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Kohonen’s Map Approach
for the Belief Mass Modeling

Imen Hammami, Grégoire Mercier, Senior Member, IEEE, Atef Hamouda and Jean Dezert

Abstract—In the framework of the evidence theory, several
approaches for estimating belief functions are proposed. However,
they generally suffer from the problem of masses attribution
in case of compound hypotheses that lose much conceptual
contribution of the theory. In this paper, an original method for
estimating mass functions using Kohonen’s map derived from
the initial feature space and an initial classifier is proposed. Our
approach allows a smart mass belief assignment, not only for
simple hypotheses, but also for disjunctions and conjunctions
of hypotheses. Thus, it can model at the same time ignorance,
imprecision and paradox. The proposed method for basic belief
assignment (BBA) is of interest for solving estimation mass
functions problems where a large quantity of multi-variate data
is available. Indeed, the use of Kohonen map simplifies the
process of assigning mass functions. The proposed method has
been compared to state-of-the art BBA technique on benchmark
database and applied on remote sensing data for image classifi-
cation purpose. Experimentation shows that our approach gives
similar or better results than other methods presented in the
literature so far, with an ability to handle large amount of data.

Index Terms—Evidence theory, Mass belief assignment, Koho-
nen map, Estimation.

I. INTRODUCTION

IN several fields, one observes the presence of multiple in-
formation, coming from various sources, which represents

the same scene. In order to synthesize more useful information
related to the phenomenon observed, it is often necessary to
exploit the redundancy and complementarity of the sources.
Many formalisms were proposed manipulating those sources
and allowing to formalize mathematically uncertain and im-
precise data as the Bayesian theory, fuzzy set theory,...

The belief function theory, introduced by Dempster [1] and
formalized by Shafer [2], presents an appealing mathematical
background in information fusion domain. It allows the pro-
cessing of both imprecise and uncertain information stemming
from very varied sources. The initial theory was modified
and ameliorated on several occasions, for example through
the work of Dezert-Smarandache [3], a paradoxical reasoning
is added. Despite, the fact that belief function theory excels
in extracting the most truthful proposition from a multisource
context, the estimation of basic belief assignments has always
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been a difficulty for applying efficiently belief functions in
applications.

In belief function estimation, we distinguish two main fam-
ily approaches. Likelihood based approaches [2], [4], require
the knowledge, or the estimation, of the conditional probability
density for each class. The second family is the distance based
approaches [5], [6]. However, these two types of estimation
present some limits: among them we can mention the need of
the a priori knowledge on the hypotheses which is not always
easy to know, especially, for compound hypotheses.

In this work, we propose to define a new approach for
estimating mass functions in the case of representing knowl-
edge in complex systems, where quantity of information is
important (i.e. a complex feature space Rp). The construction
of mass function can be done through Kohonen’s Map [7] that
allows to approximate the feature space dimension into a pro-
jected 2D space (so called map). Thus, the use of Kohonen’s
map simplifies the process of assigning mass functions on
conjunctions and disjunction of hypotheses when considering
relative distance of an observation to the map. In the feature
space (in Rp), operations on basic belief assignment (BBA)
can be much more complex and may not be feasible due to
computing time or accuracy consideration.

This paper is organized as follows. The second section
briefly introduces the main concepts of the belief function
theory. We survey some existing methods for estimating mass
functions in section II-B. Then section III introduces the main
ideas of the proposed approach and explains the underlying
methodology. Section IV provides simple examples to illus-
trate the methodology. In section V, the results obtained by
the proposed approach are compared to some state-of-the art
methods on a set of benchmark database. Then, section VI
presents a deeper analysis of the classification results on a
large SPOT image. Finally, section VII concludes.

II. EVIDENCE THEORY

The belief function theory or the evidence theory was
introduced by Dempster [1] in order to represent some im-
precise probabilities with upper and lower probabilities. Then,
it was mathematically formalized by Shafer [2] thanks to the
general formalism of belief functions. In this section, the basic
mathematical elements of this theory are presented as well as
some existing methods for estimating mass functions.

A. Basic concepts

Dempster-Shafer theory (DST) is used for representing
belief on imperfect observation (such as uncertain, imprecise
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and/or incomplete) through the basic belief assignment (BBA,
also called mass function), defined on all the subsets of the
frame of discernment Θ, noted 2Θ. In our context, m(·) will
have to be built from the observation provided by a sensor,
that is from a sample x ∈ Rp. A BBA m(·) is the mapping
from elements of the power set 2Θ onto [0, 1] such that:

m : 2Θ → [0, 1]

under constraints:{
m(x ∈ ∅) = 0∑
A⊆2Θ m(x ∈ A) = 1.

(1)

In this section, we use the notation m(A) that stands for
m(x ∈ A) when there is no ambiguity. The frame of
discernment Θ is the set of possible answers of the problem
under concern. It is composed of exhaustive and exclusive
hypotheses: Θ = {θ1, θ2, . . . , θN} corresponding to Shafer’s
model of the frame. From this frame of discernment, a power
set noted 2Θ can be built, including all the disjunctions of
hypotheses θi such as θi ∪ θj or θi ∪ θj ∪ θk...

Let now consider two sources of information through their
mass function m1 and m2 defined on the same frame of dis-
cernment. These BBAs can be combined using the conjunctive
rule defined by:

Disjunctive rule: m1 ∪©2(A) =
∑

E,F∈2Θ

E∪F=A

m1(E)m2(F ), (2)

Conjunctive rule: m1 ∩©2(A) =
∑

E,F∈2Θ

E∩F=A

m1(E)m2(F ). (3)

The mass K =
∑
E∩F=∅m1(E)m2(F ) is called the degree

of conflict between m1 and m2. Various works deal the
problem of the appearance of conflict with this combination.

