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Abstract Patch-based methods are widely used in var-
ious topics of image processing, such as image restora-
tion or image editing and synthesis. Patches capture
local image geometry and structure and are much eas-
ier to model than whole images: in practice, patches are
small enough to be represented by simple multivariate
priors. An important question arising in all patch-based
methods is the one of patch aggregation. For instance,
in image restoration, restored patches are usually not
compatible, in the sense that two overlapping restored
patches do not necessarily yield the same values to their
common pixels. A standard way to overcome this diffi-
culty is to see the values provided by different patches
at a given pixel as independent estimators of a true un-
known value and to aggregate these estimators. This
aggregation step usually boils down to a simple aver-
age, with uniform weights or with weights depending
on the trust we have on these different estimators. In
this paper, we propose a probabilistic framework aim-
ing at a better understanding of this crucial and often
neglected step. The key idea is to see the aggregation
of two patches as a fusion between their models rather
than a fusion of estimators. The proposed fusion oper-
ation is pretty intuitive and generalizes previous aggre-
gation methods. It also yields a novel interpretation of
the Expected Patch Log Likelihood (EPLL) proposed
in [29].
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Introduction

Image restoration and image editing remain two very
active research topics, with numerous and various appli-
cations such as computational photography, video and
multimedia processing, medical imaging or astronomi-
cal imaging, to mention just a few. Over the past fif-
teen years, a huge proportion of image restoration and
editing approaches have been relying on patch-based
representations. These representations exploit the semi-
local redundancy of images and have led to decisive im-
provements in solving ill-posed inverse problems such
as, for instance, denoising, inpainting or texture synthe-
sis. Patches are small image pieces, and most of the time
square pieces of size

√
d×
√
d, with

√
d between 3 and

20. They can be seen as vectors of Rd. While the stan-
dard size of the images to be processed today is around
20 million pixels (or much more in medical or satel-
lite imaging), working with patches is a way to work
with data of reasonable dimension and variability, while
capturing efficiently most of the image texture and ge-
ometry. In patch spaces, it also becomes possible to
model data by simple mixtures of parametric distribu-
tions, which make Bayesian formulations much better
posed and usable in practice. All of these patch-based
methods require a projection (or aggregation) step to
recreate an image from a set of processed patches. In-
deed, overlapping patches do not necessarily share the
same values on their common pixels after processing.
Aggregation techniques aim at combining all these dif-
ferent overlapping patches into a single image. The goal
of this paper is to propose a common and unique frame-
work for this aggregation step which, while crucial, is
not much discussed in the literature.

The first patch-based methods appear about twenty
years ago in texture synthesis [8] and a few years later
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in image restoration [3]. Since then, the use of patches
in image editing has become very common, for tex-
ture synthesis [16], texture transfer [7], image enhance-
ment [13] or more recently for the very fashionable
problem of style transfer [11, 10]. In image restoration,
patch-based methods are now used in almost all appli-
cations and it is reasonable to say that these methods
have revolutionized the field, even if approaches based
on neural networks [28] are now very serious rivals. In
image denoising, most state of the art approaches rely
on patches [2, 4, 29, 17, 18, 25, 14] and this is also the
case in image and video inpainting [19, 25], image de-
blurring [5] or for many other inverse problems [27, 1].

All of these methods have in common to decom-
pose images in overlapping patches and to make these
patches collaborate for restoration, synthesis or editing
purposes. Finally, the processed patches are merged to-
gether into a single image. While much attention has
been paid on statistical or geometrical patch represen-
tations and interpretation, little work has been dedi-
cated to explore the aggregation step. Going from the
image space to the patch space is a linear and straight-
forward operation, but recovering an image from a set
of overlapping patches is straightforward only if all of
these patches share the same values on their common
pixels. Even for patches coming from the same image,
this property is lost as soon as the patches undergo
non trivial operations. Each pixel belongs to d different
patches and these patches yield d different estimates
for the pixel value, as illustrated by Figure 1. In the
literature, there are essentially four ways to answer the
aggregation question:
1. For each pixel, keep only the estimator provided by

the patch centered at this pixel;
2. For each pixel, average the d estimators with uni-

form weights (UWA);
3. For each pixel, average the d estimators with adapted

weights (AWA);
4. Reconstruct the image from the patches as a solu-

tion of a variational problem.
The first solution is the one chosen in the first version
of Non Local Means [3]. This approach ignores the in-
formation available in the rest of the patches. As a re-
sult, when applied in the context of image denoising for
instance, residual noise can often be observed around
edges or rare regions. A huge majority of methods tackle
this issue by averaging the d estimates of the pixel, ei-
ther with uniform weights [15] or with weights taking
into account the precision of each estimator [4, 23], in
order to minimize the variance of the aggregated esti-
mator. For instance, the famous BM3D algorithm [4]
uses weights which are chosen inversely proportional to
the total variance of the sample of noisy patches used

Fig. 1: Illustration of the aggregation step. Left: the
patch space. Right: the reprojection onto the image
space

to estimate the denoised patch. More recently, the mul-
tiscale DCT denoising described in [20] uses weights
chosen inversely proportional to the number of non-
zero coefficients of the DCT after thresholding, giving
more weights to patches that have a lot of coefficients
set to 0 (flat patches for example). The same idea is
theorized and studied in [12]. Instead of the variance,
some papers also attempt to minimize the risk of the
final estimator at each pixel, by making use of Stein’s
Unbiased Risk Estimator (SURE) [6, 26]. The last so-
lution is for instance explored in [9, 29] and consists
in a global variational formulation of the restoration
problem, including a global prior. These global formu-
lations intrinsically include the aggregation problem,
which is treated iteratively during the optimization pro-
cess. In [29], the log of the global prior (the expected
patch loglikelihood, or EPLL) is a sum of local priors
on the patches and interpreted, up to a scalar, as “the
expected log likelihood of a randomly chosen patch in
the image”. However, it can also be interpreted, up to a
constant, as (the log of) a global image law, as already
noted by [24]. Other attempts have been made to con-
struct a global image law from local patch priors, such
as the field of experts [22] which uses Markov Random
Fields priors on pixels. We will see that the approach
developed in the current paper has strong links with
these global interpretations. In texture synthesis, alter-
natives to aggregation have been considered, such as [7]
which finds a minimal error boundary cut between two
overlapping patches, or [21] which uses conditioning to
force the new patches to be coherent with the part of
the image which has already been synthetised.

