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1 INTRODUCTION
Deadlock freedom is a crucial property of concurrent and distributed systems. With increasing

system complexity, the challenge of assuring deadlock freedom and other correctness properties

becomes even greater. In contrast to the alternatives of (1) deadlock detection and recovery, and (2)

deadlock avoidance, we advocate deadlock prevention: design the system so that deadlocks do not

occur.

Deciding deadlock freedom of finite-state concurrent programs is PSPACE-complete, in general

[26, chapter 19]. To achieve tractability, we present a criterion for deadlock-freedom that is evaluated

by model-checking a set of subsystems of the overall system. If the subsystems are small, the

criterion can be checked quickly. The criterion is sound (if true, it implies deadlock-freedom) but

not complete (if false, then it yields no information about deadlock). If the subsystems are larger,

then our criterion becomes more “accurate”: roughly speaking, there is less possibility for the

criterion to evaluate to false when the system is actually deadlock-free. In the limit, when the set

of subsystems includes the entire system itself, our criterion is complete, so that evaluation to false

implies that the system is actually deadlock-prone. Hence, our criterion only fails to resolve the
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question of deadlock-freedom when it’s evaluation exhausts available computational resources,

because the subsystems being checked have become too large, and state-explosion has set in.

Our method thus combines the possibility of fast response together with theoretical completeness.

All deadlock-freedom checks given in the literature to date are, to our knowledge, incomplete in

principle, and so remain incomplete even if unlimited computational resources are available. Hence

these criteria could fail to resolve deadlock freedom for theoretical reasons, as well as for lack of

computational resources. The reason for this incompleteness is that existing criteria all characterize

deadlock by the occurrence of a wait-for cycle, e.g., as stated by [3], discussion of related work:

All these methods were designed, to some extent, around the principle that under

reasonable assumptions about the system, any deadlock state would contain a proper

cycle of ungranted requests.

In a model of concurrency which includes choice of actions (e.g., BIP, CSP, I/O automata, CCS), a

wait-for cycle is an incomplete characterization of deadlock, since a process can be in a wait-for

cycle, but not deadlocked, due to having a choice of interaction with another process not in the

wait-for cycle (see Figure 5 below).

Our method, in contrast, characterizes deadlock by the occurrence of a supercycle [7, 8], which,

very roughly, is the AND-OR analogue of a wait-for cycle: a subset of processes constitutes a

supercycle SC iff every possible action of every process in SC is blocked by another process in

SC. We show that supercycles are a sound and complete characterization of deadlock: a system is

deadlock-prone iff a supercycle can arise in some reachable state. We then present our criterion,

which prevents the occurrence of supercycles in reachable states of the system. We first present a

“global” version of our criterion, which is both sound and complete w.r.t. absence of supercycles,

and then a “local” version, which is sound w.r.t. absence of supercycles, and can be evaluated over

small subsystems.

Our criterion guarantees freedom from local (and therefore global) deadlock. A local deadlock

occurs when a subsystem is deadlocked while the rest of the system can execute. Other criteria in

the literature [2, 3, 13, 17, 21, 23, 24, 29] guarantee only global deadlock freedom.

This paper significantly extends a preliminary conference version [6] as follows: (1) we present

an “AND-OR” criterion for deadlock-freedom, which exploits the AND-OR structure of supercycles,

and is therefore complete for deadlock-freedom in the limit, while our preliminary work [6] gives

a “linear” criterion, which is a special case in which the AND-OR structure is ignored, and (2)

experimental results show that the new criterion is more efficient in practice, and also succeeds in

cases where the linear criterion fails. We therefore have the best of both worlds: early stopping,

and therefore efficient verification of deadlock-freedom, in many cases, together with theoretical

completeness. Our criterion is, to the best of our knowledge, the first criterion that is sound and

complete for global and local deadlock-freedom in concurrent programs with nondeterministic local

choice, i.e., a process can nondeterministically choose among enabled actions.

We present experimental results for dining philosophers and for a multi-token based resource

allocation system, which generalizes Milner’s token based scheduler [25]. These show that our

method compares favorably with existing approaches.

Section 2 presents BIP [14]. Section 3 characterizes local and global deadlocks as the occurrence

of a pattern of wait-for edges called a supercycle (see discussion above). Section 4 considers

“global” supercycles, i.e., those that occur in the overall system being considered, characterizes

these as the greatest fixpoint of a “blocking” operator, and presents some structural properties of

supercycles. Section 5 presents global conditions for the prevention of the formation of supercycles.

Global means that these conditions are evaluated in the entire system. Section 6 considers “local”

supercycles, i.e., those that occur in a given subsystem of the overall system being considered.
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These are characterized as the greatest fixpoint of a “local blocking” operator, which pessimistically

assumes that nodes on the boundary of the subsystem are blocked. This pessimistic assumption

ensures soundness, at the expense of completeness. Section 7 presents local conditions for the

prevention of the formation of supercycles. These can be evaluated in (small) subsystems of the

overall system, and are obtained by “projecting” the global conditions onto a subsystem. Section 8

presents the main soundness and completeness results of the paper, and gives the implication

relation among our various conditions for deadlock-freedom. Section 9 gives algorithms to evaluate

the local conditions, and presents experimental evaluation. Section 10 discusses related work,

further work, and concludes.

2 BIP — BEHAVIOR INTERACTION PRIORITY
BIP is a component framework for constructing systems by superposing three layers of modeling:

Behavior, Interaction, and Priority. A technical treatment of priority is beyond the scope of this

paper. Adding priorities never introduces a deadlock, since priority enforces a choice between

possible transitions from a state, and deadlock-freedom means that there is at least one transition

from every (reachable) state. Hence if a BIP system without priorities is deadlock-free, then the

same system with priorities added will also be deadlock-free.

Definition 2.1 (Atomic component). An atomic component Bi is a labeled transition system rep-

resented by a triple (Qi , Pi ,→i ) where Qi is a set of states, Pi is a set of communication ports, and

→i ⊆ Qi × Pi ×Qi is a set of transitions, each labeled by some port.

For states si , ti ∈ Qi and port pi ∈ Pi , write si
pi
→i ti , iff (si ,pi , ti ) ∈→i . When pi is clear from

the context or not needed, we drop it from the transition and write si →i ti . Similarly, si
pi
→i means

that there exists ti ∈ Qi such that si
pi
→i ti . In this case, pi is enabled in state si . Ports are used for

communication between different components, as discussed below.

Figure 1(a) shows atomic components for a philosopher Phi and a fork Fi in dining philosophers.

A philosopher Phi that is hungry (in state hi ) can eat by executing geti (to get its forks) and moving

to state ei (eating). From ei , Phi releases its forks by executing puti (to put down its forks) and

moving back to hi . Adding the thinking state does not change the deadlock behaviour of the system,

since the thinking to hungry transition is internal to Phi , and so we omit it. A fork Fi is taken by

either: (1) the left philosopher (transition use
ℓ
i ) and so moves to state uℓ

i (used by left philosopher),

or (2) the right philosopher (transition use
r
i ) and so moves to state uri (used by right philosopher).

From state uri (resp. u
ℓ
i ), Fi is released by the right philosopher (resp. left philosopher) and so moves

back to state fi (free).
In practice, we describe the transition system using some syntax, e.g., involving local variables

(BIP does not have shared variables). We abstract away from issues of syntactic description since we

are only interested in enablement of ports and actions. In BIP, the enablement of a port depends only

on the local state of a component. In particular, it cannot depend on the state of other components.

For example, state ei in atomic component Phi of Figure 1(a) enables port puti as there exists a

transition from ei labeled with port puti . Hence, there exists a predicate enb
i
pi that holds in state si

of component Bi iff port pi is enabled in si , i.e., si (enb
i
pi ) = true iff si

pi
→i .

Definition 2.2 (Interaction). For a given system built from a set of n atomic components {Bi =

(Qi , Pi ,→i )}
n
i=1, we require that their respective sets of ports are pairwise disjoint, i.e., for all

i, j such that i, j ∈ {1..n} ∧ i , j, we have Pi ∩ Pj = ∅. An interaction is a set of ports not

containing two or more ports from the same component. That is, for an interaction a we have
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39:4 P.C. Attie, S. Bensalem, M. Bozga, M. Jaber, J. Sifakis, F.A. Zaraket

puti

Fork Fi

Philosopher Phi

geti

ei hi

fiuri uℓi

use
r
i use

l
i

free
r
i free

ℓ
i

puti

use
ℓ
iuse

r
i

free
ℓ
ifree

r
i

geti

(a) Philosopher Phi and fork Fi atomic com-

ponents.

g
e
t
0

user

use
ℓ
3

p
u
t
0

get
1

put
1

p
u
t
2

g
e
t
2

use
ℓ
2

free
ℓ
2

free
r
1

Ph0

F0 F1

free
r
3

use
r
3

use
ℓ
1

use
r
2

free
r
2

freer

free
ℓ
3

free
ℓ
1

free
ℓ
0

use
ℓ
0

use
r
1

put
3

get
3

Grab0

Ph3

F3

Ph2

F2

Ph1

(b) Dining philosophers composite component
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Fig. 1. Dining philosophers.

a ⊆ P ∧ (∀ i ∈ {1..n} : |a ∩ Pi | ≤ 1), where P =
⋃n

i=1 Pi is the set of all ports in the system. When

we write a = {pi }i ∈I , we assume that pi ∈ Pi for all i ∈ I , where I ⊆ {1..n}.

The Connectors that connect ports in Figure 1(b) illustrate interactions. For example, the interac-

tion Grab0 = {get0, use
ℓ
0
, user

1
} connects ports get

0
, use

ℓ
0
, and use

r
1
from components Ph0, F0, and F1

respectively, and corresponds to philosopher component Ph0 acquiring both forks and moving to

it’s eating state.

Execution of an interaction a = {pi }i ∈I involves all the components which have ports in a. We

denote by components(a) the set of atomic components participating in a. Formally, components(a) =
{Bi | pi ∈ a}.

Definition 2.3 (Composite component). A composite component (or simply component) B ≜
γ (B1, . . . ,Bn ) is defined by a composition operator parameterized by a set of interactions γ ⊆ 2

P
.

B has a transition system (Q,γ ,→), where Q = Q1 × · · · ×Qn and→⊆ Q × γ ×Q is the least set of

transitions satisfying the rule

a = {pi }i ∈I ∈ γ ∀i ∈ I : si
pi
→i ti ∀i < I : si = ti

⟨⟨⟨s1, . . . , sn⟩⟩⟩
a

→ ⟨⟨⟨t1, . . . , tn⟩⟩⟩

This inference rule says that a composite componentB = γ (B1, . . . ,Bn ) can execute an interaction
a ∈ γ , iff for each port pi ∈ a, the corresponding atomic component Bi can execute a transition

labeled with pi ; the states of components that do not participate in the interaction stay unchanged.

Note that interactions are the only means of inter-component communication and synchronization

in BIP.

Example 2.4 (Composite component). Figure 1(b) shows a composite component consisting of

four philosophers and the four forks between them. Each philosopher Phi (0 ≤ i ≤ 3) and its two

neighboring forks share two interactions: Grabi = {geti , use
ℓ
i , use

r
i+1} in which the philosopher

obtains the forks, and Reli = {puti , free
ℓ
i , free

r
i+1} in which the philosopher releases the forks

(addition of indices being modulo 4).
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Definition 2.5 (Interaction enablement). An atomic component Bi = (Qi , Pi ,→i ) enables a port

pi ∈ Pi in state si iff si
pi
→i . Bi enables interaction a in state si iff si

pi
→i , where {pi } = Pi ∩ a is the

port of Bi involved in a. That is, Bi enables a in state si iff Bi enables port a ∩ Pi in state si .
Recall that enb

i
pi denotes the enablement condition for port pi in component Bi , that is, enb

i
pi

holds iff si
pi
→i , where si is the current state of Bi . Let enb

i
a
denote the enablement condition for

interaction a in component Bi , that is, enb
i
a
= enb

i
pi where {pi } = a ∩ Pi .

Let B = γ (B1, . . . ,Bn ) be a composite component, let s = ⟨⟨⟨s1, . . . , sn⟩⟩⟩ be a state of B, and let

a = {pi }i ∈I be an interaction of B. Then B enables a in s iff every Bi ∈ components(a) enables a in
si , i.e., iff

∧
i ∈I enb

i
a
holds in s .

The definition of interaction enablement is a consequence of Definition 2.3. Interaction a being

enabled in state s means that executing a is one of the possible transitions that can be taken from s .
To avoid pathological cases of deadlock due solely to a single component refusing to enable

any interaction at all, we assume that every component always enables at least one interaction.

Structurally, this means that there is no local state with zero transitions, and every port labeling a

transition is part of at least one interaction. Intuitively, component Bi in state s must enable at least

one interaction a. However, a requires enablement from all components involved in it to execute.

That might not be the case as a may be blocked by another component Bj , Bi . Therefore the

assumption is not enough to guarantee deadlock freedom.

Definition 2.6 (Local enablement assumption). For every component Bi = (Qi , Pi ,→i ), the follow-
ing holds. In every si ∈ Qi , Bi enables some interaction a.

Definition 2.7 (BIP-system). Let B = γ (B1, . . . ,Bn ) be a composite component with transition

system (Q,γ ,→), and let Q0 ⊆ Q be a set of initial states. Then (B,Q0) is a BIP system.

Figure 1(b) gives a BIP-system with philosophers initially in state h (hungry) and forks initially in

state f (free). To avoid tedious repetition, we fix, for the rest of the paper, an arbitrary BIP-system

(B,Q0), with B ≜ γ (B1, . . . ,Bn ), and transition system (Q,γ ,→).

Definition 2.8 (Execution). Let ρ = s0a1s1 . . . sj−1ajsj . . . be an alternating sequence of states of B

and interactions of B. Then ρ is an execution of (B,Q0) iff (1) s0 ∈ Q0, and (2) ∀ j > 0 : sj−1
aj
→ sj .

Definition 2.9 (Reachable state, transition). A state or transition that occurs in some execution is

called reachable. rstates(B,Q0) denotes the set of reachable states of (B,Q0).

Definition 2.10 (State projection). Let s = ⟨⟨⟨s1, . . . , sn⟩⟩⟩ be a state of (B,Q0). Let {Bi1 , . . . ,Bik } ⊆

{B1, . . . ,Bn }. Then s↾{Bi1 , . . . ,Bik } ≜ ⟨⟨⟨si1 , . . . , sik ⟩⟩⟩. For a single Bi , we write s↾Bi = si . We extend

state projection to sets of states element-wise.

Definition 2.11 (Subcomponent). Let {Bi1 , . . . ,Bik } ⊆ {B1, . . . ,Bn }. Let P
′ = Pi1 ∪ · · · ∪ Pik , i.e.,

the union of the ports of {Bi1 , . . . ,Bik }. Then the subcomponent B
′
of B based on {Bi1 , . . . ,Bik } is

as follows:

(1) γ ′ ≜ {a ∩ P ′ | a ∈ γ ∧ a ∩ P ′ , ∅}
(2) B

′ ≜ γ ′(Bi1 , . . . ,Bik )

That is, γ ′ consists of those interactions in γ that have at least one participant in {Bi1 , . . . ,Bik },
and restricted to the participants in {Bi1 , . . . ,Bik }, i.e., participants not in {Bi1 , . . . ,Bik } are removed.

We write s↾B′ to indicate state projection onto B
′
, and define s↾B′ ≜ s↾{Bi1 , . . . ,Bik }, where

Bi1 , . . . ,Bik are the atomic components in B
′
. We say that s↾B′ is a state of B

′
.
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Definition 2.12 (Subsystem). Let {Bi1 , . . . ,Bik } ⊆ {B1, . . . ,Bn }. Then the subsystem (B′,Q ′
0
) of

(B,Q0) based on {Bi1 , . . . ,Bik } is as follows:

(1) B
′
is the subcomponent of B based on {Bi1 , . . . ,Bik }

(2) Q ′
0
= Q0

↾{Bi1 , . . . ,Bik }

Definition 2.13 (Execution projection). Let (B′,Q ′
0
), with B

′ = γ ′(Bi1 , . . . ,Bik ) be the subsystem
of (B,Q0) based on {Bi1 , . . . ,Bik }. Let P

′ = Pi1 ∪ · · · ∪ Pik , i.e., P
′
is the set of ports of (B′,Q ′

0
).

Let ρ = s0a1s1 . . . sj−1ajsj . . . be an execution of (B,Q0). Then, ρ↾(B′,Q ′0), the projection of ρ onto

(B′,Q ′
0
), is the sequence resulting from:

(1) replacing each sj by sj↾{Bi1 , . . . ,Bik }, i.e., replacing each state by its projection onto

{Bi1 , . . . ,Bik }, then
(2) removing all ajsj where aj ∩ P

′ = ∅, then

(3) replacing each aj by aj ∩ P
′
, i.e., replacing each interaction by its projection onto the port set

P ′.

Proposition 2.14 (Execution projection). Let (B′,Q ′
0
), with B

′ = γ ′(Bi1 , . . . ,Bik ) be the

subsystem of (B,Q0) based on {Bi1 , . . . ,Bik }. Let P
′ = Pi1 ∪ · · · ∪ Pik , i.e., the union of the ports

of {Bi1 , . . . ,Bik }. Let ρ = s0a1s1 . . . sj−1ajsj . . . be an execution of (B,Q0). Then, ρ↾(B′,Q ′0) is an
execution of (B′,Q ′

0
).

Proof. By Definitions 2.10, 2.12, and 2.13, we have ρ↾(B′,Q ′
0
) = s ′

0
b1s
′
1
b2s
′
2
. . . for some

s ′
0
, b1s

′
1
b2s
′
2
. . ., where s ′j ∈ Q ′ = Q↾{Bi1 , . . . ,Bik } for j ≥ 0. Also by Definitions 2.10, 2.12, and

2.13, we have s ′
0
∈ Q ′

0
= Q0

↾{Bi1 , . . . ,Bik }, since s
′
0
= s0↾B′, and s0 ∈ Q0, by Definition 2.8.

Consider an arbitrary step (s ′j−1, bj , s
′
j ) of ρ↾(B

′,Q ′
0
). Since bjs

′
j was not removed in Clause 2 of

Definition 2.13, we have

(1) s ′j = sℓ↾{Bi1 , . . . ,Bik } for some ℓ > 0 and such that aℓ ∩ P
′ , ∅

(2) bj = aℓ ∩ P
′

(3) s ′j−1 = sm↾{Bi1 , . . . ,Bik } for the smallestm such that

m < ℓ and ∀m′ :m + 1 ≤ m′ < ℓ : am′ ∩ P
′ = ∅

From (3) we have ∀m′ : m + 1 ≤ m′ < ℓ : am′ ∩ P ′ = ∅. So by Definitions 2.3 and 2.13, we

have sm↾{Bi1 , . . . ,Bik } = sℓ−1↾{Bi1 , . . . ,Bik }. From (3) we have s ′j−1 = sm↾{Bi1 , . . . ,Bik }. Hence
s ′j−1 = sℓ−1↾{Bi1 , . . . ,Bik }.