In the framework of Dezert-Smarandache theory
(DSmT) [3] the exclusivity constraints imposed upon
the hypotheses, and the redistribution of the conflicting
mass to the non-empty sets using the normalization rule has
been canceled. The main idea of DSmT is to work on the
hyper-powerset of the frame of discernment. The hyper-power
set DΘ is defined as the set of all composite possibilities
built from Θ which ∩ and ∪ operators such that:

1) ∅, θ1, . . . , θN ∈ D.
2) ∀E ∈ DΘ, F ∈ DΘ, (E ∪ F ) ∈ DΘ, (E ∩ F ) ∈ DΘ.
3) No other elements belong to DΘ, except those, obtained

by using rules 1 or 2.

As in DST, different combination rules were proposed in
DSmT. Interested readers could refer to [8], [9] for more
details about some of these rules. For decision making from
combined mass function, the Generalized Pignistic Transfor-
mation [3] noted BetP is used:

BetP (A) =
∑
E∈DΘ

CM (E ∩A)
CM (E) m(E), ∀A ∈ DΘ (4)

where CM is the cardinality within DSmT as defined in [10,
sec. 3.2.2, p. 52]. The decision is taken by the maximum of
pignistic probability function BetP (·). Similarly, the Pignistic

Transformation [11] can be used within DST framework for
decision making. Some other decision rules can be apply by
using either the maximum of belief (Bel) or on the maximum
of the plausibility (Pl) which are defined by:

Bel(A) =
∑

E,F∈2Θ

E⊆A,E 6=∅

m(E), ∀A ∈ 2Θ (5)

Pl(A) =
∑

E,F∈2Θ

E∩A6=∅

m(E), ∀A ∈ 2Θ (6)

where Bel(A) represents the sum of masses of belief of the
focal elements which involve A and Pl(A) quantifies the
maximal degree of belief that could be given to A. Eq. (6)
and eq. (5) can be applied on DΘ as well.

In the rest of this paper, decisions are given by the maximum
of Pignistic Transformation in 2Θ and by the maximum of
Generalized Pignistic Transformation in Dθ.

B. Estimation of mass functions in evidence theory

Apart the choice of the fusion rule, the major difficulty of
belief theory lies in estimating mass functions. Several meth-
ods have been proposed in the literature and their choice must
be made depending on the nature of data and the application.
As stated before, mass belief assignment can be classified
in two axes: distance-based approaches and likelihood-based
approaches. In this part some approaches of these categories
are browsed in details.

1) Distance-based approaches: Distances-based Models
correspond to models where masses relative to data depend on
distances calculated in the feature space. Within the context
of the theory of belief functions, three models have been
introduced in the literature. One is based on the algorithm
of K-Nearest Neighbor (K-NN), the other is based on the
clustering method C-means, and finally the EVCLUS algo-
rithm that assigns a BBA to each object from the matrix of
dissimilarities between objects.

a) BBA with a K-NN algorithm: In this estimation ap-
proach, only the singleton θn and the whole frame of discern-
ment Θ are considered. Focal elements1 and the mass func-
tions are estimated from a learning set L = {x1,x2, . . . ,xL}
for which their corresponding class is known: x` is assigned
to class θx`

among {θ1, θ2, . . . , θN}. For each instance x to be
classified, the K-NN is used to retain only the closest vectors
of x. Let NK(x) be the set of the K nearest neighbors of x in
L. This set can be considered to pieces of evidence regarding
the class of x. For each element xk in NK(x) (xk being
assigned to class θxk

) the strength of this evidence decreases
with the distance d(x,xk). The BBAs are then given by the
following expression:{

mk(x ∈ θxk
) = αϕθxk

(d(x,xk))
mk(x ∈ Θ) = 1− αϕθxk

(d(x,xk))
(7)

where 0 < α < 1 is a constant. ϕθn
(·) is a decreasing function

verifying ϕθn
(0) = 1 and limd→∞ ϕθn

(d) = 0, d(x,xk)

1A focal element is an element X of 2Θ or DΘ such that m(X) > 0.
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being the distance between the vector xk and x. The ϕθn
(·)

function might be an exponential function following this form:

ϕθn
(d) = exp(−γnd2) (8)

where γn is a positive parameter determined separately for
each class θn ∈ {θ1, θ2, . . . , θN}. Typically in DST frame-
work, the combined belief function m(·) is obtained by the
application of Dempster combination operator on each sources
of evidence (i.e. partial information) mk(·).

m = ⊕k∈[1,...,K]mk (9)

where ⊕ stands for Dempster’s rule defined by:

m1⊕2(A) = 1
1−Km1 ∩©2(A) (10)

The described method defines the Distance Classifier (DC) [5].
Despite its promising results, this approach has a major
shortcoming because it cannot deal with new (exploratory)
data. This point may be explained by the cost of this algorithm
which is quite high because it has to calculate the Euclidean
distance to each of the neighbors, and sort them to find
the nearest K. This task has a computational complexity of
O(L×p) for each new BBA, where p is the space dimension.

b) BBA with ECM algorithm: In [12], Denœux and
Masson propose a new automatic classification method called
ECM (Evidential C-Means). Let L = {x1,x2, . . . ,xL} be a
collection of vectors in Rp describing the L observations. Let
K be the desired number of classes. Each cluster is represented
by a prototype or a center vk ∈ Rp. Let V denotes a matrix of
size (K×p) composed of the coordinates of the cluster centers
such that Vk,q is the qth component of the cluster center vk.
ECM looks for matrices M = (m`,k) (mass functions matrix
of dimension (L × K) with elements m`,k = m(x` ∈ θk))
and V by minimizing the following objective function:

JECM(M,V ) =
L∑
`=1

K∑
k=1

θk⊆Θ,θk 6=∅

cαkm
β
`,kd

2(x`,vk)+
L∑
`=1

δ2mβ
k,∅

(11)
subject to the constraint:

K∑
k=1

θk⊆Θ,θk 6=∅

m`,k +m`,∅ = 1, ∀` ∈ {1, . . . , L}, (12)

where m`,∅ stands for m(x` ∈ ∅), δ controls the amount of
data considered as outliers, β is a weighting exponent that
controls the imprecision of the partition and α is a parameter
to control the degree of penalization. The cαk coefficient is a
penalty factor that prevents from high cardinality class.