In this paper, we propose a novel perspective on the
aggregation stage. To this aim, we focus on the case
where each image patch is given a stochastic model on
Rd, for instance a Gaussian law or a Mixture of Gaus-
sians. This situation is quite classical in Bayesian image
restoration, where each patch is restored with a prior
model [29, 17, 27, 25, 14]. It is usual that these different
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models do not coincide on overlapping patches. In order
to make these models coincide, we introduce the notion
of patch fusion, which can be used to construct a global
model on the whole image, up to a normalization. As
we shall see, the classical aggregation techniques de-
scribed above can be interpreted as special cases of this
fusion framework. Our notion of patch fusion also rec-
onciles the point of view developed in EPLL [29] and
the conditioning approach suggested in [21] for texture
synthesis.

The paper is organized as follows. In Section 1, we
present the notions of patch model, patch agreement
and patch fusion. We study the special cases of Uni-
form and Gaussian patch models in Section 2 and we
show the links between our framework and the classical
aggregation methods in Section 3. Section 4 gives some
computational details. Finally, Section 5 is devoted to
experiments and highlights the behaviour of the differ-
ent aggregation models.

Notation

In this paper, random variables are denoted with upper-
case letters, and their values are denoted with lower-
case letters. X for instance, can take the value x ∈ R.
We denote by p(x) = p(X = x) indifferently the proba-
bility of the event {X = x} or the value of the density
of X at x, whether X is discrete or continuous. When
we are dealing with multidimensional spaces, d refers
to the dimension of the whole space. Besides, for the
sake of simplicity, d will be considered to be a perfect
square, with p ∈ N such that d = p2. Id refers to the
identity matrix.

For two real numbers x and y, [x, y] refers to the set
of all real numbers between x and y, and Jx, yK refers
to the set of all integers between x and y.

N (µ,Σ) refers to a Gaussian distribution, with mean
µ and covariance Σ. If ν is a probability distribution,
then X ∼ ν means that X follows the law given by ν.

Considering an application φ : E → F and G ⊂ E,
we denote by φ|G the restriction of φ to G. If x is a one
(or two) dimensional vector in Rd (resp. Rd2) and G a
subset of J1, dK or (resp. J1, dK2), we denote by x|G the
restriction of x to the coordinates indexed by G (seeing
x as an application from J1, dK or J1, dK2 to R).

If φ : E → F is an injective function, we denote by
φ−1 the inverse of φ seen as an application from Im(φ)

to E.

Fig. 2: Illustration of the proposed definition of a patch
model

1 Patch model, agreement and fusion

In this section, we propose a framework to define prop-
erly a notion of patch fusion. This notion is motivated
by the common situation encountered in many patch-
based algorithms (dedicated to image restoration or im-
age editing), where each patch is assumed to follow a
prior distribution and the distributions of overlapping
patches do not agree with each other. In the aggrega-
tion step, one can hope to be able to use all the infor-
mation given by these priors. To address this issue, we
define the notion of patch model. This enables to define
a fusion between patch models, which, as we shall see,
leads to a convenient and intuitive aggregation proce-
dure, generalizing classical aggregation methods.

1.1 Patch model

We define in the following a patch model of size d on
the discrete grid Ω as a set of d positions on Ω and a
probability distribution ν on Rd. For the sake of sim-
plicity, we shall fix here once and for all the grid Ω, and
we consider that the pixel of Ω are ordered, i.e. we fix
a bijective application φ : Ω → J1, |Ω|K.

Definition 1 A patch model P on the grid Ω is a cou-
ple (ΩP , νP ), where ΩP ⊂ Ω and νP is a probability
distribution on R|ΩP |. We refer to νP as the distribution
of the patch model, and to ΩP as its domain.

We denote by P the set of all patch models on Ω

and by Pd the set of all patch models of size d. Clearly,
P =

⋃
d≤sx×sy Pd.

This definition can be seen as a generalization of
the classical definition of a patch on a grid. Indeed, a
traditional (deterministic) patch of size d on the grid Ω
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is usually described by a vector P in Rd (which can be
seen as the Dirac distribution δP in our definition) and
a set of d pixels in Ω. Most of the time in the literature,
this set of d pixels is assumed to be a square in Ω, or
at least to form a connected set of pixels. We do not
impose any constraint of the sort in our definition.

Proposition 1 For ΩP ⊂ Ω, there exists a unique ap-
plication φP : Ω → J1, |Ω|K which conserves the order
of Ω, i.e. ∀i, j ∈ ΩP , [φ(i) < φ(j)⇒ φP (i) < φP (j)].

Because we fix an order on Ω, there is no ambiguity
in the correspondence between the domain ΩP and the
distribution νP of a patch model. A pixel p ∈ ΩP corre-
sponds to the φP (p)-th coordinate in R|Ωp|. The goal of
this framework is to be able to interpret νP as a distri-
bution on the pixels of ΩP just as well as a distribution
on R|Ωp|.

Definition 2 (Restriction to a set of pixels) Let
Ω1, Ω2 such that Ω1 ⊂ Ω2 ⊂ Ω, φ1, φ2 the correspond-
ing applications (see proposition 1) and x ∈ R|Ω2|. We
define x|Ω2

Ω1
, the restriction of x to Ω1 with respect to

Ω2, by
x|φ2(Ω1) ∈ R|Ω1|,

where x is seen as an application from J1, |Ω2|K→ R.
Given ν a probability distribution on R|Ω2|, we de-

fine ν|Ω2

Ω1
as the marginal distribution of ν on φ2(Ω1).

We are now in the position to define the notion of
agreement between two patch models.

Definition 3 (Patch model agreement) Let P1 =

(Ω1, ν1) and P2 = (Ω2, ν2) be two patch models in P,
and let Ω = Ω1 ∪ Ω2. We say that these two patch
models agree and we write P1=̂P2 if and only if

ν1|ΩΩ1∩Ω2
= ν2|ΩΩ1∩Ω2

.

In other words, two patch models agree if they share
the same distribution on their intersection. Therefore,
two disjoint patch models (P and Q such that ΩP ∩
ΩQ = ∅) agree automatically. The =̂ relation is reflexive
and symmetric, but not transitive.

Remark 1 This definition can be applied to determin-
istic patches. We say that they agree if their values on
their overlap corresponds. We will also note this with
the symbol =̂.

We now define the notion of compatibility between
patch models, which ensures that a set of patches, once
restricted to the intersection of their domain, have dis-
tributions with compatible supports. This notion will
be important in the definition of the patch model fu-
sion in the next section.

(a) The two patches agree,
the aggregation is straight-
forward

(b) The two patches do not
agree, the aggregation is am-
biguous

Fig. 3: Illustration of the notion of agreement between
two deterministic patches

Definition 4 (Patch model compatibility)
Let (Pn)n∈J1,NK = (Ωn, νn)n∈J1,NK be a set of N

patch models. We say that these patch models are com-
patible if for any K ≤ N , any subset {n1, . . . , nK} of
J1, NK, and any subset V of U = ∩Kk=1Ωnk ,

∩Kk=1supp(νnk |
Ωnk
V ) 6= ∅.

