
HAL Id: hal-01865158
https://hal.science/hal-01865158

Submitted on 31 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evaluation of Priority Scheduling and Flow Starvation
for Thin Streams with FQ-CoDel

Eduard Grigorescu, Chamil Kulatunga, Gorry Fairhurst, Nicolas Kuhn

To cite this version:
Eduard Grigorescu, Chamil Kulatunga, Gorry Fairhurst, Nicolas Kuhn. Evaluation of Priority
Scheduling and Flow Starvation for Thin Streams with FQ-CoDel. EUCNC’2015 : European Confer-
ence on Networks and Communications - Special Session, Jun 2015, Paris, France. �hal-01865158�

https://hal.science/hal-01865158
https://hal.archives-ouvertes.fr

Evaluation of Priority Scheduling and Flow
Starvation for Thin Streams with FQ-CoDel

Eduard Grigorescu, Chamil Kulatunga, Gorry
Fairhurst

School of Engineering, University of Aberdeen, UK
{eduard, chamil, gorry}@erg.abdn.ac.uk

Nicolas Kuhn
Télécom Bretagne, IRISA

nicolas.kuhn@telecom-bretagne.eu

Abstract— Bufferbloat is the result of oversized buffers and
induced high end-to-end latency experienced by applications
across the Internet. This additional delay can adversely impact
thin streams that frequently exchange small amounts of data, but
have stringent latency requirements. Active Queue Management
(AQM) techniques, such as Controlled Delay (CoDel), can control
the queuing delay in a network device to ensure low latency by
dropping packets to indicate incipient congestion. FlowQueue-
CoDel (FQ-CoDel) is a scheduling scheme that creates one sub-
queue per flow and applies CoDel on each of them. FQ-CoDel
features: (1) priority scheduling for low-rate traffic; (2) flow
isolation; (3) queue management with CoDel. First, this paper
fills a gap in the understanding of FQ-CoDel by analyzing what
features are of interests for providing low latency for thin
streams applications. Second, this paper provides the first
analysis of the limits of the flow starvation mechanisms and show
that FQ-CoDel is vulnerable to Denial of Service (DoS) attacks.

Keywords— Bufferbloat, AQM, Scheduling, CoDel, FQ-CoDel,
Thin-streams, Flow Starvation

I. INTRODUCTION
Network devices require buffers to store bursts of

incoming packets prior to forwarding. These buffers have
traditionally implemented a FIFO/DropTail buffer policy, with
passive queue management that drops packets only when a
queue is full. While buffers are needed to achieve statistical
multiplexing or to guarantee high bottleneck utilization when
the available capacity fluctuates, excessive buffering can lead
to large queues resulting in high network latency. This issue is
known as Bufferbloat [1]. Although capacity between Internet
core routers is often over-provisioned, this is rarely the case
for access networks, using technologies such as ADSL,
satellite and mobile broadband [8]. Latency has become a
major issue in such access networks in the past decade where
excessive queuing, affects application performance [9].

Active Queue Management (AQM) techniques, such as
Random Early Detection (RED) [2], have been proposed for
over a decade to appropriately manage the buffer by indicating
impeding congestion to responsive transport protocols, to
avoid building a standing queue. However, AQM schemes
have been reported to be usually turned off, as they were hard
to tune. More recent protocols, such as CoDel [3] or PIE [4],
have been designed to especially tackle the Bufferbloat, but
with RED deployment issues in mind. Recent IETF work
recommends the deployment of AQM as one solution to
reduce latency [6]. On top of AQM schemes, scheduling

algorithms, managing packet scheduling and isolation/capacity
allocation among flows, can be introduced. As one example of
a scheme that mixes both classes, FlowQueue-CoDel (FQ-
CoDel) [7] is a scheduling scheme that features prioritization
and flow isolation. FQ-CoDel creates one sub-queue per flow
and applies CoDel on each of them. The awareness of the
latency resulting from over-provisioned buffers has been
accompanied by an increase in real-time applications such as
Voice over Internet Protocol, gaming or financial trading
applications. As one example, the latency experienced by
gamers can directly impact the perceived value of the network
service [10]. These thin streams applications generally send
sparse streams of small time-critical packets [14].