This algorithm holds a great importance in processing
complex and imprecise data since it allows the allocation of
the masses to the different subsets of the frame of discernment.
Unfortunately, it has an exponential complexity relative to the
number of classes and linear complexity relative to the number
of samples.

c) BBA with EVCLUS algorithm: Let us consider two
BBAs mi and mj regarding the class membership of two
observations xi and xj . The aim of EVCLUS (EVidential

CLUStering of proximity data) BBA estimation is: the more
similar the observations, the lower the degree of conflict
between their mass function and the higher plausible that they
belong to the same class. As shown in [13], this idea can be
explained as follows. Let Rij be the following proposition
“samples xi and xj belong to the same class” corresponding
to the following subset of the Cartesian product Θ2 = Θ×Θ:

Rij = {(θ1, θ1), (θ2, θ2), . . . , (θK , θK)}.

The plausibility Pli×j of the proposition Rij can be shown
to be equal to:

Pli×j(Rij) =
∑

A×B∈Θ2

(A×B)∩Rij 6=∅

mi×j(A×B)

=
∑

A∩B 6=∅

mi(A)mj(B)

= 1−
∑

A∩B=∅

mi(A)mj(B) = 1−Kij

where mi×j(A × B) is the BBA that describes ones beliefs
regarding the class membership of both samples and Kij is
the degree of conflict between mi and mj .

Let us assume that the available data consist of a L ×
L dissimilarity matrix D = (dij), EVCLUS looks for
M = (m1,m2, . . . ,mL) the credal partition of L =
{x1,x2, . . . ,xL} a set of L observations to be classified in
Θ by minimizing an stress function inspired from multidi-
mensional scaling (MDS) methods [14] such that the degree
of conflict Kij represents a form of distance between the
observations and reflects the dissimilarities dij . The stress
function to be minimized is given by:

JEVCLUS(M,a, b) = 1
Ct

∑
i<j

(aKij + b− dij)2

dij
, (13)

where a and b are two coefficients, dij is the dissimilarity
between xi and xj and Ct is a constant defined for normal-
ization as:

Ct =
∑
i<j

dij .

Thus, EVCLUS can be thought of as an iterative optimization,
with respect to M , a and b, under the criterion of eq. (13) to
be minimized by using a gradient-based procedure. The major
drawback of this algorithm is its computational complexity
thus it is limited to data sets of a few thousand elements and
less than 20 classes.

2) Likelihood-based approaches: In [15], among the sev-
eral probabilistic models that have been proposed in the
literature, Appriou considers each class as a particular source
of information. Then the mass is defined through the transfer
of the bayesian probability function to the total ignorance and
the complementary class2. Then the BBA associated to the
hypothesis θk is defined through the source of information Sk

2i.e. θ and θc are complementary if θ ∪ θc = Θ and θ ∩ θc = ∅.
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with the following mass:
mk(x ∈ θk) = αk

Rp(x∈θk)
1+Rp(x∈θk)

mk(x ∈ θck) = αk
1

1+Rp(x∈θk)
mk(x ∈ Θ) = 1− αk,

(14)

where αk with values in [0, 1] is a discounting factor associated
with the reliability of the model to the class θk and R =
1/maxk p(x ∈ θk) is a positive normalized coefficient less or
equal to 1. The classes θck are defined in 2Θ such as θk∩θck =
∅. From these K belief functions, each elementary sources
are fused by using the orthogonal (disjunctive) sum given in
eq. (9), yielding a complete BBA on 2Θ. In [16] a transfer
model is introduced to distribute the initial masses over the
compound hypotheses (disjunction of classes).

III. A NEW METHOD TO BUILD BBA

As previously discussed, the belief function theory pro-
vides a robust framework for uncertain information modeling.
Nevertheless, the application of this theory in fusing sources
of information induces some well-known problems. One of
them is the problem of estimating the belief functions. The
next section gives an overview on Kohonen’s Self Organizing
Map (SOM)that will be used to solve this problem. Section
III-B will present the feature space that is defined to help the
estimation of mass functions. The BBA itself is detailed on
section III-C.

A. Overview on Kohonen’s map

There exist many versions of the SOM. However, the basic
philosophy is very simple and already effective [7]. A SOM
defines a mapping from the input feature space (say Rp) onto
a regular array of M ×N nodes (see Fig. 1) [17].

A reference vector, also called weight vector, w(i, j) ∈ Rp
is associated to the node at each position (i, j) with 1 6 i 6 N
and 1 6 j 6M . An input vector x ∈ Rp is compared to each
w(i, j). The best match is defined as output of the SOM: thus,

wx Nwx(t3)
Nwx(t2)
Nwx(t1)

Fig. 1. A schematic view of a 11 × 11 Kohonen’s Self Organizing Map.
Several topological neighborhood Nwx (ti) of the winning neuron wx are
drawn. The size is decreasing with the number of iterations (t1 < t2 < t3)
during the training phase, according to (17).

the input data x is mapped onto the SOM at location (ix, jx)
where w(ix, jx) is the neuron the most similar to x according
to a given metric. SOM performs a non linear projection of the
probability density function p(x) from the high-dimensional
input data onto the two-dimensional array.

In practical applications, the Euclidean distance is usually
used to compare x and w(i, j) in Rp, so that d(x,w(i, j)) =
‖x −wx‖. The node that minimizes the distance between x
and w(i, j) defines the best-matching node (or the so-called
winning neuron), and is denoted by the subscript wx:

d(x,wx) = ‖x−wx‖ = min
16i6M
16j6N

‖x−w(i, j)‖. (15)

An optimal mapping would be the one that maps the prob-
ability density function p(x) in the most faithful fashion,
preserving at least the local structures of p(x).

It can be considered also that the SOM achieves a non-
uniform quantization that transforms x to wx by minimizing
the given metric. Nevertheless, thanks to the training phase
(detailed below) the neurons w are located on the map
according to their similarity. Then, when considering neurons
w(i, j) located not too far from the winning neuron wx, the
distance in Rp between x and w(i, j) is not dramatically
different from the one between x and wx. That means that in
the neighborhood of wx on the map (i.e. with closed location
i and j), are located the wining neurons of the neighbors of x
in Rp. Hence, a class in the feature space Rp is projected into
the map at the same area, remaining homogeneous. Moreover,
whatever the initial shape of the class in the Rp feature space,
the projected class is highly likely to be of isotropic shape in
the map.

