that these models interpret the domain h1 ≥ H as the pressurized regime. In our
case, this property comes from the two-phase framework which nonetheless brings numerical challenges when
dealing with vanishing phases. In the next section, a numerical method which handles the different regimes and
transitions between them is presented.

2. A splitting method adapted to mixed flows

As highlighted in Section 1.3 at the continuous level, the CTL model may be an interesting candidate to
compute mixed flows with a two-phase description. Nonetheless, difficulties are encountered at the discrete level
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as listed below. In response, a numerical strategy based on a splitting method combined with an implicit-explicit
time discretization is proposed.

2.1. Numerical challenges

The CTL model is a two-fluid two-pressure model whose numerical resolution raises several challenges.
Firstly, the convective part of the system is doted with a complex wave structure, see Property 1.2, which
makes difficult the Riemann problem to solve regarding Godunov-type methods. Secondly, the whole system
includes relaxation source terms strongly interacting with the convective part and associated with various time
scales. In particular, the pressure relaxation is very fast, see Section 1.2. Dealing with mixed flows, the following
challenges are added:

(i) Multi-regime flow. Mixed flows essentially feature two regimes: the stratified and the pressurized
regimes. The stratified regime is mainly driven by slow gravity waves in the liquid phase whose typical
celerity is

√
gh1 (see [32]), whereas the pressurized regime is driven by fast acoustic waves whose celerity

is given by c1 =
√
P
′
1(ρ1). In practice, c1 ∼ 1500m.s−1 for water which leads to

√
gh1

c1
� 1 considering

realistic pipe heights. Regarding the characteristic waves of the CTL model, see (1.15), one of them is
propagating at slow material speed u2 whereas the other four are propagating at fast acoustic speeds,
uk ± ck, k = 1, 2. Therefore, when using classical explicit schemes, one obtains a CFL condition based
on the speed of these fast acoustic waves which brings large numerical diffusion in the slow stratified
regime. The ideal scheme should be efficient in both regimes in addition to handle transitions between
them.

(ii) Vanishing phases in pressurized and dry regimes. At the continuous level, pressurized and dry regimes
involve single-phase flows, i.e. hk = 0, k = 1 or 2. At the discrete level, both phases are solved in every
regime with the CTL model. Thus, one has to deal with vanishing phases, i.e. hk → 0, k = 1 or 2,
which raise robustness issues with most of classical numerical solvers.

A numerical scheme is detailed hereafter with the aim of addressing the above challenges. It begins with
a splitting approach which particularly accounts for item (i) and for the fast pressure relaxation. A three-
step scheme relying on an implicit-explicit time discretization is then derived. As highlighted in the sequel, a
particular interest is paid to the robustness of the overall approach with vanishing phases.

2.2. Operator splitting

Regarding the CTL model (S), the slow dynamics of the stratified regime is driven by the hydrostatic gradient
found in the momentum conservation equation for the water phase while the fast dynamics is driven by pressure
gradients in both phases. Therefore, (S) is split into three sub-systems. The slow dynamics of (S) is treated in
(Sm) where the rewriting (1.12c) is used for the water phase:

∂th1 + u2∂xh1 = λp(PI − P2),

∂tmk + ∂xmkuk = 0, k = 1, 2,

∂tm1u1 + ∂xm1u
2
1 + ∂xρ1g

h2
1

2
= 0,

∂tm2u2 + ∂xm2u
2
2 = 0.

(Sm)

The second sub-system (Sa) refers to the fast dynamics of (S) including the pressure gradients:
∂th1 = 0,

∂tmk = 0, k = 1, 2,

∂tm1u1 + h1∂xPI = 0,

∂tm2u2 + h2∂xP2 + (P2 − PI)∂xh2 = 0,

(Sa)



10 A SPLITTING METHOD ADAPTED TO THE SIMULATION OF MIXED FLOWS IN PIPES

where PI = P1 − ρ1g
h1

2 . The last sub-system (Su) deals with the velocity relaxation source term:
∂th1 = 0,

∂tmk = 0, k = 1, 2,

∂tmkuk = (−1)kλu(u1 − u2), k = 1, 2.

(Su)

This splitting has mainly two key features. The first one is the closeness of (Sm) with the shallow water system
for the water phase which is relevant regarding the stratified regime. The second one relies on the resolution of
the fast pressure relaxation also in the first step. Doing so, the terms linked to this relaxation, namely h1∂xPI
and (P2 − PI)∂xh2, are explicitly impacted in the second step. Hyperbolicity properties of systems (Sm) and
(Sa) are given in propositions below. The proofs are not detailed herein as they result from straightforward
calculations.

Proposition 2.1 (Structure of the convective part of (Sm)). The convective part of (Sm) is weakly hyperbolic.

Its eigenvalues belong to {u2;u1±
√
g h1

2 }. The characteristic fields associated with the eigenvalue u2 are linearly

degenerate while the characteristic fields associated with the eigenvalues u1 ±
√
g h1

2 are genuinely nonlinear.

Proposition 2.2 (Structure of the convective part of (Sa)). The convective part of (Sm) is weakly hyperbolic.
Its eigenvalues are {0}. All the characteristic fields are linearly degenerate.

Remark 2.3 (Eigenvalues and gravity waves). Regarding the water phase equations in (Sm), one obtains the

eigenvalues u1 ±
√
g h1

2 instead of u1 ±
√
gh1 when dealing with the (incompressible) shallow water system.

This result is a straightforward consequence of the water phase compressibility which modifies subsequently the

Jacobian structure through the hydrostatic gradient ∂xρ1g
h2
1

2 . Indeed, the latter yields contribution in ∂xρ1 in
addition to ∂xh1 in the compressible framework.

A three step scheme is then proposed and exposed in the next subsections. In particular, a classical explicit
scheme with Rusanov fluxes is used for (Sm) while an original implicit relaxation-like approach is derived to
handle the singular spectrum of (Sa). Note that a similar splitting is developed in [21] for the isentropic
Baer-Nunziato system but the underlying scheme is fully explicit.

In the discrete setting, the time step is denoted ∆t and the space step ∆x. The space is partitioned into
cells Ci = [xi− 1

2
, xi+ 1

2
[ where xi+ 1

2
= (i + 1

2 )∆x are the cell interfaces. At discrete times tn, the solution is

approximated on each cell Ci by:

Wn
i =

(
(h1)ni , (m1)ni , (m2)ni , (m1u1)ni , (m2u2)ni

)T
. (2.1)

2.3. Step 1: explicit approach for the slow dynamics

This first step deals with (Sm) and updates Wi from Wn
i to W∗

i . A classical explicit finite-volume scheme
with Rusanov fluxes is used on the convective part while the pressure relaxation source term is treated implicitly
except for the λp parameter. It writes:

W∗
i = Wn

i −
∆t

∆x

(
F(Wn

i+ 1
2
)− F(Wn

i− 1
2
)
)
− ∆t

2∆x
B(Wn

i )
(
Wn

i+1 −Wn
i−1

)
+ ∆tS(W∗

i ), (2.2)

where: 
F(W) = (0,m1u1,m2u2,m1u

2
1 +m1g

h1

2
,m2u

2
2)T ,

B(W) = (u2, 0, 0, 0, 0)T ,

S(W) = (λp(PI − P2), 0, 0, 0, 0)T .
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The fluxes are defined by:
F(Wn

i+ 1
2
) =

1

2

(
F(Wn

i ) + F(Wn
i+1)− ri+ 1

2
(Wn

i+1 −Wn
i )
)
,

ri+ 1
2

= max
j∈{i;i+1}

(
|un2,j |; |

(
u1 ±

√
g
h1

2

)n
j
|
)
.

(2.3)

Note that the time step ∆t and the coefficient ri+ 1
2

depend on the iteration and should get a superscript n

but it is omitted hereafter for the sake of clarity. Regarding the update of hn1,i, one can state the following
proposition:

Proposition 2.4 (Uniqueness and positivity of heights). There exits a unique h∗1,i ∈ [0;H] satisfying the
discretization (2.2) of (Sm). In addition, this property does not require any condition on the time step.

Proof. h∗1,i is computed with an implicit treatment of the pressure relaxation source term keeping the relaxation
parameter λp explicit. The mass terms mn

k,i are updated first and the transport equation (1.12a) is solved under

the form f(h∗1,i) = 0 where:

f(y) = y − hn1,i +
∆t

∆x

∫ x
i+1

2

x
i− 1

2

un2
∂hn1
∂x

dx−∆tλnp,i

(
P1

(m∗1,i
y

)
−m∗1,i

g

2
− P2

( m∗2,i
H − y

))
. (2.4)

One may easily demonstrate that f is strictly increasing on [0;H] with the limits f →
0+
−∞ and f →

H−
+∞, such

that f(x) = 0 admits a unique solution h∗1,i on [0;H]. This result does not require any condition on ∆t and is

independent of the space discretization applied to
∫ x

i+1
2

x
i− 1

2

un2
∂hn

1

∂x dx. In practice, this integral is decomposed as∫ x
i+1

2
x
i− 1

2

un2
∂hn

1

∂x dx =
∫ x

i+1
2

x
i− 1

2

(
∂un

2 h
n
1

∂x − hn1
∂un

2

∂x )dx where the fluxes are defined with (2.3). �

Therefore, h∗1,i is computed solving f(h∗1,i) = 0 where f is defined in (2.4). In practice, the Brent method is
used to solve this nonlinear problem, see [13]. The algorithm combines linear interpolation and inverse quadratic
interpolation with bisection to get efficiency and robustness. The convergence is superlinear and the solution
is kept between the bounds, even when getting close to the boundaries. This choice is important when dealing
with vanishing phases. Regarding the positivity of densities, it is ensured through a CFL condition detailed in
the following proposition:

Proposition 2.5 (Positivity of densities). The scheme for (Sm) proposed in (2.2) and (2.3) ensures the posi-
tivity of densities under the classical CFL condition:

∆t

∆x
max
i

(ri+ 1
2

+ ri− 1
2

2

)
≤ 1, (2.5)

which only implies the celerity of material and gravity waves.