From sℓ−1
aℓ
→ sℓ , aℓ∩P

′ , ∅, and Definition 2.3, we have sℓ−1↾{Bi1 , . . . ,Bik }
aℓ∩P ′
→ sℓ↾{Bi1 , . . . ,Bik }.

s ′j−1 = sℓ−1↾{Bi1 , . . . ,Bik } was established above. s ′j = sℓ↾{Bi1 , . . . ,Bik } is from (1). bj = aℓ ∩ P
′
is

from (2). Hence we obtain s ′j−1
bj
→ s ′j , i.e., that s

′
j−1, bjs

′
j is a step of (B′,Q ′

0
).

Since (s ′j−1, bj , s
′
j ) was arbitrarily chosen, we conclude that every step of ρ↾(B′,Q ′

0
) is a step of

(B′,Q ′
0
). This establishes Clause (2) of Definition 2.8. The first state of ρ↾(B′,Q ′

0
) is s ′

0
, and s ′

0
∈ Q ′

0

was shown above, so we establish Clause (1) of Definition 2.8.

Since both clauses of Definition 2.8 are satisfied, we conclude that ρ↾(B′,Q ′
0
) is an execution of

(B′,Q ′
0
). □

Corollary 2.15. Let (B′,Q ′
0
) be a subsystem of (B,Q0), and let P

′
be the port set of (B′,Q ′

0
). Let

s be a reachable state of (B,Q0). Then s↾B′ is a reachable state of (B′,Q ′0). Let s
a

→ t be a reachable

transition of (B,Q0), and let a ∩ P
′
be an interaction of (B′,Q ′

0
). Then s↾B′

a∩P ′
→ t↾B′ is a reachable

transition of (B′,Q ′
0
).

Proof. Immediate corollary of Proposition 2.14. □
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Example 2.16 (Execution projection). In the dining philosophers example of Figure 1, let

the (single) initial state be (h0,h1,h2,h3, f0, f1, f2, f3), i.e., all philosophers are hungry and

all forks are free. Also, Grab0 = {get0,use
ℓ
0
,user

1
} (resp. Grab2 = {get2,use

ℓ
2
,user

3
}) is the

interaction in which Ph0 (resp. Ph2) picks up both forks, and Rel0 = {put
0
, freeℓ

0
, f reer

1
}

is the interaction in which Ph0 releases both forks. Consider the following execution:

ρ = (h0,h1,h2,h3, f0, f1, f2, f3) {get0, use
ℓ
0
, user

1
} (e0,h1,h2,h3,u

ℓ
0
,ur

1
, f2, f3) {get2, use

ℓ
2
, user

3
}

(e0,h1, e2,h3,u
ℓ
0
,ur

1
,uℓ

2
,ur

3
) {put

0
, freeℓ

0
, freer

1
} (h0,h1, e2,h3, f0, f1,u

ℓ
2
,ur

3
) · · · . The projection of

this execution on the subsystem defined by subcomponent {Ph0, Ph1, F0}, is equal to:

ρ↾{Ph0, Ph1, F0},Q ′0) = (h0,h1, f0) {get0, use
ℓ
0
} (e0,h1,u

ℓ
0
) {put

0
, freeℓ

0
} (h0,h1, f0) · · · . In particular,

we project the states and interactions with respect to the subcomponent. Notice that interaction

Grab2 disappears as its ports do not belong to the subcomponent. Clearly, ρ↾({Ph0, Ph1, F0},Q ′0) is
an execution of ({Ph0, Ph1, F0},Q

′
0
).

3 CHARACTERIZING DEADLOCK-FREEDOM
Definition 3.1 (Global deadlock-freedom). ABIP-system (B,Q0) is free of global deadlock iff in every

reachable state s of (B,Q0), some interaction a is enabled. Formally, ∀ s ∈ rstates(B,Q0),∃ a : s
a

−→B .

Definition 3.2 (Local deadlock-freedom). A BIP-system (B,Q0) is free of local deadlock iff for every

subsystem (B′,Q ′
0
) of (B,Q0), and every reachable state s of (B,Q0), (B

′,Q ′
0
) has some interaction

enabled in state s↾B′. Formally:

for every subsystem (B′,Q ′
0
) of (B,Q0):

∀ s ∈ rstates(B,Q0),∃ a : s↾B′
a∩P ′
−→B

′

where P ′ is the set of ports of B′.

Note that every reachable state s ′ of subsystem B
′
(within the context of the overall system B) is a

projection of a reachable state s of B, i.e., s ′ = s↾B′. Our definition requires that, in every reachable

state s ′, B′ is not prevented from executing some interaction a due to blocking relationships within

B
′
, which would constitute a local deadlock. We thus require that B

′
, considered in isolation from its

containing system B, must enable some interaction a. Within B overall, it is permissible for a to be

disabled because some Bi ∈ components(a) does not enable a, provided that Bi is not a component

of B
′
. We now make these ideas precise.

3.1 Wait-for graphs
The wait-for graph for a state s is a directed bipartite and-or graph which contains as nodes the

atomic components B1, . . . ,Bn , and all the interactions γ . Edges in the wait-for-graph are from

a component Bi to all the interactions that Bi enables (in s), and from an interaction a to all the

components that participate in a and which do not enable it (in s).

Definition 3.3 (Wait-for graphWB (s )). Let B = γ (B1, . . . ,Bn ) be a BIP composite component, and

let s = ⟨⟨⟨s1, . . . , sn⟩⟩⟩ be an arbitrary state of B. The wait-for graphWB (s ) of s is a directed bipartite

and-or graph, where

1. the nodes ofWB (s ) are as follows:
(a) the and-nodes are the atomic components Bi , i ∈ {1..n},
(b) the or-nodes are the interactions a ∈ γ ,

2. there is an edge inWB (s ) from Bi to every node a such that Bi ∈ components(a) and si (enb
i
a
) =

true, i.e., from Bi to every interaction which Bi enables in si ,
3. there is an edge inWB (s ) from a to every Bi such that Bi ∈ components(a) and si (enb

i
a
) = false,

i.e., from a to every component Bi which participates in a but does not enable it, in state si .

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39. Publication date: March 2010.
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A component Bi is an and-node since all of its successor actions (or-nodes) must be disabled

for Bi to be incapable of executing. An interaction a is an or-node since it is disabled if any of its

participant components do not enable it. An edge (path) in a wait-for graph is called a wait-for

edge (wait-for path).

Definition 3.4 (Subgraph of a wait-for graph). U is a subgraph ofWB (s ) iff the nodes of U are a

subset of the nodes of WB (s ) and the edges of U are the induced edges from WB (s ), i.e., if u,v are

nodes of U and u → v is an edge of WB (s ), then u → v is an edge of U . Write U ⊑ WB (s ) when
U is a subgraph of WB (s ), and extend the definition of ⊑ to subgraphs of WB (s ) in the obvious

manner, so that U ⊑ V means that U is a subgraph of V .

Write a → Bi (Bi → a respectively) for a wait-for edge from a to Bi (Bi to a respectively).

We abuse notation by writing v ∈ WB (s ) to indicate that v is a node of WB (s ), and e ∈ WB (s ) to
indicate that e (either a → Bi or Bi → a) is an edge in WB (s ). Also Bi → a → B

′
i ∈ WB (s ) for

Bi → a ∈ WB (s ) ∧ a → B
′
i ∈ WB (s ), i.e., for a wait-for path of length 2, and similarly for longer

wait-for paths. Likewise use v ∈ U , e ∈ U , where U is a subgraph ofWB (s ).
Consider the dining philosophers system given in Figure 1. Figure 2(a) shows its wait-for graph

in its sole initial state. Figure 2(b) shows the wait-for graph after execution of Grab0. In all figures

of wait-for graphs, we show components in red, interactions in blue, edges from components to

interactions as solid, and edges from interactions to components as dashed.

F3

Grab3

Rel3

Grab1

Rel1

F1

Grab2

Grab0

Rel2

Rel0

Ph3

F0

F2

Ph1

Ph2

Ph0

(a) Wait-for-graph in initial state.

F3

Grab3

Rel3

Grab1

Rel1

F1

Grab2

Grab0

Rel2

Rel0

Ph3

F0

F2

Ph1

Ph2

Ph0

(b) Wait-for-graph after execution of Grab0.

Fig. 2. Example wait-for-graphs for dining philosophers system of Figure 1.

A key principle of the dynamics of the change of wait-for graphs is that wait-for edges not

involving some interaction a and its participantsBi ∈ components(a) are unaffected by the execution
of a. Say that edge e in a wait-for graph is Bi -incident iff Bi is one of the endpoints of e .

Proposition 3.5 (Wait-for edge preservation). Let s
a

→ t be a transition of composite com-

ponent B = γ (B1, . . . ,Bn ), and let e be a wait-for edge in WB (s ) that is not Bi -incident, for every
Bi ∈ components(a). Then e ∈ WB (s ) iff e ∈ WB (t ).

Proof. Fix e to be an arbitrary wait-for-edge that is not Bi -incident. e is either Bj → b or b→ Bj ,

for some component Bj of B that is not in components(a), and an interaction b (different from a) that
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Bj participates in. Now s↾Bj = t↾Bj , since s
a

→ t and Bj < components(a). Hence s (enbj
b
) = t (enbj

b
).

It follows from Definition 3.3 that e ∈ WB (s ) iff e ∈ WB (t ). □

3.2 Supercycles and deadlock-freedom
We characterize a deadlock as the existence in the wait-for graph of a graph-theoretic construct

that we call a supercycle.

Definition 3.6 (Supercycle). Let B = γ (B1, . . . ,Bn ) be a composite component and s be a state of
B. A subgraph SC ofWB (s ) is a supercycle inWB (s ) if and only if all of the following hold:

1. SC is nonempty, i.e., contains at least one node,

2. if Bi is a node in SC, then for all interactions a such that there is an edge in WB (s ) from Bi to

a:

(a) a is a node in SC, and

(b) there is an edge in SC from Bi to a,

that is, Bi → a ∈ WB (s ) implies Bi → a ∈ SC,

3. if a is a node in SC, then there exists a Bj such that:

(a) Bj is a node in SC, and

(b) there is an edge from a to Bj inWB (s ), and
(c) there is an edge from a to Bj in SC,

that is, a ∈ SC implies ∃Bj : a→ Bj ∈ WB (s ) ∧ a→ Bj ∈ SC.

Intuitively, SC is a supercycle iff every node is SC is blocked from executing by other nodes in

SC.

Definition 3.7 (Supercycle-free). WB (s ) is supercycle-free iff there does not exist a supercycle SC

inWB (s ). In this case, say that state s is supercycle-free.

F3

Grab3

Rel3

Grab1

Rel1

F1

Grab2

Grab0

Rel2

Rel0

Ph3

F0

F2

Ph1

Ph2

Ph0

Fig. 3. Example supercycle for dining philosophers system of Figure 1.

Figure 3 shows an example supercycle (with edges in bold) for the dining philosophers system of

Figure 1. Ph0 waits for (enables) a single interaction, Grab0. Grab0 waits for (is disabled by) fork F0,
which waits for interaction Rel0. Rel0 in turn waits for Ph0. However, this supercycle occurs when

Ph0 is in state h0 and F0 is in state uℓ
0
. This state is not reachable from the initial state.

Figure 4 shows an example of a supercycle that is not a simple cycle. The “essential” part of

the supercycle, consisting of components B1,B2,B3, and their interactions a, b, c, d, is in bold. The
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supercycle can be extended to contain B4, but neither B5 nor B6: B6 is enabled, and B5 is ready to

execute the interaction h, which waits only for B6. Figure 5 shows that deleting the wait-for edge

B5

a
b

c d

B4

g

f

h i

e

B1

B2 B3

B6

Fig. 4. Example supercycle that is not a simple cycle.

from d to B1 in Figure 4 results in an example where there is a cycle of wait-for edges, without

there being a supercycle. This shows that a cycle does not necessarily imply a supercycle, and

hence deadlock.

The existence of a supercycle is sufficient and necessary for the occurrence of a deadlock, and so

checking for supercycles gives a sound and complete check for deadlocks. Proposition 3.8 states

that the existence of a supercycle implies a local deadlock: all components in the supercycle are

blocked forever.

Proposition 3.8. Let s be a state of B. If SC ⊑ WB (s ) is a supercycle, then all atomic components

Bi in SC cannot execute a transition in any state u reachable from s , including s itself.

Proof. Let Bi be an arbitrary component in SC. By Definition 3.6, every interaction that Bi
enables has a wait-for edge to some other component Bj in SC and so cannot be executed in state s .
Hence in any transition from s to another global state t , all of the components Bi in SC remain

in the same local state. Hence SC ⊑ WB (t ), i.e., the same supercycle SC remains in global state t .
Repeating this argument from state t and onwards leads us to conclude that SC ⊑ WB (u) for any
state u reachable from s . □
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B5

a
b

c d

B4

g

f

h i

e

B1

B2 B3

B6

Fig. 5. Example where a wait-for cycle does not imply deadlock.

Proposition 3.9 states that the existence of a supercycle is necessary for a local deadlock to occur:

if a set of components, considered in isolation, are blocked, then there exists a supercycle consisting

of exactly those components, together with the interactions that each component enables.

Proposition 3.9. Let B
′
be a subcomponent of B, and let s be an arbitrary state of B such that

B
′
, when considered in isolation, has no enabled interaction in state s↾B′. Then, WB (s ) contains a

supercycle.

Proof. Let Bi be an arbitrary atomic component in B
′
, and let a be any interaction that Bi

enables. Since B
′
has no enabled interaction, it follows that a is not enabled in B

′
, and therefore

has a wait-for edge to some atomic component Bj in B
′
. Hence let SC be the subgraph ofWB (s )

induced by:

(1) the atomic components of B
′
,

(2) the interactions a that each atomic component Bi enables, and the edges Bi → a, and

(3) the edges a→ Bj from each interaction a to some atomic component Bj in B
′
, where Bj does

not enable a.

SC satisfies Definition 3.6 and so is a supercycle. □
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We consider subcomponent B
′
in isolation to avoid other phenomena that prevent interactions

from executing, e.g., conspiracies [9]. Now the contrapositive of Proposition 3.9 is that absence of

supercycles in WB (s ) means there is no locally deadlocked subsystem.

Corollary 3.10 (Supercycle-free implies free of local deadlock). If, for every reachable

state s of (B,Q0),WB (s ) is supercycle-free, then (B,Q0) is free of local deadlock.

Proof. Suppose that (B,Q0) is not free of local deadlock. Then there exists a subsystem (B′,Q ′
0
)

of (B,Q0), and a reachable state s of (B′,Q ′
0
), such that B

′
enables no interaction in state s↾B′. By

Proposition 3.9,WB (s ) contains a supercycle. □

3.3 Subsystems and Supercycles
In the sequel, we say “deadlock-free” to mean “free of local deadlock”. We wish to check whether

supercycles can be formed or not. In principle, we could check directly whetherWB (s ) contains
a supercycle, for each reachable state s . However, this approach is subject to state-explosion,

and so is usually unlikely to be viable in practice. Instead, we formulate global conditions for

supercycle-freedom, and then “project” these conditions onto small subsystems, to obtain local

versions of these conditions that are (1) efficiently checkable, and (2) imply the global versions. To

formulate the global conditions, we characterize the static (structural) and dynamic (formation)

properties of supercycles, in Sections 4 and 5, respectively. To define the projection of the global

deadlock-freedom conditions onto small subsystems, we present the notion of local supercycle in

Section 6. For each interaction a in the BIP-system (B,Q0), the local check computes a subsystem

which includes a and also other components/interactions at a given “distance” from a. It then checks

whether any of the subsystem components is involved in a local supercycle.

Figure 6 illustrates the wait-for graph (in the initial state) of the dining philosopher subsystem

corresponding to theGrab0 interactionwith a distance of 1, i.e., its components and their interactions.

The subsystem includes the Grab0 interaction, the components Ph0, F0, and F1 that participate in
Grab0, and the interactions Rel0,Grab1, Rel1,Grab3, and Rel3 which have at least one of these

components as participants. We notice that no component in Figure 6 is involved in a supercycle.

The interactions Grab1, Rel1,Grab3, and Rel3 (underlined in the figure) are “border interactions”,

since they have participating components that are outside the subsystem. The enablement of border

interactions cannot be determined from the subsystem in isolation. Hence, to ensure soundness of

our supercycle-freedom check, we must assume pessimistically that the border interactions are not

enabled. This pessimism may yield a false negative, thereby causing our check to be incomplete.

The further the distance is increased, the “more complete” the local check becomes, as the local

states of the larger subsystem give a better over-approximation to the global states of the entire

system.

Rel0

Grab1

Rel1

F1Grab0F0

Ph0

Grab3

Rel3

Fig. 6. Wait-for graph in the initial state of the dining philosophers subsystem for Grab0 and distance 1.
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3.4 Abstract supercycle freedom conditions
Since we will present several conditions for supercycle-freedom, we now present an abstract

definition of the essential properties that all such conditions must have. The key idea is that

execution of an interaction a does not create a supercycle, and so any condition which implies this

for a is sufficient. If a different condition implies the same for another interaction aa, this presents

no problem w.r.t. establishing deadlock-freedom. Hence, it is sufficient to have one such condition

for each interaction in (B,Q0). Since each condition restricts the behavior of interaction execution,

we call it a “behavioral restriction condition”.

Definition 3.11 (Behavioral restriction condition). A behavioral restriction condition BC is a predi-

cate BC : (B,Q0, a) → {true, false}.

BC is a predicate on the effects of a particular interaction a within a given system (B,Q0).

Definition 3.12 (Supercycle-freedom preserving). A behavioral restriction condition BC is

supercycle-freedom preserving iff, for every BIP-system (B,Q0) and interaction a ∈ γ of (B,Q0):
if BC (B,Q0, a) = true, then

for every reachable transition t
a

→ s of (B,Q0)
if t is supercycle-free, then s is supercycle-free.

Theorem 3.13 (Deadlock-freedom via supercycle-freedom preserving restriction). As-

sume that

(1) for all s0 ∈ Q0,WB (s0) is supercycle-free, and
(2) there exists a supercycle-freedom preserving restriction BC such that, for all a ∈ γ :
BC (B,Q0, a) = true.

Then for every reachable state u of (B,Q0): WB (u) is supercycle-free.

Proof. Let u be an arbitrary reachable state. The proof is by induction on the length of the

finite execution α that ends in u. Assumption 1 provides the base case, for α having length 0, and

so u ∈ Q0. For the induction step, we establish: for every reachable transition t
a

→ s , WB (t ) is
supercycle-free implies thatWB (s ) is supercycle-free. This is immediate from Assumption 2, and

Definition 3.12. □

Since the above proof does not make any use of the requirement that there is a single restriction

BC for all interactions, we immediately have:

Corollary 3.14 (Deadlock-freedom via several supercycle-freedom preserving restric-

tions). Assume that

(1) for all s0 ∈ Q0,WB (s0) is supercycle-free, and
(2) for all a ∈ γ , there exists a supercycle-freedom preserving restriction BC such that

BC (B,Q0, a) = true.