1) Training Phase: The learning phase may be thought of
as a classification phase, such as a K-means classification al-
gorithm. Neurons are first sampled (in Rp) randomly and then,
iteratively in a similar way as in the K-means algorithm, they
are modified to fit a training sample L = {x1,x2, . . . ,xL}.
One of the main difference from the K-means algorithm is
that the nodes which are close to the best-matching node in
the map will learn from the same input x also.

While the initial values of the w may be set randomly,
they will converge to a stable value at the end of the training
process, by using (16):

w(t+ 1) = w(t) + hw,wx(t) (x−w(t)) , (16)

where t is the iteration index.

During one iteration of the training phase, every input
x`, taken from the training set L, is processed according
to (16). hw,wx(t) is called neighborhood kernel: it is a
function defined over the lattice points of Kohonen’s map,
usually hw,wx(t) = h(d(w,wx), t) where d(w,wx) stands
for the distance between the location of w and wx on the
map. While increasing d(w,wx), or increasing t, hw,wx(t)
decreases monotonically to 0. The average width and the form
of hw,wx(t), defines the “stiffness” of the “elastic surface” to
be fitted to the data set. Let their index in the neighborhood
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of wx be denoted by the set Nwx(t) (see Fig. 1).

hw,wx(t) =
{
α(t) exp(−d(w,wx)

2σ2(t) ) if w ∈ Nwx(t),
0 if w /∈ Nwx(t).

(17)

The value of α(t) is then identified with a learning-rate factor
(0 < α(t) < 1). Both α(t) and the support of Nwx(t) are
usually decreasing monotonically in time (during the ordering
process). σ(t) is the width of the neighborhood that corre-
sponds to the radius of the neighborhood of wx in Nwx(t).
In practice, α(t) and σ(t) vanish with time. Typically, linearly
decreasing functions are defined such as: α(t) = α0× T−t

T and
σ(t) = σ0× T−t

T , where T stands for the number of iterations.
2) Projection: Once the SOM has been trained, it acts as

a similar way to as a set of clusters yielded by a K-means
algorithms. Here, the index of each w is defined in 2D and
each w located in the same area of the map has similar value
in Rp.

For each sample x to be processed, it is “projected” on the
map by using eq. (15) to find its corresponding neuron wx.
The SOM may be considered to as a non-uniform quantization
of the feature space [18]. This non-uniform quantization
performed by Kohonen’s map has the advantage to make the
class definition on the map (i.e. through the quantization index)
more isotropic than in Rp. Then, the map may be considered
to as an approximation in {1, . . . , N} × {1, . . . ,M} of the
initial manifold of Rp, while preserving its topology.

B. Feature space for smart BBA

The proposed smart BBA intends to evaluate the mass of
each class in 2Θ or DΘ according to the topology of the
observed manifold. Then, two sets of data may be handled (see
Fig. 2): on the first hand the initial observations x and class
centers {C1, C2, . . . , CK} in Rp and, on the other hand the
so-called winning neurons wx and the projected class centers
wCk

. It is worth noting that there is no link between the
training of the classifier that defines {C1, C2, . . . , CK} in Rp

and the SOM that defines the set of neurons w(i, j) in Rp,
1 6 i 6M, 1 6 j 6 N , except that both are trained by using
the same training samples (or a part of those).

wx is determined following eq. (15) and for k ∈
{1, . . . ,K}, wCk

is determined in a similar way as stated
in the following equation:

wCk
= arg min

w(i,j)
16i6M,16j6N

‖Ck −w(i, j)‖. (18)

Then, Kohonen’s map can be used to build easily BBA
and to balance between conjunction and disjunction when
considering relative distance of an observation to the map.
Moreover, the use of Kohonen’s map simplifies the evaluation
of the masses since operations on the maps require calculation
on index only, while operations on the feature space (in Rp)
may be much more complex (when dealing with stochastic
divergence for instance). So two kinds of distances will be
considered and their related difference will induce uncertainty:

1) dRp(·, ·) which is the distance in Rp. It can be defined
through the euclidean norm L2 (Rp) but also through

a spectral point of view such as the spectral angle
mapper or the spectral information divergence [19]. It
may also be based on the Kullback-Leibler divergence
or the mutual information when dealing with Synthetic
Aperture Radar (SAR) [20].

2) dmap(·, ·) which is the distance along Kohonen’s map.
It is mainly based on the euclidean norm and uses
the index that locates the two vectors on the map:

dmap(w1,w2) =
√

(n1 − n2)2 + (m1 −m2)2 if w1
(resp. w2) is located at position (n1,m1) (resp.
(n2,m2)) on the map.

C. Mass function construction

This section details a method for building a BBA by using
Kohonen’s map and an initial classifier on Rp.

1) Mass of simple hypotheses: The definition of masses of
focal elements could be based on the distance on the feature
space. Nevertheless, an appropriated definition should take into
account the variance of the classes to weight each of them, as
it is the case in a likelihood point of view. This weighting is
already performed by the projection onto Kohonen’s map so
that, the mass of focal class is defined as:

m(x ∈ θk) ∼ 1 if wx=wCk

m(x ∈ θk) ∼
dmap(wx,wCk

)−1∑K
`=1 dmap(wx,wC`

)−1
otherwise

(19)

where k = 1, 2, . . . ,K, wCk
is the projected class, wx is the

winning neurons.
According to eq. (19), we consider that the more the dis-

tance dmap(wx,wCk
) (relatively to the other distances between

x and C` on the map) the less the mass m(x ∈ θk).
2) Mass of the full ignorance: From the feature space, we

consider that the mass evaluation of an observation falls into
ignorance if its distance to the map is much more important
that the distance of its related class center to the map. Then,
it can be expressed as follows:

m(x ∈ Θ) ∼ 1−min
(
dRp(x,wx)
dRp(Cx,wCx) ,

dRp(Cx,wCx)
dRp(x,wx)

)
(20)

C1

C2

C3

x

wC1

wC2

wC3

wx

Feature space Rp {1, . . . , N} × {1, . . . ,M} SOM

Fig. 2. Observations in the feature space and their projections into Kohonen’s
map. Note that the neurons wx and wCk

can be located on the map through
their location index (n,m) or in Rp with their p component value.
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where Cx is the class center of x, wCx is its projection on the
map.

