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Attitude estimation from polarimetric cameras

Mojdeh Rastgoo!, Cedric Demonceaux', Ralph Seulin', Olivier Morel!

Abstract— In the robotic field, navigation and path planning
applications benefit from a wide range of visual systems (e.g.
perspective cameras, depth cameras, catadioptric cameras, etc.).
In outdoor conditions, these systems capture information in
which sky regions cover a major segment of the images
acquired. However, sky regions are discarded and are not
considered as visual cue in vision applications. In this paper,
we propose to estimate attitude of Unmanned Aerial Vehicle
(UAV) from sky information using a polarimetric camera. The-
oretically, we provide a framework estimating the attitude from
the skylight polarized patterns. We showcase this formulation
on both simulated and real-word data sets which proved the
benefit of using polarimetric sensors along with other visual
sensors in robotic applications.

I. INTRODUCTION

Large-field cameras and lenses (e.g. omnidirectional and
fisheye cameras) are popular in robotic applications due to
their ability to provide large field of view (up to 360°),
extending the amount of visual information. It is the main
reason for which they have been adopted for a broad range
of tasks such as visual odometry [25], navigation [31],
simultaneous localization and mapping (SLAM) [14], and
tracking [15]. With those systems, sky regions in the images
acquired represent a large segment of information which are
usually discarded. Here, we show that polarimetric informa-
tion can be extracted from those regions and used in robotic
applications.

Sun position, stars and sky patterns are hold as naviga-
tional cues for the past centuries. Indeed, before the discov-
ery of magnetic compass, these natural cues have been the
solitary source of navigation used by our ancestors [2, 11].
Similarly, some insects used the skylight polarized pattern
created by the scattered sunlight to navigate in their en-
vironment [30, 16]. For instance, desert ants (cataglyphis),
butterflies and dragonflies among others, are able to navigate
through their paths, efficiently and robustly by using the
polarized pattern of sky, despite their small brains [16, 30, 9].

Acknowledging the nature, numerous studies have been
conducted on polarized skylight pattern [17, 4, 32, 29, 3, 1,
27, 19, 21, 28, 18, 9]. These studies are generally reported in
the optic field. They focus on estimating the solar azimuth
angle by creating a sort of compass. Estimating polarized
patterns have been, however, a difficult and complex task.
The primary studies report the use of several photodi-
odes [17, 4, 32, 29, 3], or of multiple cameras [1, 27, 28] or
manually rotating filters [19, 21, 18, 9]. As a consequence
of those troublesome setups, robotic applications are not
benefiting from the advantages of polarized patterns, as
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Fig. 1. Structure of DoFP sensors: in a single shot, four polarized images
are acquired, each of them with a different polarized angles.

attested by the lack of polarized sensors used in Unmanned
Aerial Vehicle (UAV). However, the recent introduction of
division-of-focal-plane (DoFP) micropolarizer cameras has
offered an alternative solution [23, 22, 20]. In such cam-
eras a micropolarizer filter array, composed of a pixelated
polarized filters oriented at different angles, is aligned with
a detector array. Thus, linear polarization information are
simultaneously acquired taking a single image. Here, we use
a DoFP coupled with a fisheye lens to exploit the polarized
information of sky region to estimate vehicle attitude.

In this paper, Sect. Il presents the specificity of the camera
used and the adaptation required for our robotic applica-
tion. The remainder of the paper is organized as follows:
Sect. III introduces the concepts of polarization by scattering,
Rayleigh model and its relation with attitude estimation.
Our formulation to estimate attitude is presented in Sect. IV.
Experiments and implementation details are given in Sect. V,
and finally discussions and conclusions are drawn in Sect. VI.

