Loop Aware CFG Matching Strategy for Accurate Performance Estimation in IR-level Native Simulation

Keywords: Native simulation, performance estimation, control flow graph (CFG), compiler optimizations, intermediate representation, CFG matching

Native simulation is a promising virtual prototyping candidate to accelerate design space exploration of hardware/software systems, early software developments and functional verification. However, it originally fails to provide non-functional information needed for software performance estimation. To add this capability, the general approach is to extract performance metrics from target binary code and back-annotate it in the high-level code from which the binary was generated. However, due to compiler optimizations, the high-level code and the binary code usually have different structures which makes software annotation a complex task. This work proposes a loop-based mapping scheme that reflects optimizations from the binary to the high-level IR for the purpose of precisely placing performance annotations in the software and yielding accurate performance estimates. Experiments on instruction count show in average around 2% of error while conserving a considerable speedup compared to instruction set simulation.

Introduction

Multiprocessor systems on chip (MPSoCs) have slowly but steadily come to grips with the increasing requirements for better performance in the embedded system domain; high computational capabilities and low power consumption while ensuring short time-to-market and a reasonable cost. To cater for these conflicting demands, the number of processors on a single chip has been tremendously increasing, as did the heterogeneity of the embedded components. The rise of complexity is usually balanced with software flexibility which allows shifting the system validation to an early design stage. As embedded systems are getting more and more software-centric, software performance estimation has become pivotal at early architecture exploration and design validation stages.

Two main approaches have been used to tackle software performance estimation: analytical approaches and simulation approaches. Analytical techniques fall short of performance estimation as taking into account all micro-architectural effects and delimiting all possible program paths become very intricate in complex embedded systems. Simulation plays a fundamental role in capturing the dynamic aspects and interactions between the different components of the system and is key to a fast embedded system design cycle.

A conventional technique for simulating the software is instruction set simulation (ISS). ISS is an interpretive simulation URL: ---------(-----), ---------(-----) technique, can be quite accurate and can yield a high level of detail at the expense of simulation speed. Since such level of detail is not usually required during HW/SW co-simulation at early design stages, raising the abstraction level becomes a priority for the purpose of improving the simulation performance. Native simulation (a.k.a host-compiled or source-level simulation), which is much faster than ISS as no instruction interpretation is performed, has become an appealing option. Native simulation consists of compiling the embedded software to the host binary format and executing it directly on the host machine using a specific API to interact with simulation models of hardware components [START_REF] Pétrot | On mpsoc software execution at the transaction level[END_REF].

The speedup gained by native simulation comes at a price: the absence of non-functional information (such as time and energy) needed for estimating the performance of the entire system and ensuring its proper functioning. Without such information, native simulation approaches are limited to functional validation. This shortcoming is addressed by introducing performance metrics, extracted from the target binary, into the software code in order to reflect its behavior as if it was executed on the target platform. This is known as software back-annotation.

Obtaining accurate estimates entails a two-fold strategy: retrieving precise non-functional information, usually at a basic block level granularity, by means of static or/and dynamic analysis (by re-creating the dynamic behavior of the target system using performance models of micro-architectural components such as caches, pipeline and branch predictor) and inserting this information at the right spot in the software. Accurate placement of annotations is the focus of this work. As for the retrieval of non-functional information, it is out of the scope of this paper.

for(i = 0; i < N ; i ++) if (cond(x)) op1(x); else op2(x) return x; ILS (intermediate level simulation) has gained popularity in the performance estimation field ([START_REF] Zhonglei | An efficient approach for system-level timing simulation of compiler-optimized embedded software[END_REF], [START_REF] Bouchhima | Automatic instrumentation of embedded software for high level hardware/software co-simulation[END_REF], [START_REF] Gerstlauer | Automated, retargetable backannotation for host compiled performance and power modeling[END_REF]) because it relies on the compiler intermediate representation (IR) as a functional model instead of the source code. Thus, ILS is considered to be more accurate than source level simulation (SLS) because it comprises some compiler optimizations which makes it closer in its structure to the binary. However, the mapping between the control flow graphs (CFG, graphs in which vertices represent basic blocks and edges represent jumps between them), of the IR and of the binary is not always a straightforward task as discrepancies may appear between the two CFGs during the compiler's optimization passes.