In the previous definition, supp(ν) denotes the support
of the distribution ν, i.e. the complement of the largest
open set on which this distribution vanishes. In prac-
tice, the notion of compatibility is not restrictive if we
work with distributions with infinite support such as
Gaussian distributions for instance.

1.2 Patch model fusion

We can now define the fusion of two patch models.
As explained before, this definition is motivated by the
usual situation encountered in patch-based algorithms
where we end up with one or several distributions (and
thus patch models) on the different patches, and we
wish to deduce a distribution on the whole image. In
the literature, such distributions are generally used to
construct an estimator for each patch, such as the ex-
pectation or the maximum a posteriori, which leads to
several different values for each pixel, and an aggre-
gation procedure is used to deduce the final value of
the pixels from these estimations. The patch model fu-
sion permits to construct directly a distribution for the
whole image from the different patch models, and thus
to estimate the image without estimating the patches
and losing the models information.

Definition 5 (Patch model fusion)
Let P1 = (Ω1, ν1) and P2 = (Ω2, ν2) be two compat-

ible patch models. We suppose that the distributions ν1

and ν2 have bounded densities f1 and f2.
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The fusion P1�P2 of P1 and P2 is the patch model
defined by (Ω, ν) where Ω = Ω1 ∪ Ω2 and ν(dx) =

f(x)dx, with

∀x ∈ R|Ω|, f(x) =
f1(x|ΩΩ1

)f2(x|ΩΩ2
)´

x∈Rd f1(x|ΩΩ1
)f2(x|ΩΩ2

)dx
.

Remark 2 – The compatibility between the patch mod-
els ensures that

0 <

ˆ
x∈R|Ω|

f1(x|ΩΩ1
)f2(x|ΩΩ2

)dx.

– For the sake of simplicity, we restrict ourselves to
the set of patch models with bounded densities. This
strong assumption is convenient because it is stable
for the fusion operation defined in the following, and
it is always satisfied with the distributions we con-
sider, but it could be relaxed. In practice, we only
need to ensure that

ˆ
x∈R|Ω|

f1(x|ΩΩ1
)f2(x|ΩΩ2

)dx < +∞.

The fusion operation simply consists in aggregat-
ing two patch models by merging their domains, and
defining a distribution as a (particular) product of their
original distributions. This definition has a very intu-
itive motivation, as we shall see in the next proposition.

Proposition 2 (Interpretation of the fusion) Let
P1 = (Ω1, ν1) and P2 = (Ω2, ν2) be two patch models
and define P1 � P2 = (Ω, ν). Assume that the distri-
butions ν1 and ν2 have bounded densities f1 and f2.
Without loss of generality, we suppose that pixels are
ordered in such a way that the pixels of Ω1 \ Ω2 come
first, then the pixels of Ω1 ∩Ω2 and eventually those of
Ω2 \Ω1.

Let Z ∼ ν1 and T ∼ ν2 be two independent random

variables. We write Z =

(
Z1\2
Z1∩2

)
where Z1\2 are the

|Ω1\Ω2| first coordinates of Z and Z1∩2 are its |Ω1∩Ω2|

other coordinates. We write also T =

(
T1∩2

T2\1

)
in the

same way.
Then ν is the conditional probability distribution of

the vector

Z1\2
Z1∩2

T2\1

 given Z1∩2 = T1∩2.

Proof For (z1\2, z1∩2, t2\1) ∈ R|Ω1\Ω2|×R|Ω1∩Ω2|×R|Ω2\Ω1|,
we want to calculate

p

Z1\2
Z1∩2

T2\1

 =

z1\2
z1∩2

t2\1

 |Z1∩2 = T1∩2

 .

Now, this conditional distribution can be written

p(Z1\2 = z1\2, Z1∩2 = z1∩2, T2\1 = t2\1, Z1∩2 = T1∩2)

p(Z1∩2 = T1∩2)

where

p(Z1\2 = z1\2, Z1∩2 = z1∩2, T2\1 = t2\1, T1∩2 = z1∩2)

= p(Z1\2 = z1\2, Z1∩2 = z1∩2)× p(T2\1 = t2\1, T1∩2 = z1∩2)

= f1

((
z1\2
z1∩2

))
× f2

((
z1∩2

t2\1

))
= f1(x|Ω1∪Ω2

Ω1
)× f2(x|Ω1∪Ω2

Ω2
)

by independence of T and Z. Moreover,

p(Z1∩2 = T1∩2) =

ˆ
p(Z1∩2 = z1∩2, T1∩2 = z1∩2)dz1∩2

=

ˆ
p(Z1∩2 = z1∩2)× p(T1∩2 = z1∩2)dz1∩2.

Since

p(Z1∩2 = z1∩2) =

ˆ
p(Z1∩2 = z1∩2, Z1\2 = z1\2)dz1\2

=

ˆ
f1

((
z1\2
z1∩2

))
dz1\2,

and

p(T1∩2 = z1∩2) =

ˆ
p(T1∩2 = z1∩2, T2\1 = t2\1)dt2\1

=

ˆ
f2

((
z1∩2

t2\1

))
dt2\1,

we conclude that

p(Z1∩2 = T1∩2) =

ˆ
f1(x|Ω1∪Ω2

Ω1
)× f2(x|Ω1∪Ω2

Ω2
)dx > 0.

�

The fusion operation is therefore a way to force
two patch models to agree on their domain intersec-
tion while keeping most of the information contained
in their models ν1 and ν2.

Proposition 3 For any compatible patch models with
bounded densities P , P ′ and P ′′ in P, the fusion oper-
ation � is well-defined and satisfies

P � P ′ ∈ P and has a bounded density,

(P � P ′)� P ′′ = P � (P ′ � P ′′),

P � P ′ = P ′ � P.
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Proof Let P = (Ω, f(x)dx), P ′ = (Ω′, f ′(x)dx), P ′′ =

(Ω′′, f ′′(x)dx) and (Ω̂, f̂(x)dx) = P �P ′. We have Ω̂ =

Ω ∪Ω′ and

f̂(x) ∝ f(x|Ω̂Ω)× f ′(x|Ω̂Ω′),

which clearly shows the commutativity. So P � P ′ has
also a bounded density and it is straightforward from
the definition that P � P ′ is compatible with P ′′. Be-
sides, if we have (Ω̄, f̄dx) = (P � P ′)� P ′′, we get

f̄(x) ∝ f(x|Ω̄Ω)× f ′(x|Ω̄Ω′)× f ′′(x|Ω̄Ω′′),

which clearly shows the associativity. �

Remark 3 – This proposition ensures the stability and
coherence of the operation, which can therefore be
extended to any number of compatible patch mod-
els without ambiguity, and will be denoted

⊙
n Pn,

for any set (Pn)n∈J1,NK of compatible patch models
with bounded densities.