3) Mass of the conjunction between two classes: In the
set DΘ, the conjunction between two classes may be defined
into the feature space as the space in-between the two classes.
But, one has to account for the variance of each classes that
increases the complexity of this measure. Once again, it is
much more convenient to define the θk ∩ θ` mass directly into
Kohonen’s map, as:

m(x ∈ θk ∩ θ`) ∼ e−γ(z−1)2
(21)

with

z = dmap(wx,
wCk

+ wC`

2 ) 0 < k, ` 6 K, ` 6= k

Eq. (21) stipulates that the value of m(x ∈ θk ∩ θ`) becomes
maximal when x reaches the middle of [wCk

,wC`
] segment.

Eq. (21) yields a value of m(x ∈ θk ∩ θ`) closed to 1 in
the middle. Moreover, m(x ∈ θk ∩ θ`) vanishes when x is far
away from the [wC`

,wCk
] segment. The γ parameter tunes this

vanishing behavior. For example, if we want eq. (21) be over
1
2 between the 1st and the 3rd quartile of [wCk

,wC`
] segment,

then γ should be equal to 2
√

2. For a smaller domain around
the median of [wCk

,wC`
] segment, γ should be greater (see

Fig. 3).
This conjunctive mass estimation does not apply in the classi-
cal Dempster-Shafer framework (i.e. when working in 2Θ only
assuming Shafer’s model of the frame Θ).

x

m(x)

γ = 2
γ = 6
γ = 12Ck C`

1

Fig. 3. Behavior or m(x ∈ θk ∩ θ`) with γ, according to eq. (21).

4) Mass of disjunction between two classes: The ignorance
in the decision making between two classes Ck and C` may
be considered as the dual of eq. (21), but here by considering
distances in the feature space. When a sample x is not too
far from class Ck or C`, it is not too difficult to decide if it
has too be associated to the class k or `. But if x is far from
Ck and C`, it comes the disjunction as related in Fig. 4. That
corresponds to a context where the distances between x and
the classes are of the same scale: dRp(x, Ck) ≈ dRp(x, C`).
But such criteria is not enough since it includes also the case
where x is located in-between Ck and C`. So it has to be
weighted by the distance between the two classes dRp(Ck, C`).
If dRp(Ck, C`)� dRp(x, Ck) and dRp(Ck, C`)� dRp(x, C`),
x falls in the disjunctive case since x is considered far to Ck
and C`. Then, the criteria defined in eq. (22) is based on the
ratio between dRp(Ck, C`) and dRp(x, Ck) + dRp(x, C`).

Then, the mass of the disjunction θk ∪ θ` is modeled by:

m(x ∈ θk ∪ θ`) ∼ 1− tanh(βz) (22)

C1

C2

x

(a)

C1
C2

x

(b)

Fig. 4. Disjunction between two class: (a) non ambiguous case, (b)
ambiguous case.

with

z = dRp(Ck, C`)
dRp(x, Ck) + dRp(x, C`)

0 < k, ` 6 K, k 6= `.

Here, the β parameter stands for the level of ambiguity.
When x is close, in Rp, to the segment [Ck, C`], d(Ck, C`) '
dRp(x, Ck) + dRp(x, C`) so that z is close to 1, and m(x ∈
θk∪θ`) has to vanish. Then, the areas where eq. (22) vanishes
are shown on curves of Fig. 5. The more the β, the less the
ambiguous mass.

z
0 < z < 1

Ck

z = 1

C`

0 < z < 1

m(z)

β = 1
β = 2

Fig. 5. Shape of eq. (22) for some value of β.

5) Conjunction and disjunction for more than 2 classes:
This construction that takes into consideration the ratio of
distance between 2 classes or the distance to the middle of 2
classes can be extended to more than 2 classes. For instance,
eq. (21) can be based on the centroid of more than 2 class.
Eq. (22) can be generalized by the composition of one against
one class from a set of K classes, divided by the sum of
distance of x to each of the K class centers. Nevertheless,
this method of construction has not been deeper investigated
since those compositions should not have significative impact
on the fusion or the classification results.

6) Normalized BBA: the complete BBA has to respect
eq. (1) constraint so that is it necessary to apply a normal-
ization step to the unnormalized BBA obtained by separately
calculates the belief masses on simple and compound hypothe-
ses, presented in previous steps 1–4.

7) Determination of parameters β and γ: The determina-
tion of the parameters β and γ can be found automatically by
minimizing the following constraints, defined in [21], [5]:

E =
num Samples∑

i=1

N∑
n=1

(BetP (xi ∈ θn)−Υ(xi ∈ θn))2

where BetP (xi ∈ θn) stands for the pignistic probability of
xi (vector to classify) according to the simple hypothesis θn,
and Υ(xi ∈ θn) is a function that is equal to 1 if the sample
xi does belong to the simple hypothesis θn (as stated a priori
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from the learning base), and 0 otherwise.

IV. SIMPLE SIMULATION

This section presents a simulation dedicated to a simple
4-class problem. Although SOM is more appropriated to
be used to perform a non linear projection from R

p to
{1, . . . , N}×{1, . . . ,M} with p > 2, this naive case of study
has been defined in R2 for a better visualisation. Fig. 6 shows,
with black crosses, a dataset in R2 that is decomposed into
4 clusters. Each of those clusters have a gaussian shape with
different covariance matrices.