bb2 init() bb3 if (cond(x)) bb4 op1(x) bb5 op2(x) bb6 i -- if (i ≤ 0) bb7 return x bb2 init() bb3 if (cond(x)) bb4 op1(x) i -- if (i < 0) bb5 op2(x) i -- if (i < 0) bb6 return x a) C code b) IR CFG c) BIN CFG
Fig. 1 illustrates a simple example of a C code compiled with gcc, using the optimization level O2, and its corresponding IR and binary CFGs. The IR is generated by the compiler after the front-end so it contains high-level optimizations. The binary, on the other hand, encompasses both front-end and back-end compiler optimizations, hence the difference between the IR and binary CFGs. The C code (Fig. 1-a) underwent several compiler transformations before reaching the binary generation pass. One of the obvious transformations present in both the IR (Fig. 1-b) and binary (Fig. 1-c) CFGs is Loop Reversal which consists of running the loop backward. Moreover, the loop in the IR is not identical to the one in the binary because it went through tail duplication and branch target expansion. First, the tail (bb6 ir) is duplicated. Then, bb6 ir and its clone (bb6 ir) are merged into their predecessors (bb4 ir and bb5 ir), which are the targets of the condition in bb3 ir , leading to bb4 bin and bb5 bin . The expansion of the branch targets often increases code size but by forming larger blocks of instructions, more possibilities of optimization and scheduling are created. Although the IR is closer in its structure to the binary than the source code is, disparities can sometimes occur due to optimizations (the loop in Fig. 1-b is composed of four basic blocks and one loop latch while the one in Fig. 1-c has only three basic blocks and two loop latches). An accurate mapping should be able to circumvent such mismatches. For example, mapping the CFG in Fig. 1-b to the one in Fig. 1-c, without modifying the IR structure, results in: bb2 ir ⇔ bb2 bin , bb3 ir ⇔ bb3 bin , bb4 ir ⇔ bb4 bin , bb5 ir ⇔ bb5 bin , bb6 ir ⇔ ∅ and bb7 ir ⇔ bb6 bin .

The main contribution of this paper is to propose an approach that accurately places performance metrics extracted from the target binary code in its correct position in the IR code through a loop-oriented mapping scheme. Front-end compiler optimizations are accounted for thanks to the use of IR. As for back-end optimizations, they are reflected into the functional model by finding correspondences between basic blocks of the target binary CFG and those of the high-level IR CFG with special consideration to loop structures, which is the core of our proposition. Working with a high-level IR has its perks as it is architecture independent which makes our mapping scheme applicable on different target architectures with no added modifications. This framework, when coupled with accurate non-functional metrics, will upgrade the purpose of native simulation from merely functional verification to performance validation.

The remainder of the article is organized as follows: in section 2, we briefly describe the background of native simulation. In section 3, we give a rundown of related work classified according to the simulation level. In section 4, we describe the proposed annotation framework and argue our choice of the IR level. In section 5, we explain the mapping scheme and we apply it on an illustrative example. Section 6 describes the experimental environment and the obtained results. In section 7, we point out the limitations of the proposed mapping approach when dealing with an aggressive compiler optimization and our preliminary solution to alleviate the impact of the optimization on the accuracy of the estimates. Section 8 wraps up the article.

Background of Native Simulation

Hardware/Software co-simulation techniques have proven their usefulness as a computer-aided design (CAD) technology for the purpose of HW/SW co-verification, architecture exploration and performance estimation.

Before we delve into more simulation details and in order to understand the workings of native simulation, two key terms need to be distinguished: target and host processors. The former refers to the processor that we want to simulate which is embedded in a SoC platform and the latter designates the processor on which we run the simulation platform and is usually different from the target processor.

Native simulation vs. interpretive simulation

Various simulation strategies targeting different abstraction levels, ranging from instruction interpretation of cross-compiled code to native execution of host-compiled code, have emerged to supply suitable simulation platforms for each development stage. A comparison between interpretive and native simulation techniques as well as the in-between abstraction levels is provided in [START_REF] Pétrot | On mpsoc software execution at the transaction level[END_REF] while highlighting precision vs. performance trade-offs.

Although interpretive methods such as ISS are widely adopted as they provide accurate simulation of software and hardware components, they are extremely slow and they are not convenient for extensive software validation at early design stages. The simulation performance is undermined because of the cycle accurate modeling of hardware components and the interconnection mechanism as well as the decoding of each instruction of target binary code and the simulation of internal details of processor operations. Consequently, precision comes at the detriment of the amount of functional and performance properties that could be validated. On the other end of the spectrum, native simulation has gained considerable attention for its high abstraction level and simulation speed. To curb simulation performance degradation, the hardware components are usually modeled with TLM (transaction level modeling) in which accurate signal-based communication is replaced with transaction-level function calls. As for the software, it is compiled for the host machine and executed natively with the possibility of communicating with the hardware TLM models Fig. 2. As such, instruction interpretation is avoided which enhances the simulation performance at the expense of precision.