Since FQ-CoDel features a mechanism that prioritizes low-
rate traffic, the benefits for the increasing number of thin
streams that carry latency sensitive applications needs to be
assessed. This paper fills the gap in research evaluating FQ-
CODel when the traffic is a mix of thin streams and bulk
flows and evaluates which part of FQ-CoDel (CoDel,
prioritization, flow isolation) provides improvement. Because
FQ-CoDel features flow prioritization, we also evaluate to
what extent its flow starvation prevention mechanism works.

The remainder of this paper is organized as follows.
Section II describes FQ-CoDel, by clearly identifying when
each internal mechanism adds value. Section III presents the
simulation setup used to assess the suitability of FQ-CoDel for
carrying latency sensitive thin streams over a capacity limited
path. Section IV discusses which part of FQ-CoDel might
provide improvements in the queuing delay experienced by
thin stream applications. Section V assesses the limits of the
flow starvation prevention mechanism. Section VI concludes
this work.

II. FLOWQUEUE-CODEL ALGORITHM
AQM algorithms seek to control network buffering level

by sending messages to trigger transport congestion control,
i.e., by early dropping/marking packets.

A. Over the Need for Flow Scheduling for Thin-Streams
AQM dropping techniques on their own may not be

sufficient to satisfy the strict latency requirements for thin
stream applications [5],[6]. Indeed, traffic such as file transfers
or unresponsive constant rate streaming flows, with different
time constraints, may share the bottleneck with thin streams.

This would result in a non-negligible queuing delay
experienced by the thin streams.

Some form of flow isolation might be required to separate
and protect the time sensitive small flows from larger and
more aggressive flows. Scheduling algorithms can provide
per-flow or per-class queuing to isolate traffic classes to
guarantee the specific constraints of latency sensitive
applications. As one example, if thin flows are assigned
different subqueues to other flows, a scheduling scheme may
protect the thin flows from the background traffic. This would
avoid an increasing queuing delay for a latency sensitive
application when the background flows build in a subqueue.

One simple isolation method is per-flow queuing [11] in
which each flow is deterministically assigned its own virtual
sub-queue. However, this requires network devices to classify
each flow, which can be difficult when dealing with traffic
aggregates or when encryption is used. Each of the subqueues
is served in a round-robin manner, improving fairness between
flows [5]. A more complex example is Stochastic Fair
Queuing (SFQ) [5] that provides a statistical alternative in the
way the subqueues are served.

B. FlowQueue scheduling in FQ-CoDel
FQ-CoDel uses a modified Deficit Round Robin (DRR)

scheduler. The default flow classifier of FQ-CoDel hashes
incoming packets stochastically to a subqueue based on a 5-
tuple classifier – IP source and destination address, protocol,
and port numbers. The scheduler of FQ-CoDel can be applied
on any flow isolation technique and is not limited to a 5-tuple
classifier. A byte-based scheduler, rather than a packet-based
scheduler, is used to select the next packet for transmission.

The scheduling in FQ-CoDel is based on three lists of
subqueues that are represented in Figure 1, the “new” list, the
“old” list and the “empty state” list. In the rest of this
subsection, we will detail how these lists are managed. We
focus on how they can prevent flow starvation and how they
prioritize some classes of traffic.

At initialization, FQ-CoDel creates a set of subqueues (by
default 1024 subqueues), all are placed in the “empty state”
list. When there is at least one byte of data that enters a
subqueue, the subqueue is defined as active. This subqueue is
initially placed in the “new” list, but may later be moved to the
“old” list.

When a packet is enqueued, it is added at the end of the
subqueue corresponding to the 5-tuple classifier: if the 5-tuple
of this packet does not correspond to any list, it is added to an
existing “empty list”, which becomes a “new” list.

We describe here how the deficit is decreased and how the
decision to dequeue data is taken:
• The scheduler first cycles through the “new” list of

subqueues, allowing each subqueue to dequeue up to one
“quantum” of packets and updating the deficit value.
• For each subqueue, the scheduler checks the deficit. If the

deficit becomes negative, the subqueue is moved to the end
of the “old” list and its deficit is updated to the sum of the
size of the quantum and the previous deficit.

• When a subqueue in the “new” list is found to be inactive
(no packets in the buffer), it is placed at the end of the “old”
list, and its deficit is re-initialized to the “quantum” size.

Figure 1. FQ-CoDel State Machine

• When the “new” list becomes empty, the scheduler

examines the “old” list by repeating the algorithm used on
the “new” list. When a subqueue from the “old” list
becomes empty, it is removed.