– For a set (Pn)n∈J1,NK = (Ωn, fn(x)dx)n∈J1,NK of com-
patible patch models with bounded densities, we
have

⊙
n Pn = (Ω, f(x)dx) with Ω =

⋃
nΩn and

∀x ∈ R|Ω|, f(x) ∝
∏
n

fn(x|ΩΩn).

We can merge the patch models in any order, we
will always get the same result at the end (under the
condition of compatibility and bounded density). This
operation can be used to propagate and connect all the
patch models to obtain a single image model.

1.3 Fusioned image model

The previous fusion operation can be used to define a
global model on the whole image space from a set of all
its local patch models.

Definition 6 Let E be a set of patch models. We say
that E covers the image support if every pixel of Ω

belongs to the domain of at least one patch model of
E, i.e.

∀(i, j) ∈ Ω,∃P = (Ω, ν) ∈ E such that (i, j) ∈ Ω.

We say that E is coherent if all patch models in E
agree, i.e.

∀ (P1, P2) ∈ E2, P1=̂P2.

We say that E represents an image if E covers the
image support and is coherent.

This definition basically says that a set of patch models
represents an image if all its patch models can be viewed
as marginals of a large patch of size |Ω|.

For a set E of compatible patch models which cov-
ers the image support, Proposition 3 ensures that it is
possible to fusion all the patch models of E to obtain a
global model (Ω, ν) =

⊙
P∈E P on the image. As a by-

product, this constructs a new set Ê which represents
the image, defined by

Ê := {
(
ΩP , ν|ΩΩP

)
with P ∈ E}.

Remark 4 We can interpret this image model in the
light of proposition 2. Consider E as a set of n compat-
ible patch models, I = (Ω, νI) as a prior on the image,
Z as a set of independent random variables following
the probability distributions of the patch models of E
and I ∼ νI . Then, with a slight abuse of notation, we
can write

I| [∀Z1, Z2 ∈ Z ∪ {I}, Z1=̂Z2] ∼ ν⊙
P∈E∪{I} P

,

where Z1=̂Z2 means that Z1 and Z2 share the same
values on the intersection of their domains.

2 Special cases

2.1 Uniform laws

A very simple example of patch model fusion can be
derived in the case of uniform distributions.

Proposition 4 (Fusion of uniform patch models)
Let A ⊂ R|ΩA| and B ⊂ R|ΩB |, and PA = (ΩA, νA), PB =

(ΩB , νB) be two patch models with uniform distribu-
tion on A and B, i.e. such that νA = 1

|A|1A, νB =
1
|B|1B. Let Ω = ΩA ∪ ΩB and C = {x ∈ R|Ω|;x|ΩΩA ∈
A and x|ΩΩB ∈ B}.

If C 6= ∅, then PA and PB are compatible and de-
noting PA � PB by (Ω, ν), ν is a uniform distribution
on C.

In other terms, the fusion of two uniform patch mod-
els is also a uniform patch model. Its distribution is the
only uniform distribution on Ω whose marginals distri-
butions on ΩA and ΩB are PA and PB .

This illustrates the behaviour of the fusion opera-
tion, which forces patch models to agree on their inter-
section. As a consequence, a patch model with a narrow
distribution will impose its opinion to the other patch
models, which is pretty intuitive: we except a confi-
dent model to be given more credit in the final aggre-
gation. However, in the uniform case, this compromise
is made quite brutally, since no patch model is ready to
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accept an opinion out of its "reality", and this can easily
result in compatibility issues when merging numerous
patches. As we shall see, the Gaussian case keeps this
behaviour, but in a softer way.

2.2 Gaussian laws

In several patch-based restoration algorithms such as
NL-Bayes ([17]) or EPLL ([29]), patches are modelled
by Gaussian distributions or Gaussian mixtures. The
Gaussian distribution fits well with the previous frame-
work, and also yields a closed form expression for the
fusion operation.

Proposition 5 (Fusion of Gaussian patch mod-
els) Let (Ω, ν) and (Ω′, ν′) be two Gaussian patch mod-
els with positive definite covariances:

ν = N
((

µx
µy

)
,

(
Σx Σxy
ΣT
xy Σy

))
and ν′ = N

((
µ′x
µ′y

)
,

(
Σ′x Σ′xy
Σ′Txy Σ′y

))
We suppose that the order on Ω is such that the

coordinates of their intersection, represented by x, come
first.

Then (Ω, ν) and (Ω′, ν′) are compatible and the dis-
tribution of (Ω, ν) � (Ω′, ν′) is Gaussian with parame-
ters

µ =

µxµy
µy′

+

 Σx (Σx +Σ′x)
−1

ΣT
xy (Σx +Σ′x)

−1

−Σ′Txy (Σx +Σ′x)
−1

 (µ′x − µx)

and,

Σ=

(Σx Σxy
ΣT
xy Σy′

)
0

0 Σy′

−
 Σx (Σx +Σ′x)

−1

ΣT
xy (Σx +Σ′x)

−1

−Σ′Txy (Σx +Σ′x)
−1


 Σx
Σxy
−Σ′xy

T

.

Remark 5 In reality, we do not need the strict positive-
ness of the whole covariance, but we have to suppose
that Σx + Σ′x is invertible, which is equivalent to the
assumption that the two patch models are compatible.

Proof Let Z =

(
X

Y

)
∼ ν and Z ′ =

(
X ′

Y ′

)
∼ ν′ be two

independent Gaussian random vectors. From proposi-
tion 2, we know that we are looking for the condi-

tional probability distribution of

XY
Y ′

 conditioned by

X = X ′.
Let W = X −X ′. We know that W follows a Gaus-

sian distribution, and µW = µx − µ′x and Σw = Σx +

Σ′x. Similarly, we know that

Z

Y ′

W

 is a Gaussian ran-

dom vector with parameters µ̂, Σ̂ and we note µ̂ = µz
µ′y

µx − µx′

 and Σ̂ =

 Σz 0 ΣZW
0 Σ′y ΣY ′W

ΣT
ZW ΣT

Y ′W ΣW

 (Z and

Y ′ are independent). Let compute ΣZW :

ΣZW = E
[
ZWT

]
− µz[µx − µx′ ]T

= E
[
ZXT

]
− µzµTx − E

[
ZX ′T

]
+ µzµ

T
x′

=

(
Σx
ΣT
xy

)
+ 0

because of the independence of Z and X ′. By symmetry
we have ΣY ′W =

(
−Σ′Txy

)
. So we can now use the

classical result for the conditioning of Gaussian vectors:

µZ
Y ′

|W=0

= µZ
Y ′

 +

(
ΣZW

ΣY ′W

)
Σ−1

W (0− µW )

=

(
µZ
µY ′

)
+

 Σx (Σx +Σ′x)
−1

ΣT
xy (Σx +Σ′x)

−1

−Σ′Txy (Σx +Σ′x)
−1

 (µ− µX)

ΣZ
Y ′

|W=0

= ΣZ
Y ′

 −
(
ΣZW

ΣY ′W

)
Σ−1

W

(
ΣT

ZW ΣT
Y ′W

)

=

(
ΣZ 0
0 ΣY ′

)
−

 Σx (Σx +Σ′x)
−1

ΣT
xy (Σx +Σ′x)

−1

−Σ′Txy (Σx +Σ′x)
−1

 Σx

Σxy

−Σ′xy

T

�

As we can see, the set of all Gaussian patch models is
stable by fusion. So if we have a set E of Gaussian patch
models which covers the image, the resulting fusion of
all the patch models from E will be a huge Gaussian
model on the whole image support.