The classifiation yielded by a K-means gives 4 clusters
C1 to C4 which appear with green bullets in Fig. 6. Their
locations are approximatively: C1: (0.18, 0.18), C2: (0.6, 0.18),
C3: (0.25, 0.4) and C4: (0.45, 0.5) which corresponds to the
center of each gaussian sampling.

When performing a Kohonen’s map of size 8× 8, it yields
the map characterized by the red bullets in Fig. 6. As drawn in
the R2 feature space, the map is seens dramatically deformed
according to the density of data samples. The more the
density of samples (in black crosses), the more the density
of the neurons (in red bullets), which is a characteristic of
a non-uniform quantization. The location of the red bullets
corresponds of the value of the weight of the neurons in R2.

Then, when a sample (black cross) is projected into the
map, it is associated to its winning neuron according to
eq. (15), i.e. associated to the closest red bullet according
to the euclidean distance in R2. Fig. 7-(a) shows the same
figure as Fig. 6 highlighting some areas. The ellipses in
blue highlight the areas between the different clusters while

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
T = 4000

Fig. 6. Simple simulation of a 4-class manifold with an outlier. Samples of
the data set in R2 are shown with black crosses, the red bullets characterize
the locations of the neurons of Kohonen’s map. Blue lines show the SOM
projected in the feature space. The 4 green bullets characterise the K-means
class centers.

wC1

wC2

wC3 wC4

(a) Feature space R2 (b) {1, . . . , 8} × {1, . . . , 8}
SOM

Fig. 7. Simple simulation of Fig. 6 with its equivalent in the SOM geometry.
Green bullets on the map correspond to the winning neurons wCk

of the class
centers Ck , blue bullets, on the map in (b), correspond to the location of the
neurons that are located in between classes in R2. The black neuron at the
top left of the map corresponds to the winning neuron of the sample rounded
with a brown ellipse at location (0.2, 0.6).

the red ellipse at the top right of the figure points out an
outlier. On Fig. 7-(b) is shown Kohonen’s map into its natural
geometry in {1, . . . , N} × {1, . . . ,M}: the distance between
neurons corresponds to the distance along the edges of the
map, i.e. considering the indexes. The green bullets in this
map shows the winning neurons wCk

of the class centers Ck.
The neurons shown in blue correspond to the neurons rounded
by the ellipses in blue in Fig. 7-(a). Those neurons are located
between classes in R2 and also between the corresponding
class centers wCk

and wC`
. This point illustrates the topological

preservation of Kohonen’s map.
Let us focus on the sample at location (0.2, 0.6) which is

rounded with a brown ellipse. A first look at Fig. 7-(a) points
out that this sample is located very near class C3 but a little
bit outside the main concentration of the dataset. The winning
neuron associated to this sample is drawn in black in Fig. 7-
(b), at the top left of the map (with index location (1, 8)). It is
clear that this neuons is closed to wC3 and far from the winning
neurons of the other classes. Then, the second maximum of the
BBA reach the mass m(x ∈ θ3 ∩ θ4) (with a value of 0.1135)
and the third is devoted to m(x ∈ Θ) (at 0.1005). Considering
eq. (22) Following eq. (20), it appears that dRp(x,wx) is
of significant value un comparison of dRp(C3,wC3) so that
m(x ∈ Θ) has also a significant value.

Let us focus on the outlier located at (0.95, 0.95) at the
top right of Fig. 6. This sample is located at the top right
of Fig. 7-(a). It is far from the rest of the data set and also
far from Kohonen’s map. Its winning neuron is located at
position (8, 8) (i.e. at the top right of the map in Fig. 7-(b)).
Since this neuron is closed to wC4 it is expected that the mass
m(x ∈ θ4) be significant. It is the case with a value of 0.1798.
Nevertheless, the maximum value of the BBA is reached with
m(x ∈ Θ) with 0.2660 which underlines the outlier behavior
of this sample. The resulting BBA is very informative because
the rest of the masses vanish below 0.09.

Let us focus now in a sample located at position (0.2, 0.3)
in Fig. 7-(a). This point is in the middle of two classes C1 and
C3. A little bit closer to class C1. Its winning neuon falls in
the blue dots of Fig. 7-(b) at location (3, 4). Then the mass
of m(x ∈ θ1 ∩ θ3) traps a significant value as high as 0.1313.
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Nevertheless, the second highest value of this BBA is reached
by m(x ∈ θ1 ∩ θ4) with 0.1102. The fact is that, considering
the location of the winning neuron in Kohonen’s map, it is
near to the middle of wC1 , wC2 and wC4 . The third maximum
falls to m(x ∈ θ2 ∪ θ4) (value 0.0831).

This simple example shows that the aim of this BBA
modeling technique that induces simple consideration on the
distance from samples to clusters in the feature space Rp and
in Kohonen’s map {1, . . . , N} × {1, . . . ,M}.

V. EXPERIMENTS ON BENCHMARK DATASET

In order to highlight some advantages and possible draw-
backs of the proposed SOM-based BBA modeling, the per-
formance of the SOM-based BBA is compared to EVCLUS
and ECM ones by using dataset provided by the University
of California - Irvine (UCI) Machine Learning Repository3. 7
data sets out of 270 have been taken into consideration with
various amount of features (that corresponds to the feature
space dimension Rp) and number of classes (from 2 to 7) as
detailed in Table I.

In this section, experimental results are based on the classi-
cal Dempster-Shafer framework (i.e. we work with 2Θ only).
Indeed, ECM, EVCLUS are only working in this framework.

It is worth noting that the Matlab programs of ECM and
EVCLUS have been downloaded from the official webpage
page of Thierry Denœux for those experiments4. Most of the
internal parameters have been let ti their default value. The
distance δ to the empty set has been changed to 100 in ECM
and the regularization parameter has been changed to 0.5 in
EVCLUS. The number of clusters in ECM and EVCLUS has
been fixed accroding to Table I, depending on the dataset.

Kohonen’s map has been trained with the following param-
eters: a size of 20× 20 neurons (except for Seeds and Wine a
size of 10×10 neurons), trained with 200 iterations. An initial
neighborhood size Nw(t0) of 10 neurons and a learning rate
α(t0) of 0.9. These values were carefully selected in order to
guarantee convergence of the map with appropriate number
of neurons to well balance the tradeoff between quantization
error and manifold approximation, so as to improve results.