C. Flow Starvation Prevention Mechanism in FQ-CoDel
When the deficit of a given queue, Q, becomes negative, it

is moved to the end of the “old” list. This ensures that when
FQ-CoDel loops over the “old” list, a subqueue that had been
previously pushed to the end of the “old” list would be given
the opportunity to transmit a quantum of data before Q. When
a queue is empty, FQ-CoDel pushes the queue at the end of
the “old” list. This feature, referred to as the Starvation
Prevention Mechanism, is supposed to prevent starvation,
providing some transmission opportunities for the flows
already placed in the “old” list.

D. AQM in FQ-CoDel
Each subqueue is individually managed using the CoDel

algorithm: FQ-CoDel classifies each packet, it timestamps
the packet and appends it to the tail of the selected subqueue.
CoDel controls the maximum size of each subqueue, using
its default parameters: target delay of 5 ms and interval 100
ms. CoDel applies its control law and may discard at least
one packet from the head of a scheduled subqueue if needed,
before returning a packet for dequeuing (or no packet if the
subqueue becomes empty). This should avoid buffer
overflow and guarantee low queuing delay, if there are many
flows and the scheduling introduces a non-negligible queuing
delay.

III. EVALUATION TOOL SET FOR THE CAPACITY
LIMITED NETWORK USE CASE

This section justifies our focus on the capacity-limited
network use case. We also present the simulation tool set and
the network topology used in our simulations.

A 10 Mbps (or higher speed) bottleneck that experiences
congestion, has a transmission speed that is sufficiently low to
result in negligible transmission delay, even for large packets,
compared to the latency required by typical thin stream
applications (approx. 1.2 ms for a packet of 1500 B sent at 10
Mbps). When the bottleneck has a smaller rate (e.g., the
downlink of a rural access link operating at 1-2 Mbps or an

NEW OLD

Incoming packet

Empty queue

Quantum Overrun

Empty
queue

Quantum Overrun

EMPTY
STATE

uplink, operating at 1/10 of this speed), the packet
transmission delay increases further (e.g., 12-6 ms for 1500 B
packets). The cumulative effect of scheduling many
competing flows can result in some flows becoming “choked”.
Because (1) the impact of the thin streams on the flow
starvation of FQ-CoDel is exacerbating and (2) the latency
sensitive applications would be more affected when there is no
priority scheduling, we therefore focus on this use case.

Figure 2 presents the dumb-bell topology for our
simulations in ns-2. The capacity of the bottleneck was 2
Mbps and the one-way-delay was 47.5 ms. The non-bottleneck
links were configured with 1.25 ms one-way-delay and 100
Mbps capacity. The RTT of the network path was 100 ms.

Figure. 2. Dumb-bell simulation topology

At node R1, the buffer size was set to twice the size of the
Bandwidth-Delay Product (BDP) and either FQ-CoDel or
CODel applied to the node. For other nodes, the queuing
discipline was DropTail, with a buffer size of 300 packets.

IV. ANALYZING THE PERFORMANCE OF THIN
STREAMS WITH FQ-CODEL

FQ-CoDel may be divided into different constituent
mechanisms. There is one AQM scheme per subqueue, one
priority scheme and a set of flow isolation techniques. If FQ-
CoDel is to be used to support thin streams, it is important to
assess which mechanism within FQ-CoDel is actually
responsible for realizing any benefits observed.

A. The Benefits of Flow Isolation for Thin Streams
To support our evaluation, this subsection introduces a

custom non-prioritization version of FQ-CoDel, FQ-CoDel
Without Prioritization (FQ-CoDel WP). FQ-CoDel WP does
not make the distinction between the “new” and “old” list and
subqueues are created one after the other, while the scheduler
still visits subqueues similar to SFQ. This is used to assess the
benefits of the flow isolation for the thin streams applications.

This subsection compares the suitability of using FQ-
CoDel WP, CoDel or SFQ to carry thin streams applications.
The following traffic was considered: (1) 1 to 5 TCP bulk
flows, using File Transfer Protocol (FTP) for the entire period
of the simulation with a packet size of 1500 B. (2) 1 thin TCP
with an inter-packet interval of 638 ms and a packet size of
100 B, which is representative of the traffic generated by the
game Anarchy Online [12]. (1) and (2) used TCP New Reno
with the SACK option and an initial window of 3 packets.
Figure 3 shows the Cumulative Density Function (CDF) of the
queuing delay experienced by the thin-stream flows, when the
AQM is CoDel, SFQ or FQ-CoDel WP.