Proof. The proof is classical. Applying (2.2) and (2.3) to the mass conservation equations, one readily obtains:

m∗k,i =
(
1− (ri+ 1

2
+ ri− 1

2
)

∆t

2∆x

)
mn
k,i + (ri+ 1

2
− unk,i+1)

∆t

2∆x
mn
k,i+1 + (ri− 1

2
+ uk,i−1)

∆t

2∆x
mn
k,i−1, k = 1, 2.

Seeing m∗k,i as a linear combination of mn
k,j , j ∈ {i−1; i; i+1}, with mn

k,j ≥ 0 and ri+ 1
2
≥ |unk,l|, l ∈ {i; i+1}, ∀i,

a sufficient condition to ensure m∗k,i ≥ 0 is given by (2.5). �

The proposed scheme is also consistent with the relaxation property obtained at the continuous level, as
presented in the next proposition:
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Proposition 2.6 (Discrete pressure relaxation). The pressure relaxation property exposed in Section 1.2.1 at the
continuous level holds at the discrete level. Denoting Π = PI −P2, it writes |Π∗| < |Πn| for a flow homogeneous
along x.

Proof. Considering a flow independent of space, the semi-discrete equation verified by hk reads:

(h∗1 − hn1 )

∆t
= − (h∗2 − hn2 )

∆t
= λnpΠ∗.

As ρk is a continuous and differentiable function of Pk, one can define two functions (η1, η2) such that ρ∗k =

ρnk +ρ
′

k(ηk)(P ∗k −Pnk ), k = 1, 2 (mean value theorem). With m∗k = mn
k due to mass conservation without spatial

derivatives, one obtains:

Π∗ =
(−1)k

λnp∆t

(mn
k

ρnk
− m∗k
ρ∗k

)
= (−1)k

mn
k

λnp∆t

(ρ∗k − ρnk
ρnkρ
∗
k

)
= (−1)k

mn
kρ
′

k(ηk)

λnp∆tρnkρ
∗
k

(P ∗k − Pnk ), k = 1, 2.

Using Π∗ − Πn = (P ∗1 − Pn1 ) + g
2 (mn

1 −m∗1) − (P ∗2 − Pn2 ) = (P ∗1 − Pn1 ) − (P ∗2 − Pn2 ), the equation above with
k = 1, 2 yields:

Π∗ −Πn = −λnp∆t
( ρ∗1
hn1ρ

′
1(η1)

+
ρ∗2

hn2ρ
′
2(η2)

)
Π∗, (2.6)

which provides:

|Π∗| < |Πn|, (2.7)

with λnp > 0 and ρ
′

k(Pk) > 0. �

Remark 2.7 (Discrete pressure relaxation in pressurized and dry regimes). According to the definition (1.7)
of λp, one observes that λp → 0 when hk → 0, k = 1 or 2. In practice, hk does not reach strictly zero and
is never set exactly to zero in the initial state such that λp remains strictly positive. Furthermore, using (1.7)

for λp, one obtains τp =
(

3
4πµ1H

(
h2c

2
1ρ1 + h1c

2
2ρ2

))−1
, where c21ρ1 ∼ 108 � 1 and c22ρ2 ∼ 105 � 1, such that

τp > 0 and one may observes that τp < ∆t for reasonable time steps. Thus, in simulated pressurized or dry
regimes, pressure relaxation process still exists. This is a positive collateral effect which brings robustness with
vanishing phases.

At last, this first step deals with the slow dynamics of (S) ensuring the positivity of heights and densities
under the CFL condition (2.5) based on the celerity of material and gravity waves.

2.4. Step 2: implicit approach for the fast dynamics

This second step deals with (Sa) and updates Wi from W∗
i to W∗∗

i . In particular, all the variables are kept
constant except the velocities. As all the eigenvalues of this system are zero, see proposition (2.2), one cannot
apply a classical numerical method relying on the spectral radius of the Jacobian matrix. Thus, a relaxation-like
method which consists in considering a larger system easier to solve is developed, see [2,8,20,21,23] for a related
framework.

One introduces the system (Sra) which relaxes towards (Sa) in the limit ε→ 0:

∂th1 = 0,

∂tmk = 0, k = 1, 2,

∂tm1u1 + h1∂xΠI = 0,

∂tm2u2 + h2∂xΠ2 + (Π2 −ΠI)∂xh2 = 0,

∂tmkΠk + a2
khk∂xuk + a2

k(uk − u2)∂xhk =
1

ε
mk(Pk −Πk), k = 1, 2.

(Sra)
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Πk is an additional unknown which relaxes towards Pk as ε → 0 and ΠI = Π1 − ρ1g
h1

2 . The PDE verified by
Πk is derived from the PDE verified by Pk in (S) without the convective terms. In addition, ak are positive
numerical parameters used to ensure the stability of the relaxation approximation in the regime of small ε,
their definition is provided later according to the flow regime. The structure of the convective part of (Sra) is
studied in the following proposition and results from immediate calculations not detailed herein. Note that the
positivity of heights and densities is obviously preserved in this step.

Proposition 2.8 (Structure of the convective part of (Sra)). When ak > 0, the convective part of (Sra) is
strictly hyperbolic. Its eigenvalues are given by {0;±a1ρ1 ;±a2ρ2 }, and all associated characteristic fields are linearly

degenerate.

2.4.1. Time discretization

In order to keep a CFL condition based on the slow dynamics, the time discretization proposed for the
convective part of (Sra) is mainly implicit:

h∗∗k = h∗k,m
∗∗
k = m∗k, k = 1, 2,

(m∗∗1 u
∗∗
1 −m∗1u∗1)/∆t+ h∗∗1 ∂xΠ∗∗I = 0,

(m∗∗2 u
∗∗
2 −m∗2u∗2)/∆t+ h∗∗2 ∂xΠ∗∗2 + (Π∗2 −Π∗I)∂xh

∗
2 = 0,

(m∗∗k Π∗∗k −m∗kΠ∗k)/∆t+ a2∗

k h
∗∗
k ∂xu

∗∗
k + a2∗

k (u∗k − u∗2)∂xh
∗
k = 0, k = 1, 2.

(2.8)

The explicit treatment of (Π∗2 − Π∗I)∂xh
∗
2 in the air momentum equation is justified by the pressure relaxation

solved in the previous step. Regarding the semi-discrete equation verified by Π1, the term a2∗

1 (u∗1 − u∗2)∂xh
∗
1

may be treated implicitly solving the air phase first. In practice, this treatment seems needless as the explicit
approach does not induce any additional CFL constraint. At last, note that relaxation parameters depend only
on hk and mk (see Definition 2.11) leading to a∗k = a∗∗k .

In the following, an instantaneous relaxation (ε → 0) between Πk and Pk is assumed and writes Π∗k = P ∗k .
Substituting the equation verified by Π∗∗k into the equations verified by u∗∗k and dividing by m∗k, the proposed
scheme for (Sa) reduces to the following semi-discrete equations on uk, k = 1, 2:

u∗∗1 − u∗1
∆t

− ∆t

ρ∗1
∂x

(a2∗

1

ρ∗1
∂xu

∗∗
1

)
= − 1

ρ∗1
∂xP

∗
I +

∆t

ρ∗1
∂x

(a2∗

1 (u∗1 − u∗2)

m∗1
∂xh

∗
1

)
, (2.9a)

u∗∗2 − u∗2
∆t

− ∆t

ρ∗2
∂x

(a2∗

2

ρ∗2
∂xu

∗∗
2

)
= − 1

ρ∗2
∂xP

∗
2 −

(P ∗2 − P ∗I )

m∗2
∂xh

∗
2. (2.9b)

One may notice that the additional variables Πk, k = 1, 2, do not appear in (2.9). In comparison with (Sa),
the proposed implicit relaxation-like approach acts explicitly as a stabilization process adding diffusion terms
weighted by ak at the discrete level. Furthermore, the equation verified by the total momentum may be written
under conservative form. Note that the overall approach is referred to as a relaxation-like approach in the sense
that a larger system easier to solve is indeed introduced. However, the commonly derived (explicit) relaxation
scheme which takes advantage of the linearly degenerate structure of all characteristics fields is not applied here
in order to avoid a restricting CFL condition.