Proposition 6 Let (Ωn, νn)n∈J1,NK be N Gaussian patch
models, with means (µn)n∈J1,NK and precisions (Λn)n∈J1,NK.
Let P = (Ω, ν) =

⊙
n∈J1,NK(Ωn, νn). For n ∈ J1, NK,

let φn be the application from Ωn to J1, |Ωn|K associated
to Pn, and φ the one associated to P (see proposition
1).

Then P is a Gaussian patch model, and its precision
Λ satisfies, for i, j ∈ J1, |Ω|K,

Λ(i, j) =
∑

1≤n≤N
i,j∈Ωn

Λn(φ−1
n ◦ φ(i), φ−1

n ◦ φ(j)). (1)

Proof We know that ν(dx) = f(x)dx is Gaussian and
we have, according to remark 3,

− log f(x) ∝
N∑
n=1

(x|ΩΩn − µn)TΛn(x|ΩΩn − µn).
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Equation (1) follows by keeping for each pair (i, j) the
indexes n such that pixels i and j belongs to Ωn and
by finding the indexes of these pixels in the patch Ωn.

3 Link with classical aggregation methods

3.1 Standard aggregations

In the previous section, we have seen how to construct a
distribution on a whole image from a set of compatible
patch models. This construction, while theoretical, ac-
tually contains the main aggregation procedures used in
the literature as special cases. More precisely, we shall
see that these aggregation procedures can be seen as
special cases of the fusion of Gaussian patch models
with diagonal covariances.

Proposition 7 Let (Ω, ν) and (Ω′, ν′) be two Gaus-
sian patch models with diagonal positive definite covari-
ances

ν = N
((

µx
µy

)
,

(
Σx 0

0 Σy

))
and ν′ = N

((
µ′x
µ′y

)
,

(
Σ′x 0

0 Σ′y

))
.

The variable x represents the common coordinates of
the two patch models (µy and µ′y may not have the same
dimension). Then the patch models (Ω, ν) and (Ω′, ν′)

are compatible and the distribution of (Ω, ν) � (Ω′, ν′)

is a Gaussian distribution with parameters

µ =

(Σ−1
x +Σ′

−1
x )−1(Σ−1

x µx +Σ′
−1
x µ′x)

µy
µy′

 and

Σ =

(Σ−1
x +Σ′

−1
x )−1 0 0

0 Σy 0

0 0 Σ′y

 .

Moreover, the matrix (Σ−1
x +Σ′

−1
x )−1 is diagonal, and

so is Σ.

Proof This proposition is a direct application of propo-
sition 5. �

The previous proposition states that if covariances
of Gaussians are all supposed diagonal, then the result-
ing fusioned image has also a diagonal covariance. This
boils down to assume that all the pixels are indepen-
dent.

In the final image model, the mean at each pixel
is simply a weighted average of all the means of the
patches containing this pixel. The weights are given by

the precisions of the marginals at these pixel. We rec-
ognize here the standard aggregation procedure usually
called variance aggregation. The more precise an es-
timate is, the more it counts in the final estimate.

A more specific case is the one obtained when all co-
variances are identical and proportional to the identity
matrix. In this case, the covariance of the resulting im-
age model will be simply a diagonal, counting for each
pixel the number of patches it belongs to. The result-
ing mean at a given pixel will be a simple average of
all the means of the patches containing this pixel. This
corresponds to the widely used uniform aggregation.

More formally, if we consider the limit case where
each patch model has a covariance with infinite values
except for its central pixel, we recover the most simple
aggregation which consists in taking only the central
pixel value as an estimate.

3.2 EPLL

More complex strategies including both patch restora-
tion and aggregation into a single variational formula-
tion have been considered in the literature. This is the
case of the Expected Patch Log Likelihood (EPLL) of
Zoran and Weiss [29]. Starting from an image

Ĩ = AI + ε, (2)

degraded by a linear operator A and an i.i.d. Gaussian
noise ε ∼ N (0, σ2Id), the authors reconstruct a restored
version as the solution of

D(Ĩ) = arg min
I

λ

2
||AI − Ĩ||2 − EPLLf (I), (3)

where EPLLf (I) =
∑
j log f(xj), with {xj} the set of

all square patches of size
√
d×
√
d extracted from I and

f a given prior density on the image patches.
The authors of [29] interpret the quantity EPLLf (I)

as the empirical expectation of the log-likelihood of a
patch (up to a multiplicative factor 1

N with N the num-
ber of patches). This quantity has another intuitive in-
terpretation, as highlighted in the following proposi-
tion.

Proposition 8 Let ν(dx) = f(x)dx be a given prior
on patches of size

√
d ×
√
d. Let E be the set of all

patch models of size
√
d×
√
d with distribution ν, i.e.

E = {(Ω, ν)|∃(i, j) ∈ J1, sxK× J1, syK,

Ω = Ji, i +
√
dK× Jj, j +

√
dK}.

Let I be an image, seen as a vector of R|Ω|. Then if
P̄ =

⊙
P∈E P = (Ω̄, f̄(x)dx) is well defined, we have

EPLLf (I) = log f̄(I) + cst.
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Fig. 4: Comparison of the different ways to aggregate two patch models.

The function EPLLf is the log of the density ob-
tained by fusionning all square patch models on the grid
with the same prior f(x)dx. Up to a constant, it can
thus be interpreted as the log of a prior p(I) on the
whole image I. Consequently, by choosing λ = 1

σ2 , the
restoration operator D can be interpreted as a maxi-
mum a posteriori argmaxI log p(I|Ĩ) on the whole im-
age, since the term −λ2 ||AI − Ĩ||

2 is, up to a constant,
equal to log p(Ĩ|I) under the white Gaussian noise as-
sumption.

Propositions 2 and 8 also clarify the link between the
EPLL approach and the iterative conditioning strate-
gies used for instance in [21] for texture synthesis. In-
deed, the fusioned image prior used in EPLL can be
interpreted as a law of a global random image obtained
by aggregating all patch distributions and conditioning
by their equality on all their intersections.