Then for every reachable state u of (B,Q0): WB (u) is supercycle-free.

Proof. Similar to the proof of Theorem 3.13, except that, for the transition t
a

→ s , use the

supercycle-freedom preserving restriction BC corresponding to a. □

4 GLOBAL SUPERCYCLES
Recall that (B,Q0) is an arbitrary fixed BIP-system, (with B = γ (B1, . . . ,Bn )), which we use in all

definitions, theorems etc. We characterize a supercycle as a post-fixpoint of a “blocking operator”

S (defined below) over the complete Boolean lattice formed from the subgraphs of WB (s ), with ⊑
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(Definition 3.4) as the ordering. Roughly, S maps a subset X of the nodes ofWB (s ) (i.e., some subset

of the components and interactions in (B,Q0)) to a set of nodes Y whose execution is blocked by

X . An interaction a in Y is blocked by X if some participant of a is in X and does not enable a. A

component Bi in Y is blocked by X if every interaction that Bi enables is in X . In terms ofWB (s ),
a is blocked by X if there is a wait-for edge from a to some node in X , and Bi is blocked by X if

every wait-for edge from Bi is to a node in X .

Since S is monotone, its greatest fixpoint SC exists. IfWB (s ) is supercycle-free, then SC is the

empty wait-for graph ∅. Otherwise SC is the largest supercycle in WB (s ). We define the dualV of

S, whose least fixpoints are the nodes that are not members of any supercycle, and we say that

such nodes have a supercycle violation. SinceV is monotone and continuous, and the underlying

lattice is finite, its least fixpoint can be computed as usual by iterating V , starting from ∅. This

provides a method of computing the nodes with supercycle violations, which is the basis for our

deadlock-freedom criterion.

4.1 A fixpoint characterization of supercycles
Definition 4.1 (Set of subgraphs). P (WB (s )) = {X | X ⊑ WB (s )}.

We include in P (WB (s )) the empty wait-for graph, which we denote by ∅. Let nodes(B) =
{B1, . . . ,Bn }∪γ , i.e., nodes(B) is the set of components and interactions in B, and let P (nodes(B)) be
the powerset of nodes(B). Then P (WB (s )) is isomorphic to P (nodes(B)), where each X ∈ P (WB (s ))
is mapped to the set of nodes that it contains.

Definition 4.2 (Wait-for lattice). Define the partially ordered set LB (s ) = ⟨⟨⟨P (WB (s )),⊑⟩⟩⟩ whose
elements are all the subgraphs of WB (s ), and whereU ⊑ V is as in Definition 3.4.

The following proposition follows immediately from the definitions; its proof is left to the reader.

Proposition 4.3. LB (s ) = ⟨⟨⟨P (WB (s )),⊑⟩⟩⟩ is a finite complete Boolean lattice as follows:

• meet is given by graph intersection: X ⊓ Y consists of the nodes that are present in both X and

Y , together with the edges induced byWB (s ), i.e., if u ∈ X ⊓ Y , v ∈ X ⊓ Y , and u → v ∈ WB (s ),
then u → v ∈ X ⊓ Y .

• join is given by graph union: X ⊔ Y consists of the nodes that are present in X , or in Y , or in

both, together with the edges induced byWB (s ). Note that ⊔ is not disjoint graph union: it is

possible for X and Y to have nodes and edges in common. Note also that X ⊔ Y may contain

edges not present in either X nor Y , since the edges are those induced by WB (s ).
• WB (s ) is the top element.

• the empty wait-for graph ∅ is the bottom element.

• the complement X of X is obtained by taking all the nodes of WB (s ) that are not in X , together

with the induced edges.

As noted, ⊔,⊓ and complement are determined entirely by the sets of nodes in the relevant

subgraphs. The resulting edges are always those that are induced by WB (s ). Let ⟨⟨⟨P (nodes(B)), ⊆⟩⟩⟩
be the lattice defined using the subset ordering ⊆. Then LB (s ) = ⟨⟨⟨P (WB (s )),⊑⟩⟩⟩ is isomorphic to

⟨⟨⟨P (nodes(B)), ⊆⟩⟩⟩, where each X ∈ P (WB (s )) is mapped to the set of nodes that it contains.

Definition 4.4 (blockss ). Let X ⊑ WB (s ) and a,Bi be nodes inWB (s ). Then blockss (a,X ) ≜ (∃Bi ∈
X : a→ Bi ∈ WB (s )), and blockss (Bi ,X ) ≜ (∀ a : Bi → a ∈ WB (s ) ⇒ a ∈ X ).

Hence an interaction a is blocked by a set of nodes X if some participant Bi of a is in X , and Bi
does not enable a. A component Bi is blocked by X if all of the interactions that Bi enables are in X .
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Definition 4.5 (Ss ). Define Ss : P (WB (s )) → P (WB (s )) as follows. Ss (X ) is the subgraph with

nodes {v | blockss (v,X )}, together with their induced edges.

Definition 4.6 (Vs ). DefineVs : P (WB (s )) → P (WB (s )) as follows.Vs (X ) is the subgraph with

nodes {v | ¬blockss (v,X )}, together with their induced edges.

HenceVs (X ) = Ss (X ), i.e.,Vs and Ss are duals. Note that Ss andVs are defined given both a

particular BIP system B and a particular state s of B. Hence we should really write SB,s (X ),VB,s (X )
to indicate this functional dependence. Since however, B is a fixed BIP-system, we omit the B

subscript to avoid notational clutter. In giving examples, we usually omit the subscript for the state,

since the state will be implicitly given by the example.

Proposition 4.7. Ss andVs are monotone and continuous.

Proof. We show first that Ss is monotone, i.e., X ⊑ Y ⇒ Ss (X ) ⊑ Ss (Y ). Let v be an arbitrary

node in Ss (X ), so that blockss (v,X ) holds. There are two cases.

Case of v is an interaction a. By Definitions 4.4 and 4.5, we have (∃Bi ∈ X : a → Bi ∈ WB (s )).
Since X ⊑ Y , this same Bi is also a node of Y , and so ∃Bi ∈ Y : a → Bi ∈ WB (s ). Hence
blockss (a, Y ), and so a ∈ Ss (Y ).

Case of v is a component Bi . By Definitions 4.4 and 4.5, we have (∀ a : Bi → a ∈ WB (s ) ⇒ a ∈ X ).
Since X ⊑ Y , we have (∀ a : Bi → a ∈ WB (s ) ⇒ a ∈ Y ). Hence blockss (Bi , Y ), and so Bi ∈ Ss (Y ).

In both cases, we have v ∈ Ss (Y ). Since v was chosen arbitrarily from Ss (X ), it follows that
Ss (X ) ⊑ Ss (Y ). Hence Ss is monotone. Since the dual of a monotone mapping in a complete

Boolean lattice is also monotone, we have that Vs is monotone. Finally, since LB (s ) is finite, it
follows that Ss andVs are continuous. □

Hence, by the Knaster-Tarski theorem, the least and greatest fixpoints of Ss andVs exist.

Proposition 4.8. Let X , ∅ and X ⊑ WB (s ), i.e., X is a non-empty subgraph of WB (s ). Then X is

a supercycle in WB (s ) iff X ⊑ Ss (X ).

Proof. Let X be a supercycle inWB (s ). By Definition 3.6, every node in X is blocked by X , i.e.,

(∀ x ∈ X : blockss (x,X )). By Definition 4.5, X ⊑ Ss (X ). Conversely, suppose X ⊑ Ss (X ) for some

subgraph X of WB (s ). Hence (∀ x ∈ X : x ∈ Ss (X )), so by Definition 4.5, (∀ x ∈ X : blockss (x,X )).
Hence every node in X is blocked by X , and so X satisfies Definition 3.6, and is therefore a

supercycle. □

Thus the supercycles of WB (s ) are exactly the post-fixpoints of S.

Proposition 4.9. Let SC, SC ′ be supercycles in WB (s ). Then SC ⊔ SC
′
is a supercycle in WB (s ).

Proof. By Proposition 4.8, SC and SC
′
are post-fixpoints of Ss . Since the join of post-fixpoints

is a post-fixpoint, the proposition follows by applying Proposition 4.8 again. □

Proposition 4.10. Let SC be the greatest post-fixpoint ofSs . Then either (a)WB (s ) is supercycle-free
and SC = ∅, or (b)WB (s ) contains supercycles, and SC is the largest supercycle inWB (s ).

Proof. By the Knaster-Tarski theorem, the greatest post-fixpoint is the join of all the post-

fixpoints. If WB (s ) is supercycle-free, then by Proposition 4.8, the only post-fixpoint of Ss is ∅

Hence SC = ∅. If WB (s ) contains supercycles, then by Proposition 4.8, the set of post-fixpoints

of Ss is exactly the set of supercycles ofWB (s ). Hence SC is the join of all these supercycles. By

Proposition 4.9, SC is itself a supercycle. Hence SC is the largest supercycle in WB (s ). □
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Let lfp, gfp denote the least fixpoint and greatest fixpoint operators, respectively.

Proposition 4.11. v ∈ lfp(Vs ) iff v is not a node in any supercycle of WB (s ).

Proof. From the Park conjugate (dual) fixpoint theorem in complete Boolean lattices [27], we

have lfp(Vs ) = gfp(Ss ). By Proposition 4.10, gfp(Ss ) is the largest supercycle in WB (s ). Hence the
nodes not in gfp(Ss ) are exactly the nodes that are not in any supercycle. These are exactly the

nodes in lfp(Vs ). □

Define V1

s (X ) = Vs (X ), and for d > 1, Vd
s (X ) = Vs (V

d−1
s (X )), i.e., a superscript indicates

functional iteration ofV . Also let

⊔
be the “quantifier” version of ⊔. Note thatVd

s (∅) ⊑ Vd ′
s (∅)

when d ≤ d ′, sinceV is monotone. HenceV1

s (∅),V
2

s (∅), . . . is a non-decreasing sequence.

Proposition 4.12. lfp(Vs ) =
⊔

d≥1V
d
s (∅).

Proof. By Proposition 4.7, Vs is continuous. Follows by standard results, e.g., see the CPO

fixpoint theorem I in [20]. □

Definition 4.13 (Supercycle violation, violB (v, s ), violB (v, s,d )). Let v be a node ofWB (s ). Define
violB (v, s ) ≜ v ∈ lfp(Vs ) and, for d ≥ 1, violB (v, s,d ) ≜ v ∈ Vd

s (∅).1

Proposition 4.14. violB (v, s ) iff (∃d ≥ 1 : violB (v, s,d )).

Proof. By Definition 4.13, violB (v, s ) ≡ v ∈ lfp(Vs ). By Proposition 4.12, v ∈ lfp(Vs ) ≡
v ∈

⊔
d≥1V

d
s (∅). By Definition 4.13, (∀d ≥ 1 : violB (v, s,d ) ≡ v ∈ Vd

s (∅)). Chaining these

equivalences establishes the proposition. □

It follows from Proposition 4.11 that violB (v, s ) iff there does not exist SC such that SC is a

supercycle andv ∈ SC . We say that a nodev ofWB (s ) has a supercycle violation iffv is not a node in

any supercycle ofWB (s ), i.e., iff violB (v, s ) holds. By Proposition 4.12, we can compute lfp(Vs ) (and
therefore violB (v, s )) by iteratingVs , starting from ∅, until there is no more change. violB (v, s,d )
defines a supercycle violation that can be confirmed within d iterations of Vs , which we call a

level-d supercycle violation. violB (v, s ) requires, in general, the entire least fixed point ofVs .

Example 4.15 (Supercycle violation). For example, consider the wait-for graph in Figure 4. We

show the set of nodes in eachVd (∅), since the induced subgraph is easily inferred from Figure 4.

V1 (∅) = {i},V2 (∅) = {B6, i},V
3 (∅) = {h,B6, i},V

4 (∅) = {B5, h,B6, i},V
5 (∅) = {B5, h,B6, i}, as so

lfp(V ) = {B5, h,B6, i}. For Figure 5, it is easy to verify that lfp(V ) consists of all the nodes in the

system, i.e., the wait-for graph shown is supercycle-free.

Example 4.16 (Supercycle violations in dining philosophers). Figure 7 illustrates supercycle viola-

tions in four global states of the dining philosophers system of Figure 1. The states shown are the

initial state, and the states resulting after execution of the indicated sequences of interactions. For

each node v (interaction or component), we include a small positive integer after its name, giving

the smallest d such that v ∈ Vd (∅), i.e., the supercyle violation level.

Definition 4.17 (Supercycle membership, scyc
B
(v, s )). Let v be a node ofWB (s ). Then scyc

B
(v, s )

holds iff there exists a supercycle SC ⊑ WB (s ) such that v ∈ SC.

Proposition 4.18. Let v be a node of WB (s ). Then ¬scycB (v, s ) iff violB (v, s ) That is, a node is not
in any supercycle iff it has a supercycle violation.

Proof. Immediate from Definition 4.13, Definition 4.17, and Proposition 4.11. □
1
Note that we abuse notation by overloading viol, but no ambiguity arises since the two versions have different parameter

lists.

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39. Publication date: March 2010.



Global and Local Deadlock Freedom in BIP 39:17
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(a) Supercycle violations in initial state.
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(b) Supercycle violations after execution of Grab0.
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(c) Supercycle violations after execution of
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(d) Supercycle violations after execution of

Grab0;Grab2; Rel0.

Fig. 7. Example supercycle violations for dining philosophers system of Figure 1.

4.2 Structural properties of supercycles
We present some structural properties of supercycles, which are central to our deadlock-freedom

conditions.

Define preds
B
(v, s ) = {w | w → v ∈ WB (s )} and succsB (v, s ) = {w | v → w ∈ WB (s )}. The

definition of a supercycle (Definition 3.6) imposes certain constraints on supercycle membership of

a node w.r.t. its predecessors and successors in the wait-for-graph, as follows:

Proposition 4.19 (Supercycle membership constraints). Let a,Bi be nodes of WB (s ). Then

(1) scyc
B
(Bi , s ) ≡ (∀ a ∈ succsB (Bi , s ) : scycB (a, s )).

(2) scyc
B
(Bi , s ) ⇒ (∀ a ∈ preds

B
(Bi , s ) : scycB (a, s )).

(3) scyc
B
(a, s ) ≡ (∃Bi ∈ succsB (a, s ) : scycB (Bi , s )).

(4) scyc
B
(a, s ) ⇐ (∃Bi ∈ predsB (a, s ) : scycB (Bi , s )).

Proof. We deal with each clause in turn.
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Proof of Clause 1. Assume scyc
B
(Bi , s ), and let SC ⊑ WB (s ) be the supercycle containing Bi .

By Definition 3.6, Clause 2, (∀a ∈ succsB (Bi , s ) : scycB (a, s )). We conclude scyc
B
(Bi , s ) ⇒ (∀a ∈

succsB (Bi , s ) : scycB (a, s )). Now assume (∀a ∈ succsB (Bi , s ) : scycB (a, s )), and let SC be the join

of all the supercycles containing all the a ∈ succsB (Bi , s ). By Proposition 4.9, SC ⊑ WB (s ) is a
supercycle. Let SC

′
be SC with edge Bi → a added, for all a ∈ succsB (Bi , s ). Then SC

′
is a supercycle

by Definition 3.6, and also SC
′ ⊑ WB (s ). Hence scyc

B
(a, s ). We conclude scyc

B
(Bi , s ) ⇐ (∀a ∈

succsB (Bi , s ) : scycB (a, s )).
Proof of Clause 2. Assume scyc

B
(Bi , s ), so that SC ⊑ WB (s ) is the supercycle containing Bi . Let

a ∈ preds
B
(Bi , s ), and let SC

′
be SC with a→ Bi added. Hence SC

′
is a supercycle by Definition 3.6,

Clause 3. Since a was chosen arbitrarily, we conclude (∀ a ∈ preds
B
(Bi , s ) : scycB (a, s )).

Proof of Clause 3. Assume scyc
B
(a, s ), and let SC ⊑ WB (s ) be the supercycle containing a. By

Definition 3.6, Clause 3, there exists some Bi ∈ succsB (a, s ) such that Bi ∈ SC. Hence scycB (Bi , s ).
We conclude scyc

B
(a, s ) ⇒ (∃Bi ∈ succsB (a, s ) : scycB (Bi , s )). Now assume (∃Bi ∈ succsB (a, s ) :

scyc
B
(Bi , s )), and let SC ⊑ WB (s ) be the supercycle containing some Bi ∈ succsB (a, s ). Let SC

′
be

SC with a→ Bi added. Then SC
′
is a supercycle by Definition 3.6, and also SC

′ ⊑ WB (s ). Hence
scyc

B
(a, s ). We conclude scyc

B
(a, s ) ⇐ (∃Bi ∈ succsB (a, s ) : scycB (Bi , s )).

Proof of Clause 4. Assume ¬scyc
B
(a, s ), so that a is not in any supercycle of WB (s ). Let Bi ∈

preds
B
(a, s ). By Definition 3.6, Clause 2, Bi cannot be in any supercycle of WB (s ), since all aa ∈

succsB (Bi , s ) must also be in the supercycle. Hence ¬scyc
B
(Bi , s ). Since Bi was chosen arbitrarily,

we conclude ¬scyc
B
(a, s ) ⇒ (∀Bi ∈ predsB (a, s ) : ¬scycB (Bi , s )), the contrapositive of Clause 4. □

Note that Clause 2 cannot be strengthened to an equivalence: if all the interactions that wait for

a component Bi are in a supercycle, then Bi itself may or may not be in a supercycle, depending on

whether Bi is waiting for some other interaction aa that is not in a supercycle. Likewise, Clause 4

cannot be strengthened to an equivalence: if a is in a supercycle, then any component Bi that

waits for a may or may not be in a supercycle, depending on whether Bi is waiting for some other

interaction aa that is not in a supercycle.

While Proposition 4.19 gives relationships between supercycle membership of a node and both its

successors and predecessors, nevertheless Definition 3.6 implies that the “causality” of supercycle-

membership of a node v is from the successors of v to v , i.e., membership of v in a supercycle is

caused only by membership of v’s successors in a supercycle. Repeating this step, we infer that v’s
supercycle-membership is caused by the subgraph of the wait-for graph that is reachable from v .

Proposition 4.20. Every supercycle SC contains at least two nodes.

Proof. ByDefinition 3.6, SC is nonempty, and so contains at least one nodev . Ifv is an interaction

a, then by Definition 3.6, SC also contains some component Bi such that a→ Bi . Ifv is a component

Bi , then, by assumption, Bi enables at least one interaction a, and by Definition 3.6, every interaction

that Bi enables must be in SC. Hence in both cases, SC contains at least two nodes. □

Proposition 4.21. Every supercycle SC contains a maximal strongly connected component CC

such that (1) CC is itself a supercycle, and (2) there is no wait-for edge from a node in CC to a node

outside of CC.