II. SETTING THE POLARIMETRIC CAMERA FOR ROBOTICS

In this work, visual information is captured using the
IMPREX Bobcat GEV polarimetric camera which is a DoFP
polarimetric camera. In a single shot, the camera captures
four different linearly polarized measures by using a mi-
cropolarizer with pixelated polarized filter array as illustrated
in Fig. 1. Hence, each acquired image is subdivided into
four linearly polarized images Iy, 145, I135, and Igg. Subse-
quently, the polarized state of the incident light is computed
from these images by means of the Stokes’ parameters [8],
referred as sg, s1, and s, in Eq. (1). In addition, the polarized
parameters angle of polarization (AoP) and degree of linear
polarization (DoPl), respectively referred o and p; in Eq. (1)
are computed.
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The camera captures images with a resolution of 640 px X
460 px and each polarized image is reconstructed from the
interlaced pixels. In addition, we used a 180° fisheye lens
for the experiment reported in this paper to benefit from a
large field-of-view. An example of an acquired raw image,
the extracted polarized images and the computed polarized
information is shown in Fig.2

The IMPREX Bobcat GEV camera is controlled using
the eBus SDK provided by Pleora Technologies Inc [5].
To enable the interaction with other robotic devices, we
implemented a ROS package publicly available! enabling
the usage of roslaunch and rosrun. In addition, our
package allows to store and stream the raw data as well as
computing the Stokes’ and polarized parameters.

III. POLARIZED CUES USED FOR ATTITUDE ESTIMATION

Polarized cues used for attitude estimation are based on
three main concepts which are presented in this section: (i)
the Rayleigh scattering model and its implications on the
polarization by scattering, (ii) the polarization parameters in
pixel frame and its relation to camera, and (iii) the connection
between the polarized parameters in the pixel frame and the
parameters used to estimate the vehicle attitude.

A. Rayleigh scattering model

The unpolarized sunlight passing through our atmosphere
gets scattered by different particles within the atmosphere.
Besides deviating the direction of a propagated wave, this
transition also changes the polarization state of the incident

https://github.com/I2Cvb/pleora_polarcam. This pack-
age is derived from earlier work [12].

Polarimetric images: left: a raw images in which the different polarimetric images are interlaced; center: the four extracted linearly polarized
images (o, I45, 135, I90); right: the AoP and DoPl images. For visualization purpose, AoP is represented in HSV colorspace.

light which can be explained using the Rayleigh scattering
model. Rayleigh scattering describes the scattering of light
(or any electromagnetic waves) by particles much smaller
than their transmission wavelength. Accordingly, it assumes
that scattering particles of the atmosphere are homogeneous
and smaller than the wavelength of the sunlight. Despite
these assumptions, this model proved to be sufficient for de-
scribing skylight scattering and polarization patterns [24, 10].

The Rayleigh model predicts that the unpolarized sunlight
becomes linearly polarized after being scattered by the atmo-
sphere. Based on this model, two main outcomes are drawn.
On the one hand, DoPl is directly linked to the scattering
angle v according to:

1 — cos?(y)
™1+ cos?(y)

where p;, . 1S a constant equal to 1 in theory but slightly less
than 1 in practice due to some atmospheric disturbances [24].
The scattering angle ~ is defined by the angle between the
observed celestial vector ¢ and the sun vector 5 as presented
in Fig.3. Note that DoPl is 0 in the sun direction and
maximum when the scattering angle is 7 [26, 21].

On the other hand, the scattered light is considered to
be polarized and orthogonal to the scattering plane. Conse-
quently, the Angle of Polarization is directly related to the

orientation of the scattering plane.

pL=p1 2

B. Polarization by scattering model in pixel frame

As presented Fig. 4, an image is considered as a collection
of pixels and each pixel measures the polarization parameters
of the light traveling along a ray associated with that pixel.
The pixel frame P is defined accordingly with the ray which
coincides with ¢. The camera calibration determines the
relationship between pixels and these 3D rays.

Let consider one pixel of the image with its associated
pixel frame P (obc). Based on Rayleigh scattering, the elec-
tric field of incident light after scattering is perpendicular to
the scattering plane that is defined by the observer, celestial
point, and the sun. Accordingly, the normalized electric field
vector E in the world frame is presented as the normalized
cross product of § and ¢ as shown in Eq. (3).