Now, consider the pure denoising case (A = Id).
In this case, D can also be interpreted as a maximum
likelihood for another fusioned distribution ¯̃

f(x)dx on
the whole image, as shown in the following distribution.

Proposition 9 Keeping the notations of proposition 8,
let P̄ =

⊙
P∈E P be the image model obtained by fusion-

ning all patch models of E. Let PĨ =
(
Ω,N (Ĩ , 1

λId)
)

be an image model on the whole grid.
Then if (Ω,

¯̃
f(x)dx) := P̄ � PĨ , we have

arg min
I

λ

2
||I − Ĩ||2 − EPLLf (I) = arg max

I

¯̃
f(I).

Proof We just have to remark that

log
¯̃
f(I) = log f̄(I) + log

(
e−λ

‖I−Ĩ‖2
2

)
+ cst

= EPLLf (I)− λ

2
||I − Ĩ||2 + cst.�

In the light of this proposition, the result of the
EPLL algorithm in the denoising case is simply the
maximum likelihood of the probability distribution ob-
tained by merging all the patch models with a large
Gaussian model centered on the noisy image and with
variance 1

λ .
Under the full degradation model (2), a last inter-

pretation of the restoration operatorD is possible, using
the fusion of posterior patch models. To this aim, we
have to assume that the degradation operator A is di-
agonal, which means that it acts separately on pixels.
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The restriction of A to a domain Ω can thus be written
A|Ω and the model (2) restricted to Ω becomes

Ĩ|Ω = A|ΩI|Ω + ε|Ω .

For a given patch model P = (Ω, f(x)dx) in E, the cor-
responding posterior patch model is just (Ω, fap(x)dx)

where fap(x)dx is the posterior obtained under this
degradation model on Ω and the prior f(x)dx.

Proposition 10 Keeping the notations of proposition
8, assume that each pixel of the Ω is covered by ex-
actly k patch models of E. For each patch model P =

(Ω, f(x)dx) in E, we define the corresponding posterior
patch model as Pap = (Ω, fap(x)dx) with

fap(x) ∝ f(x)
1

(2π)d/2σd
e−

1
2σ2
‖A|Ωx−Ĩ|Ω‖2 .

We define Eap the set of all these posterior patch mod-
els,

Eap = {(Ω, fap(x)dx), such that (Ω, f(x)dx) ∈ E}.

Then, if P̄ap =
⊙

P∈Eap P = (Ω, f̄ap) is well defined,
we have

log f̄ap(I) = EPLLf (I)− k

2σ2
||AI − Ĩ||2 + cst.

Proof We just have to remark that∑
P∈E
‖A|ΩI|Ω − Ĩ|Ω‖2 = k||AI − Ĩ||2. �

In other words, for λ = k
σ2 , the operator D computes

the maximum of a fusioned posterior model on the
whole image, assuming that all patches have the same
prior f(x)dx.

Remark 6 The hypothesis that each pixel is covered by
exactly the same number of patch models can be en-
sured by supposing that the image is periodic. In prac-
tice, it is not satisfied when we consider all the overlap-
ping deterministic patches. Yet, in this case, except for
the pixels lying close to the image borders, the pixels
are covered by exactly d patches.

4 Algorithms and computational details

Given a set of (compatible) patch models, we can use
the fusion operation to obtain a global model on the
union of their domains. In a general setup, this leads
to generic algorithms which consist in fusionning all
patch models of a set P iteratively, as proposed in al-
gorithms 1 and 2. This procedure is stable and justified
by proposition 3. How the fusion is performed in prac-
tice depends on the considered distributions. In the case

Algorithm 1 Patch model aggregation
Input: Set of patch models P
Output: Aggregated image model I
1: Take P0 ∈ P
2: I ← P0

3: for P ∈ P \ {P0} do
4: I ← I � P
5: end for

Algorithm 2 Aggregation of the patch models, equiv-
alent approach
Input: Set of patch models P
Output: Aggregated image model I
1: while |P| > 1 do
2: (P1, P2)← P.get_two_first_elements()
3: P ← P1 � P2

4: P.add(P ) . We place the fusion at the end of the queue
5: end while
6:
7: P ← P.get_first() . Only one element remains

of Gaussian or uniform patch models there is a closed-
form solution, but approximated schemes could be used
for more complicated distributions.

In practice, for generic models, keeping in memory
and computing the covariance of the whole image is
not always tractable, since it requires to deal with a
(sx × sy)2 matrix. Still, if necessary, we can approxi-
mate the global covariance matrix by noticing that pix-
els which are far enough from each other do not much
influence each other. For instance, using standard Gaus-
sian models for the image Lena, we observe that beyond
a distance of 2

√
d, patch models do not influence each

other anymore (see figure 5). It means that the covari-
ance matrix of the whole image is almost sparse. This
enables to compute and store this covariance matrix
much more easily, as described in algorithm 3.

In the case of Gaussian models, we know by propo-
sition 6 that the precision matrix is sparse and this
precision matrix can be computed and stored directly.

Observe that according to remark 3, the whole im-
age distribution is, up to a constant, a generalization of
the EPLL. If we only want to compute a MAP with this
global model, we can use this equivalence to compute
directly the maximum of this distribution with a sim-
ple optimization algorithm such as conjugate gradient
or half quadratic splitting, as in [29].

5 Experiments

In this experimental section, we illustrate the behavior
of the fusion for different models. For the sake of sim-
plicity, we restrict our experiments to denoising prob-
lems. We also restrict our experiments to the case where
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the patches of E are all square patches of size
√
d×
√
d

in Ω.

5.1 Denoising with priors

In image denoising, in order to restore an unknown im-
age I from its noisy version I + ε, we usually start by
extracting all square patches {yk, k ∈ {1, . . . , |Ω|}}
from Ĩ = I + ε. The noise model on patches can be
written

yk = xk + εk,

with xk the (unknown) patch before degradation. In the
following, we will assume that the noise is i.i.d Gaussian
of variance σ2.

In this situation, bayesian patch-based methods use
a common restoration framework to restore I from I+ε:

1. estimation: estimate a prior density fk for each
clean patch xk

2. restoration: compute a denoised version x̂k from
yk using the knowledge of the noise model and the
prior fk

3. aggregation: reconstruct a whole denoised image Î
from the set of denoised patches {x̂k, k ∈ {1, . . . , |Ω|}}.
The restoration step can for instance take the form

of a maximum a posteriori

x̂k = argmaxx
1

2σ2
‖yk − x‖2 − log fk(x).

Several methods in the literature use the previous
restoration scheme, with slight variations. In the fol-
lowing, we will focus on three of them, which are rep-
resentative of different choices in the three previously
mentioned steps:

– NL-Bayes, [17], which estimates a specific Gaussian
model N (µk, Σk) for each patch xk;

– HDMI, [14], which estimates a low-dimensional Gaus-
sian Mixture model for the whole set of patches
xk, k ∈ {1, . . . , |Ω|};

– EPLL, [29], which estimates a Gaussian Mixture
model for patches on an external database, and re-
places steps 2 and 3 above by the variational prob-
lem (3).