Proof. SC is a directed graph, and so consider the decomposition of SC into its maximal strongly

connected components (MSCC). Let mscc(SC) be the graph resulting from replacing each MSCC

by a single node. By its construction, mscc(SC) is acyclic, and so contains at least one node x with

no outgoing edges. Let CC be the MSCC corresponding to x . It follows from the construction of

CC that no node in CC has a wait-for edge going to a node outside of CC, and so Clause (2) of the

Proposition is established.
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It also follows from the construction of CC that CC is nonempty, and hence CC satisfies clause

(1) of Definition 3.6. Let v be an arbitrary node in CC. Since CC ⊑ SC, v is a node of SC. Letw be

an arbitrary successor of v in SC. Since no node in CC has an edge going to a node outside of CC,

it follows thatw is a node of CC. Hence v has the same successors in CC as in SC. Now since SC

is a supercycle, every vertex v in SC has enough successors in SC to satisfy clauses (2) and (3) of

Definition 3.6. It follows that every vertex v in CC has enough successors in CC to satisfy clauses

(2) and (3) of Definition 3.6. Hence, by Definition 3.6, CC is itself a supercycle, and so Clause (1) of

the Proposition is established. □

Note also that by Proposition 4.20, CC contains at least two nodes. Hence CC is not a trivial

strongly connected component.

Definition 4.22 (Path, path length). Let G be a directed graph and v a vertex in G. A path π in G
is a finite sequence v0,v1, . . . ,vn such that (vi ,vi+1) is an edge inG for all i ∈ {0, . . . ,n − 1}. Write

pathG (π ) iff π is a path in G. Define first (π ) = v0 and last (π ) = vn . Let |π | denote the length of π ,
which we define as follows:

• if π is simple, i.e., all vi , 0 ≤ i ≤ n, are distinct, then |π | = n, i.e., the number of edges in π
• if π contains a cycle, i.e., there exist vi ,vj such that i , j and vi = vj , then |π | = ω (ω for

“infinity”).

Definition 4.23 (In-depth, out-depth). Let G be a directed graph and v a vertex in G. Define the
in-depth of v in G, notated as in_depthG (v ), as follows:

• if there exists a path π in G that contains a cycle and ends in v , i.e., |π | = ω ∧ last (π ) = v ,
then in_depthG (v ) = ω,
• otherwise, let π be a longest (simple) path ending in v . Then in_depthG (v ) = |π |.

Formally, in_depthG (v ) = (MAX π : pathG (π ) ∧ last (π ) = v : |π |).
Likewise define the out-depth of v in G, notated as out_depthG (v ), as follows:

• if there exists a path π in G that contains a cycle and starts in v , i.e., |π | = ω ∧ first (π ) = v ,
then out_depthG (v ) = ω,
• otherwise, let π be a longest (simple) path starting in v . Then out_depthG (v ) = |π |.

Formally, out_depthG (v ) = (MAX π : pathG (π ) ∧ first (π ) = v : |π |).

We use in_depth
B
(v, s ) for in_depth

WB (s ) (v ), and also out_depth
B
(v, s ) for out_depth

WB (s ) (v ). A
node with finite in-depth is not reachable from any non-trivial (i.e., consisting of more than one

node) MSCC, and a node with finite out-depth cannot reach any non-trivial MSCC.

Proposition 4.24. Assume that node v of WB (s ) has a finite out-depth of d ≥ 0 in WB (s ), i.e.,
out_depth

B
(v, s ) = d . Then violB (v, s,d + 1).

Proof. Proof is by induction on d .

Base case, d = 0. Hence by out_depth
B
(v, s ) = 0 and Definitions 4.22 and 4.23, v has no outgoing

wait-for edges in WB (s ). Hence ¬blockss (v,WB (s )), i.e., v is not blocked by the entire set of

nodes in WB (s ). Hence ¬blockss (v, ∅), since WB (s ) = ∅. So by Definition 4.6, v ∈ Vs (∅). By
Definition 4.13, violB (v, s, 1).

Inductive step, d > 0. Letw be an arbitrary successor of v , i.e., a nodew such that v → w ∈ WB (s ).

By Definitions 4.22 and 4.23,w has an out-depth d ′ that is less than d . That is, out_depth
B
(u, s ) =

d ′ < d . By the induction hypothesis applied to d ′, we obtain violB (w, s,d
′+1), and sow ∈ Vd ′+1

s (∅)
by Definition 4.13. Hence w ∈ Vd

s (∅), since, by monotonicity of Vs , we have V
n′
s (∅) ⊑ Vn

s (∅)
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when n′ ≤ n. Since w is an arbitrary successor of v , it follows that v is only blocked by nodes

in Vd
s (∅). Hence ¬blockss (v,V

d

s
(∅)). By Definition 4.6, v ∈ Vs (V

d
s (∅)), i.e., v ∈ Vd+1

s (∅). By
Definition 4.13, violB (v, s,d + 1). □

Corollary 4.25. A supercycle SC contains no nodes with finite out-depth.

Proof. Let v be a node in SC with finite out-depth d . By Proposition 4.24, violB (v, s,d + 1).
By Definition 4.13, violB (v, s ). By Proposition 4.18 ¬scyc

B
(v, t ). Hence v cannot be a node of any

supercycle, and we have a contradiction. □

Proposition 4.26. Every supercycle SC contains at least one cycle.

Proof. By contradiction. Suppose that SC is a supercycle and is also acyclic. Then every path in

SC is simple, and therefore finite. Hence every node in SC has finite out-depth. By Proposition 4.24,

SC cannot be a supercycle. □

Proposition 4.27. Let SC be a supercycle in WB (s ), and let SC
′
be the graph obtained from SC by

removing all vertices of finite in-depth and their incident edges. Then SC
′
is also a supercycle inWB (s ).

Proof. A vertex with finite in-depth cannot lie on a cycle in SC. Hence by Proposition 4.26,

SC
′ , ∅. Thus SC ′ satisfies clause (1) of the supercycle definition (3.6). Let v be an arbitrary vertex

of SC
′
. Thus v ∈ SC and in_depth

SC
(v ) = ω by definition of SC

′
. Let w be an arbitrary successor

of v in SC, i.e., v → w ∈ SC. Hence in_depth
SC
(w ) = ω by Definition 4.23. Hence w ∈ SC

′
, by

definition of SC ′. Furthermore, v → w ∈ SC
′
, since SC

′
contains all nodes of SC with infinite

in-depth. Hence the successors of v in SC
′
are the same as the successors of v in SC Now since SC

is a supercycle, every vertex v in SC has enough successors in SC to satisfy clauses (2) and (3) of

the supercycle definition (3.6). It follows that every vertex v in SC
′
has enough successors in SC

′
to

satisfy clauses (2) and (3) of the supercycle definition (3.6). Hence SC
′
is a supercycle in WB (s ). □

5 GLOBAL CONDITIONS FOR DEADLOCK FREEDOM
5.1 The supercycle formation condition
We use the structural properties of supercycles (Section 4.2) and the dynamics of wait-for graphs

(Proposition 3.5) to define a condition that must hold whenever a supercycle is created. Negating

this condition then implies the absence of supercycles.

Proposition 5.1 (Supercycle formation condition). Assume that t
a

→ s is a transition of

BIP-composite component B = γ (B1, . . . ,Bn ), WB (t ) is supercycle-free, and that WB (s ) contains a
supercycle. Then, in WB (s ), there exists a CC such that

(1) CC is a subgraph of WB (s ), i.e., CC ⊑ WB (s ),
(2) CC is strongly connected,

(3) CC is a supercycle,

(4) in WB (s ), there is no wait-for edge from a node in CC to a node outside of CC, and

(5) there exists a component Bi ∈ components(a) such that Bi is in CC.

Proof. By assumption, there is a supercycle SC that is a subgraph ofWB (s ). By Proposition 4.21,

SC contains a subgraph CC that is strongly connected, is itself a supercycle, and such that there is

no wait-for-edge from a node in CC to a node outside of CC. This establishes Clauses 1–4.

Now suppose Bi < CC for every Bi ∈ components(a). Then, no edge in CC is Bi -incident. Hence,

by Proposition 3.5, every edge in CC is an edge in WB (t ). Hence CC is a subgraph ofWB (t ). Now
let v be an arbitrary node in CC. Suppose v is a component Bj . By assumption, Bj < components(a),
and so s↾Bj = t↾Bj by Definition 2.3. Hence Bj enables the same set of interactions in state t as
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in state s . Also, inWB (s ), all of Bj ’s wait-for edges must end in an interaction that is in CC, since

CC is a supercycle inWB (s ). Hence the same holds inWB (t ). If v is an interaction, it must have a

wait-for edge e ′ to some component Bj ∈ CC, since CC is a supercycle inWB (s ). Hence this also
holds inWB (t ), since s↾Bj = t↾Bj . Hence v has enough successors in CC to satisfy the supercycle

definition (Definition 3.6). We conclude that CC by itself is a supercycle inWB (t ), which contradicts

the assumption thatWB (t ) is supercycle-free. Hence, Bi ∈ CC for some Bi ∈ components(a), and
so Clause 5 is established. □

The supercycle formation condition (Proposition 5.1) tells us that, when a supercycle SC is

created, some component Bi that participates in the interaction awhose execution created SC, must

be a node of a strongly connected component CC of SC, and moreover CC is itself a supercycle in

its own right. In a sense, CC is the “essential” part of SC. We use this to formulate a condition that

prevents the formation of supercycles. For transition t
a

→ s , we determine for every component

Bi ∈ components(a) whether it is possible for Bi to be a node in a strongly-connected supercycle

CC inWB (s ). There are two ways for Bi to not be a node in a strongly-connected supercycle:

(1) no supercycle membership: Bi is not a node of any supercycle, i.e., ¬scyc
B
(Bi , s ).

(2) no strong-connectedness: Bi is a node in a supercycle, but not a node in a strongly-connected

supercycle.

Hence, for a BIP system (B,Q0), our fundamental criterion for the prevention of supercycles is

that, for every reachable transition t
a

→ s resulting from execution of a, in the resulting state s ,
every component Bi of a must violate at least one of the above two conditions. Condition (1) is

just supercycle violation, as in Definition 4.13. Condition (2) is violation with respect to a strongly

connected supercycle, i.e., non-membership in a strongly connected supercycle. Technically, this

is implied by supercycle violation, and so the disjunction of the two conditions is equivalent to

Condition (1). It is however, convenient to use the disjunction of the two conditions, since we will

formulate local versions of these violation conditions, and the implication does not necessarily

hold for the local versions.

For a given BIP system (B,Q0) and interaction a, we use GALT (B,Q0, a) to denote the deadlock-
freedom criterion based on the disjunction of Conditions (1) and (2) above. This criterion is, in

a sense, the “most general” criterion for supercycle-freedom. If GALT (B,Q0, a) holds, global

state t is supercycle-free, and t
a

→ s , then it follows (as we establish below) that global state s
is also supercycle-free. So, by requiring (1) that all initial states are supercycle-free, and (2) that

GALT (B,Q0, a) holds for all interactions a ∈ γ , we obtain, by straightforward induction on length
of executions, that every reachable state is supercycle-free.

It also follows that any condition which implies GALT (B,Q0, a) is also sufficient to guarantee

supercycle-freedom, and hence deadlock-freedom. We exploit this in two ways:

(1) To define a “linear” condition, GLIN , that is easier to evaluate than GALT , since it

requires only the evaluation of lengths of wait-for paths, i.e., it does not have the “alternating”

character of GALT . It also implies GALT .

(2) To define “local variants” of GALT and GLIN , which we denote as LALT and LLIN ,

respectively. LALT and LLIN can be evaluated in small subsystems of (B,Q0). When

either LALT or LLIN holds in a small subsystem, we confirm deadlock freedom of

(B,Q0) without state-explosion. The local conditions imply the corresponding global ones,

i.e., they are sufficient but not necessary for deadlock-freedom.

We therefore now have four deadlock-freedom conditions: GALT (global alternating), LALT

(local alternating),GLIN (global linear), andLLIN (local linear). These are all concrete instances

of the abstract version of the deadlock-freedom condition given in Section 3.4.
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5.2 A global AND-OR condition for deadlock-freedom

We wish to show that the transition t
a

→ s does not create a supercycle in state s . Towards this end,
we first formalize violation of strong connectedness (Condition 2 above) as follows.

Definition 5.2 (Strong connectedness violation, sConnViolB (v, s )). Let v be a node of WB (s ). Then
sConnViolB (v, s ) holds iff there does not exist a strongly connected supercycle SSC such that

v ∈ SSC and SSC ⊑ WB (s ).

The general supercycle violation condition is then a disjunction of the supercycle violation

condition and the strong connectedness violation conditions.

Definition 5.3 (General supercycle violation, genViol
B
(v, s )). Let v be a node of WB (s ). Then

genViol
B
(v, s ) ≜ violB (v, s ) ∨ sConnViolB (v, s ).

Let t
a

→ s be a reachable transition. If, for every Bi ∈ components(a), genViol
B
(v, s ) holds, then,

as we show below, t
a

→ s does not introduce a supercycle, i.e., if t is supercycle-free, then so is s . As
stated above, we formulate below a “local” version of the general condition, which can be evaluated

in “small subsystems”, and so we often avoid state-explosion. We reiterate that violB (v, s ) implies

that v cannot be in a supercycle. Hence, v cannot be in a strongly-connected supercycle. Hence

violB (v, s ) ⇒ sConnViolB (v, s ), so that violB (v, s ) ∨ sConnViolB (v, s ) ≡ sConnViolB (v, s ). We give

the formation violation condition in this manner, since the implication does not necessarily hold

for the local versions of violB (v, s ) and sConnViolB (v, s ).
This discussion leads to the formal definition of GALT : after execution of interaction a, all

Bi ∈ components(a) exhibit a general supercycle-violation, as given by genViol
B
(Bi , s ) above.

Definition 5.4 (GALT (B,Q0, a)). Let t
a

→ s be a reachable transition of (B,Q0). Then, for every
component Bi ∈ components(a), the formation violation condition holds in state s . Formally,

∀Bi ∈ components(a), genViol
B
(Bi , s ).

Theorem 5.5. GALT is supercycle-freedom preserving.

Proof. We establish: for every reachable transition t
a

→ s , WB (t ) is supercycle-free implies

that WB (s ) is supercycle-free. Our proof is by contradiction, so we assume the existence of a

reachable transition t
a

→ s such that WB (t ) is supercycle-free and WB (s ) contains a supercycle.
By Proposition 5.1 there exists a component Bi ∈ components(a) such that Bi is in CC, where CC

is a strongly connected supercycle that is a subgraph ofWB (s ). Since CC is a strongly connected

supercycle, we have, by Definition 5.2, that ¬sConnViolB (Bi , s ) holds. Since CC is a supercycle, we

have, by Proposition 4.18, that ¬violB (Bi , s ) holds. Hence, by Definition 5.3, ¬genViol
B
(Bi , s ). But,

by Definition 5.4, we have genViol
B
(Bi , s ). Hence, we have the desired contradiction, and so the

theorem holds. □

5.3 A global linear condition for deadlock-freedom
In some cases, a simpler condition suffices to guarantee deadlock-freedom. This simpler condition

is “linear”, i.e., it lacks the AND-OR alternation aspect of GALT . After execution of a reachable

transition t
a

→ s of (B,Q0), we consider the in-depth and out-depth of the components Bi ∈

components(a). Suppose that there exists a supercycle SC ⊑ WB (s ). There are three cases:

• Case 1. Bi has finite in-depth inWB (s ): then, if Bi ∈ SC, it can be removed and still leave a

supercycle SC
′
, by Proposition 4.27. Hence SC

′ ⊑ WB (t ), and so Bi is not essential to the

creation of a supercycle.
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• Case 2. Bi has finite out-depth in WB (s ): by Corollary 4.25, Bi cannot be part of a supercycle,

and so SC ⊑ WB (t ).
• Case 3. Bi has infinite in-depth and infinite out-depth in WB (s ): in this case, Bi is possibly an

essential part of SC, i.e., SC was created in going from t to s .

We thus impose a condition which guarantees that only Case 1 or Case 2 occur.

Definition 5.6 (GLIN (B,Q0, a)). Let t
a

→ s be a reachable transition of (B,Q0). Then, in WB (s ),
every component Bi of components(a) either has finite in-depth, or has finite out-depth. Formally,

∀Bi ∈ components(a) : in_depth
B
(Bi , s ) < ω ∨ out_depth

B
(Bi , s ) < ω .

Proposition 5.7. Assume that node v of WB (s ) has a finite in-depth of d in WB (s ), i.e.,
in_depth

B
(v, s ) = d . Then sConnViolB (v, s ).

Proof. A node with finite in-depth cannot be in a wait-for cycle (i.e., a cycle of wait-for edges),

and therefore cannot be in a strongly connected supercycle. □

Lemma 5.8. For all interactions a ∈ γ : GLIN (B,Q0, a) implies GALT (B,Q0, a).

Proof. Assume, for arbitrary a ∈ γ , that GLIN (B,Q0, a) holds. That is,

For every reachable transition t
a

→ s of (B,Q0),
∀Bi ∈ components(a) : in_depth

B
(Bi , s ) < ω ∨ out_depth

B
(Bi , s ) < ω.

By Propositions 4.24 and 5.7,

For every reachable transition t
a

→ s of (B,Q0),
∀Bi ∈ components(a) : sConnViolB (Bi , s ) ∨ (∃d ≥ 1 : violB (Bi , s,d )).

Hence by Proposition 4.14 and Definition 5.3,

For every reachable transition t
a

→ s of (B,Q0),
∀Bi ∈ components(a) : genViol

B
(Bi , s )

Hence GALT (B,Q0, a) holds. □

Theorem 5.9. GLIN is supercycle-freedom preserving

Proof. Follows immediately from Theorem 5.5 and Lemma 5.8. □

5.4 Deadlock freedom using global restrictions
Corollary 5.10 (Deadlock-freedom via GALT ,GLIN ). Assume that

(1) for all s0 ∈ Q0, WB (s0) is supercycle-free, and
(2) for all interactions a of B (i.e., a ∈ γ ): GALT (B,Q0, a) ∨ GLIN (B,Q0, a) holds.

Then for every reachable state u of (B,Q0): WB (u) is supercycle-free, and so (B,Q0) is free of local
deadlock.

Proof. Immediate from Corollary 3.14, Theorem 5.5, and Theorem 5.9. □

6 LOCAL SUPERCYCLES
Evaluating the global restrictions GALT (B,Q0, a), GLIN (B,Q0, a) requires checking all reach-

able transitions of (B,Q0), which is, in general, subject to state-explosion. We need restrictions

which imply GALT (B,Q0, a), GLIN (B,Q0, a), and which can be checked efficiently. To this

end, we first develop some terminology, and a projection result, for relating the waiting-behavior

in a subsystem of (B,Q0) to that in (B,Q0) overall.
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6.1 Projection onto subsystems
Definition 6.1 (Projection of a wait-for graph). Let (B′,Q ′

0
) be a subsystem of (B,Q0). WB (s )↾B′ is

the wait-for graph whose nodes are the components and interactions in B
′
, and whose edges are

the induced edges fromWB (s ), i.e., for nodes v,w ofWB (s )↾B′, v → w is an edge inWB (s )↾B′ iff
v → w is an edge in WB (s ).