Figure 3. CDF vs. Gaming Flow Queue Latency

With SFQ, the queuing delay increases as the level of
network congestion increases (increasing number of TCP
flows). For each TCP packet, the Round Robin scheduler of
SFQ results in a 6 ms transmission time per packet (1550 B
for a 2 Mbps bottleneck). As expected, a Round Robin
scheduler that services a higher number of queues leads to
increased queuing delay: we observe a linear increase of the
queuing delay when the number of TCP flows increases. As an
example, the thin stream subqueue will experience 5*6ms >=
30ms queuing delay with 5 bulk TCP flows before it has the
opportunity to again be serviced.

With CoDel, the observed queuing delay is lower than with
SFQ, whatever the number of TCP bulk flows. The early
drops in CoDel tend to maintain a small queue that reduces the
delay experienced by the thin stream flows. This queuing
delay does significantly increase with the number of flows
competing for queue space, as compared to SFQ.

With FQ-CoDel WP, the queuing delay experienced by the
thin streams is lower than when using CoDel and lower than
with SFQ. These results show that (1) dropping packets with
CoDel enables a latency reduction; (2) flow isolation alone
cannot reduce the queuing delay experience; (3) the
performance of flow isolation techniques are sensitive to the
traffic load. We can conclude that when FQ-CoDel features
flow isolation, it results in lower queuing delay than with
CoDel alone, showing that the flow isolation technique, along
with CoDel drops, can offer the best of the two schemes.

B. The Importance of Thin Stream Prioritization and CoDel
In this subsection, we will explore the benefits of

introducing prioritization in FQ-CoDel to reduce the queuing
delay experienced by thin streams. We compare the
performance of the default FQ-CoDel with “FQ-CoDel WP
100ms”, which is a modified version of FQ-CoDel in which
the target of CoDel is increased to 100 ms (instead of the
default 5 ms) and prioritization is disabled. Therefore, the
differences between FQ-CoDel WP 100ms and FQ-CoDel are

TCP File/Terminal

 1

R1 R2

Bottleneck

1.25ms

 2

 n

1.25ms

1.25ms 1.25ms

1.25ms

1.25ms

 n+1

 n+2

 n+3

TCP File/Terminal

(1) CoDel will allow more queuing in FQ-CoDel WP 100 ms
and (2) the absence of prioritization in FQ-CoDel WP 100 ms.

The traffic considered in this section is the same as in IV-
A. Figure 4 presents the CDF of the queuing delay
experienced by the thin streams for various numbers of TCP
flows with FQ-CoDel or FQ-CoDel WP 100ms as an AQM.

Figure 4. CDF vs. Game Flow Latency for FQ-CoDel (5 ms target delay) and

non-prioritized FQ-CoDel WP (100ms target delay)

The performance with FQ-CoDel WP 100ms shows that
without prioritization and with CoDel less aggressive, the
performance of this scheme is close to those of SFQ. The flow
isolation of FQ-CoDel may reduce the latency (as shown in
the previous section), but the CoDel part of the algorithm has
a non-negligible benefit in reducing the queuing delay.

Also, if we compare the performance of FQ-CoDel and
those of FQ-CoDel WP, shown respectively in Figure 4 and
Figure 3, we see that the prioritization contributes in reducing
the queuing delay experienced by the thin streams. FQ-CoDel
provides lower queuing delay, for the traffic loads considered,
whereas it is sensible to the traffic load with FQ-CoDel WP.

Therefore, based on the results presented in this
subsection, we can conclude that the flow prioritization of FQ-
CoDel provides a useful latency reduction and makes the
queuing delay of the thin streams less sensible to the traffic
load. We also confirm the conclusions of section IV-A, which
are that the CoDel part of FQ-CoDel is essential to provide
low latency in the context of capacity-limited networks.

C. Thin Stream with various inter-packet arrival times
Depending on the burst size and the frequency between

bursts, when a second burst of packets reach the queue, the
packets of the previous burst might still be in the “old” list, or
they might have left the queue and the second burst would be
prioritized. Flows with a different pattern of packet inter-
arrival times but similar packet sizes can be treated differently.