All of these methods yield a prior model fk for each
patch xk. In the case of Gaussian Mixture Models, for
the sake of simplicity, we choose to keep as a prior for
xk the Gaussian of the mixture which is the most likely
for xk.

Since the noise model is also Gaussian, these meth-
ods also yield Gaussian posterior models for each patch.
We write these posteriors f̃k, and

f̃k(x|yk) ∝ fk(x)e−
‖x−yk‖

2

2σ2 .

In the following, we will illustrate how these priors
or posterior models can be fusioned using the frame-
work introduced in the previous sections. If we compute
a fusioned prior model, the maximum a posteriori un-
der the noise degradation model can be used to restore
the image. In other words, if f̄ is the fusioned image
model density, the restored image is computed as the
solution of

argminI
1

2σ2
‖I − Ĩ‖2 − log f̄(I). (4)

If instead we compute a fusioned posterior model f̄(I|Ĩ),
the restored image can be computed directly as the
maximum of this posterior, i.e.

argmaxI f̄(I|Ĩ).

Now, writing xk for the patches of I,

− log f̄(I|Ĩ) = − logΠ
|Ω|
k=1fk(xk|yk)

= −
|Ω|∑
k=1

log fk(xk) +

|Ω|∑
k=1

‖xk − yk‖2

2σ2

= − log f̄(I) + d
‖I − Ĩ‖2

2σ2
.

Observe that both strategies boil down to minimize an
energy of the form

argminIλ‖I − Ĩ‖ − log f̄(I), (5)

with different values of λ. Taking the maximum of the
fusioned posterior gives much more weight to the noisy
image Ĩ than computing the maximum a posteriori with
the fusioned prior.

A schematic view of the different type of patch fu-
sions (or aggregations) is proposed on figure 4.

Algorithm 3 Tractable approximation of the fusion
procedure with sparsity hypotheses on the covariance
matrix
Input: Set of square patches P of size

√
d, blocksize b

Output: Aggregated image I
1: s← 2×

√
d

2: for B disjoint block of size b× b of the image do
3: B̃ ← block of size (b+ s)× (b+ s) centered in B
4: P

B̃
← {P ∈ P|P ⊂ B̃}

5: Compute I
B̃

using algorithm 1 or 2
6: I|B ← I

B̃

∣∣
B

7: end for
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Fig. 5: In this experiment, we compute a complete
Gaussian model for the image Lena thanks to our fu-
sion algorithm. The figure shows the resulting correla-
tion map of a pixel in a 100×100 patch. As we can see,
the correlation decreases to 0 very fast when we move
away from the center.

5.2 Results

Experiments are led on four different 512 × 512 im-
ages, Lena, Barbara, Cartoon and Squares. As we shall
see, these images have different properties and the be-
haviour of the different fusion approaches strongly de-
pend on their content.

Figures 6, 7 and 8 illustrate the use of different
aggregation procedures on these four images and for
the three mentioned algorithms (NL-Bayes in Figure 6,
EPLL in Figure 7 and HDMI in Figure 8). The algo-
rithms are used to compute local Gaussian priors for
the different patches.

Different image models are then computed in order
to restore the whole image. The first one corresponds
to the standard uniform aggregation used in the lit-
erature. It starts by computing posteriors f̃k(x|yk) on
all patches. The means µ̃k of these Gaussian posteriors
are kept an averaged uniformly to yield the restored
image. As we have seen, this gives the same result as
replacing all covariance matrices by identity matrices,
fusionning all these posterior models into a single im-
age model and computing the maximum likelihood of
this fusioned model. The results of this procedure are
represented in the columns Uniform aggregation of the
different figures.

The columns Weighted aggregation correspond to
the aggregation with weights chosen inversely propor-
tional to the variance of the patch model at each pixel.

Again, it can be interpreted as a procedure where we
fusion posterior models f̃k(x|yk) on patches, approxi-
mating the covariance matrices by their diagonal. The
resulting restored image is the mean of the fusioned
posterior model.

Finally, the columns Complete aggregation in the
different figures correspond to the complete fusion of
the whole Gaussian posterior models, which is equiva-
lent to maximizing the EPLL with a weight λ equal to
k
σ2 , as explained in proposition 10. The columns Com-
plete with data term correspond to a higher lambda,
whose value depends on the model used, in order to
show how it influences the result.

NL-Bayes. The NL-Bayes algorithm infers many dif-
ferent Gaussian models and uses very small patches
(5 × 5). As a consequence, most Gaussian covariances
are quite well approximated by their diagonal, which
explains why the different aggregation procedures only
display minor differences. However, we can notice an
improvement with the whole fusioned model on artifi-
cial images, in the corner of Squares for instance.

EPLL The EPLL model [29] makes use of 8×8 patches
and learn a Gaussian mixture model with 200 groups
on a large external set of images. One particularity is
that the mean of patches are removed and the mean of
Gaussians are imposed to be zero. In consequence, this
set of models is not directly adaptable to our frame-
work, since we need a model on each patch, and not
on each of the averaged patches. In order to cope with
this specificity, we removed the mean, select the most
likely zero mean Gaussian in the GMM, and add to it
the mean of the noisy patch. This approach might not
be completely satisfying, but is still relevant to com-
pare aggregation procedures. In practice, the weighted
aggregation remains very similar to the uniform one
(some tiny artifacts are removed), and the results of
the full fusion are smoother, but with a strong "fluffy"
effect. This effect is due to the fixed size of the patches
and can be interpreted as a low frequency residual of
the white Gaussian noise. Indeed, as this low frequency
noise becomes part of the model, the complete aggre-
gation increases it.

HDMI In HDMI [14] the model is learned on large
patches (10 × 10) and with only a few dozen of low-
dimensional Gaussians in the mixture. The different ag-
gregations procedures produces more important differ-
ences. The uniform aggregation is efficient psnr-wise,
but suffers from lots of artifacts. The whole fusioned
model gives a better psnr for artificial images, and a
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Uniform aggrega-
tion

Weighted aggre-
gation

Complete aggre-
gation

Complete with
data term
λ = 0.28

Original image

(a) Psnr from left to right : 30.58, 30.49, 30.28, 30.66, ,∞

(b) Psnr from left to right : 28.99, 28.94, 28.83, 29.04,∞

(c) Psnr from left to right : 30.04, 29.98, 29.57, 30.35,∞

(d) Psnr from left to right : 45.28, 46.87, 47.35, 46.54,∞

Fig. 6: Comparison of the method on several images for NL-Bayes procedure for σ = 30.
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Uniform aggrega-
tion

Weighted aggre-
gation

Complete aggre-
gation

EPLL algorithm Original image

(a) Psnr from left to right : 30.69, 30.42, 29.88, 30.71, ∞

(b) Psnr from left to right : 26.56, 26.18, 25.45, 27.55, ∞

(c) Psnr from left to right : 29.89, 29.62, 28.65, 30.49, ∞

(d) Psnr from left to right : 37.38, 39.09, 36.96, 39.51, ∞

Fig. 7: Comparison of the method on several images for the EPLL procedure for σ = 30.
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large improvement in visual quality. Most of the arti-
facts are removed, and the image is much smoother. In
particular, the "fluffy" effect present in EPLL in par-
tially removed, as it does not belong to the model any-
more. However, the results suffer from a lost of contrast
(which may look like a lost of sharpness).