WriteWB
′ (s ) forWB (s )↾B′. Also, if s ′ = s↾B′, then defineWB

′ (s ′) ≜ WB (s )↾B′, sinceWB (s )↾B′

depends only on the projection of state s onto B
′
.

We now show that wait-for behavior in B “projects down” to any subcomponent B
′
, and that

wait-for behavior in B
′
“projects up” to B.

Proposition 6.2 (Wait-for edge projection). Let B
′
be a subcomponent of B. Let s be a state of

B, and s ′ = s↾B′. Let a be an interaction of B
′
, and Bi ∈ components(a) be an atomic component of

B
′
. Then (1) a→ Bi ∈ WB (s ) iff a→ Bi ∈ WB

′ (s ′), and (2) Bi → a ∈ WB (s ) iff Bi → a ∈ WB
′ (s ′).

Proof. By Definition 3.3, a → Bi ∈ WB (s ) iff s↾Bi (enb
Bi
a
) = false. Since s ′ = s↾B′, we

have s ′↾Bi = s↾Bi . Hence s↾Bi (enb
Bi
a
) = s ′↾Bi (enb

Bi
a
). By Definition 3.3, a → Bi ∈ WB

′ (s ′) iff
s ′↾Bi (enb

Bi
a
) = false. Putting together these three equalities gives us Clause (1).

By Definition 3.3, Bi → a ∈ WB (s ) iff s↾Bi (enb
Bi
a
) = true. Since s ′ = s↾B′, we have s ′↾Bi = s↾Bi .

Hence s↾Bi (enb
Bi
a
) = s ′↾Bi (enb

Bi
a
). By Definition 3.3, Bi → a ∈ WB

′ (s ′) iff s ′↾Bi (enb
Bi
a
) = true.

Putting the above three equalities together gives us clause (2). □

Definition 6.3 (Structure graph GB, G
ℓ
a
). The structure graph GB of composite component B =

γ (B1, . . . ,Bn ) is a bipartite graph whose nodes are the B1, . . . ,Bn and all the a ∈ γ . There is an edge

between Bi and interaction a iff Bi participates in a, i.e., Bi ∈ components(a). Define the distance
between two nodes to be the number of edges in a shortest path between them. Let G

ℓ
a
be the

subgraph of GB that contains a and all nodes of GB that have a distance to a which is less than or

equal to ℓ.

Definition 6.4 (Deadlock-checking subsystem, D
ℓ
a
). Define D

ℓ
a
, the deadlock-checking subsystem for

interaction a and radius ℓ, to be the subsystem of (B,Q0) based on the set of components in G
2ℓ
a
.

(See Definition 2.12).

Definition 6.5 (Border node, interior node of D
ℓ
a
). A node v of D

ℓ
a
is a border-node iff it has an edge

in GB to a node outside of D
ℓ
a
. If node v of D is not a border node, then it is an internal node.

Note that all border nodes of D
ℓ
a
are interactions, since 2ℓ is even. Hence all component nodes of

D
ℓ
a
are interior nodes.

In the sequel, we fix a particular subsystem D
ℓ
a
, which we refer to simply as D, with a and ℓ

being implicit (to avoid notational clutter with double-sub/superscripts). We write D.action = a

and D.radius = ℓ. Also, let QD

0
= Q0

↾D, i.e., QD

0
is the set of initial states of D, and let sD be an

arbitrary state of D. As given above, for a state sD of D, the wait-for graph for D only (i.e., ignoring

the components and interactions of B that are not in D) is denoted as WD (sD). Note also that “the

nodes of D” and “the nodes ofWD (sD)” denote the same set of components and interactions. We

will use either expression, depending on context.

6.2 Fixpoint characterization of local supercycles in a subsystem
We now develop a local version of the sequence of definitions and propositions given in Section 4.1.

Local means that they apply to any subsystem (B′,Q ′
0
) of (B,Q0). A subsystem has, in general,

border nodes, i.e., those nodes with a neighbor outside of the subsystem. The supercycle membership

of these nodes cannot be determined with certainty, by inspecting just the subsystem. Hence we
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pessimistically assume that border nodes are in a supercycle. When false, this assumption may

produce a false negative, and so we sacrifice completeness of our deadlock-freedom criterion. We

do however, avoid false positives (that may result if we assume a border node is not in a supercycle

when in fact it is), and so we maintain soundness of our criterion.

Definition 6.6 (Local supercycle). Let B = γ (B1, . . . ,Bn ) be a composite component,D a subsystem

of B, and sD a state of D. A subgraph SC ofWD (sD) is a local supercycle inWD (sD) if and only if all

of the following hold:

1. SC is nonempty, i.e., contains at least one node,

2. if Bi is a node in SC, then for all interactions a such that there is an edge inWD (sD) from Bi to

a:

(a) a is a node in SC, and

(b) there is an edge in SC from Bi to a,

that is, Bi → a ∈ WD (sD) implies Bi → a ∈ SC,

3. if a is a node in SC, then, either a is a border interaction of D, or there exists a Bj such that:

(a) Bj is a node in SC, and

(b) there is an edge from a to Bj inWD (sD), and
(c) there is an edge from a to Bj in SC,

that is, a ∈ SC implies (∃Bj : a→ Bj ∈ WD (sD) ∧ a→ Bj ∈ SC) or (a is a border interaction
of D).

Intuitively, SC is a supercycle iff every node in SC is blocked from executing by other nodes in

SC, or is a border interaction. We pessimistically consider a border interaction a to be blocked,

since the subsystem D cannot provide information about the participant components of a that are

outside of D. In particular, one or more border interactions necessarily form a local supercycle. Yet,

it is important to notice that a blocked border interaction a does not necessarily imply a global

supercycle.

We carry over the definition of subgraph ⊑ from Section 4.1, and develop the analogous definitions

for the subsystem D of B.

Definition 6.7 (Set of subgraphs). P (WD (sD)) ≜ {X | X ⊑ WD (sD)}.

Definition 6.8 (Wait-for lattice). Define the partially ordered setLD (sD) = ⟨⟨⟨P (WD (sD)),⊑⟩⟩⟩whose
elements are all the subgraphs of WD (sD), and where U ⊑ V is as in Definition 3.4.

Proposition 6.9. LD (sD) = ⟨⟨⟨P (WD (sD)),⊑⟩⟩⟩ is a finite complete Boolean lattice, with ⊓, ⊔, and

complementation as in Proposition 4.3, top element WD (sD), and bottom element ∅.

Definition 6.10 (lblockssD ). Let X ⊑ WD (sD) and a,Bi be nodes inWD (sD). Then lblockssD (a,X ) ≜
[(∃Bi ∈ X : a → Bi ∈ WD (sD)) or a is a border interaction of D], and lblockssD (Bi ,X ) ≜ (∀a :

Bi → a ∈ WD (sD) ⇒ a ∈ X ).

Hence a border interaction a is pessimistically considered to be always blocked, since the

subsystem D does not contain enough information about the enablement of a. A non-border

interaction a is (as usual) blocked by a set of nodes X if some participant Bi of a is in X , and Bi does

not enable a. A component Bi is blocked by X if all of the interactions that Bi enables are in X .

Definition 6.11 (SLsD ). Define SLsD : P (WD (sD)) → P (WD (sD)) as follows. SLsD (X ) is the
subgraph with nodes {v | lblockssD (v,X )}, together with the edges induced by WD (sD).

Definition 6.12 (VLsD ). DefineVLsD : P (WD (sD)) → P (WD (sD)) as follows.VLsD (X ) is the

subgraph with nodes {v | ¬lblockssD (v, X̂ )}, together with the edges induced by WD (sD), where we

take the complement X̂ with respect to D.
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Implicit in writing X̂ is that X ⊑ D. Then X̂ contains all nodes that are in D and not in X , together

with the edges induced byWD (sD). HenceVLsD (X ) =
G
SLsD

(X̂ ), i.e.,VLsD and SLsD are duals.

Note that (as for Ss andVs ) SLsD andVLsD are defined given a particular subsystem D of the

system B, and a particular state sD of D. Since the subsystem D is fixed, we will omit D from the

subscript of SLsD andVLsD .

Proposition 6.13. SLsD andVLsD are monotone and continuous.

Proof. We show first that SLsD is monotone, i.e., X ⊑ Y ⇒ SLsD (X ) ⊑ SLsD (Y ). Let v be an

arbitrary node in SLsD (X ), so that lblockssD (v,X ) holds. There are three cases.

Case of v is a border interaction of D. Then lblockssD (v, Y ) by Definition 6.10, and so v ∈ SLsD (Y )
by Definition 6.11.

Case of v is a non-border interaction a. By Definitions 6.10 and 6.11, we have

∃Bi ∈ X : a → Bi ∈ WD (sD). Since X ⊑ Y , this same Bi is also a node of Y , and so

∃Bi ∈ Y : a→ Bi ∈ WD (sD). Hence lblockssD (a, Y ), and so a ∈ SLsD (Y ).

Case of v is a component Bi . By Definitions 6.10 and 6.11, we have (∀a : Bi → a ∈ WD (sD) ⇒
a ∈ X ). Since X ⊑ Y , we have (∀a : Bi → a ∈ WD (sD) ⇒ a ∈ Y ). Hence, lblockssD (Bi ,Y ), and so

Bi ∈ SLsD (Y ).

In all three cases, we have v ∈ SLsD (Y ). Since v was chosen arbitrarily from SLsD (X ), it follows
that SLsD (X ) ⊑ SLsD (Y ). Hence, SLsD is monotone. Since the dual of a monotone mapping in a

complete Boolean lattice is also monotone, we have thatVLsD is monotone. Finally, since LD (sD)
is finite, it follows that SLsD andVLsD are continuous. □

Proposition 6.14. Let X , ∅ and X ⊑ WD (sD), i.e., X is a non-empty subgraph of WD (sD). Then,
X is a local supercycle in WD (sD) iff X ⊑ SLsD (X ).

Proof. Let X be a local supercycle inWD (sD). By Definition 6.6, every node in X is blocked by

X or is a border interaction, i.e., (∀ x ∈ X : lblockssD (x,X )). By Definition 4.5, X ⊑ SLsD (X ).
Conversely, suppose X ⊑ SLsD (X ) for some subgraph X of WD (sD). Hence (∀ x ∈ X : x ∈

SLsD (X )), so by Definition 6.11, (∀ x ∈ X : lblockssD (x,X )). Hence every node in X is blocked by

X or is a border interaction, and so X satisfies Definition 6.6, and is therefore a local supercycle. □

Proposition 6.15. Let SC, SC ′ be local supercycles in WD (sD). Then SC ⊔ SC
′
is a local supercycle

in WD (sD).

Proof. By Proposition 6.14, SC and SC
′
are post-fixpoints of SLsD . Since the join of post-

fixpoints is a post-fixpoint, the proposition follows by applying Proposition 6.14 again. □

Proposition 6.16. Let SC be the greatest fixpoint of SLsD . Then either (a) WD (sD) is supercycle-
free and SC = ∅, or (b) WD (sD) contains local supercycles, and SC is the largest local supercycle in

WD (sD).

Proof. By the Knaster-Tarski theorem, the greatest fixpoint is the join of all the post-fixpoints.

IfWD (sD) is supercycle-free, then by Proposition 6.14, the only post-fixpoint of SLsD is ∅. Hence

SC = ∅ (this is possible since there may be no border interactions). If WD (sD) contains supercycles,
then by Proposition 6.14, the set of post-fixpoints of SLsD is exactly the set of local supercycles of

WD (sD). Hence SC is the join of all these local supercycles. By Proposition 6.15, SC is the largest

local supercycle in WD (sD). □
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Proposition 6.17. v ∈ lfp(VLsD ) iff v is not a node in any local supercycle of WD (sD).

Proof. From the Park conjugate (dual) fixpoint theorem in complete Boolean lattices [27], we

have lfp(VsD ) =
G
gfp(SsD ). By Proposition 4.10, gfp(SsD ) is the largest local supercycle inWD (sD).

Hence the nodes not in gfp(SsD ) are exactly the nodes that are not in any local supercycle. These

are exactly the nodes in lfp(VsD ). □

DefineVL1

sD (X ) = VLsD (X ), and for d > 1,VLd
sD (X ) = VLsD (VL

d−1
sD (X )), i.e., a superscript

indicates functional iteration ofVLsD . Note thatVL
d
sD (∅) ⊑ VL

d ′
sD (∅) when d ≤ d ′, sinceVLsD

is monotone. HenceVL1

sD (∅),VL
2

sD (∅), . . . is a non-decreasing sequence.

Proposition 6.18. lfp(VLsD ) =
⊔

d≥1VL
d
sD (∅)

Proof. VLsD is continuous. Follows by standard results, e.g., see the CPO fixpoint theorem I in

[20]. □

Definition 6.19 (Local supercycle violation, violLocD (v, sD), violLocD (v, sD,d )). Let sD be a state

of D and v be a node of D. Define violLocD (v, sD) ≜ v ∈ lfp(VLsD ), and, for d ≥ 1,

violLocD (v, sD,d ) ≜ v ∈ VLd
sD (∅).

Proposition 6.20. violLocD (v, sD) iff (∃d ≥ 1 : violLocD (v, sD,d )).

Proof. By Definition 6.19, violLocD (v, sD) ≡ v ∈ lfp(VLsD ). By Proposition 6.18, v ∈

lfp(VLsD ) ≡ v ∈
⊔

d≥1VL
d
sD (∅). By Definition 6.19, (∀d ≥ 1 : violLocD (v, sD,d ) ≡ v ∈

VLd
sD (∅)). Chaining these equivalences establishes the proposition. □

violLocD (v, sD,d ) defines a local supercycle violation that can be confirmed within d iterations

ofVLsD , which we call a level-d local supercycle violation. violLocD (v, sD) requires, in general, the

entire least fixpoint ofVLsD .

Example 6.21 (Local supercycle violations in dining philosophers). Figures 8(a), 8(b), and 8(c)

illustrate local supercycle violations corresponding to Figures 7(b), 7(c), 7(d) respectively. The

subsystem used, in each case, is based on the last interaction executed, i.e., Grab0, Grab2, and Rel0,

respectively, and with a radius of 1 in all cases. The border interactions are shown underlined,

and for each node v (interaction or component), we include a small positive integer after its name,

giving the smallest d such that v ∈ VLd (∅), i.e., the local supercycle violation level.

We now show that a local supercycle violation implies (global) supercycle violation.

Proposition 6.22. Let s be an arbitrary global state of B, and let sD = s↾D.
(a) Let X ⊑ WD (sD). ThenVLsD (X ) ⊑ Vs (X ).

(b) Let d ≥ 1. ThenVLd
sD (∅) ⊑ V

d
s (∅).

Proof. For (a), let v ∈ VLsD (X ). By Definition 6.12, ¬lblockssD (v, X̂ ). Now v is either an

interaction a or a component Bi .

By Definition 6.10, if v is an interaction a, then it is not a border interaction, and furthermore there

is no component Bi ∈ X̂ such that a → Bi ∈ WD (sD). Since X̂ ⊑ X , we conclude ¬blockss (v,X ),
and so v ∈ Vs (X ).

By Definition 6.10, if v is a component Bi , then there exists an interaction a such that Bi → a ∈

WD (sD) and a < X̂ . Hence a ∈ X , and so a < X . Hence ¬blockss (v,X ), and so v ∈ Vs (X ).
In both cases, the arbitrary element v ofVLsD (X ) is also an element ofVs (X ), and soVLsD (X ) ⊑

Vs (X ).

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39. Publication date: March 2010.



39:28 P.C. Attie, S. Bensalem, M. Bozga, M. Jaber, J. Sifakis, F.A. Zaraket
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F0, 2

Ph0, 2

F1, 2Grab0, 3 Rel0, 1

(a) Local supercycle violations after execu-

tion of Grab0.

Ph2, 2

Grab3

Rel3

Grab1

Rel1

Rel2, 1 F2, 2F3, 2 Grab2, 3

(b) Local supercycle violations after ex-

ecution of Grab0;Grab2.

F1, 2

Grab3

Rel3

Grab1

Rel1

F0, 2

Ph0, 2

Grab0, 1 Rel0, 3

(c) Local supercycle violations after execu-

tion of Grab0;Grab2; Rel0.

Fig. 8. Example local supercycle violations for dining philosophers system of Figure 1.

We establish (b) by induction on d . The base case is d = 1, which is given by (a). For the induction

step, d > 1, we have the induction hypothesisVLd−1
sD (∅) ⊑ Vd−1

s (∅). HenceVLsD (VL
d−1
sD (∅)) ⊑

VLsD (V
d−1
s (∅)) since VLsD is monotone. By (a) VLsD (V

d−1
s (∅)) ⊑ Vs (V

d−1
s (∅)). Hence

VLsD (VL
d−1
sD (∅)) ⊑ Vs (V

d−1
s (∅)), i.e.,VLd

sD (∅) ⊑ V
d
s (∅), and so (b) is established. □

Proposition 6.23. Let s be an arbitrary global state of B. For all interactions a ∈ γ and ℓ ≥ 1, let

D = D
ℓ
a
and sD = s↾D. Then,

(a) For all d ≥ 1 : violLocD (v, sD,d ) implies violB (v, s,d ), and
(b) violLocD (v, sD) implies violB (v, s ).

Proof. For (a), assume violLocD (v, sD,d ) for some arbitrary d ≥ 1. By Definition 6.19, v ∈

VLd
sD (∅). By Proposition 6.22, v ∈ Vd

s (∅). By Definition 4.13, violB (v, s,d ).
For (b), assume violLocD (v, sD). By Proposition 6.20, violLocD (v, sD,d ) for some d ≥ 1. By (a), we

have violB (v, s,d ). By Proposition 4.14, we have violB (v, s ). □

7 LOCAL CONDITIONS FOR DEADLOCK FREEDOM
7.1 A local AND-OR condition for deadlock-freedom
We now seek a local condition, which we evaluate in D, and which implies GALT . We define

local versions of both violB (v, s,d ) and sConnViolB (v, s ).
To achieve a local and conservative approximation of violB (v, s,d ), we make the “pessimistic”

assumption that the violation status of border nodes of D cannot be known, since it depends on

nodes outside of D. Now, if an internal node v of D can be marked with a level-d local supercycle-

violation, by applying Definition 6.19 to D, and with the border nodes marked as non-violating,
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then it is also the case, as we show below, that v also has a level-d global supercycle-violation, as

per Definition 4.13.

To achieve a local and conservative approximation of sConnViolB (v, s ), we project onto the

subsystem D.

7.1.1 Local strong connectedness condition. We now present the local version of the strong

connectedness violation condition, given above in Definition 5.2.