Fig. 3. Skylight polarization by scattering. Scattering plane is highlighted
by light shade of red. (s, ¢s) and (Oc, ¢c) de/ﬁ\ne the zenith and azimuth
angle of sun and celestial point respectively. obc defines the pixel frame,
P, and E is the electrical field orthogonal to the scattering plane.
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Fig. 4. Rotation between the camera frame C and one pixel of the frame
P. The light ray associated to the pixels are represented in dark orange.
The pixel that corresponds to the center of the image has obiously the same
frame as the camera.
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The same measurement in the pixel frame P is represented
as:

E, cos
Eobc = Eb = sin «v s (4)
0 0

where « is the measured AoP associated to the corresponding
pixel. Combining Eq. (3) & (4) and using the scattering angle
~, between § and ¢ lead to:

(sAhc)-o
(shc)-b

= siny cos «
! 5)

= sinysin o

Applying the vector triplet cross product rule on Eq. (5)
results in:

s-b =sinycosa
o (6)
s-0 = —sinysina
Using Eq. (2), the scattering angle v is expressed as:
1—p]
cosy=s8-c==£ , 7
gl 1+ (7

Pl
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with p) =

Equations (6) & (7) finally lead to a representation of the
sun vector in pixel frame P which express a direct relation
between the AoP, the scattering angle, and the sun position:

—sinysin «
sinycosa | . (8)
cos "y

Sp:

In other words, the sun vector is expressed in the pixel frame
as a vector depending only on the polarization parameters
AoP and DoPl, which is directly linked to the scattering
angle .

C. UAV attitude and polarized sky pattern

Figure 5 illustrates all transformations and frame con-
ventions to estimate the attitude of a UAV. In addition, an
inertial measurement unit (IMU) frame is added for later
comparisons.

WI
/T\b
wa’/v .

Wienuy i

va

Fig. 5. Frame conventions and rotations for attitude estimation of an UAV.

In Fig.5, W, W', Z,V,C, and P refer to the world frame,
global frame of IMU, IMU frame, vehicle frame, camera
frame, and pixel frame, respectively. The rotation from one
frame to another is presented with lowercase alphabet. In
this scenario, a vector v, in pixel frame is expressed in the
world frame v,, as:

U = va ' va ' ch *Up (9)

where the rotation from the camera to the pixel frame R,
is obtained by camera calibration. The rotation is defined as
the yaw and pitch rotations by the zenith and azimuth angles
of the celestial point (6., ¢.) as shown in Eq. (10).

cosf.cosp. —sin @,
cosb.sing.  cos @,
—sin 6, 0

=R, (¢C) ’ Ryc (00) :
In Eq. (8), we expressed the sun position in the pixel frame.

Indeed, this representation can be applied to any point from
the world frame, ergo:

sin 6. cos ¢,
sinf.sin ¢, |
cos 0,

Re,

(10)
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Sy = Ry - Rye - Rep - | sinycosa ,
cos 7y (1
= va . va v,
thus
RT . s, =v (12)

The above equation shows a direct relation between the
rotation matrix of the vehicle R, the AoP o — measured
by the polarimetric camera at one pixel — and the angle
of scattering ~y for the corresponding pixel. In addition, if
Pimaz 1S known, the angle of scattering is directly obtained
by inverting Eq.(7) providing a direct relation between
polarization parameters and the rotation of the vehicle.

IV. ATTITUDE ESTIMATION

In this section, we present 2 approaches to estimate the
attitude: (i) in the former method named absolute rotation,
the absolute rotation and attitude of the vehicle is estimated
under the assumption that the sun position is known or
deduced from time and the GPS location of the vehicle and
(>i1) in the latter method named relative rotation, the relative
rotation of the vehicle from its initial position is estimated
without additional assumption regarding the sun position.
Both approaches required an estimate of the scattering an-
gle v which will be presented beforehand.