2.4.2. Space discretization

Considering the space discretization of (2.9), a classical two-point flux approximation is used for the diffusion
terms and centered fluxes are used for the pressure gradients of the RHS. Furthermore, in order to improve
the robustness of the scheme when hk → 0, k = 1, 2, the following is applied in the RHS of (2.9) before space
integration:

∂xh
∗
k

m∗k
=

1

ρ∗k
∂x ln(h∗k), (2.10)
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see [18] for a similar approach. Integrating (2.9) on a cell Ci = [xi− 1
2
, xi+ 1

2
[ yields an implicit system for each

phase which may be written under matrix form:

A∗kU∗∗k = S∗k, (2.11)

where A∗k is defined as:

A∗k,ij =



1 + 1
ρ∗k,i

( ∆t
∆x )2

(
(
a2k
ρk

)∗
i+ 1

2

+ (
a2k
ρk

)∗
i− 1

2

)
if i = j,

− 1
ρ∗k,i

( ∆t
∆x )2(

a2k
ρk

)∗
i+ 1

2

if j = i+ 1,

− 1
ρ∗k,i

( ∆t
∆x )2(

a2k
ρk

)∗
i− 1

2

ifj = i− 1,

0 elsewhere.

(2.12)

The integrated source terms S∗k, k = 1, 2, write:

S∗1,i = u∗1,i −
∆t

2∆x

(P ∗I,i+1 − P ∗I,i−1

ρ∗1,i

)
+

(∆t

∆x

)2 1

ρ∗1,i

((a2
1(u1 − u2)

ρ1

)∗
i+ 1

2

ln
(h∗1,i+1

h∗1,i

)
−
(a2

1(u1 − u2)

ρ1

)∗
i− 1

2

ln
( h∗1,i
h∗1,i−1

))
, (2.13)

S∗2,i = u∗2,i −
∆t

2∆x

(P ∗2,i+1 − P ∗2,i−1

ρ∗2,i

)
− ∆t

∆x

(P ∗2,i − P ∗I,i
ρ∗2,i

)
ln
(1 +

h∗2,i+1

h∗2,i

1 +
h∗2,i−1

h∗2,i

)
. (2.14)

Proposition 2.9 (Non-singularity of the implicit system). The system (2.11) is non-singular as A∗k has an
M-matrix structure.

Proof. Regarding (2.12), A∗k verifies:

A∗k,ii > 0, A∗k,i 6=j ≤ 0, |A∗k,ii| −
∑
j 6=i

|A∗k,ij | > 0. (2.15)

Thus, A∗k has an M-matrix structure and (2.11) admits a unique solution. �

Remark 2.10 (Non-singularity with vanishing phases). In addition to Proposition 2.9, note that A∗k remains
non-singular when hk → 0. This is a substantial property when dealing with pressurized and dry regimes which
is not obtained with the implicit system derived in [26].

The definition of the relaxation parameters and the correlated diffusion coefficients is addressed in the next
section.

2.4.3. Definition of relaxation parameters

At the continuous level, the relaxation parameters ak must typically follow the so-called Whitham condition:

ak > max
ρk

(ρkck), k = 1, 2, (2.16)

in order to prevent the relaxation system (Sra) from instabilities in the regime of small values of ε, see [9, 20]

for instance. In particular, it ensures the stability of acoustic waves propagating at
√
P
′
k(ρk) = ck. As stated

throughout this paper, mixed flows involve stratified regimes driven by gravity waves as well as pressurized and
dry regimes driven by acoustic waves. Thus, regarding (2.9), a definition of relaxation parameters according to
the flow regime is proposed below.
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Definition 2.11 (Relaxation parameters according to the flow regime). Under the light of (2.9), ak is defined
according to the flow regime:

• In the stratified and dry regimes (h1 < H): the pressure gradient h1∂xPI in (Sa) is treated as a source
term. It accounts for variable interfacial pressure which can be interpreted as air phase pressure due to
the fast pressure relaxation solved in the first step. Thus, a1 is set to zero in (2.9a).

• In the pressurized regime (h1 = H): the stabilization process for acoustic waves is applied and a1 must
follow the so-called Whitham condition: a1 > max

ρ1
(ρ1c1) in (2.9a).

• In all the regimes, a2 follows the Whitham condition a2 > max
ρ2

(ρ2c2) in (2.9b).

According to Definition 2.11, a1 switches between the stratified and the pressurized regime from 0 to
η1max

ρ1
(ρ1c1) where η1 is a constant greater than one (typically η1 = 1.01). In practice, it is proposed to

identify each regime using a threshold hs on h1 so that a1 is defined as:

a1 = f(h1)max
ρ1

(ρ1c1), (2.17)

where:

f(h1) =

0, if h1 < hs,

η1

(
h1−hs

H−hs

)2

, if hs ≤ h1 ≤ H.
(2.18)

Therefore, a1 is a continuous differentiable function which ensures the stability of (2.9a) in every regime as
particularly observed in Section 3. The threshold hs is typically set to (1− δ)H with δ = 10−3 for mixed flow
simulations, more details are provided in [25] regarding this setting.

Remark 2.12 (Simplification for constant pipe heights). On the RHS of (2.9a), the diffusion term provided

by the relaxation approach writes ∆t
ρ∗1
∂x
(a2∗1 (u∗1−u

∗
2)

m∗1
∂xh

∗
1

)
. In view of Definition 2.11, this term is zero in the

stratified and dry regimes (a1 = 0) but also in the pressurized regime when considering constant pipe heights
(∂xh1 = 0). This term is thus not considered in the mixed flow simulations presented in Section 3.

At the discrete level, the value a1,i is defined through a simplified version of (2.17) which reads:

a1,i = f(h1,i)ρ1,ic1,i.

The latter is less restrictive than (2.17) but in our framework, c1 is a constant, see (1.2a), and the water density
ρ1 experiences small variations. An arithmetic mean is then used to define the interfacial diffusion coefficient
involved in A∗1 (see (2.12)): (a2

1

ρ1

)∗
i+ 1

2

=
1

2

(a2
1,i

ρ1,i
+
a2

1,i+1

ρ1,i+1

)∗
.

This relation ensures a smoother transition between the regimes compared to the expected harmonic mean. The

other interfacial diffusion coefficient arising in the RHS (2.13), i.e.
(a21(u1−u2)

ρ1

)∗
i+ 1

2

, may be defined equivalently.

Regarding the air phase, one directly defines a2,i+ 1
2

in order to be consistent with (2.16) but only between two

adjacent cells:
a2,i+ 1

2
= η2 max

j∈{i,i+1}
(ρ2,jc2,j),

where η2 is a constant greater than one (typically η2 = 1.01). This discrete definition is more classical when
using relaxation schemes, see [21, 23] for instance. An arithmetic mean is then used for ρ2,i+ 1

2
, leading to the

following definition for the interfacial diffusion coefficient involved in A∗2 (see (2.12)):(a2
2

ρ2

)∗
i+ 1

2

= a∗
2

2,i+ 1
2

( 2

ρ2,i + ρ2,i+1

)∗
.
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This relation closes the second step which does not require any condition on the time step.

2.5. Step 3: implicit approach for the velocity relaxation

This third step deals with (Su) and updates Wi from W∗∗
i to Wn+1

i . Noticeably, all variables are kept
constant except the velocities. As for the pressure relaxation, the source term is treated implicitly except
for the λu parameter. Indeed, the latter may include complex functions depending on the state variable and
accounting for friction effects, see (1.11). Using the fact that mk is constant w.r.t. time in this step, the
proposed semi-discrete implicit scheme writes:

m∗∗k (un+1
k − u∗∗k ) = (−1)k∆tλ∗∗u (un+1

1 − un+1
2 ). (2.19)

Combining (2.19) for k = 1, 2, one obtains the following non-singular 2× 2 system:(
m∗∗1 + ∆tλ∗∗u −∆tλ∗∗u
−∆tλ∗∗u m∗∗2 + ∆tλ∗∗u

)(
un+1

1

un+1
2

)
=

(
(m1u1)∗∗

(m2u2)∗∗

)
,

which yields: (
un+1

1

un+1
2

)
=

1

Λ∗∗

(
m∗∗2 + ∆tλ∗∗u ∆tλ∗∗u

∆tλ∗∗u m∗∗1 + ∆tλ∗∗u

)(
(m1u1)∗∗

(m2u2)∗∗

)
. (2.20)

where Λ∗∗ = m∗∗1 m
∗∗
2 + ∆tλ∗∗u (m∗∗1 +m∗∗2 ).

Proposition 2.13 (Discrete velocity relaxation). The velocity relaxation property exposed in Section 1.2.2 at
the continuous level holds at the discrete level. Denoting U∗∗ = u∗∗1 − u∗∗2 , it writes |Un+1| < |U∗∗|.

Proof. Using (2.20), one readily obtains:

Un+1 =
m∗∗1 m

∗∗
2

Λ∗∗
U∗∗,

where m∗∗1 m
∗∗
2 < Λ∗∗. �

Remark 2.14 (Discrete velocity relaxation in pressurized and dry regimes). As already mentioned in Remark
1.2, the chosen definition (1.11) for λu, i.e. λu = 1

2fiρ2|u1−u2|, does not vanish when hk → 0. This definition is
relevant at the discrete level as it keeps (2.20) non-singular in pressurized and dry regimes (Λ∗∗u > 0). Note also
that this discrete velocity relaxation brings dissipation and thus robustness in these regimes. The corresponding
parametric study is presented in [25].