Definition 7.1 (Local strong connectedness violation, sConnViolLocD (v, sD)). Let L be the nodes

of WD (sD) that have no local supercycle violation, i.e., L = {v | v ∈ D ∧ ¬violLocD (v, sD)}. Let
WL = WD (sD)↾L, i.e.,WL is the subgraph ofWD (sD) consisting of the nodes with no local supercycle
violation, and the edges between those nodes that are also edges in WD (sD).

Let v be an arbitrary node in WL. Then, sConnViolLocD (v, sD) holds iff:

(1) there does not exist a nontrivial strongly connected supercycle SSC such that v ∈ SSC and

SSC ⊑ WL, and

(2) either

(a) there is no path in WL from v to a border node of D

or

(b) there is no path in WL from a border node of D to v.

Note that Clause 2a means that every wait-for path π inWD (sD) from v to a border node of D

contains at least one node w with a local supercycle violation, i.e., violLocD (w, sD). Also Clause 2b

means that every wait-for path π ′ inWD (sD) from a border node of D to v contains at least one

node w with a local supercycle violation, i.e., violLocD (w, sD).
Table 1 summarizes the main predicates that we have defined. We show that the local strong

connectedness condition implies the global strong connectedness condition.

Proposition 7.2. Let s be an arbitrary state of B. For all interactions a ∈ γ , and ℓ ≥ 1, let D = D
ℓ
a
,

sD = s↾D, and let v be an arbitrary node in D. Then

sConnViolLocD (v, sD) implies sConnViolB (v, s ).

Proof. By contradiction. Assume for some state s of B and some node v in D that

sConnViolLocD (v, sD) ∧ ¬sConnViolB (v, s ) holds. By ¬sConnViolB (v, s ) and Definition 5.2, there

exists a strongly connected supercycle SSC such that v ∈ SSC and SSC ⊑ WB (s ). Then, there are
two cases:

(1) SSC ⊑ WD (sD): let x be any node in SSC. Since x is a node in a supercycle, we have by

Definition 4.17 and Proposition 4.18, that ¬violB (x, s ). Hence, by Proposition 6.23, we have

¬violLocD (x, sD). Let WL be as given in Definition 7.1. Then x ∈ WL, and since x is an

arbitrary node of SSC, we have SSC ⊑ WL. Thus Clause 1 of Definition 7.1 is violated.

(2) SSC ̸⊑ WD (sD): then there exists a node x ∈ SSC −WD (sD). Now v ∈ SSC and SSC is strongly

connected. Hence there must exist a wait-for path π inWD (sD) from v to x and a wait-for

path π ′ inWD (sD) from x to v . Since v ∈ D and x < D, it follows that both π and π ′ cross a
border node of D. Furthermore, since π , π ′ are paths in SSC, every node w that is in π or in

π ′ must be in a supercycle, and so cannot have a supercycle violation, i.e., ¬violB (w, s ). By
Proposition 6.23, every node w that is in π or in π ′ cannot have a local supercycle violation,
i.e., ¬violLocD (w, sD). Hence, Clauses 2a and 2b of Definition 7.1 are violated, since they

require that at least one node in π and at least one node in π ′ has a local supercycle violation.

In both cases, Definition 7.1 is violated. But Definition 7.1 must hold, since we have

sConnViolLocD (v, sD). Hence, the desired contradiction. □
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7.1.2 General local violation condition. We showed above that local supercycle violation implies

global supercycle violation, and local strong connectedness violation implies global strong con-

nectedness violation. The general global supercycle violation condition is the disjunction of global

supercycle violation and global strong connectedness violation. Hence, we formulate the general

local supercycle violation condition as the disjunction of local supercycle violation and local strong

connectedness violation. It follows that the general local supercycle violation condition implies the

general global supercycle violation condition.

Definition 7.3 (General local supercycle violation, genViolLoc
D
(v, sD)). Let v be an arbitrary

node of D and sD be an arbitrary state of D. Then genViolLoc
D
(v, sD) ≜ violLocD (v, sD) ∨

sConnViolLocD (v, sD).

Proposition 7.4 (Local violation implies global violation). Let s be an arbitrary state of

BIP composite component B. For all interactions a ∈ γ , and ℓ ≥ 1, let D = D
ℓ
a
and sD = s↾D. Also let v

be an arbitrary node of D. Then

genViolLoc
D
(v, sD) implies genViol

B
(v, s ).

Proof. Assume that genViolLoc
D
(v, sD) holds. Then, by Definition 7.3, violLocD (v, sD) ∨

sConnViolLocD (v, sD). We proceed by cases:

(1) violLocD (v, sD): hence violB (v, s ) by Proposition 6.23.

(2) sConnViolLocD (v, sD): hence sConnViolB (v, s ) by Proposition 7.2.

By Definition 5.3, genViol
B
(v, s ) ≜ violB (v, s ) ∨ sConnViolB (v, s ). Hence we conclude that

genViol
B
(v, s ) holds. □

7.1.3 Local AND-OR Condition. The actual local condition, LALT , is given by applying the

general local supercycle violation condition to every reachable transition of the subsystem D being

considered, and to every component Bi ∈ components(a).

Definition 7.5 (LALT (B,Q0, a, ℓ)). Let ℓ ≥ 1, D = D
ℓ
a
, QD

0
= Q0

↾D. Let tD
a

→ sD be an

arbitrary reachable transition of the subsystem (D,QD

0
). Then, in sD, the following holds. For every

Bi ∈ components(a): Bi has a general local supercycle violation that can be confirmed within D.

Formally,

∀Bi ∈ components(a) : genViolLoc
D
(Bi , sD).

We showed previously that GALT implies deadlock-freedom, and so it remains to establish

that LALT implies GALT .

Lemma 7.6. Let a ∈ γ be an interaction of BIP-system (B,Q0). Then
(∃ ℓ ≥ 1 : LALT (B,Q0, a, ℓ)) implies GALT (B,Q0, a).

Proof. Assume LALT (B,Q0, a, ℓ) for some ℓ ≥ 1, and let D = D
ℓ
a
, QD

0
= Q0

↾D. Let t
a

→ s be

an arbitrary reachable transition of BIP-system (B,Q0), and let tD = t↾D, sD = s↾D, so that tD
a

→ sD

is the projection of t
a

→ s onto D. By Corollary 2.15, tD
a

→ sD is a reachable transition of (D,QD

0
).

By Definition 7.5,

for every reachable transition tD
a

→ sD of (D,QD

0
):

∀Bi ∈ components(a) : genViolLoc
D
(Bi , sD).

From this and Proposition 7.4,

for every reachable transition t
a

→ s of (B,Q0):
∀Bi ∈ components(a) : genViol

B
(Bi , s )

Hence, by Definition 5.4, GALT (B,Q0, a) holds. □
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Table 1. Summary of predicates.

violB (v, s,d ) v determined at depth d to not be in supercycle

violLocD (v, sD,d ) v locally determined at depth d to not be in a supercycle

sConnViolB (v, s ) v not in a strongly connected supercycle

sConnViolLocD (v, sD) v locally determined to not be in a strongly connected supercycle

genViol
B
(v, s ) v does not contribute to a supercycle

genViolLoc
D
(v, sD) v locally determined to not contribute to a supercycle

Theorem 7.7. LALT is supercycle-freedom preserving.

Proof. Follows immediately from Theorem 5.5 and Lemma 7.6. □

Notice that Definition 7.5 calls genViolLoc
D
(v, sD) on components, which by definition should

be connected to at least one non-border interaction. As such, the trivial local supercycles, i.e.,

consisting only of border interactions, have no effect on supercycle formation.

7.2 A local linear condition for deadlock-freedom
We now formulate a local version of GLIN . Observe that if in_depth

B
(Bi , s ) < ω ∨

out_depth
B
(Bi , s ) < ω, then there is some finite ℓ such that in_depth

B
(Bi , s ) = ℓ ∨

out_depth
B
(Bi , s ) = ℓ.

Definition 7.8 (LLIN (B,Q0, a, ℓ)). Let ℓ ≥ 1, D = D
ℓ
a
, QD

0
= Q0

↾D. Let tD
a

→ sD be an arbitrary

reachable transition of the subsystem (D,QD

0
). Then, in sD, the following holds. For every Bi ∈

components(a): either Bi has in-depth less than 2ℓ − 1, or out-depth less than 2ℓ − 1, in WD (sD).
Formally,

∀Bi ∈ components(a) : in_depth
D
(Bi , sD) < 2ℓ − 1 ∨ out_depth

D
(Bi , sD) < 2ℓ − 1.

To infer deadlock-freedom in (B,Q0) by checking LLIN (B,Q0,a, ℓ), we use Proposition 6.2:

since wait-for edges project up and down, it follows that wait-for paths project up and down,

provided that the subsystem contains the entire wait-for path.

Proposition 7.9 (In-projection, Out-projection). Let ℓ ≥ 1, let Bi be an atomic component

of B, and let (B′,Q ′
0
) be a subsystem of (B,Q0) which is based on a superset of G

2ℓ
a
. Let s be a state

of (B,Q0), and s
′ = s↾B′. Then (1) in_depth

B
(Bi , s ) < 2ℓ − 1 iff in_depth

B
′ (Bi , s

′) < 2ℓ − 1, and (2)
out_depth

B
(Bi , s ) < 2ℓ − 1 iff out_depth

B
′ (Bi , s

′) < 2ℓ − 1.

Proof. We establish clause (1). The proof of clause (2) is analogous, except we replace paths

ending in Bi by paths starting from Bi . The proof of clause (1) is by double implication.

in_depth
B
(Bi , s ) < 2ℓ − 1 implies in_depth

B
′ (Bi , s

′) < 2ℓ − 1: Assume that in_depth
B
(Bi , s ) <

2ℓ − 1. Let π be an arbitrary wait-for path in WB
′ (s ′) that ends in Bi . Since (B

′,Q ′
0
) is a subsystem

of (B,Q0), by Definition 3.3 and s ′ = s↾B′, WB
′ (s ′) is a subgraph of WB (s ), i.e., WB

′ (s ′) ⊑ WB (s ).
Hence π is a wait-for path in WB (s ). By in_depth

B
(Bi , s ) < 2ℓ − 1, we have |π | < 2ℓ − 1. Hence

in_depth
B
′ (Bi , s

′) < 2ℓ − 1 since π was arbitrarily chosen.

in_depth
B
′ (Bi , s

′) < 2ℓ − 1 implies in_depth
B
(Bi , s ) < 2ℓ − 1: Assume that in_depth

B
(Bi , s ) ≥

2ℓ − 1. Then there exists a wait-for path π in WB (s ) such that |π | ≥ 2ℓ − 1 and π ends in Bi .

Let ρ be the suffix of π with length 2ℓ − 1. Since (B′,Q ′
0
) is based on a superset of G

2ℓ
a , and since

the distance from Bi to the border of G
2ℓ
a

is 2ℓ − 1, we conclude that ρ is a wait-for path that is

wholly contained in WB
′ (s ′). Hence we have in_depth

B
′ (Bi , s

′) ≥ 2ℓ − 1. We have thus established
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in_depth
B
(Bi , s ) ≥ 2ℓ − 1 implies in_depth

B
′ (Bi , s

′) ≥ 2ℓ − 1. The contrapositive is the desired

result. □

We now show that LLIN (B,Q0, a, ℓ) implies GLIN (B,Q0, a), which in turn implies deadlock-

freedom.

Lemma 7.10. Let a be an interaction of BIP-system (B,Q0), i.e., B = γ (B1, . . . ,Bn ) and a ∈ γ . If
LLIN (B,Q0, a, ℓ) holds for some finite ℓ ≥ 1, then GLIN (B,Q0, a) holds.

Proof. Let t
a

→ s be a reachable transition of (B,Q0) and let Bi ∈ components(a). Let D = D
ℓ
a

and QD

0
= Q0

↾D. Let sD = s↾D, tD = t↾D. Then tD
a

→ sD is a reachable transition of (D,QD

0
)

by Corollary 2.15. By LLIN (B,Q0, a, ℓ), in_depthD (Bi , sD) < 2ℓ − 1 ∨ out_depth
D
(Bi , sD) <

2ℓ − 1. Hence by Proposition 7.9, in_depth
B
(Bi , s ) < 2ℓ − 1 ∨ out_depth

B
(Bi , s ) < 2ℓ − 1. So

in_depth
B
(Bi , s ) < ω ∨ out_depth

B
(Bi , s ) < ω. Hence GLIN (B,Q0, a). □

Proposition 7.11. Let d < ℓ and assume that node v ofWD (sD) has finite out-depth of d ≥ 1 in

WD (sD), i.e., out_depthD (v, sD) = d . Then violLocD (v, sD,d + 1).

Proof. Proof is by induction on d .

Base case, d = 0. Hence by out_depth
D
(v, sD) = 0, and Definitions 4.22 and 4.23, v has no out-

going wait-for edges in WD (sD). By Definition 6.10, ¬lblockssD (v,WD (sD)). By Definition 6.12,

v ∈ VLsD (∅). Hence violLocD (v, sD, 1) by Definition 6.19.

Induction step, d > 0. Assume (out_depth
D
(v, sD) = d ). Letw be an arbitrary successor of v , i.e.,

a nodew such that v → w ∈ WD (sD). By Definitions 4.22 and 4.23,w has an out-depth d ′ that is
less than d .

By the induction hypothesis applied tod ′, we obtain violLocD (w, sD,d
′+1), and sow ∈ VLd ′+1

sD (∅)

by Definition 6.19. Hence w ∈ VLd
sD (∅), since, by monotonicity ofVLsD , we haveVL

n′
sD (∅) ⊑

VLn
sD (∅) when n′ ≤ n. Sincew is an arbitrary successor of v , it follows that v is only blocked by

nodes inVLd
sD (∅). Hence ¬lblockssD (v,

G
VLd

sD
(∅)). By Definition 6.12, v ∈ VLsD (VL

d
sD (∅)), i.e.,

v ∈ VLd+1
sD (∅). By Definition 6.19, violLocD (v, sD,d + 1). □

Lemma 7.12. For all interactions a of B, i.e., a ∈ γ ,
LLIN (B,Q0, a, ℓ) implies LALT (B,Q0, a, ℓ).

Proof. Assume LLIN (B,Q0, a, ℓ). Let tD
a

→ sD be an arbitrary reachable transition of D, and

let Bi be an arbitrary component of components(a). Then, from Definition 7.8, we have:

in_depth
D
(Bi , sD) < 2ℓ − 1 ∨ out_depth

D
(Bi , sD) < 2ℓ − 1.

The proof proceeds by two cases.

in_depth
D
(Bi , sD) < 2ℓ − 1: Hence Bi cannot be in a strongly connected supercycle, because

Bi would then lie on at least one wait-for cycle, and so would have infinite in-depth. Hence

sConnViolLocD (Bi , sD) by Definition 7.1, Clause 1. Hence by Definition 7.3, genViolLoc
D
(Bi , sD).

out_depth
D
(Bi , sD) < 2ℓ − 1: Hence out_depth

D
(Bi , sD) = d for some d < 2ℓ − 1. By Proposi-

tion 7.11, violLocD (Bi , sD,d + 1). Hence by Definition 7.3, genViolLoc
D
(Bi , sD).

In both cases, we have genViolLoc
D
(Bi , sD). Since Bi is an arbitrarily chosen component of

components(a), we have ∀Bi ∈ components(a) : genViolLoc
D
(Bi , sD). Hence, by Definition 7.5,

we conclude LALT (B,Q0, a, ℓ). □
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Theorem 7.13. LLIN is supercycle-freedom preserving

Proof. Follows immediately from Theorem 5.9 and Lemma 7.10. Also follows immediately from

Theorem 5.5 and Lemma 7.12. □

8 OVERALL SOUNDNESS, COMPLETENESS, AND IMPLICATION RESULTS
Figure 9 gives the implication relations between our four deadlock-freedom conditions. Each

implication arrow is labeled by the Lemma that provides the corresponding result.

Lemma 7.10

LLIN (B,Q0, a, ℓ) LALT (B,Q0, a, ℓ)

GLIN (B,Q0, a) GALT (B,Q0, a)

Lemma 7.12

Lemma 5.8

Lemma 7.6

Fig. 9. Implication relations between deadlock-freedom conditions.

We can use the four conditions together: if, for each interaction, we verify one of the conditions,

then we can infer deadlock-freedom, i.e., combining the conditions in this manner is still sound

w.r.t. deadlock-freedom.

Theorem 8.1 (Deadlock-freedom via GALT , GLIN , LALT , LLIN ). Assume that

(1) for all s0 ∈ Q0, WB (s0) is supercycle-free, and
(2) for all interactions a of B (i.e., a ∈ γ ), one of the following holds:
(a) GALT (B,Q0, a)
(b) GLIN (B,Q0, a)
(c) ∃ ℓ ≥ 1 : LALT (B,Q0, a, ℓ)
(d) ∃ ℓ ≥ 1 : LLIN (B,Q0, a, ℓ)

Then for every reachable state u of (B,Q0):WB (u) is supercycle-free, and so (B,Q0) is free of local and
global deadlock.

Proof. Immediate from Theorems 5.5, 5.9, 7.7, 7.13 and Corollary 3.14. □

Finally, we establish that GALT is complete w.r.t. deadlock-freedom: any system that is free of

local and global deadlock will satisfy GALT .

Theorem 8.2 (Completeness of GALT w.r.t. deadlock-freedom). Assume that (B,Q0) is
free from local and global deadlock. Then, for all interactions a of B (i.e., a ∈ γ ), GALT (B,Q0, a)
holds.

Proof. Let a be an arbitrary interaction in γ , and let t
a

→ s be a reachable transition of (B,Q0).
Hence s is a reachable state of (B,Q0). Suppose that WB (s ) contains a supercycle SC. Then, by

Proposition 3.8, the subcomponent B
′
consisting of all the atomic components Bi ∈ SC cannot

execute a transition from any state reachable from s , and so is deadlocked. Hence (B,Q0) has a
local deadlock in reachable state s , contrary to assumption. Hence WB (s ) is supercycle-free.
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Let v be an arbitrary node in WB (s ). By Definition 4.17, ¬scyc
B
(v, s ) holds. Hence by

Proposition 4.18, violB (v, s ) holds. By Definition 5.3, genViol
B
(v, s ) holds. Since v is an ar-

bitrary node in WB (s ), and all Bi ∈ components(a) are nodes in WB (s ), we have (∀Bi ∈
components(a), genViol

B
(Bi , s )). By Definition 5.4, GALT (B,Q0, a) holds. Since a is an arbitrary

interaction in γ , we have (∀ a ∈ γ : GALT (B,Q0, a)), and the theorem is established. □

9 IMPLEMENTATION AND EXPERIMENTS
To implement our deadlock-freedom conditions, we must:

(1) Check that all initial states are supercycle-free

(2) Evaluate LALT

(3) Evaluate LLIN

Tasks 1 and 2 require the computation of lfp(VLsD ). Figure 10 presents an algorithm that does

this. Its correctness follows immediately from Definitions 6.10 and 6.12.