5.2.1 Precision map

Figure 9 shows the precision map obtained on Lena
with the Gaussian models of the HDMI algorithm. As
we can observe, the fusion yields good results in regions
where the estimated model is confident (constant areas,
regions with simple geometry). In other areas, it might
be preferable to use a standard uniform aggregation
instead. In practice, the results of these two procedures
can be merged, using the precision map. Figure 9 shows
the result of this merging, which clearly keep the best
of both worlds.

5.2.2 Sparse aggregation

As shown in figure 4, the complete fusion aggregation
needs fewer patches to obtain a visually satisfying re-
sult. The image can therefore be reconstructed using
fewer patches, chosen either at random or using some
heuristics to select the best models among them. This
could be a way to speed up the learning phase, or to
spend more time learning more complicated models.
Figure 10 shows an example of a simple sparse aggre-
gation, using only 4% of the patches (of size 10 × 10),
so that each pixel belongs to only 4 patches.

5.3 Discussion

The visual differences between the different aggregation
schemes increase with the size of the patches. In NL-
Bayes [17], despite the variety of models, the use of
5 × 5 patches leads to very similar results for all the
aggregation schemes. In contrast, important differences
can be observed for these different schemes when used
after EPLL [29] (8×8 patches) and HDMI [14] (10×10

patches).
The uniform aggregation is easy to compute and

usually yields good PSNR results, but creates many
artefacts in images since it averages uniformly all mod-
els, regardless of their estimated precision (contained in
their covariance matrices). On the contrary, using the
complete fusion of the different prior models an comput-
ing the MAP for the whole image removes most of the
observed artefacts. This is quite understandable, since
the method creates a model for which all the patches
have to agree. Fusion results are very smooth and in

return, they tend to suffer from a loss of contrast which
makes the PSNR decrease. This is particularly obvious
in regions where the model are not well-learned. Indeed,
flat patch models tend to come with higher precisions
than patch models representing geometric structures or
contrasted textures. If, across an edge or a geometric
structure, some patches are wrongly attributed to a flat
patch model, this model will count significantly more
than others in the fusion operation, which explains the
observed contrast losses. These shortcomings can be re-
duced by increasing the weight λ of the data term in the
final restoration (Equation 5), at the cost of a slight in-
crease of noise. The variance aggregation usually offers
a good compromise between the uniform aggregation
and the complete fusion.

Another interesting point is the consequence of the
fusion on the “fluffy effect” classically observed in single
scale patch-based methods. When using HDMI [14], the
fusion aggregation clearly reduces this defect, whereas
it does increase it when using EPLL [29]. Indeed, in
HDMI, patch priors have different means, which are al-
ready averages of different patches, whereas in EPLL,
each noisy patch sees its own spatial average used as a
mean for its model. Since these spatial averages contain
all the low frequency noise of the original image, the
whole fusioned model keeps intrinsically this low fre-
quency noise and the results shown a very pronounced
fluffy effect.

6 Conclusion and further work

We have presented here a new formal definition of a
patch model, which permits to define the notion of
agreement between overlapping patches. We have builded
on this notion to propose a general common framework
for the aggregation operation, seen as a fusion of differ-
ent overlapping patch models. This common framework
permits to gather and reinterpret all previous aggre-
gation schemes used in the literature, and reduce the
design of new ones to the design of a fusion operation.

Our approach also permits to compute a fusioned
image model which generalizes the Expected Patch Log
Likelihood introduced by [29]. When patches are as-
sumed to follow Gaussian distributions, this fusioned
model is also Gaussian and its mean and covariance
matrix can be computed by matrix multiplication. This
whole fusioned model can in turn be used to restore the
whole image. In practice, the fusion operation can be
used for any model which leads to tractable computa-
tions.

We have compared experimentally several special
cases of this fusion operation for patch-based image
denoising. As we have seen, using the more complete
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Uniform aggrega-
tion

Weighted aggre-
gation

Complete aggre-
gation

Complete with
data term λ = 1.1

Original image

(a) Psnr from left to right : 31.12, 31.10, 28.16, 29.96, ∞

(b) Psnr from left to right : 29.55, 29.54, 25.57, 28.72, ∞

(c) Psnr from left to right : 30.55, 30.52, 25.67, 29.34, ∞

(d) Psnr from left to right : 44.24, 48.77, 46.37, 35.62, ∞

Fig. 8: Comparison of the method on several images for the HDDC procedure for σ = 30.
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(a) precision map (b) classic aggregation (c) conditionned aggregation (d) precision estimate, mix of (b)
and (c)

Fig. 9: The inverse of the diagonal of the covariance matrix gives us the precision of the marginal of each pixel.
This is a basic estimate of how sure the model is for each pixel. This inverse (prec) is represented on the left,
followed by the classic aggregation (mean), the fusion aggregation (fusion) and an extended estimate : prec ×
fusion + (1-prec)× mean. The more confident we are in our estimate, the more we stay close to it.

Fig. 10: Comparison of different aggregation procedures on the cartoon image. On the top row, only 4% of the
patches are used, and on the bottom row, all the patches are used. On the left the complete aggregation, and on
the right the uniform aggregation
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fusion operation usually yields smaller PSNR results
but highly reduces the visual artifacts. On very geo-
metric and artificial images, it sometimes outperforms
the standard uniform aggregation. The complete aggre-
gation is preferable if the model is well-trained, since it
takes advantage of all the provided information. How-
ever, patch models are practice far from perfect, in par-
ticular on natural images.

In the near future, we intend to apply this aggrega-
tion to wider type of inverse problems, and wider class
of models, like Gaussian mixtures. We also plan to find
a better fusion operation. Even if the proposed fusion
is very intuitive, it has some limitations. For instance,
when merging two Gaussian patch models, one could
expect that the resulting covariance would depend on
the means of the Gaussian models, but this is not the
case with the proposed definition. It should be interest-
ing to investigate more deeply in this direction, using
ideas from the optimal transport theory.
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