To summarize, the proposed splitting method is a three-step scheme ensuring the positivity of heights and
densities under the CFL condition (2.5) based on the celerity of material and gravity waves. In particular,
the stable resolution of acoustic waves in the second step is obtained thanks to diffusion terms arising from a
relaxation-like method. For the water phase, these terms are activated only in the pressurized regime following
a criterion on the water height. Indeed, in the stratified regime, the corresponding convective term to stabilize
is treated as a source term accounting for variable air pressure due to the fast pressure relaxation. In the
presence of vanishing phases, the overall scheme does not involve any singular system to solve. Furthermore,
the dissipative relaxation processes (pressure and velocity) are ensured at the discrete level. In the next section,
numerical experiments are performed, beginning with Riemann problems for the convective part and moving to
mixed flow configurations.

Remark 2.15 (CFL number and linear stability). In the proposed scheme, the only CFL condition comes from
a positivity requirement for heights and densities in the first step. However, stability issues regarding IMEX
schemes have been recently pointed out in [45, 52]. Thus, a linear stability analysis, not presented herein, is
detailed in Chapter 5 of [25]. It relies on a Von Neumann approach where each step of the scheme is linearized.
In particular, the analysis is performed on a dimensionless version of the CTL model and a critical threshold
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on the CFL number is identified. The latter only involves the ratio
√
gH
c1

and matches remarkably well with
numerical experiments performed on the non-linear system. For instance, considering realistic pipe heights
satisfying H ∈ [0.1; 10], the maximum CFL number ensuring the linear stability is an increasing function of√
gH
c1

which belongs to [0.08; 0.7], see [25]. In practice, this additional CFL constraint does not yield prohibitive
CPU times as presented in Section 3.

3. Numerical results

In this section, several test cases are performed in order to evaluate the ability of the CTL model associated
with the proposed scheme to handle mixed flows. From now on, the proposed scheme is referred to as the SPR
scheme for SPlitting with Relaxation. Firstly, one considers in Section 3.1 a Riemann problem to make sure
that the SPR scheme is stable and converges towards relevant shock solutions of the homogeneous convective
problem. Secondly, the accuracy in the stratified regime is studied in Section 3.2 regarding a dambreak problem.
Thirdly, relevant mixed flow configurations are considered including regime transitions, vanishing phases and
entrapped air pockets.

3.1. Shock waves and contact discontinuity: a Riemann problem

3.1.1. Global setting and objectives

This section focuses on the convective part of (S). As stated in section (1.4), the jump conditions and all the
Riemann invariants can be detailed so that one can build analytical solutions including the contact discontinuity,
shock waves and rarefaction waves. Thus, one considers in the following an analytical solution which involves
the five waves of the system: two shocks in each phase propagating at speed uk ± ck, k = 1, 2, and a contact
discontinuity propagating at speed u2 where h1 jumps, see Figure 3.1.

u1 − c1

u2 − c2 u2

u2 + c2

u1 + c1

x
x

t

UL

U1

U2
U3

U4

UR

Variable UL U1 U2 U3 U4 UR
h1 0.5 0.5 0.5 0.5023747 0.5023747 0.5023747
ρ1 998.11150 998.16140 998.16140 998.16240 998.16240 998.06259
u1 10.0 9.9254584 9.9254584 9.8225555 9.82255555 9.6734610
ρ2 1.204 1.204 1.2642 1.2601362 1.2349335 1.2349335
u2 5.0 5.0 -11.838960 -11.838960 -18.826134 -18.826134

Figure 3.1. Wave structure, initial conditions (UL, UR) and intermediate states (Uk)k=1,4.

As we want to approximate fast acoustic waves (shock waves) in both phases with the SPR scheme, the two
relaxation parameters ak, k = 1, 2, follow the Whitham condition. The solutions are computed over the domain
[0, 1] of the x-space where homogeneous Neumann conditions are imposed at both boundaries. The time step is
denoted ∆tm and is computed from the CFL condition (2.5) where the so-called material CFL number denoted
CFLm verifies:

CFLm =
∆tm
∆x

max
i

(rm,i+ 1
2

+ rm,i− 1
2

2

)
, (3.1)



18 A SPLITTING METHOD ADAPTED TO THE SIMULATION OF MIXED FLOWS IN PIPES

with CFLm ≤ 1 and rm,i+ 1
2

= max
j∈{i;i+1}

(
|un2,j |; |

(
u1 ±

√
g h1

2

)n
j
|
)

at the nth iteration.

A mesh refinement is also performed in order to check the numerical convergence of the method. For
this purpose, the discrete L1-error between the approximate solution and the exact one at the final time T ,
normalized by the discrete L1-norm of the exact solution, is computed on regular meshes:

errorU (∆x, T ) =

∑
j |UNj − Uex(xj , T )|∑

j |Uex(xj , T )|
, (3.2)

where U denotes the state vector in non conservative variables,UN the discrete approximation at final time and
Uex stands for the exact solution. In the refinement process, the coarser mesh is composed of 100 cells and the
most refined one contains 200000 cells.

The results obtained with a classical explicit Rusanov scheme applied on the non-split convective part of (S)
are added for comparison. The time step of this second scheme is denoted ∆ta and is computed from a CFL
condition similar to (2.5) which involves the spectral radius of (S) and thus acoustic waves, see Property 1.2.
In that framework, the so-called acoustic CFL number is denoted CFLa and is defined by:

CFLa =
∆ta
∆x

max
i

(ra,i+ 1
2

+ ra,i− 1
2

2

)
, (3.3)

with CFLa ≤ 1 and ra,i+ 1
2

= max
j∈{i;i+1}

(
|un2,j |; |

(
u1 ± c1

)n
j
|; |
(
u2 ± c2

)n
j
|
)

at the nth iteration.

For a certain time step computed from a given material CFL number CFLm, one can compute the corre-

sponding acoustic CFL number CFL
′

a from the relation:

CFL
′

a =
max
i

( r
a,i+1

2
+r

a,i− 1
2

2

)
max
i

( r
m,i+1

2
+r

m,i− 1
2

2

)CFLm. (3.4)

Focusing on the Riemann problem depicted in Figure 3.1, the SPR scheme is assessed in the sequel setting

CFLm = 0.5 and CFLm = 0.01 which corresponds respectively to CFL
′

a ∼ 40 and CFL
′

a ∼ 0.8. The Rusanov
scheme is used setting CFLa = 0.5.

Remark 3.1 (SPR scheme with small CFL numbers). When setting a small CFL number with the SPR scheme,

typically CFL
′

a = CFLa which yields ∆tm = ∆ta, one expects a better resolution of fast propagation phenomena.
Furthermore, one also expects a lower numerical diffusion on slow propagation phenomena compared to the full
explicit Rusanov scheme as the spectral radius of their explicit part are different. In particular, rm,i+ 1

2
� ra,i+ 1

2

when |uk| � ck and
√
g h1

2 � c1.

3.1.2. Results and comments

The fields at T = 23.10−5 s with 1000 cells are displayed on Figure 3.2 and the errors on Figure 3.3.
Efficiency results are displayed on Figure 3.4. Despite the great complexity of this test case, one observes that
the intermediate states are correctly captured by the two schemes. The latter are stable and converge towards
the relevant shock solutions. Note that this property is obtained despite the presence of non-conservative
products in (S), (Sm) and (Sa). Indeed, as seen in Property 1.3, these non-conservative products are actually
well-defined for shock waves as they involve ∂xhk where hk does not jump across the shocks. The contact
discontinuity is also well captured and an expected convergence rate of 1

2 is obtained, see Figure 3.3.
Focusing on the fastest shock waves, i.e. shock waves within phase 1, the Rusanov scheme is the best suited

to approximate them as its CFL condition (3.3) is based on the celerity of these fastest shocks waves (u1 ± c1).
As expected, the SPR scheme with CFLm = 0.5 is the most diffusive one as its CFL condition (3.1) is based
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Figure 3.2. Approximate solutions for the Riemann problem at T = 23.10−5 s. with 1000 cells.

on the speed of slow waves. However, setting CFLm = 0.01 improves notably the results which compare well
with the Rusanov scheme. These comments are comforted on Figures 3.3 and 3.4 where the SPR scheme with
CFLm = 0.01 is equivalent to the Rusanov scheme in terms of errors and efficiency for the variables (ρ1, u1).

Focusing on the slowest shock waves, i.e. shock waves within phase 2, the best results are obtained with
the SPR scheme setting CFLm = 0.01. Small overshoots are observed on Figure 3.2 but they are bounded in
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Figure 3.3. Errors in L1-norm for the Riemann problem.

L1-norm and do not preclude the convergence. The Rusanov scheme is the most diffusive and less efficient than
the SPR scheme at CFLm = 0.5, see Figure 3.4. Regarding error and efficiency curves, the SPR scheme with
CFLm = 0.01 is the best choice for the variables (ρ2, u2).

Focusing on the slow contact discontinuity where h1 jumps, the best results are obtained with the SPR scheme
at CFLm = 0.5. Indeed, the latter follows the best suited CFL condition for slow propagation phenomena. As
expected, the full explicit Rusanov scheme is not adapted for capturing slow waves and provides the most
diffusive results with the worst efficiency, see Figure 3.4. The SPR scheme with CFLm = 0.01 and CFLm = 0.5
compares well in terms of errors, see Figure 3.3, but the second setting is more efficient as larger time steps are
used.
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Figure 3.4. Errors in L1-norm against CPU time for the Riemann problem.