Compute-LFP(D, sD)
� Precondition: sD is a state of D

� Postcondition: returns least fixpoint ofVLsD i.e., lfp(VLsD ) =
⊔

d≥1VL
d
sD (∅)

1. X ← ∅;

2. while (true)

3. �loop invariant: at end of i’th iteration, X = VLi
sD (∅) =

⊔
1≤d≤i VL

d
sD (∅)

4. Y ← Compute-VL(D, sD,X );
5. if (X = Y ) return(X ); �reached fixpoint

6. X ← Y �X , Y , so keep iterating

7. endwhile

Fig. 10. Procedure to compute lfp(VLsD ).

Compute-VL(D, sD,X )
� precondition: sD is a state of D and X ⊑ WD (sD)
� postcondition: returnsVLsD (X )
1. compute WD (sD);
2. Y ← ∅;

3. forall v ∈ WD (sD)

4. if (¬Compute-LBlocks(v, D, sD, X̂ ))
5. Y ← Y ⊔ {v} �satisfies Definition 6.12

6. endfor;
7. return(Y )

Fig. 11. Procedure to computeVLsD (X ).
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Compute-LBlocks(v,D, sD,X )
� precondition: sD is a state of D, X ⊑ WD (sD), and v ∈ WD (sD)
� postcondition: returns lblockssD (v,X )
1. if (v is a border interaction of D)
2. return(true) �border interaction pessimistically assumed to be blocked

3. else if (v is an interior interaction a and (∃Bi ∈ X : a→ Bi ∈ WD (sD)))
4. return(true) �some outgoing wait-for edge goes to a component in X

5. else if (v is a component Bi and (∀ a : Bi → a ∈ WD (sD) ⇒ a ∈ X ))
6. return(true) �every outgoing wait-for edge goes to some interaction in X

7. else
8. return(false) �all cases for blocking do not hold, cf. Definition 6.10

9. fi

Fig. 12. Procedure to compute lblockssD (v,X ).

Note that Y ⊔ {v} is the join of the wait-for-subgraph Y with the wait-for-subgraph v consisting

of the single node v. Recall that the edges of Y ⊔ {v} are induced from WD (sD).
Let Degv be the outdegree of v inWD (tD), |nodes(D) | be the number of components and inter-

actions in D, i.e., the number of nodes inWD (sD) and |D| be the size of the syntactic description
of D. We assume that membership in X and Y can be determined in constant time, e.g., by using

Boolean arrays, and that evaluation of transition guards in components takes time proportional to

the length of the guards. Then, the time complexity of Compute-LBlocks(v,D, sD,X ) is O (Deg
v
).

Hence the time complexity of Compute-VL(D, sD,X ) is O ( |D| + |WD (tD) |), since each edge in

WD (tD) is examined at most once, over all calls of Compute-LBlocks(v,D, sD,X ), and comput-

ing WD (tD) can be done in time O ( |D|). Since |WD (tD) | is O ( |D|), this is just O ( |D|). The time

complexity of Compute-LFP(D, sD) is then O (Fix · |D|) where Fix is the number of iterations that

Compute-LFP(D, sD) takes to reach a fixpoint. Fix is O ( |nodes(D) |), since each iteration either

adds a node or reaches the least fixpoint. Thus the time complexity of Compute-LFP(D, sD) is
O ( |nodes(D) | · |D|).

Theorem 8.1 requires that all initial states be supercycle-free. We assume that the number of

initial states is small, so that we can check each explicitly. Figure 13 presents an algorithm which

checks that all initial states are supercycle-free.

checkInitSupercycleFree(Q0)

� returns true iff all initial states are supercycle-free

1. forall s0 ∈ Q0

2. compute WB (s0)
3. U ← Compute-LFP(B, s0)
4. if (U , WB (s0)) then return(false) � s0 not supercycle-free, so return false

5. endfor;
6. return(true) �all initial states are supercycle-free

Fig. 13. Procedure to check that all initial states are supercycle-free.

Proposition 9.1. checkInitSupercycleFree(Q0) returns true iff all initial states are supercycle-

free.
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Proof. Consider the execution of checkInitSupercycleFree(Q0) for an arbitrary s0 ∈ Q0.

By its construction, U ⊑ WB (s0). Suppose that U , WB (s0). By Propositions 4.18 and 4.9, the

nodes of WB (s0) that are not in U constitute a supercycle. Hence s0 not supercycle-free, and so

false is the correct result in this case.

Now suppose that U = WB (s0). Hence every node in WB (s0) has a supercycle violation, and
so by Proposition 4.18, no node of WB (s0) is in a supercycle. Hence WB (s0) does not contain a

supercycle, and so s0 is supercycle-free. Hence the for loop continues on to the next initial state. If

all initial states are supercycle-free, the for loop terminates, and checkInitSupercycleFree(Q0)

returns true, as required. □

Let |B| be the size of the syntactic description of B, |nodes(B) | be the number of components and

interactions in B, which is also the number of nodes inWB (s0), and |Q0 | be the number of states

in Q0, i.e., the number of initial states, Then time complexity of checkInitSupercycleFree(Q0) is

O ( |Q0 | · |nodes(B) | · |B|).

9.1 Implementation of the linear condition LLIN
Figure 14 presents the pseudocode for our algorithm LLin(B,Q0) to evaluate LLIN . LLin(B,Q0)

iterates over each interaction a of (B,Q0), and invokes LLinInt(B,Q0, a) to evaluate (∃ ℓ ≥
1 : LLIN (B,Q0, a, ℓ)). LLinInt(B,Q0, a) starts with ℓ = 1 and increments ℓ until either
LLIN (B,Q0, a, ℓ) is found to hold, or D has become the entire system and LLIN (B,Q0, a, ℓ)
does not hold. In the latter case, LLIN (B,Q0, a, ℓ) does not hold for any finite ℓ, and, in practice,

computation would halt beforeD had become the entire system, due to exhaustion of resources. Eval-

uation of LLIN (B,Q0, a, ℓ) is done by LLinIntDist(B,Q0, a, ℓ), which examines every reachable

transition that executes a, and checks that the final state satisfies Definition 7.8.
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LLin(B,Q0), where B ≜ γ (B1, . . . ,Bn )
� returns true iff (∀ a ∈ γ ,∃ ℓ ≥ 1 : LLIN (B,Q0, a, ℓ))
1. forall interactions a ∈ γ
2. if (LLinInt(B,Q0, a) = false) return(false) fi
3. endfor;
4. return(true) � return true if check succeeds for all a ∈ γ

LLinInt(B,Q0, a), where B ≜ γ (B1, . . . ,Bn ), a ∈ γ
� returns true iff (∃ ℓ ≥ 1 : LLIN (B,Q0, a, ℓ))
1. ℓ ← 1; � start with ℓ = 1

2. while (true)
3. if (LLinIntDist(B,Q0, a, ℓ) = true) return(true) fi; � success, so return true

4. if (Dℓ
a
= γ (B1, . . . ,Bn )) return(false) fi; � exhausted all subsystems, return false

5. ℓ ← ℓ + 1 � increment ℓ until success (true) or intractable or failure (false)
6. endwhile

LLinIntDist(B,Q0, a, ℓ)
� returns true iff LLIN (B,Q0, a, ℓ))
1. let D = D

ℓ
a

2. forall reachable transitions tD
a

→ sD of D

3. compute WD (sD);
4. if (¬(∀Bi ∈ components(a) : in_depth

D
(Bi , sD) < 2ℓ − 1 ∨ out_depth

D
(Bi , sD) < 2ℓ − 1))

5. return(false) � check Definition 7.8

6. fi
7. endfor;
8. return(true) � return true if check succeeds for all transitions

Fig. 14. Pseudocode for the implementation of LLIN .

Time complexity. Let ℓa be the smallest value of ℓ for which LLIN (B,Q0, a, ℓ) holds, M
ℓ
a
be the

transition system of D
ℓ
a
, |Mℓ

a
| be the size (number of nodes plus number of edges) of M

ℓ
a
, and |Dℓ

a
|

be the size of the syntactic description of D
ℓ
a
. Then the running time of LLinIntDist(B,Q0, a, ℓ)

is O ( |Mℓ
a
| · |Dℓ

a
|), since computing W

D
ℓ
a

(sD) can be done in time O ( |Dℓ
a
|), and W

D
ℓ
a

(sD) has size

in O ( |Dℓ
a
|), and computing in-depth and out-depth in W

D
ℓ
a

(sD) can be done in linear time using

depth-first graph search. The running time of LLinInt(B,Q0, a), is O (Σ1≤ℓ≤ℓa |M
ℓ
a
| · |Dℓ

a
|). The

running time of LLin(B,Q0) is O (Σa∈γ Σ1≤ℓ≤ℓa |M
ℓ
a
| · |Dℓ

a
|).

9.2 Implementation of the AND-OR condition LALT
Figure 15 presents the pseudocode for our algorithm Lalt(B,Q0) to evaluate LALT . This uses the

Compute-LFP(D, sD) algorithm for computing local supercycle violations in D, given in Figure 10.

Lalt(B,Q0) iterates over each interaction a of (B,Q0), and invokes LaltInt(B,Q0, a) to evaluate

(∃ ℓ ≥ 1 : LALT (B,Q0, a, ℓ)). LaltInt(B,Q0, a) starts with ℓ = 1 and increments ℓ until either
LALT (B,Q0, a, ℓ) is found to hold, or D has become the entire system and LALT (B,Q0, a, ℓ)
does not hold. In the latter case, LALT (B,Q0, a, ℓ) does not hold for any finite ℓ, and, in practice,

computation would halt before D had become the entire system, due to exhaustion of resources.

Note that D is the smallest system in which a supercycle-violation can be confirmed.
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Table 2. Summary of procedures.

Lalt(B,Q0) true iff (∀ a ∈ γ ,∃ ℓ ≥ 1 : LALT (B,Q0, a, ℓ))
LaltInt(B,Q0, a) true iff (∃ ℓ ≥ 1 : LALT (B,Q0, a, ℓ))
LaltIntDist(B,Q0, a, ℓ) true iff LALT (B,Q0, a, ℓ)
GenLocViol(Bi ,V ,D, sD) true iff Bi has local sc-formation violation

in state sD of D, i.e., genViolLoc
D
(Bi , sD) holds

locSconnScViol(Bi ,V ,D, sD) true iff Bi has local strong connectedness violation

in ta, i.e., sConnViolLocD (Bi , sD) holds
Compute-LFP(D, sD) compute local supercycle violations

in state sD of D, i.e., violLocD (v, sD,d ) for all v,d

Evaluation of LALT (B,Q0, a, ℓ) is done by LaltIntDist(B,Q0, a, ℓ), which invokes

Compute-LFP(D, tD) to compute the local supercycle violations and GenLocViol(Bi ,V ,D, sD)
to compute the general local supercycle violations. GenLocViol(Bi ,V ,D, sD) invokes

locSconnScViol(Bi ,V ,D, sD) to compute the local strong connectedness violation. The pseu-

docode is a straightforward translation of Definitions 7.1 and 7.3. Table 2 shows a summary of the

procedures.

Time complexity. Let ℓa be the smallest value of ℓ for which LALT (B,Q0, a, ℓ) holds,M
ℓ
a
be the

transition system of D
ℓ
a
, |Mℓ

a
| be the size (number of nodes plus number of edges) ofM

ℓ
a
, |Dℓ

a
| be the

size of the syntactic description of D
ℓ
a
, and |nodes(Dℓ

a
) | be the number of components and interac-

tions in D
ℓ
a
. The time complexity of locSconnScViol(Bi ,V ,D

ℓ
a
, sD) is O ( |nodes(Dℓ

a
) | · |Dℓ

a
|), since

maximal strongly connected components are computable in linear time using Tarjan’s algorithm

[30], and the existence of paths inWL from Bi to the border of D
ℓ
a
can be checked in linear time

by using depth-first graph search. Also, checking for supercycles (via least-fixpoint computation)

within the strongly connected component C can be done in time O ( |nodes(Dℓ
a
) | · |Dℓ

a
|), amortized

over all suchC . The time complexity of GenLocViol(Bi ,V ,D
ℓ
a
, sD) is alsoO ( |nodes(Dℓ

a
) | · |Dℓ

a
|). The

running time of LaltIntDist(B,Q0, a, ℓ) isO ( |Mℓ
a
| · |nodes(Dℓ

a
) | · |Dℓ

a
|), since Compute-LFP(Dℓ

a
, sD)

has time complexity in O ( |nodes(Dℓ
a
) | · |Dℓ

a
|), and computing W

D
ℓ
a

(sD) can be done in time

O ( |Dℓ
a
|). The running time of LaltInt(B,Q0, a) is O (Σ1≤ℓ≤ℓa |M

ℓ
a
| · |nodes(Dℓ

a
) | · |Dℓ

a
|) since

LaltInt(B,Q0, a) iterates LaltIntDist(B,Q0, a, ℓ) until ℓ = ℓa. The running time of Lalt(B,Q0) is

O (Σa∈γ Σ1≤ℓ≤ℓa |M
ℓ
a
| · |nodes(Dℓ

a
) | · |Dℓ

a
|) since Lalt(B,Q0) calls LaltInt(B,Q0, a) for every a ∈ γ .

9.3 Tool-set
We provide LALT-BIP, a suite of supporting tools that implement our method. LALT-BIP consists of

about 2500 Java lines of code LALT-BIP is equipped with a command line interface (see Figure 16)

that accepts a set of configuration options. It takes the name of the input BIP file and other optional

flags.

9.4 Experimentation
We evaluated LALT-BIP using several case studies including the dining philosopher example

and multiple instances of a configurable generalized Resource Allocation System that comprises a

configurable multi token-based scheduler. The different configurations of our resource allocation

system subsume problems like the Milner’s scheduler, data arbiters and the dining philosopher

with a butler problem. We benchmarked the performance of LALT-BIP against DFinder [13] on

two benchmarks: Dining Philosopher with an increasing number of philosophers and a deadlock

free resource allocation system with an increasing number of clients and resources.
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Lalt(B,Q0), where B ≜ γ (B1, . . . ,Bn )
� returns true iff (∀ a ∈ γ ,∃ ℓ ≥ 1 : LALT (B,Q0, a, ℓ))
1. forall interactions a ∈ γ
2. if (LaltInt(B,Q0, a) = false) return(false) fi
3. endfor;
4. return(true) � return true if check succeeds for all a ∈ γ

LaltInt(B,Q0, a), where B ≜ γ (B1, . . . ,Bn ), a ∈ γ
� returns true iff (∃ ℓ ≥ 1 : LALT (B,Q0, a, ℓ))
1. ℓ ← 1; � start with ℓ = 1

2. while (true)
3. if (LaltIntDist(B,Q0, a, ℓ) = true) return(true) fi; � success, so return true

4. if (Dℓ
a
= γ (B1, . . . ,Bn )) return(false) fi; � exhausted all subsystems, return false

5. ℓ ← ℓ + 1 � increment ℓ until success or intractable or failure
6. endwhile
LaltIntDist(B,Q0, a, ℓ)
� returns true iff LALT (B,Q0, a, ℓ)
1. let D = D

ℓ
a

2. forall reachable transitions tD
a

→ sD of D

3. compute WD (sD);
4. V ← Compute-LFP(D, sD); �see Figure 10

5. forall Bi ∈ components(a)
6. if (¬GenLocViol(Bi ,V ,D, sD)) return(false) fi �no violation for Bi
7. endfor
8. endfor;
9. return(true) �all Bi ∈ components(a) have a general local supercycle violation

GenLocViol(Bi ,V ,D, sD)
� returns true iff genViolLoc

D
(Bi , sD) holds (Definition 7.3)

� i.e., Bi has a general local supercycle violation in state sD of subsystem D

1. return(Bi ∈ V ∨ locSconnScViol(Bi ,V ,D, sD))

locSconnScViol(Bi ,V ,D, sD)
� returns true iff sConnViolLocD (Bi , sD) holds (Definition 7.1)

� i.e., Bi has a local strong connectedness violation in state sD of subsystem D

1. WL← WD (sD) − V , i.e., remove fromWD (sD) all nodes with a local supercycle violation;

2. compute maximal strongly connected components of WL;

3. forall maximal strongly connected components C ofWL

4. if (C contains a non-trivial strongly connected supercycle which contains Bi as a node)
5. return(false) fi; �Definition 7.1, Clause 1 violated

6. if (there is no path in WL from Bi to a border node of D)
7. return(true) fi; �Definition 7.1, Clause 2a holds

8. if (there is no path in WL from some border node of D to Bi )
9. return(true) fi; �Definition 7.1, Clause 2b holds

10. return(false) �Definition 7.1, Clauses 1 and 2 both violated

Fig. 15. Pseudocode for the implementation of LALT .
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> java -jar ldfc.jar [options] input.bip
and options are:
-condition <s> LLIN ( l o ca l linear check) or LALT ( l o ca l and/or check - default)

(optional)
-debug Prints useful information at each iteration of checking.

Example: selected interaction , depth length , etc.
This information could be useful in case when the condition fails.

Examples:
java -jar ldfc.jar -debug input.bip # deadlock freedom using default LALT
java -jar ldfc.jar -condition=LLIN -debug input.bip # deadlock freedom using LLIN

Fig. 16. LALT-BIP Command Line Interface.

All experiments were conducted on a machine with Intel (R) 8-Cores (TM) i7-6700, CPU @

3.40GHZ, 32GB RAM, running a CentOS Linux distribution.

9.4.1 Dining philosophers case study. We consider the traditional dining philosopher problem as

depicted in Figure 1, which shows 4 philosophers and 4 forks modeled in BIP.

Each philosopher component has 2 states, and each fork component has 3 states. Thus, the total

number of states is 2
n ×3n . We evaluated LALT-BIP by increasing n and applying both LALT and

LLIN methods and compared against the best configuration we could compute with DFinder2.

DFinder2 allows for several techniques to be applied. The most efficient one is the Incremental

Positive Mapping (IPM) technique [13]. IPM requires a manual partitioning of the system to exploit

its efficiency. We applied IPM on all structural partitions and we report on the best result which is

consistent with the results reported in [13].

Table 3 shows the results. Both LALT and LLIN outperform the best performance of

DFinder2 by several orders of magnitude for n ≤ 3, 000. Both LALT and LLIN successfully

completed the deadlock freedom check for 3, 000 ≤ n ≤ 10, 000 in less than one minute, where

DFinder2 timed out (1 Hour). The sole exception being that LLIN required 62 seconds for

n = 10, 000.
Even though LLIN is asymptotically more efficient than LALT , LALT outperforms

LLIN in all cases. This due to the following.

• The largest subsystem that LALT had to consider was with depth ℓ = 1. This corresponds

to 18 = 2
1 × 32 states regardless of n, the number of philosophers.

• The largest subsystem that LLIN had to consider was with depth ℓ = 2. This corresponds

to 648 = 2
3 × 34 states regardless of n.

• For a given depth ℓ, LLIN is more efficient to compute than LALT . Since LALT

performs a stronger check, it often terminates for smaller depths, which makes it more

efficient than LLIN in many cases.