We consider three cases of traffic generation: (1) 1 gaming
flow, 1 TCP bulk flow and 1 VoIP flow; (2) 1 gaming flow, 1
TCP bulk flow and 5 VoIP flows; (3) 1 gaming flow, 5 TCP
bulk flows and 1 VoIP flow. Both the VoIP and the gaming
flows use TCP. The inter-packet arrival time for the VoIP
flows is in 20-30 ms and in 600-1000 ms for the gaming
flows. The packet size for both applications is on average
100 B. Results are shown in Figure 5.

With FQ-CoDel WP 100 ms and FQ-CoDel WP, the
queuing delay for both voice and gaming flows increases in
case (3), because of the high number of TCP flows, showing
again the importance of CoDel coupled with isolation and
prioritization. However, in cases (1) and (2), the load level is
lower than in case (3), and we see a small gain of using the
priority scheme of FQ-CoDel. With FQ-CoDel WP, we notice
a small difference between gaming and voice flows this may
be related to their different inter-packet arrival times, showing
that the priority scheme of FQ-CoDel actually lets the AQM
scheme reduce the queuing delay for applications with
different inter-packet arrival times.

Figure 5. Thin Flows Latency for prioritized and non-prioritized FQ-CoDel

The results presented in this subsection let us conclude that
FQ-CoDel can deal with thin streams flows that have different
inter-packet arrival times. We also highlighted that the
prioritization mechanism seems to provide benefits. Another
possible source of improvement might be the starvation
prevention mechanism; we expect future work to evaluate this.

V. FLOW STARVATION AND FQ-CODEL
We discuss here the limits of the flow starvation

prevention mechanism. The starvation prevention mechanism
of FQ-CoDel is the following: FQ-CoDel would place an
empty queue from the “new” list to the end of the “old” list.
Also, if a queue is empty in the “old” list, it would be removed
and considered as “new” when its packets reach the queue.

We assess the limits of the starvation prevention
mechanism of FQ-CoDel. Under Denial of Service (DoS)
attacks, FQ-CoDel scheduler may loop only over the “new”
list, preventing the flow starvation mechanism to work. It is
crucial therefore to assess the performance of the flow
starvation mechanism when thin streams contribute a large
proportion of the traffic compared to bottleneck capacity. A
starvation prevention method that may prevent this issue from
occurring. To verify the benefits of using this mechanism, we
implemented FQ-CoDel Without its Starvation Prevention
Mechanism (FQ-CoDel WSPM). FQ-CODel WSPM is a
version of FQ-CoDel where starvation prevention is disabled,
that is while looping over the “new” list, the algorithm would
not move empty lists from the “new” list to the “old” list, but
rather wait that the deficit for the list is negative.

The following traffic were considered: (1) 1 TCP bulk
flows, using FTP for the entire period of the simulation with a
packet size of 1500 B; (2) 5 to 45 thin unresponsive UDP
flows with an inter-packet interval of 30 ms and a packet size
of 100 B, which is representative of the traffic generated by a
Skype session [12]. (1) used TCP New Reno with the SACK
option enabled and an initial window of 3 packets.

Figure 6 presents the throughput achieved by the TCP flow
as a function of the number of thin flows, with FQ-CoDel and
with FQ-CoDel WSPM. When the number of thin streams is
greater than 30, the TCP bulk flow becomes starved, both
when using FQ-CoDel and with FQ-CoDel WSPM. This
shows that unresponsive traffic can impact the performance,
since the flow starvation prevention mechanism of FQ-CoDel
is not sufficient to prevent the resulting congestion. The lack
of a difference between FQ-CoDel with and without this
mechanism highlights that it does not provide significant
benefit when there is a high level of congestion.

Figure 6. TCP Throughput with FQ-CoDel and with FQ-CoDel WSPM

We finally consider the response to overload. An FQ-
CoDel scheduler could be vulnerable to a Denial of Service
(DoS) attack where traffic intentionally tries to disrupt normal
operation, e.g., a large number of thin streams would be
intentionally injected into the network bottleneck. This may
cause the scheduler to become locked serving only flows in
“new” list subqueues, leading to unwanted interactions
between TCP flows and bursts of unresponsive flows that
result in delay. For such a low capacity link, flows in the “old”
list would barely receive an opportunity for transmission, and
would become starved. CoDel would also drop queued packets
from the old list. This suggests the need to design more
sophisticated overload protection [6].