A. 7y estimation

By only measuring the AoP « in scattering effects, v needs
to be estimated to get the vector v defined in Eq. (11). This
equation is valid for all points in sky region. However, only
2 celestial points are required to estimate ~ such as:

—sin~y; sin a

R'-s=Rep, - | sinvycosa;

o (13)
— sin s sin ag

R'-s= R, | sinygcosas

COS Y2

Using the product of R, and R,(«), Eq.(13) is rewritten
as:

0 0
My - |siny, | = My - |sinys (14)
cos Y1 COS Y2

By defining the matrix M such that M = MY} - My, v, and
~o are found as:

_ Moa
{'yl = —arctan %01 (15)
Y2 = — arctan Mfg

The AoP is 27 modulus, while the v found in Eq. (15) is
7 modulus leading to two possible solutions for the vector
v: (a1,71) and (a1 + 7, —71).

Fig. 6.

Experimental setup.

B. Absolute rotation

In order to estimate the absolute rotation and attitude of
the UAV, it is assumed that: (i) the sun position is known (ii)
the vector v is estimated using the AoP measures of the sky
(2 points) and (iii) the vertical in the pixel frame is known
or a second w is estimated using the AoP from horizontal
reflected areas. In this study, the vertical in the pixel frame
is assumed to be known.

The aforementioned assumptions lead to the following

expression:
[s,2,8 A 2]
= Ry (t) - Ryc - [v(t), w(t),v(t) Aw(t)]
(16)
where z is the vertical in world frame ([0, 0, 1]) and ¢ is the
time instance.

Solving Eq. (16) enables to get R, (). However, due to 7y
ambiguities, v and therefore R,,, have 2 solutions. At each
iteration, the rotation R,,, selected is the one the closest
from previous rotation, assuming that the motion between
two frames is smoothed.

= R(t) - [v(t), w(t), v(t) Aw(t)]

C. Relative rotation

The relative rotation is estimated between two time stamps
(t1, t2). Let v(t1) and v(to) referring to v; and vy to simplify
the expression. Therefore, Eq. (16) becomes:

[s,2,8 N z] = Ryp1 - Ruc - [v1,w1,v1 Awi] (17)
[57 Zy 8 N Z] = Ryw2 - Rye - ['UZaw%'UZ A U)Q] )
Leading to:
va2 = val ' va ' [Ul,’IU1, v A wl] ' (18)

[V, wa, vy Awy] - RY,

ve )

Using the above equation, the relative rotation R,,,, 1S
equal to:

vavg =

Rye - [v1, w1, v1 Awy] - [va, wa, v2 Awg] ™ - RE,

19)

As previously explained, only 2 points are required to
compute the scattering angle ~. In practice (see Sect.V),
more points can be used which leads to a more robust
estimate of the vehicle rotation.
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(b) DoPl

Fig. 7.

(c) AoP

AoP and DoPl images synthetically created. All images have been generated with sky region for yaw, pitch and roll angle of 1.8rad, —0.2rad

and 0.1 rad, respectively. (a)-(b) No noise added, (c)-(d) Noise level of 0.1 added.
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Fig. 8. Absolute and relative rotation obtained from synthetic data in ideal case, noisy conditions without RANSAC optimization and noisy case with

RANSAC optimization. The mean and standard deviation of the difference between each predicted and GT is illustrated in the legend as well.

V. EXPERIMENTS AND RESULTS

This section presents our experimental setup, the designed
experiments and the obtained results. The setup used in our
experiment is illustrated in Fig.5. Instead of using a UAV,
a camera was manually moved (see Fig.6). The IMU was
calibrated with the camera using kalibr toolbox [7, 6], to
use the recordings as GT. The polarimetric camera with
fisheye lens was also calibrated according to [13]. Using the
above setup two data sets of synthetic and real images were
created and the results obtained are presented in Exp. V-A
and Exp. V-B, respectively.

A. Experiment 1

The synthetic data containing AoP and DoPl images of
sky regions were created using the IMU recordings obtained
during real acquisition. Figures 7(a) & 7(b) show an example

of this dataset at optimal conditions. This dataset based on
IMU recordings contains rotations along roll, pitch, and yaw.
This dataset has originally 856 samples but has been down-
sampled by sampling rate of 30 samples.