9.4.2 Resource allocation system case studies. We evaluated LALT-BIP with a multi token-based

resource allocation system. The system consists of n clients,m resources, k tokens. The number of

tokens specifies the maximum number of resources that can be in use at a given time. The system

allows to specify conflicting resources. Only one resource out of a set of conflicting resources can be

in use at a given time. For each set of conflicting resources, we create a resource manager. Resource

managers are connected in a ring where they pass tokens to neighboring resource managers or to

resources.

Given a configuration specifying n,m, k , a map of requests between clients and resources, and a

set of sets of conflicting resources, we automatically generate a corresponding BIP model.

Figures 17, 18, and 19 show BIP atomic components for client, resource and manager components.
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Table 3. Benchmarks: Dining Philosopher (seconds or minutes : seconds).

Size LALT LLIN D-Finder

1, 000 0.46 0.7 15

2, 000 1.4 1.9 60

3, 000 2.9 4 2 : 41

4, 000 4.8 7 5 : 37

5, 000 8.3 12 12 : 38

6, 000 13.0 17 17 : 48

7, 000 17.2 25 30 : 18

8, 000 25.6 34 −

9, 000 34.1 55 −

10, 000 47 62 −

The client in Figure 17 requests resources R0 and R2 in sequence. It has 5 ports. Ports SR0 and SR2

send requests for resources R0 and R2, respectively. Ports RG0 and RG2 receive grants for resources

R0 and R2, respectively. Port rel releases all resources. The behavior of the client depends on its

request sequence.

start

SR0 RG0 SR2 RG2

rel

Client

SR0 RG0 SR2 RG2 rel

Fig. 17. Client.

Figure 18 shows a resource component. A resource component waits for a request from a

connected client on port RR. Once a request is received, the resource component transitions to a

state where it is ready to receive a token from the corresponding resource manager using port RTT .

The resource transitions to a state where it grants the client request using port STC and waits until

it is released on port done. There, it returns the token back to the resource manager and transitions

to the start state.
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start

RR RTT STC done

STT

ResourceRR STC done

RTT STT

Fig. 18. Resource.

Figure 19 shows a resource manager. A resource managerM has four states.

• State T denotes that M has a token. M may send the token to either (1) a resource on port

STR and transition to state TwR (token with resource), or (2) the next resource manager on

port STT and transition to state N (no token).

• State N denotes that N has no token. It may receive a token from a neighboring resource

manager in the ring on port RTT and transition to state T .
• State TwR denotes thatM has already passed a token to one of its resources.M may either

receive (1) the assigned token back from the resource using port RTR and transition to state

T , or (2) another token from a neighboring manager using port RTT and transition to state

TTwR (token and token with resource).

• State TTwR denotes thatM has a token and has already passed a token to one of its resources.

In this stateM cannot send the token it has to a resource it manages to respect the conflict

constraint.M may send the token to the next manager on port STT and transition back to

state TwR.

T

start

N

TwR TTwR

STT

RTT

STR RTR

RTT

STT

RM

STTRTT

STR RTR

Fig. 19. Token Resource Manager.

The connections between a resource managerM and its resources on ports STR and RTR specify

that the resources are conflicting. A system should have at least x resource managers where x is
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the maximum between the number of sets of conflicting resources and k . Note that k resource

managers start at state T to denote the k tokens; the rest start at state N .

Figure 20 shows a configuration system with 5 clients and 5 resources where:

• Client C0 requires resource R0 then R2,

• Client C1 requires resource R2 then R0,

• Client C2 requires resource R1,

• Client C3 requires resource R3, and

• Client C4 requires resource R4.

The system has three resource managers to specify the conflicting resources. RM01 manages

conflicting resources {R0,R1}. RM23 managers conflicting resources {R2,R3}. RM4 manages resource

R4.

C0

SR0 RG0 SR2 RG2 rel

C1

SR2 RG2 SR0 RG0 rel

C2

SR1 RG1 rel

C3

SR3 RG3 rel

C4

SR4 RG4 rel

R0

RR STC done

RTT STT

R1

RR STC done

RTT STT

R2

RR STC done

RTT STT

R3

RR STC done

RTT STT

R4

RR STC done

RTT STT

RM01

STTRTT

STR RTR

RM23

STTRTT

STR RTR

RM4

STTRTT

STR RTR

Fig. 20. Conflict-Resource Allocation System.

We evaluated LALT-BIP with various configurations. We highlight several lessons learned for

specific systems as follows.

Lesson 1. LALT verifies freedom from global and local deadlock where DFinder2 can only

verify freedom from global deadlock. Consider a system with 5 clients, 3 tokens, and 5 resources.

Clients request resources ⟨0, 2⟩, ⟨2, 0⟩, ⟨1⟩, ⟨3⟩, and ⟨4⟩, respectively. Resource sets {0, 1}, {2, 3} are
conflicting. This system is clearly global deadlock free. It has a local deadlock where client C0 has

resource 0 and client C1 has resource 2. DFinder qualitatively can not detect such a local deadlock

while LALT successfully does.

Lesson 2. LALT is more complete than both LLIN and DFinder2. For example, it can verify

global and local deadlock freedom in cases where LLIN fails. Consider a system with 5 clients,

2 tokens, and 5 resources. Clients request resources ⟨0, 2⟩, ⟨0, 2⟩, ⟨1⟩, ⟨3⟩, and ⟨4⟩, respectively.
Resource sets {0, 1}, {2, 3, 4} are conflicting. This system is global and local deadlock free. Both

DFinder2 and LLIN report that the system might contain a deadlock. LALT successfully

reports that the system is both global and local deadlock free.

Benchmarking: We evaluated the performance of LALT on a deadlock free system with the

following configuration.

• n clients each with 3 states, n resources each with 5 states, and n tokens,
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Table 4. Benchmarks: Time required for LALT on the resource allocation system

Size 10 12 14 16 18 20 22 24 26 28 30

Time (sec) 148 169 189 230 254 277 298 318 351 374 430

• Client Ci , 0 ≤ i < n requests resource i , and
• No resources are in conflict, hence we have n resource managers each with 4 states.

The system has a total of 4
n × 3

n × 5
n
states. DFinder2 timed out within seven hours for n = 10.

LLIN had to increase the subsystem up to the whole system and also timed out within seven

hours for n = 10. LALT was able to verify deadlock freedom. It has to check subsystems with 12

components out of 3 × n components regardless of n. This resulted from inspecting subsystems

corresponding to a depth ℓ = 2with ≤ 23, 040, 000 = 4
6×32×54 states regardless of n. The numbers

in Table 4 show a linear increase in time required to check deadlock freedom using LALT with

respect to n. This indicates that the number of subsystems to check is proportional to n.
Our resource allocation system subsumes the token based Milner scheduler [25] which is essen-

tially a token ring with precisely one token present [3].

10 RELATEDWORK, DISCUSSION, AND FURTHERWORK
The notions of wait-for-graph and supercycle [7, 8] were initially defined for a shared memory

program P = P1 ∥ · · · ∥ PK in pairwise normal form [4, 5]: a binary symmetric relation I specifies
the directly interacting pairs (“neighbors”) {Pi , Pj } If Pi has neighbors Pj and Pk , then the code in

Pi that interacts with Pj is expressed separately from the code in Pi that interacts with Pk . These
synchronization codes are executed synchronously and atomically, so the grain of atomicity is

proportional to the degree of I . [7] give two polynomial time methods for (local and global) deadlock

freedom. The first checks subsystems consisting of three processes. The second computes the wait-

for-graphs of all pair subsystems Pi ∥Pj , and takes their union, for all pairs and all reachable states

of each pair. The first method considers only wait-for-paths of length ≤ 2. The second method

is prone to false negatives, because wait-for edges generated by different states are all merged

together, which can result in spurious supercycles.

[21] use a BIP-like formalism, Interaction Models. They present a criterion for global deadlock

freedom, based on an and-or graph with components and constraints as the two sets of nodes.

A constraint gives the condition under which a component is blocked. Edges are labeled with

conjuncts of the constraints. Deadlock freedom is checked by traversing every cycle, taking the

conjunction of all the conditions labeling its edges, and verifying that this conjunction is always

false, i.e., verifying the absence of cyclical blocking. No complexity bounds are given. [23] present

a polynomial time checkable deadlock freedom condition based on structural restrictions: “the

communication structure between the components is given by a tree.” This restriction allows them

to analyze only pair systems. [2] use a formalism based on process algebra. They check deadlock

by analyzing cycles in the connections between software components, and claim scalability, but no

complexity bounds are given.

[29] present several rules for freedom of global deadlock of “triple disjoint” (no action involves > 2

processes) CSP concurrent programs. The basis for these rules is to first check that each individual

process is deadlock free (i.e., the network is “busy”), and then to define a “variant function” that

maps the state of each process to a partially ordered set. The first rule requires to establish that,

if Pi waits for Pj , then the value of Pi ’s state is greater than the value of Pj ’s state. Since every
process is blocked in a global deadlock, one can then construct an infinite sequence of processes

with strictly decreasing values, which are therefore all distinct. This cannot happen in a finite
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network, and hence some process is not blocked. They treat several examples, including a self-timed

systolic array (in 2 and 3 dimensions), dining philosophers, and a message switching network. They

generalize the first rule to exploit “disconnecting edges” (whose removal partitions the network

into disconnected components) to decompose the proof of deadlock freedom into showing that

each disconnected component is deadlock-free, and also to weaken the restriction on the variant

function so that it only has to decrease for at least one edge on each wait-for cycle. [17] also

provide criteria for deadlock freedom of triple-disjoint CSP programs, and use the same technical

framework as [29]. However, they do not use variant functions, but show that, in a busy network,

a deadlock implies the existence of a wait-for cycle. They give many examples, and demonstrate

the absence of wait-for cycles in each example, by ad-hoc reasoning. Finally, they give a deadlock

freedom rule that exploits disconnecting edges, similar to that of [29]. In both of these papers, the

wait-for relations are defined by examining a pair of processes at a time: Pi waits for Pj iff Pi offers
an action to Pj which Pj is not willing to participate in.

[24] applies the results of [29] and [17] to formulate deadlock-freedom design rules for several

classes of CSP concurrent programs: cyclic processes, client-server protocols, and resource allocation

protocols. He also introduces the notion of “state dependence digraph” (SDD), whose nodes are

local states of individual processes, and whose edges are wait-for relations between processes in

particular local states. An acyclic SDD implies deadlock-freedom. A cyclic SDD does not imply

deadlock, however, since the cycle may be “spurious”: the local states along the cycle may not be

reachable at the same time, and so the cycle cannot give rise to an actual deadlock during execution.

Hence the SDD approach cannot deal with “non-hereditary” deadlock freedom, i.e., a deadlock free

system that contains a deadlock prone subsystem. Consider, e.g.,, the dining philosophers with a

butler solution; removing the butler leaves a deadlock prone subsystem. [3] takes the SDD approach

and improves its accuracy by checking for mutual reachability of pairs of local states, and also

eliminating local states and pairs of local states, where action enablement can be verified locally.

These checks are formulated as a Boolean formula which is then sent to a SAT solver. Their method

is able to verify deadlock freedom of dining philosophers with a butler, whereas our method timed

out, since the subsystems on which LALT (B,Q0, a, ℓ) is evaluated becomes the entire system.

On the other hand, our approach succeeded in quickly verifying deadlock-freedom of the resource

allocation example, whereas the method of [3] failed for Milner’s token based scheduler, which is a

special case of our resource allocation example. An intriguing topic for future work is to attempt to

combine the two methods, to obtain the advantages of both.

We compared our implementation LALT-BIP to D-Finder 2 [13]. D-Finder 2 computes a finite-

state abstraction for each component, which it uses to compute a global invariant I . It then checks if

I implies deadlock freedom. Unlike LALT-BIP, D-Finder 2 handles infinite state systems. However,

LALT-BIP had superior running time for dining philosophers and resource controller (both finite-

state).

All the above methods (except [7]) verify global (and not local) deadlock-freedom. Our method

verifies local deadlock-freedom, which subsumes global deadlock-freedom as a special case. Also,

our approach makes no structural restriction at all on the system being checked for deadlock. Our

method checks for the absence of supercycles, which are a sound and complete characterization of

deadlock. Moreover, the LALT condition is complete w.r.t. the occurrence of a supercycle wholly

within the subsystem being checked, and the GALT condition is complete w.r.t. freedom from

local and global deadlock, as given by Theorem 8.2. None of the above papers give a completeness

result similar to Theorem 8.2. Hence, the only source of incompleteness in our method is that of

computational limitation: if the subsystem being checked becomes too large before the LALT

condition is verified. If computational resources are not exhausted, then our method can keep

checking until the subsystem being checked is the entire system, at which point LALT coincides
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with GALT , which is sound and complete for local deadlock (Proposition 4.18, Definition 5.3, and

Definition 5.4).

Related to methods that specifically check for deadlock-freedom are methods that check for

general safety properties, e.g., using abstraction and compositional reasoning. The work of [31]

extends CTL
∗
with constructs to support expressing and distinguishing between deadlock, livelock,

and successful termination. This is key since the standard semantics of CTL
∗
requires that Kripke

structures be total, i.e., every state has at least one outgoing transition, and so deadlock cannot be

modeled. They provide a semantics for CTL
∗
in which deadlock, livelock, and successful termination

can all be distinguished.

Abstraction methods related to compositional reasoning [1, 19, 28] that target safety properties

can be used to prove global deadlock freedom. The aforementioned papers target parameterized

systems composed of N communicating processes Pi , 1 ≤ i ≤ N . They over-approximate the

reachable state space of a system with N processes, using symbolic states from a system of size

K < N . If the property holds for the system of size K , then it holds for any arbitrary N . Crucial

to [1] is a bound on the number of processes involved at each state, such that the post image

(typically infinite) can be computed using successor operations of size K + ℓ where ℓ is a small

constant. This limits the completeness of the technique to systems with specific array, ring, and

tree like topologies. [19] provides a global proof using several local proofs. It splits a target system

invariant into local process invariants across local and shared variables and attempts to prove

these invariants. The derived local invariants are symbolic over-approximations of the reachable

state space of the system. The abstraction refinement step refines the invariants with predicates

reasoning about additional local variables.

Pnueli et al. [28] targets a specific type of bounded data parameterized systems with parameter

N , where N is the number of processes, and where safety is expressed using a specific type of

assertions called R-assertions. They show that for a given such system, there exists an N0 such that,

an R−assertion ϕ is preserved by any step of the system for every N > 1 iff ϕ is preserved by any

step of the system for every N ≤ N0. They show how to handle such systems with model checking

and deductive reasoning techniques. The survey paper [18] describes several abstraction techniques

that use counterexamples to guide the refinement steps. It also describes a localization reduction

technique [22]. The first abstraction is the property itself. If the model check fails, then an error

“track” is produced, and either the track is feasible and the property fails, or the track is analyzed

and linked to a group of blocking variables that could not be assigned to satisfy the track. The

blocking variables lead, via dependency graph paths, to active variables that have full assignments

in the error track. All these variables constitute the next refinement step, where the border variables

are considered free and are called the “free fence”. Key to the efficacy of the technique is the choice

of the blocking variables, so that they minimize the free fence at each abstraction step. Localization

refinement is also used synergistically with input re-parameterization, to attain maximal input

reduction in sequential netlists, using min-cut analysis in a structural manner [12]. The reduced

netlists are then subject to verification using several techniques, including decomposing the netlist

into several sub-netlists, each with a bounded state transition diameter, and then applying bounded

model checking [10, 11] to each sub-netlist. Our work differs from the above techniques in that

(1) we do not limit our technique to parameterized systems, (2) we characterize deadlock freedom

with a structural supercycle property that governs the wait-for-graph of the system interactions,

(3) we compute our local subsystems based on interactions, (4) we establish deadlock freedom by

performing the structural supercycle violation check for each interaction using its local subsystems,

and (5) our technique is complete for BIP systems. In the future, we would like to explore whether

the local supercycle violation check is enough to prove deadlock-freedom of parameterized systems.
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We would also like to consider characterizing other interesting safety properties with similar

structural checks in the context of BIP.

10.1 Discussion
Our approach has the following advantages:

• Local and global deadlock: our method shows that no subset of processes can be deadlocked,

i.e., absence of both local and global deadlock.

• Check works for realistic formalism: by applying the approach to BIP, we provide an efficient

deadlock-freedom check within a formalism fromwhich efficient distributed implementations

can be generated [15].

• Locality: if a component Bi is modified, or is added to an existing system, then

LALT (B,Q0, a, ℓ) only has to be re-checked for Bi and components within distance ℓ
of Bi . A condition whose evaluation considers the entire system at once, e.g., [2, 13, 21] would

have to be re-checked for the entire system.

• Easily parallelizable: since the checking of each subsystem D is independent of the others,

the checks can be carried out in parallel. Hence our method can be easily parallelized and dis-

tributed, for speedup, if needed. Alternatively, performing the checks sequentially minimizes

the amount of memory needed.

• Framework aspect: supercycles and in/out-depth provide a framework for deadlock-freedom.

Conditions more general and/or discriminating than the one presented here should be

devisable in this framework. This is a topic for future work. In addition, our approach is

applicable to any model of concurrency in which our notions of wait-for graph and supercycle

can be defined. For example, [7] give two methods for verifying global and local deadlock

freedom of shared-memory concurrent programs in pairwise normal form, as noted above.

Hence, our methods are applicable to other formalisms such as CSP, CCS, I/O Automata, etc.

10.2 Further work
Our implementation uses explicit state enumeration. Using BDD’s may improve the running time

when LALT (B,Q0, a, ℓ) holds only for large ℓ. Another potential method for improving the

running time is to use SAT solving, cf. [3]. An enabled port p enables all interactions containing p.
Deadlock-freedom conditions based on ports could exploit this interdependence among interaction

enablement. Our implementation should produce counterexamples when a system fails to satisfy

LALT (B,Q0, a, ℓ). These can be used to manually modify the system to eliminate a possible

deadlock. Also, when LALT (B,Q0, a, ℓ) fails to verify deadlock-freedom, we increment ℓ, in
effect extending the subsystem being checked “in all directions” away from a (in the structure

graph). A counterexample may provide guidance to a more discriminating extension, when adds

only a few components, so we now consider subsystems whose boundary has varying distance

from a, in the structure graph. This has the benefit that we might verify deadlock freedom using a

smaller subsystem than with our current approach. Design rules for ensuring LALT (B,Q0, a, ℓ)
will help users to produce deadlock-free systems, and also to interpret counterexamples. A fault

may create a deadlock, i.e., a supercycle, by creating wait-for-edges that would not normally arise.

Tolerating a fault that creates up to f such spurious wait-for-edges requires that there do not arise

during normal (fault-free) operation subgraphs of WB (s ) that can be made into a supercycle by

adding f edges. We will investigate criteria for preventing formation of such subgraphs. Methods

for evaluating LALT (B,Q0, a, ℓ) on infinite state systems will be devised, e.g.,, by extracting

proof obligations and verifying using SMT solvers. We will extend our method to Dynamic BIP,

[16], where participants can add and remove interactions at run time.
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