3The dataset is available at http://archive.ics.uci.edu/ml
4Thierry Denœux’s webpage is available at https://www.hds.utc.fr/

~tdenoeux/dokuwiki/en/software.

TABLE I
CHARACTERISTICS OF THE UCI DATASETS USED FOR COMPARISON.

Dataset Features classes samples
Banknote authentication 4 2 1372
Pima Indians Diabetes 8 2 768

Seeds 7 3 210
Wine 13 3 170

Statlog 36 6 6435(Landsat Satellite)
Statlog 19 7 2130(Image Segmentation)

Synthetic control 60 6 600chart time series

The quantization error through the Root Mean Squared Error
(RMSE) is used here as criterion to evaluate the quality of
Kohonen convergence:

EQM =
(

1
num Sample

num Sample∑
`=1

‖x` −wx`
‖2
) 1

2

.

In this section, the values of the parameter β has been selected
based on the results shown in Table II. In this experiment,
β = 2 yields the best classifications results. Also, it can be
noticed that the proposed method is not so sensitive to the
value of β.

TABLE II
CLASSIFICATION RESULTS OF SOM-BASED BBA IN 2Θ FOR

DIFFERENT VALUE OF β .

Dataset β = 1 β = 2 β = 6
Seeds 87.6190% 90.9524% 89.0476 %
Wine 71.1765% 73.5294 % 71.7647%

It appears that the SOM-based BBA yields most of the
time the highest classifications results. Those best results are
shown in bold of Table III, where the first line corresponds
to the number of correctly classified samples, the second line
corresponds to the proportion of samples correctly classified
the last line shows the computation time. When ECM appears
better, SOM-based approach is close to the best accuracy
(73.52 % versus 74.11 % for the benefit of ECM with the Wine
database, and 69.24 % versus 69.62 % with the Statlog Landsat
satellite images database). EVCLUS is always below. It seems
that the performance ranking between ECM and SOM-based

TABLE III
CLASSIFICATION RESULTS IN 2Θ OF EVCLUS, ECM AND SOM-BASED

BBA WITH DECISION BY THE MAXIMUM OF PIGNISTIC PROBABILITY.

Dataset EVCLUS ECM SOM-based

Banknote
authentication

843 848 1090
61.44 % 61.80 % 79.44 %

1172.2sec 3.4sec 8.6sec

Pima Indians
Diabetes

475 506 549
61.84 % 65.88 % 71.48 %
181.7sec 3.2sec 6.7sec

Seeds
157 189 191

74.76 % 90.0 % 90.95 %
34.3sec 0.3sec 5.8sec

Wine
103 126 125

60.58 % 74.11 % 73.52 %
6.7sec 0.9sec 5.9sec

Statlog (Landsat
Satellite)

3027 4480 4456
47.03 % 69.62 % 69.24 %
5857sec 480sec 163sec

Statlog (Image
Segmentation)

895 1282 1431
42.01 % 55.49 % 67.18 %
3657sec 161sec 84sec

Synthetic control
chart time series

384 453 501
64.0 % 72.5 % 83.5 %
370sec 6.9sec 8.0sec
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Fig. 8. Computation time depending on the feature space dimension. SOM-
based approach is more appropriated for processing large amount of data than
ECM.

BBA does not depend on the feature space dimension nor
the number of classes since the Wine and Statlog Landsat
satellite image data bases are very different to each other.
Since the SOM-based approach considers a projected feature
space of dimension 2, it may induce on those cases a too
coarse approximation of the manifold in comparison to ECM.
Nevertheless, it is worth noting that the benefit in using a
SOM-based approach for BBA is related to the number of
samples to be handled [22]. Fig. 8 shows that the more the
number of sample the fastest the SOM-based approach in
comparison to the ECM while yielding the same level of
accuracy. Then the SOM-based approach appears to be a
valuable alternative to handle large data set such as real images
for classification purpose.

VI. EXPERIMENTS ON A REAL SATELLITE IMAGE

The proposed methodology is now applied on a SPOT image
(1318×2359 = 3 Mega pixels) taken in 2000 for classification
purpose. From the variety of objects constituting this image,
five clusters may be distinguished: Covered Fields (CF) light-
red area, Bare soil (BS) red area, Wooded Area (WA) dark-
red area, Water or Wet area (WWA) green area and Bare
Soil and Wet Area (BSWA) bright-green area (see Fig. 9).
Those five classes will constitute our frame of discernment
Θ = {CF,BS,WA,WWA,BSWA}. This 3-band multi-
spectral image represents a single source of information in R3,
so that there is no fusion process within the components of
each pixel for BBA (except DC which uses eq. (9) to perform
a fusion rule class by class). In this experiment, DC, ECM
and the SOM-based methods are tested.

Kohonen’s map has been trained with the same parameters
as in the previous section.

A. The classification results in 2Θ

In order to generate mass function on the disjunction of
hypotheses in DC, Dempster’s combination rule given by
eq. (9) has been replaced by the disjunctive rule given by
eq. (2). Fig. 10 shows the classification of the original image
with DC approach and the proposed approach by using the

TABLE IV
DST LEGEND USED ON CLASSIFICATION RESULTS OF FIG. 11.

WWA BSWA ∪ BS BSWA ∪ CF
BSWA BSWA ∪ WA BS ∪ WWA

BS BS ∪ WA BS ∪ CF
WA WWA ∪ WA WWA ∪ CF
CF BSWA ∪ WWA WA ∪ CF

criterion of the maximum of pignistic probability for decision-
making on simple hypotheses (classes). Fig. 11 shows the
classification results all over simple classes and all disjunctions
of classes. The performance of the classifiers is shown through
the confusion matrix form in Table V. The test has been done
over 16692 pixels where 3273 represent Covered Fields, 2273
Wooded Area, 3013 Bare Soil, 6005 Water or Wet area and
10 Bare Soil and Wet Area. The legend (colors of decision
classes in the images classification), is given in Table IV.