In summary, the SPR scheme is a convergent and stable scheme for the convective part of (S). It yields
better accuracy and efficiency compared to a classical explicit Rusanov scheme, in particular when setting
CFLm = 0.01. In the next section, these conclusions are confronted to a dambreak test case which involves the
full system with pressure and velocity relaxation source terms.

3.2. Stratified regime: a dambreak problem

A common way to deal with free-surface flows is to use the well-known Saint-Venant or shallow water
equations, see [32]. In a few words, this model is a one-layer model resulting from a depth averaging of the Euler
set of equations and assuming a thin layer of incompressible fluid with hydrostatic pressure law. Particularly,
it admits an analytical solution for the so-called dambreak problem without friction effects. As detailed below,
this configuration is relevant regarding stratified regimes. Thus, it is proposed to consider the dambreak test
case for the CTL model and to compare the results with the reference solution provided by the shallow water
equations. Indeed, one can expect to obtain the same kind of solution for the water layer as the derivation
processes are very close and the compressibility of water as well as the additional air layer are expected to have
a minor influence here.

3.2.1. Global setting and objectives

The initial condition for the dambreak problem is a discontinuity on h1 with uniform density and zero speed,
see Figure 3.5. In order to get meaningful results in a short simulation time, hereafter T = 24.10−2 s, a pipe
of height H = 10m and length L = 1m is considered (the same trends are obtained with smaller pipes). This

configuration provides a low speed flow which is representative of practical configurations with |u1|
c1
∼ 10−3 and
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√
gH
c1
∼ 7.10−3. The solutions are computed over the domain [0, 1] of the x-space with a regular mesh composed

of 1000 cells. Wall boundary conditions (mirror states) are imposed at the inlet and outlet.

H

h1

h2

water

air

L

Variable 0 ≤ x ≤ L/2 L/2 < x ≤ L
h1/H 0.6 0.4
ρ1 998.1115 kg.m−3 998.1115 kg.m−3

u1 0m.s−1 0m.s−1

ρ2 1.204 kg.m−3 1.204 kg.m−3

u2 0m.s−1 0m.s−1

Figure 3.5. Initial conditions for the dambreak problem.

Contrary to the previous test case, the full system with pressure and velocity relaxation source terms is now
involved. Regarding the SPR scheme, the relaxation parameters are set according to definition (2.11) for the
stratified regimes (h1 < H): a1 = 0 whereas a2 follows the Whitham condition. The time step is computed
using (3.1) for a given material CFL number denoted CFLm.

The results obtained with a classical explicit Rusanov scheme are added for comparison. The latter is
applied on the non-split convective part of (S) while the source terms are treated in a second homogeneous
step as in [35]. The corresponding time step is computed with an acoustic CFL number defined in (3.3) and
set to CFLa = 0.5. Concerning the SPR scheme, it is assessed setting CFLm = 0.5 and CFLm = 0.01 which

corresponds respectively to CFL
′

a ∼ 100 and CFL
′

a ∼ 2 for the considered dambreak problem.

3.2.2. Results and comments
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Scheme Rusanov with CFLa = 0.5 SPR with CFLm = 0.01 SPR with CFLm = 0.5
CPU time 150 s 30 s 1 s

Figure 3.6. Approximate solutions and CPU times for the dambreak problem at T = 24.10−2 s
with 1000 cells.

The fields at T = 24.10−2 s with 1000 cells and the corresponding CPU times are provided on Figure 3.6.
The reference solution is accurately captured by the SPR scheme. It confirms the fact that the compressibility
of water as well as the additional air layer have a minor influence here. The two CFL values yield close results
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but, in terms of efficiency, the best choice seems to be CFLm = 0.5. However, the expected behavior is obviously
not captured by the Rusanov scheme which provides very diffusive results with large CPU time.

This test case illustrates the difficulties to simulate low speed stratified regimes, in the sense
√
gH � c1, with

the CTL model using a classical explicit scheme. The proposed SPR scheme is not only stable and convergent
but also provides interesting results as it accurately captures the expected behavior with low CPU time. The
next step is to handle mixed flow configurations which involve transitions between stratified and pressurized or
dry regimes.

3.3. Elementary mixed flow: a pipe filling

An elementary test case involving transitions between stratified and pressurized regimes is considered. It is
referred to as the pipe filling test case for which the presence of air has a minor influence.

3.3.1. Global setting and objectives

In the following, a sloping pipe is considered where the initial condition is a static condition with uniform
water height, uniform density and zero speed, see Figure 3.7. A realistic rectangular pipe is chosen whose height
H is 0.2m, length is 2m, and θ, its angle from the horizontal, is −30o. In this framework, the CTL model
is defined in the inclined frame and gravity source terms are added, see Appendix A.1 for details. The total
simulation time is set to T = 2 s with wall boundary conditions (mirror states) at the inlet and outlet.

H = 0.2m
L = 2m
θ = −30o

h1

L

θ

H

water

air

Variable 0 ≤ x ≤ 2m
h1/H 0.8
ρ1 998.1115 kg.m−3

u1 0m.s−1

ρ2 1.204 kg.m−3

u2 0m.s−1

Figure 3.7. Initial conditions for the pipe filling test case.

As this test case includes regime transitions, the adaptive stabilization process exposed in Section 2.4.3 is
assessed hereafter. To say it briefly, stabilization terms for the water phase are activated when h1 ≥ hs, where
hs = (1− δ)H and δ = 10−3. The time step is computed using (3.1) for a given material CFL number denoted
CFLm. The latter is set to 0.01 to get accuracy with fair efficiency as observed in the previous test cases, see
also Remarks 2.15 and 3.1. In order to check the stability and the convergence of the method, a mesh refinement
is performed considering regular meshes from 160 cells to 10240 cells, which corresponds to a space step range
from ∆x ∼ 1 cm to ∆x ∼ 0.02 cm.

The results obtained with the SPR scheme associated with the CTL model are compared with those obtained
with the Pressurized Free Surface (PFS) model developed in [11]. This other model is also dedicated to mixed
flows in pipes but it only computes the water phase, neglecting the presence of air. It is a one-layer model which
couples the shallow-water equations in the free-surface regime with the isentropic Euler set of equations in the
pressurized regime. At the discrete level, a Roe-type scheme is proposed in [11] and a kinetic scheme has also
been recently derived in [10]. Both schemes are explicit in time with a CFL condition depending on the celerity
of fast acoustic waves arising in the pressurized regime. The comparison between the two models is relevant
as the PFS model is validated against several experimental data. Furthermore, the presence of air should have
minor influence in the proposed configuration.
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3.3.2. Results and comments

Results with the CTL model. The evolution of the water height is depicted on Figure 3.8 through some
snapshots along the simulation. The pipe is actually filling with a pressurized water front propagating towards
the top of the pipe. When the front stops, one obtains a dry area (h1 ' 0) and a pressurized area (h1 ' H)
separated by an oscillating free surface in the absence of wall friction effects. The fields at t = 0.3 s are detailed
on Figure 3.9 with a mesh sensitivity analysis.

t=0.0 s. t=0.3 s. t=0.5 s. t=1.0 s.

Figure 3.8. Snapshots of water height with 640 cells.
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Figure 3.9. Approximate solutions for the pipe filling test case at t = 0.3 s.

A mixed flow is obtained with a jump between the stratified and the pressurized part. The water height
h1, as well as the flow rate hkuk, k = 1, 2, display a fast mesh convergence. The air height field, depicted in
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log scale, illustrates the robustness of the SPR scheme regarding vanishing phases as h2

H may reach 10−9 in the
pressurized part for the finest mesh. A very thin air layer is then solved but dissipative effects provided by the
relaxation source terms bring stability. Note that the thickness of this air layer is independent of the threshold
value hs as it tends to zero when the mesh is refined while the threshold is kept constant.

Focusing on the water pressure behavior on Figure 3.10, the mesh convergence appears more difficult to reach.
On the left graph, i.e. the pressure field at t = 0.3 s, spurious oscillations are observed at the transition point
where the pressure jumps as well as in the pressurized part. Although these oscillations vanish when the mesh
is refined, the corresponding numerical behavior is associated to the brutal transition in terms of wave speed

between the stratified and the pressurized part, expressed by the ratio
√
gH
c1
∼ 10−4 � 1 in the present case. It

is a common feature when dealing numerically with mixed flow, see [51] for a related study. Nonetheless, one
obtains the expected slope in charge given by the equilibrium between the pressure gradient and gravity terms:
∂xP1 = −ρ1g sin(θ). In addition, one may estimate the pressure jump value from Rankine-Hugoniot conditions,
see Appendix B for details, which yield ∆P1 ∼ 0.080 bar while one measures ∆P1 ∼ 0.081 bar on the finest
mesh. On the right graph of Figure 3.10, the water pressure time series at x = 1m is plotted. Oscillations are
also observed in time and they are attenuated with the mesh refinement. This time signal in charge is clarified
hereafter using a lower acoustic wave celerity in the water phase.
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Figure 3.10. Water pressure field at t = 0.3 s (left) and time series at x = 1m (right).

Influence of the acoustic waves celerity in the water phase. The celerity of acoustic waves in the water
phase is given by c1,ref involved in the pressure law (1.2a). The reference value taken so far is c1,ref = 1500m.s−1,
corresponding to a pure water phase in a rigid pipe. In practice, dealing with air-water flows, the mixing between
phases in addition to pipe elasticity effects may strongly reduce this celerity. Furthermore, a lower celerity may
also smoothen the transition between the stratified and the pressurized regime. This classical and widely used
trick is assessed hereafter setting c1,ref = 200m.s−1, which matches with the order of magnitude experimentally
measured in [15] for a PVC pipe of diameter 0.16m. The water pressure at t = 0.3 s as well as its time evolution
at x = 1m are presented on Figure 3.11.