Applying our framework on ideal synthetic data, perfect
results were obtained for absolute and relative rotations,
while v was estimated using only 2 random points from the
sky region (blue dotted curve in Fig. 8).

Although using our proposed framework, we were able to
achieve perfect results on ideal synthetic data, in reality it is
rare to obtain the perfect skylight polarization pattern. Variety
of causes clutter the desired skylight pattern, the main one
being pollution. To account for such cases, a second test was
performed while significant level of noise was added to the
created synthetic data. Figures 7(c) & 7(d) show an example
of synthetic data with an additional Gaussian noise with an
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Fig. 9. Absolute and relative rotation obtained from real data. The black line
represents the GT, the orange line and the blue line represent the absolute
and relative predicted rotations, respectively.

standard-deviation of 0.1.

Performing the same 2 random-points algorithm as before
on noisy dataset leads to the results illustrated in Fig. 8, the
orange curve. As expected the performance decline, simply
due to the noise.

To solve this problem, Random sample consensu
(RANSAC) was used to estimate the attitude in the absolute
and relative rotation methods. For the absolute rotation, since
the sun position is assumed to be known the model optimizes
the full rotation of each frame in comparison with the origin
considering the difference between the predicted and real sun
positions.

Howeyver, in the relative rotation method there is no infor-
mation about the original position, or sun position, and the
algorithm only depends on the polarized vector, v = Rp.v)
between two different frames. Therefore, using the model
infers the optimal vector representing each frame is obtained.

Estimating the attitude on the noisy dataset with RANSAC
significantly improved the results as shown in Fig. 8 (green-
dashed line). The parameters used were: an error threshold
of 0.07, 10 random points (2 points for defining the model
and the rest as test), and 2000 iterations.

The quantitative results in terms of mean difference (i)
and standard deviation (o) between the predicted rotations
and GT, for all the conditions are also shown in the Fig. 8.
Note that all the angles are reported in radians.

As illustrated in the obtained results, using the RANSAC
model the outliers are ignored and satisfactory results are
achieved.

B. Experiment 2

This section presents the results obtained using real data.
The same experimental setup was used using the IMU results
to create the GT for the vehicle in the world frame. The
original data set contains 593 recordings which was under-
sampled to a sampling rate of 20 frames. Both absolute and
relative methods were ran with RANSAC with the same
parameters than in the previous experiment. The results are
presented in Fig. 9.

Even though the difference between the predicted rotation
and GT using the real data is higher than for the synthetic
measurements the results are promising and the pose trajec-
tory of the vehicle is respected.

VI. DISCUSSION AND CONCLUSION

This paper presented a new method to estimate attitude of
a vehicle using the polarization pattern of the sky. Contrary
to conventional cameras, polarimetric cameras exploit part
of images that represent the sky and we demonstrated how
to take advantage of this property to estimate attitude. We
first derived all equations that describe the relationship be-
tween the rotation matrix of the vehicle and the polarization
parameters. Herein, we proposed a model based on AoP
measurements of the light beam scattered by the sky, subse-
quently two approaches of the absolute attitude and relative
attitude estimation were proposed. The former estimated the
rotation the vehicle in comparison to the origin taking into
account the sun position while the latter did not consider
this assumption and estimated the position of the vehicle in
the world frame considering two consecutive frames. Finally,
in order to cope with the undesired artifacts and outliers
that can occur during the measurements, a RANSAC model
was integrated within our framework. Promising results
were achieved after using RANSAC optimization, illustrating
the potential and capacity of a polarimetric camera to be
integrated in the robotic field. As future work, we will focus
our attention to improve these preliminary results including a
minimization process of the accumulated error of prediction
using filtering. Aware that the polarimetric camera cannot be
a standalone system for robust attitude estimation, we also
plan to combine this modality with geometric information to
improve the quality of the estimation.
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