As Table V shows, the SOM-based approach presents
promising results. Indeed by comparing our approach to the
DC approach, it can be noticed that class detection has been
improved. In Fig. 10-(a), the river is well discriminated in
comparison to other classes while in Fig. 10-(b) a great
conflict appears when those classes WW and BSW have to be
discriminated. Fig. 11 demonstrates that our approach reduces
the number of decision class (8 classes), whereas DC approach
yields multiple classes. For example the whole river is almost
attributed to a single class; this reflects more what we have
in the reality, while with the other approaches the river is
classified into various class.

After having exploring the performance of the SOM-based
approach, this part focuses on the ability of the SOM-based
approach to deal with a large amount of multi-variate data.
To evaluate this, the unsupervised clustering method ECM
has been used for its simplicity in generating the BBA in
the case of exploratory data analysis. This algorithm requires
a great amount of computing time for processing the large
images. Here, a crop of the original image (300 by 220 pixels)

Fig. 9. A false color composite of the SPOT image. c©CNES.



SUBMISSION TO IEEE TRANS. ON NEURAL NETWORKS AND LEARNING SYSTEMS 10

has been processed so that the computation time remains
acceptable. The classification results (see Fig. 12) show that
the SOM-based method gives higher performances than the
ECM algorithm, while remarkably reducing the computational
cost. Indeed, SOM-based method has a linear computational
complexity depending to the number of classes for each
new calculated BBA. These results prove that the proposed
approach provides a very significant advantage in the case of
processing large images.

All the algorithms in the experiments were coded in
MATLABTM without specific optimization and run on a ma-
chine with 3.4 GHz Intel Core i7-3770M processor and 8 GB
memory running the Windows 7 Server operating system. The
execution times for these algorithms are: 20 minutes and 12
seconds for the SOM-based BBA shown in Fig. 12-(a), and 2
days and 6 hours and 45 seconds for the ECM algorithm shown
in Fig. 12-(b). It corresponds to an increase in computation
speed of 150!

The computation of the complete scene at Fig. 10-(a) took
4 hours and 21 minutes and 36 seconds.

B. The classification results in DΘ

In this experiment, the result of DC is given by replacing
Dempster’s combination rule given by eq. (9) by the conjunc-
tive rule given by eq. (3). Fig. 13 shows the classification of
the original image by using maximum of generalized pignistic
probability over all simples classes and all conjunctions of
classes. The performance of the classifiers is shown in the
confusion matrix form in Table VII. Table VI represents the
colors assigned to each conjunctions of classes in classifica-
tion. The colors assigned to simple classes and to disjunctions
of classes are the same as those defined in Table IV.

As shown in Table VII, the generation of the masses on the
conjunctions of hypotheses has degraded remarkably the DC
result. This is due to the conflicting nature of the conjunctive

(a) (b)

Fig. 10. Classification results in 2Θ with decision by maximum of pignistic
probability over all simples hypotheses: (a) SOM-based BBA. (b) DC results.

(a) (b)

Fig. 11. Classification results in 2Θ with decision by maximum of pignistic
probability over all simples hypotheses and all disjunctions of hypotheses: (a)
SOM-based BBA. (b) DC results.

(a) (b)

Fig. 12. Classification results in 2Θ with decision by maximum of pignistic
probability: (a) SOM-based approach. (b) ECM.

rule when unreliable sources are combined. The SOM-based
approach can overcome this problem by calculating the masses
of conjunctions from Kohonen’s map.

Fig. 14 shows the classification of the original image by
using maximum of generalized pignistic probability over all
simples classes, all conjunctions of classes and all disjunctions
of classes. As seen in DST-based experiment, it appears that
the SOM-based approach yields promising results with a very
reasonable computation time in such situations even with large
number of classes.

TABLE V
COMPARATIVE CLASSIFICATION RESULTS IN 2Θ . COMPARISON BETWEEN

DC APPROACH AND THE PROPOSED SOM-BASED APPROACH.

BSWA BS WWA CF WA

BSWA DC 2102 0 0 0 26
SOM 1631 282 215 0 0

BS DC 87 2106 397 3 420
SOM 206 2423 16 93 215

WWA DC 2393 326 3092 194 0
SOM 0 45 5359 601 0

CF DC 180 206 819 1068 0
SOM 0 103 53 2117 0

WA DC 4 614 155 45 2455
SOM 165 86 3 1 3018
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(a) (b)

Fig. 13. Classification results in DΘ with decision by maximum of gener-
alized pignistic probability over all simples hypotheses and all conjunctions
of hypotheses: (a) SOM-based approach. (b) DC results.

Fig. 14. Credal classification results in DΘ through the SOM-based
approach: maximum of generalized pignistic probability.

VII. CONCLUSION

The interest of evidence theory came from its ability
to deal with uncertain and paradox data through the mass
functions. Nevertheless, to the best of our knowledge, rare
are the estimating mass functions approaches that consider

TABLE VI
LEGEND USED FOR CLASSIFICATION DΘ SHOWN IN FIG. 13

BSWA ∩ BS BSWA ∩ CF
BSWA ∩ WA BSA ∩ WWA
BSA ∩ WA BSA ∩ CF

WWA ∩ WA WWA ∩ CF
BSWA ∩ WWA WA ∩ CF

the belief masses on compound hypotheses directly. In this
research work, a new method for mass function construc-
tion through Kohonen’s map has been proposed, and some
experiments of the proposed method has been dedicated to
image classification. The comparison with state-of-the art UCI
database showed the accuracy of the SOM-based approach
and its capability to deal with large amount of data. A further
advantage can be added which is the possibility to perform the
assignment of belief masses on the conjunctive and disjunctive
hypotheses directly.

In this study, we focus on the application of the proposed
Kohonen’s map based BBA on SPOT images only, which is
based on a quadratic distance evaluation. The extension to the
problem of SAR image classification brings specific problems
that have to be tackled. Once resolved, the credal fusion of
optical and SAR remote sensing images for joint classification
will be investigated.
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