We note that other modern AQM algorithms, such as PIE,
can also be combined with isolation methods [6] by
introducing mechanisms similar to those described in this
paper. The combined methods have been reported to support
latency-sensitive thin-stream applications [8]. We leave
exploration of the reasons behind the performance limits of the
flow starvation prevention mechanism in capacity-limited
networks as a part of our future work on this topic.

VI. CONCLUSION
This paper describes the operation of the various

components mechanisms in FQ-CoDel and explores how thin-
stream applications can benefit from these mechanisms to

reduce their experienced latency and mitigate the impact of
sharing capacity with other types of network traffic. We
measured that the flow isolation of FQ-CoDel is the main
factor resulting in improved latency performance for thin
flows over bottlenecks with limited bandwidth. Such isolation
would be impossible with a traffic aggregate that it cannot
dissect (e.g., when encrypted Virtual Private network tunnels
are used). We identified that CoDel in FQ-CoDel can provide
improvements for this specific traffic, this means that when a
classifier cannot be used, low latency may still be guaranteed.

Flow prioritization has been introduced within FQ-CoDel
to that favors low-rate traffic, or latency sensitive applications
such as web traffic. Simulations have shown that this scheme
provides a fair improvement of performance for thin stream
traffic. We believe in general that deployed AQM algorithms
should be made robust against overload and especially denial
of service attacks, otherwise all the efforts spent in making the
deployment of AQM a reality will be eroded. In the light of
the results presented in this document, we encourage further
research prior to deployment of the current version of FQ-
CoDel. Other modern AQM algorithms, such as PIE, can also
work in conjunction with isolation methods to better support
latency-sensitive application. Therefore, we believe that more
efforts should be spent on evaluating the performance of such
hybrid mechanisms to support their large-scale deployment.

ACKNOWLEDGEMENTS

This research was supported by the RCUK DE programme
to the dot.rural Digital Economy Hub; EP/G066051/1 and
part-funded by the European Community under its Seventh
Framework Programme through the Reducing Internet
Transport Latency (RITE) project (ICT-317700).

REFERENCES

[1]. Gettys, Jim. Bufferbloat: Dark Buffers in the Internet. IEEE Internet
Computing, IEEE, 1990.
[2]. Jacobson, Van & Floyd, Sally. Random Early Detection Gateways for
Congestion Avoidance. IEEE/ACM Transactions on Networking, 1993.
[3]. Nichols, Kathleen & Jacobson Van Controlling Queue Delay. IETF

work-in-progress, 2015.
[4] Pan, Rong, et al.. PIE: A lightweight control scheme to address the

bufferbloat problem. IETF work-in-progress, 2015.
[5]. McKenney, Paul E Stochastic Fairness Queuing. Beaverton : s.n., June

1990. In proceedings of INFCOM. Vol. 2, pg. 733-740.
[6] Baker, F & Fairhurst, G. AQM Recommendations Regarding Active

Queue Management. IETF work-in-Progress
[7]. Hoeiland-Joergensen, T., et al. FlowQueue-CoDel. IETF work-in-

progress, 2015
[8]. White, Greg Active Queue Management in DOCSIS 3.X.Cable Modems..

Cable Television Laboratories. 2013.
[9] N. Leavitt, "Network-Usage Changes Push Internet Traffic to the Edge",

IEEE Computer, Vol 43, Issue 10, October 2010.
[10]. Claypool, M. and Claypool, K. Latency and player actions in online

games. Communications of the ACM 49, 11 (Nov. 2005), 40-45.
[11] Nabeshima, M.; Yata, K. An Effective Queue Management Scheme for

Data Communication. IEEE Proceedings-Communications. 2005
[12]. Petlund, Andreas et al..TCP mechanisms for improving the user

experience for time-dependent thin-stream applications. 33rd IEEE
Conference on Local Computer Networks, 2008. LCN 2008

[13] L.D Cicco, S. Mascolo, and V. Palmisano. Skype Video Congestion
Control: An experimental investigation. Computer Networks, 2011

[14] Petlund, Andreas. Improving latency for interactive, thin-stream
applications over reliable transport. PhD Thesis. 2010