It is observed that the mesh convergence of the pressure field at t = 0.3 s is quite fast, canceling the spurious
oscillations when the mesh is refined. The expected slope in charge is again well approximated. Regarding
the pressure time series, the signal is also clarified. In particular, well structured oscillations are observed for
t & 0.4 s. Their period may be estimated considering the propagation of acoustic waves in the water medium.
In the present case, it classically yields T = 4Lw

c1
where Lw denotes the pipe length filled by water, see [25] for

instance. One analytically obtains T = 0.032 s while numerical approximations yield T ∼ 0.03 s on Figure 3.11.
Regarding the amplitude, it seems to result from a combination between hydrostatic effects due to free surface
oscillations and acoustic effects due to acoustic waves propagation.
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Figure 3.11. Water pressure field at t = 0.3 s (left) and time series at x = 1m (right) using
c1 = 200m.s−1.

Note that when using c1,ref = 1500m.s−1, the correct period is also captured but with a weaker amplitude
so that is does not clearly appear on Figure 3.10. The other fields, which concern heights and velocities, are
not affected by this celerity change, nor the pressure jump in the present case. Finally, physically relevant and
converged results are obtained using c1,ref = 200m.s−1. They are compared hereafter with those obtained with
the PFS model.

Comparison with the PFS model. As revealed on Figure 3.12, the CTL and the PFS models yield very
close results on the same mesh (5120 cells) using c1,ref = 200m.s−1. This confirms that the air phase has a
minor influence here. Furthermore, it also emphasizes the fact that the thin air layer computed with the CTL
model in the pressurized part does not affect the pressurized dynamics. Regarding the pressure fields, the PFS
model yields spurious oscillations at the transition point while the CTL model does not. It seems that the
unified description of the CTL model in addition to its dissipative relaxation source terms brings more stability.
Thus, in some sense, the additional air layer is beneficial.

Regarding the CPU times, it needs 20 minutes to compute the solution over 2 seconds on a 640 cells mesh
with the CTL model. This computation time is independent of the celerity c1 as the latter is not involved in
the CFL condition (2.5). Using the explicit scheme developed in [10] for the PFS model, the CFL condition
actually depends on c1. A reduction of c1 is therefore profitable for the PFS model in terms of CPU time. Thus,
it requires 13 minutes when c1 = 1500m.s−1 and 2 minutes when c1 = 200m.s−1. The CTL model is naturally
more computationally demanding as it involves a larger system with implicit parts. However, the CPU time
is not prohibitive compared to the PFS model statistics. Furthermore, higher acoustic waves celerity can be
chosen with more stability.

Lastly, the ability of the CTL model to handle mixed flows is highlighted with this test case. Indeed, one
obtains physically relevant results in agreement with the PFS results and analytical results provided by a
simplified approach. The CPU time is comparable with the one of the PFS and seems totally tractable for
practical applications of industrial interest. Transitions between the regimes are correctly handled with the
SPR scheme where dissipative effects ensured by relaxation source terms bring stability. In the next section, a
more severe mixed flow test case is considered and the results are compared against experimental data.
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Figure 3.12. Comparison with the PFS model using c1 = 200m.s−1 and 5120 cells.

3.4. Mixed flow with experimental validation: a laboratory test case (Aureli et al. (2015))

In this section, a recent experimental test case dedicated to the validation of single-phase mixed flow models is
considered, see [5]. The latter is closer to industrial applications as it involves a circular pipe with slope changes
and several regime transitions. It can effectively be seen as a single-phase mixed flow due to the presence of
vents at the upstream and downstream end of the pipe to avoid air pocket entrapment.

3.4.1. Global setting and objectives

The experimental configuration is depicted on Figure 3.13. It consists in a sloped PVC circular pipe of
diameter H = 0.192m and length L = 12.12m. A slope change occurs at L1 = 7m, switching from θ1 = −4.8o

to θ2 = 15.48o. The pipe is opened at the inlet and outlet to avoid air pocket entrapment effects. Thus,
atmospheric pressure is maintained at the two ends. The pipe is initially partially filled by water until a closed
gate located at x = 5m (x is the distance along the pipe axis). The experiment begins when the gate opens. It
gives rise to a transient mixed flow with several transitions in both parts of the pipe. Note also that it involves
dry areas. Pressure and velocity measurements are performed along the pipe at several locations during 30
seconds.

Dealing with circular pipes, the CTL model is slightly modified due to the 2D integration on a cross-
section, see Appendix A.2 for details. Furthermore, friction effects occur between the pipe walls and the water

phase. They are modeled by a Manning-Strickler law, which reads F1 = −m1gSf where Sf = n2
mu1|u1|R−4/3

h ,
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Figure 3.13. Configuration and initial condition and for the Aureli et al. test case.

see [46]. In particular, the Manning roughness coefficient nm is set to 5.0m−
1
3 s and Rh(A1) = A1

Pm
is the

so-called hydraulic radius where Pm denotes the wet perimeter. The term F1 is a source term of the momentum
conservation equation for the water phase and is treated explicitly in a homogeneous additional step which
occurs after the third step of the SPR scheme (velocity relaxation). The celerity of acoustic waves in the water
phase is initially set to c1,ref = 300m.s−1 in the linear pressure law (1.2a). The latter is physically relevant for
the considered PVC pipe and makes the numerical convergence faster, see Section 3.3.

Regarding the boundary conditions, the air phase should be in equilibrium with the atmospheric pressure at
the two ends. In practice, a vertical event is added at the left end of the pipe and periodic boundary conditions
are imposed. This vertical event is only filled by air and acts as a wall for the water phase. The air phase
is then maintained in equilibrium at both ends of the pipe and its initial value is given by the atmospheric
pressure. For the other initial conditions, the water height is set to h1 = (1 − 10−4)H in the pressurized part
and h1 = 10−5H in the dry part, the water density is set to ρ1,ref neglecting hydrostatic effects and the flow is
static. Focusing on the SPR scheme, the same setting as for the pipe filling test case of Section 3.3 is used. In
particular, the threshold is set to hs = (1− δ)H with δ = 10−3 and the (material) CFL number is set to 0.01.
The same mesh size as in [5] is used, that is 300 cells which yields ∆x ∼ 4 cm.

3.4.2. Results and comments

The pressure head and velocity time series are displayed on Figure 3.14 for two relevant locations along
the pipe. The following comments apply to the other locations whose results are provided in [25]. In the
related paper [5], the pressure head is derived from pressure measurements assuming an hydrostatic pressure
distribution over the pipe section. In the CTL framework, the latter is denoted H and defined as:

H = h1 +
P1 − Phydro
ρ1,refg

, (3.5)

where Phydro corresponds to the supposed mean hydrostatic pressure on a cross section. It writes Phydro =
Patm + ρ1,refg`1 cos(θ) for circular pipes where Patm is the air pressure at the outlet (or inlet) and `1 is the
distance between the free surface and the center of mass of the wet section, see [27]. In the stratified regime,
ρ1 ∼ ρ1,ref and P2 ∼ Patm, such that P1 − Phydro may be rewritten as PI − P2 ∼ 0 due to pressure relaxation.
Therefore, H ∼ h1 in the stratified regime. In the pressurized regime, H computes the equivalent height
corresponding to an overpressure or subpressure in comparison to the hydrostatic reference.

As displayed on Figure 3.14, the CTL model is able to reproduce faithfully the experimental observations on
pressure head and velocity time series. Indeed, the pressure heads in both stratified and pressurized regimes are
correctly captured. Transitions between the regimes are also particularly well apprehended. Even if the authors
of [5] temper about the quality of velocity measurements, the obtained numerical results also highlight the good
behavior of the CTL model. Furthermore, the required CPU time to perform a 30 seconds simulation on a
single processor is 25 minutes, which seems reasonable regarding the accuracy of the results and the complexity
of the model.

Comparable numerical results are obtained in [5] when using single-phase mixed flow models, i.e. the PFS
model [11] and the Preissmann slot model [24]. However, the authors illustrate the lack of robustness of the
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latter models when using a physically relevant acoustic wave celerity. Indeed, the latter is set to c1,ref = 12m.s−1

in [5] to get satisfactory results whereas c1,ref = 200m.s−1 leads to strong spurious oscillations, in particular
with the Preissmann slot model. This drawback is tempered in the related paper as only a weak influence of this
celerity value is identified. Nonetheless, when dealing with longer pipes encountered in industrial configurations,
typically L ∼ 100m, such a low value of c1,ref may provide non physical results.
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Figure 3.14. Comparison between experimental and numerical results using 300 cells.

The results obtained for this experimental test case validate the CTL model in the configuration of mixed
flow where the air phase has a weak influence. Indeed, pressure heads and velocity time series are correctly
captured at several locations along the pipe where transitions from stratified to pressurized regimes and vice
versa occur. Furthermore, the stability and the efficiency of the SPR scheme are also highlighted as a high
acoustic wave celerity in the water phase may be chosen with non prohibitive CPU time. In the next section, a
test case involving air pocket entrapment is considered.

3.5. Mixed flow with air pocket entrapment: a U-Tube test case

In this section, the ability of CTL model to handle air pocket entrapment and air pressurization is assessed.
A two-phase mixed flow configuration is thus considered through a closed pipe describing a U-shape filled by
water and air. In particular, the air phase is pressurized and entrapped at the two ends of the pipe. The case
where the pipe is open at the boundaries is also considered.
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3.5.1. Global setting and objectives

The configuration under consideration is the U-Tube pipe depicted on Figure 3.15. Realistic dimensions are
chosen with H = 0.1m, L = 4.5m and D = 1m. The water elevation is measured from the two ends of the
pipes, respectively a from the left side and b for the right side. The air pressure is denoted P l2(t) in the left
air pocket and P r2 (t) in the right one. In the initial state, the flow is kept static. This system may enter in
an oscillatory mixed flow regime depending on initial air pressures (P l2,0, P

r
2,0) and water elevations (a0, b0).

It is proposed to handle this configuration with the CTL model studying the influence of the initial state. A
reference solution is derived in Appendix C.
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H = 0.1m
L = 4.5m
D = 1m

Figure 3.15. Geometric description of the U-Tube test case.

Therefore, three different settings detailed on Table 1 are considered. Initial water elevations are identical
while initial air pressures and boundary conditions vary. Air pockets with different pressures are thus entrapped
in the C1 and C2 settings while the OP setting refers to an open pipe without any air pocket entrapment. For
the other initial conditions, the water height is set to h1 = (1−10−4)H in the pressurized part and h1 = 10−5H
in the dry part, the water density is set to ρ1,ref neglecting hydrostatic effects and the flow is static. The total
simulation time is set to 10 seconds.

Id P l2,0 P r2,0 a0 b0 BCs

C1 1.1 atm 1 atm 0.3L 0.6L Wall
C2 1.8 atm 1 atm 0.3L 0.6L Wall
OP 1 atm 1 atm 0.3L 0.6L Periodic

Table 1. Initial and boundary conditions for U-Tube test cases.

In practice, the CTL model is defined along the pipe axis, see Appendix A.1, without any treatment for
the slope change, simply accounted for by a discontinuity on θ. Note that the CTL model is well defined for
θ ∈ [−π2 ,

π
2 ] such that right angle bends may be handled. The celerity of acoustic waves in the water phase

is set to c1,ref = 1500m.s−1. Focusing on the SPR scheme, the same setting as for the previous mixed flow
test cases is used. In particular, the threshold is set to hs = (1 − δ)H with δ = 10−3 and the (material) CFL
number is set to 0.01. A regular mesh composed of 300 cells (∆x ∼ 3.3 cm) is chosen and the numerical results
are compared with the reference solution derived in Appendix C.
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3.5.2. Results and comments

For each setting exposed on Table 1, the air pressure at x = 0 (i.e. P2,l) as well as the water velocity at
x = Lt/2 (middle of the pipe) are evaluated with the CTL model. The results are displayed on Figure 3.16.
The CTL model compares well with the reference solution both in terms of amplitude and frequency for all
settings. Due to numerical diffusion, a slight shift associated to an amplitude damping is observed in the long
time evolution, particularly for the most severe setting corresponding to C2. This numerical diffusion naturally
diminishes when using a finer mesh, see [25] for details.
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Figure 3.16. Comparison between the reference solution and numerical results for all settings
using 300 cells.

These results illustrate the ability of the CTL model to handle air pocket entrapment in pipes with different
degrees of pressurization. This last feature is a key point regarding the two-phase modelling of mixed flows.
Indeed, as highlighted on Figure 3.16, the solution strongly depends on the air pressurization level where a large
disparity both in terms of frequency and amplitude is observed.

4. Conclusion

The numerical resolution of the Compressible Two-Layer model is addressed in this paper with the aim of
simulating mixed flows and entrapped air pockets in pipes. The main properties of this model are first recalled
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highlighting its relevance for such flows. In particular, the CTL model is an hyperbolic five-equation model
which provides a unified two-phase description of the different regimes. At the discrete level, a robust splitting
method combined with an implicit-explicit time discretization is proposed. The latter relies on the fast pressure
relaxation in addition to a mimetic approach with the shallow water equations for the slow dynamics of the
water phase. It results in a three-step scheme, namely the SPR scheme, where the slow dynamics of the system
is treated explicitly whereas the fast dynamics is treated implicitly. The slow dynamics includes the water
hydrostatic gradient which corresponds to a driving term in the stratified regime. The fast dynamics includes
the pressure gradients in a second sub-system for which an original implicit relaxation-like method is proposed.
It ensures the stable resolution of acoustic waves through additional diffusion terms. For the water phase, these
terms are only activated in the pressurized regime according to a criterion on the water height. The third sub-
system deals with the velocity relaxation using a classical implicit approach. For the three steps, a particular
attention is paid to the robustness in the presence of vanishing phases ensuring discrete relaxation processes
and non-singular systems to solve. Finally, the positivity of heights and densities is guaranteed under a CFL
condition based on the celerity of material and gravity waves.

The stability and the convergence of the method towards relevant shock solutions is verified on a Riemann
problem for the convective part of the model. Including the relaxation source terms, the proposed scheme
accurately captures the expected behavior on a dambreak problem. Then, the three test cases presented clearly
illustrate the ability of the Compressible Two-Layer model associated with the SPR scheme to deal with mixed
flows in pipes including air-water interactions. The efficiency and the robustness of the method regarding
transitions between the regimes are highlighted and it is important to note that these attractive features are
obtained with a two-phase description in every regime, particularly in pressurized and dry regimes where a
thin-layer of vanishing fluid is computed.

To the best knowledge of the authors, the CTL model is thus the only validated 1D two-phase model for
mixed flows in pipes providing an accurate compressible description of both phases in every regime. Therefore,
numerous two-phase transient mixed flow configurations including air pockets entrapment seem achievable. In
that sense, the current work involves the development of boundary conditions which is still an open problem
for two-phase two-pressure models in the general case due to the complexity of the waves structure.

This work has been partially funded by ANRT and EDF through an EDF-CIFRE contract 749/2014. Computational
facilities were provided by EDF.

Appendix A. Sloping pipes

A.1. Sloping rectangular pipes

Sloping pipes are frequently encountered in industrial configurations. Considering a constant slope of angle
θ ∈ [−π2 ; π2 ], a description of the geometry is presented on Figure A.1.

θ

H

h1

h2

water

air

y x

z

Figure A.1. Geometric description for sloping pipes.



A SPLITTING METHOD ADAPTED TO THE SIMULATION OF MIXED FLOWS IN PIPES 33

The frame of reference is the inclined frame (O, x, y, z) so that the closure relations (1.1) for interfacial
variables readily become:

(UI , PI) = (u2, P1 − ρ1g
h1

2
cos(θ)). (A.1)

Thus, gravity source terms are also added in the momentum conservation equations of the CTL model which
now write:

∂tmkuk + ∂xmku
2
k + ∂xhkPk(ρk)− PI∂xhk = (−1)kλu(u1 − u2)−mkg sin(θ), k = 1, 2. (A.2)

At the discrete level, the gravity source terms are treated implicitly in the first step of the SPR scheme, see
Section 2.3. The partial masses m∗k are indeed available from the mass conservation equations. If the slope of
the pipe is varying in space, i.e. θ(x), one still uses (A.2) imposing a discontinuity on θ at the discrete level
without any additional treatment. In particular, curvature effects are not taken into account.

A.2. Sloping circular pipes

In the framework of circular pipes, the CTL model results from a 2D integration of the isentropic Euler set
of equations for both phases over a cross-section. The momentum conservation equations read as (A.2) except
that hk is replaced by Ak, the area filled by the phase k in the cross section and the interfacial closure laws
becomes:

(UI , PI) = (u2, P1 − ρ1g`1). (A.3)

The length `1 represents the distance between the interface and the center of mass of the wet section, it writes
for circular pipes:

`1 =
R3

A1

(2

3
sin3 θ1

2
− 1

2
cos

θ1

2
(θ1 − sin θ1)

)
, (A.4)

where A1 = R2

2 (θ1 − sin(θ1)) and R is the radius of the pipe, see [27] for details.

Appendix B. Estimation of the pressure jump for the pipe filling test case

The pipe filling test case addressed in Section 3.3 is characterized by a jump between the stratified and the
pressurized part. In particular, on may estimate the related pressure jump for the water phase. The state close
to the jump location in the stratified part is denoted W− while the state in the pressurized part is denoted W+.
Denoting σ the speed of the jump, the Rankine-Hugoniot jump conditions applied to the mass conservation
equation in the water phase, see (S), yield:

σ =
[ρ1h1u1]+−
[ρ1h1]+−

, (B.1)

where the brackets [.] denote the difference between the states on both sides of the discontinuity, see [34]. It is
assumed that the water density is almost constant through the jump, i.e. ρ−1 ∼ ρ+

1 ∼ ρ1,ref. In addition, one
has u+

1 = 0 and h+
1 = H such that:

σ =
h−1

h−1 −H
u−1 . (B.2)

The same approach on the air phase where h+
2 = 0 and u+

2 = 0 yields:

σ = u−2 . (B.3)

Summing the momentum conservation equation of each phase, a conservative equation is obtained where the
Rankine-Hugoniot jump conditions yield:

− σ[m1u1 +m2u2]+− + [m1u
2
1 +m2u

2
2 + h1P1 + h2P2]+− = 0. (B.4)
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In the pressurized part, one has u+
1 = u+

2 = 0, h+
2 = 0, such that we are left with:

(m1u1)−
(
σ − u−1

)
+ (m2u2)−

(
σ − u−2

)
+HP+

1 −
(
(h1P1)− + (h2P2)−

)
= 0. (B.5)

An instantaneous pressure relaxation is assumed in the stratified part such that one obtains P−2 = P−I =

P−1 −m
−
1

g

2
cos(θ). Denoting ∆P1 = P+

1 − P
−
1 and using (B.2) and (B.3), (B.5) provides:

∆P1 = ρ−1

( h−1
H − h−1

(u−1 )2 − g

2

h−1 (H − h−1 )

H
cos(θ)

)
, (B.6)

where one reasonably assumes ρ−1 = ρ1,ref and h−1 = h1,init. The value u−1 may be estimated considering that
the flow in the stratified part is uniform along x close to the jump. Thus, neglecting the friction with the air
phase, u−1 complies with ∂tu

−
1 = −ρ1g sin(θ) which yields u−1 (t) = −ρ1gt sin(θ). Therefore, (B.6) provides an

analytical estimation of the pressure jump ∆P1. Note that this estimation does not involve the air phase nor
the celerity of acoustic waves in the water phase.

Appendix C. Reference solution for the U-Tube test case

A reference solution for the so-called U-Tube test case is derived in this appendix. This derivation is proposed
in a general framework where the sloped branches of the pipe are inclined from an angle θ compared to the
horizontal reference, as depicted on Figure C.1 (θ = π

2 for the U-Tube). Thus, the configuration under consid-
eration consists in a symmetric closed rectangular pipe of total length Lt and height H describing a V-shape
filled by water and air. The length of both sloped parts of the pipe is denoted L and the center part length is
denoted D such that Lt = D + 2L.
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Figure C.1. Geometric description of the V-Tube.

The water elevation is measured from the two ends of the pipes, respectively a from the left side and b for
the right side. The air pressure is denoted P l2(t) in the left air pocket and P r2 (t) in the right one. In the initial
state, the flow is kept static. This system may enter in an oscillatory mixed flow regime depending on initial
air pressures (P l2,0, P

r
2,0) and water elevations (a0, b0).

The unsteady equation verified by a(t) is derived hereafter. To this aim, a thin pipe compared to its length
is considered, i.e. H � Lt, so that a 1D model is built assuming that the water phase is incompressible. It is
also assumed that the water phase cannot touch the boundary walls, i.e. the water elevations remain positive:
a(t) > 0, b(t) > 0, ∀t. In the reference frame (0, ex, ez) and neglecting friction effects, the incompressible Euler
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set of equations writes:

div(v1) = 0, (C.1a)

∂v1

∂t
+∇

(v2
1

2

)
+ rot v1 ∧ v1 +

1

ρ1,ref
∇P1 = g, (C.1b)

where v1 is the local velocity vector of the water phase (v2
1 = v1.v1), P1 the local pressure, ρ1,ref the water

density assumed constant and g the gravity field.
Let be A and B, two points belonging to the free surface on each side of the pipe. The momentum conservation

equation (C.1b) is integrated along a streamline going from A to B oriented by an elementary displacement
vector dl = dxex + dzez. By definition, v1 ∧ dl = 0, such that it provides:∫ B

A

∂v1

∂t
.dl +

∫ B

A

∇
(v2

1

2
+

P1

ρ1,ref
+ gz

)
.dl = 0, (C.2)

which can be rewritten as:∫ B

A

∂v1

∂t
.dl +

v2
1(z = z−B)− v2

1(z = z−A )

2
+
P1(z = z−B)− P1(z = z−A )

ρ1,ref
+ g(zB − zA) = 0. (C.3)

The z coordinates are given by zA = (L− a) sin(θ) and zb = (L− b) sin(θ) where L is the length of both sloped
part of the pipe. The water phase is considered in pressure equilibrium with the air phase at the free-surface
such that P1(z = z−A ) = P2(z = z+

A) and P1(z = z−B) = P2(z = z+
B) (surface tension effects are neglected here).

Furthermore, the air pressure is assumed uniform in each air pocket. Due to the incompressible framework, the
divergence free condition (C.1a) yields a uniform flow rate along the pipe. In particular, for a thin pipe with
constant cross-section, it is assumed that:

v1 = ȧu, (C.4)

everywhere in the water medium where u is a unitary vector oriented by dl. Therefore, v2
1(z = z−B) = v2

1(z = z−A )
and (C.3) provides:

Lwä+ g(a− b) sin(θ) +
P r2 − P l2
ρ1,ref

= 0, (C.5)

where Lw length is the length of a streamline connecting A with B. For a thin pipe, it is assumed that
Lw = Lt − (a+ b). The mass conservation of the water phase in the incompressible framework writes:

a(t) + b(t) = a0 + b0, ∀t.

Regarding the air phase, the air pockets are assumed to be kept separated by the water medium. Therefore, the
mass conservation applies in each of them and yields ρl2a = ρl2,0a0 and ρr2b = ρb2,0b0 due to the uniform pressure
assumption. Using a prefect gas law for the air phase, see (1.2b), one obtains:

P l2 = P l2,0
(a0

a

)γ2
,

P r2 = P r2,0
(b0
b

)γ2
.

(C.6)

Denoting l0 = a0 + b0, a(t) finally complies with:

ä+
2g sin(θ)

Lw
a+

1

Lwρ1,ref

(
P r2,0

( b0
l0 − a

)γ2
− P l2,0

(a0

a

)γ2)
=
gl0 sin(θ)

Lw
. (C.7)
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A non-linear ordinary differential equation is obtained which may be solved numerically using a classical Runge-
Kutta method. Once a(t) is known, b(t) is deduced from b(t) = l0 − a(t), the air pressures are calculated from
C.6 and the water velocity verifies v1 = ȧ.

Remark C.1 (Open pipe). When the pipe is open at the boundaries, the air pressure satisfies P r2 (t) = P l2(t) =
Patm, ∀t, so that (C.7) writes:

ä+
2g sin(θ)

Lw
a =

gl0 sin(θ)

Lw
. (C.8)

An harmonic oscillator is obtained whose solution is:

a(t) = aeq + (a0 − aeq) cos(ω0t), (C.9)

where aeq = l0
2 is the equilibrium position and ω0 =

√
2g sin(θ)
Lw

is the pulsation of oscillations.

Remark C.2 (Oscillations around the equilibrium state). As detailed in [25], the solution of (C.7) may be
linearized around its equilibrium state. Taking a(t) under the form a = aeq+δ where aeq denotes the equilibrium
position and assuming |δ| � |aeq|, one obtains:

δ̈ + ω2δ = 0, (C.10)

where:

ω2 = ω2
0 + ω2

a, ω
2
0 =

2g sin(θ)

Lw
, ω2

a =
γ2

Lwρ1,ref

(P l2,eq
aeq

+
P r2,eq
beq

)
. (C.11)

Thus, an harmonic oscillator is obtained whose pulsation features an additional contribution ωa due to air
pocket entrapment. Indeed, the pulsation ω0 is the corresponding pulsation when the pipe is open, see Remark
C.1.

Remark C.3 (Influence of air pocket entrapment on oscillations). Considering P l2,eq ∼ P r2,eq ∼ P2,d, aeq ∼
beq ∼ d and θ = 90o, (C.11) yields:

ω

ω0
=

√
1 +

γ2P2,d

ρ1,refgd
. (C.12)

The air entrapment has no influence on the pulsation of oscillations when ω ∼ ω0, which also writes d� γ2P2,d

ρ1,refg
.

With P2,d ∼ 1 bar, it yields d � 15m. Therefore, the effects of air pocket entrapment are experienced in a
closed pipe even if the boundaries are taken far from the liquid phase.
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[24] J.-A. Cunge and M. Wegner. Numerical integration of barré de Saint-Venant’s flow equations by means of an implicit scheme

of finite differences. La Houille Blanche, 1:33–39, 1964.

[25] C. Demay. Modelling and simulation of transient air-water two-phase flows in hydraulic pipes. PhD thesis, Université Savoie
Mont Blanc, 2017. URL: https://tel.archives-ouvertes.fr/tel-01651078.

[26] C. Demay, C. Bourdarias, B. de Laage de Meux, S. Gerbi, and J.-M. Hérard. Numerical simulation of a compressible two-

layer model: a first attempt with an implicit-explicit splitting scheme. Journal of Computational and Applied Mathematics,
346:357–377, 2019.

[27] C. Demay and J.-M. Hérard. A compressible two-layer model for transient gas-liquid flows in pipes. Continuum Mechanics

and Thermodynamics, 29(2):385–410, 2017.
[28] G. Dimarco, R. Loubère, and M.-H. Vignal. Study of a new asymptotic preserving scheme for the euler system in the low Mach

number limit. SIAM Journal on Scientific Computing, 39(5):A2099–A2128, 2017.

[29] M. Ferrari, A. Bonzanini, and P. Poesio. A 5-equation, transient, hyperbolic, 1-dimensional model for slug capturing in pipes.
International Journal for Numerical Methods in Fluids, 85(6):327–362, 2017.
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