API-reliant native execution of software

To be able to interact with the event-driven simulation environment, the software relies on either a Hardware abstraction layer (HAL) or an OS abstraction layer. In fact, the software stack consists of a high-level application, standard libraries , the OS, and a HAL. In addition, the software relies on two different APIs: the hardware-dependent software API (HDS) which offers OS services and the HAL which provides the processor subsystem services to the HDS. In native simulation, the execution unit (EU) uses these APIs to abstract either the OS layer [START_REF] Tibboel | System-level design flow based on a functional reference for hw and sw[END_REF], [START_REF] Bouchhima | Using abstract cpu subsystem simulation model for high level hw/sw architecture exploration[END_REF] or the HAL [START_REF] Bouchhima | Fast and accurate timed execution of high level embedded software using hw/sw interface simulation model[END_REF], [START_REF] Yoo | Building fast and accurate sw simulation models based on hardware abstraction layer and simulation environment abstraction layer[END_REF] (Fig. 2). Abstracting the OS layer is a tedious task because it requires the implementation of all the OS and library (Math, C, Communication, etc.) functionalities by the EU.

Limitations of Native simulation

Software layers situated above the abstracted HAL can be safely compiled to the host machine format independently of the underlying hardware and the instruction set architecture (ISA) of the target processor. Although this abstraction is indispensable to the native execution of software, it also poses a problem of dissociation between the natively-compiled software and the cross-compiled software as target-specific optimizations are not present in the native software. This can be tackled by reflecting the optimizations present in the cross-compiled code into the native software which will be further discussed in this work.

Moreover, native simulation of this hardware-independent software induces another problem which is the presence of two different and possibly conflicting or overlapping address spaces. The target address space, which is accessed by the hardware components, is known to the hardware models in the simulation platform. However, the natively-compiled software is only aware of the host address space which prohibits the modeling of certain interactions between the software and the hardware components. This problem is solved by introducing a hardwarebased address translation layer provided by the HAV (hardware assisted virtualization) technology [START_REF] Shen | Native Simulation of MPSoC Using Hardware-Assisted Virtualization[END_REF].

Another restriction caused by native simulation is the absence of target-specific performance metrics, such as time information, in software. The software is executed in the context of the EU which is a hardware thread and thus executes in zero time. In order to introduce non-functional information in software, performance metrics are extracted from the target binary code and back-annotated in the native software. Accurate performance estimation requires the retrieval of precise information through static analysis of the target code [START_REF] Rochange | Transactions on high-performance embedded architectures and compilers ii, chap. A Context-Parameterized Model for Static Analysis of Execution Times[END_REF] or/and the reproduction of the dynamic behavior of the system by incorporating microarchitectural components such as cache models [START_REF] Razaghi | Multi-core cache hierarchy modeling for hostcompiled performance simulation[END_REF], [START_REF] Stattelmann | Hybrid source-level simulation of data caches using abstract cache models[END_REF] and the positioning of each performance metric at the right place in the high-level code which is the main focus of this work.

Related Work

In this section, we will overview the different simulation levels proposed in literature and the underlying mapping scheme if any.

Source-level simulation

In Source-level simulation, annotations are inserted directly into the source code. This approach is abundantly adopted in performance estimation techniques ([START_REF] Kai-Li | Source-level timing annotation for fast and accurate tlm computation model generation[END_REF], [START_REF] Kun | Memory access reconstruction based on memory allocation mechanism for source-level simulation of embedded software[END_REF], [START_REF] Wang | Accurate source-level simulation of embedded software with respect to compiler optimizations[END_REF], etc.) for its high level of abstraction and the simplicity gained from working with a source code.

Back annotating the source code requires a mapping between the source code and the binary code. It goes without saying that finding correspondences between both codes is very difficult because of all the compiler optimizations. As a result, the source CFG and the binary CFG are far from being isomorphic (i.e. two CFGs are isomorphic when there is a one-to-one correspondence between their basic blocks) which leads to inaccurate mapping and thus inaccurate annotation. To counteract the effect of heavy structural changes which are intractable using debug information, propositions that focused on mapping source-level loops to binary level-loops were propounded.

In [START_REF] Wang | Accurate source-level simulation of embedded software with respect to compiler optimizations[END_REF], the idea behind the mapping consists of pinpointing loops in binary and source codes and attributing levels to these loops. Mapping problems between source code and binary code caused by compiler optimizations are addressed using a method called fine-grain flow mapping based on debug information. In case a heavily altered code structure is encountered (which is usually the case with loops), the fall-back solution is to replace it with its corresponding optimized IR code leading to an intermixed code made of C statements and IR statements.

In [START_REF] Stattelmann | Fast and accurate sourcelevel simulation of software timing considering complex code optimizations[END_REF], debug information is used to relate source code statements to binary code instructions. Markers are inserted in the source code to indicate which portions correspond to which binary basic blocks. The binary-level control flow is reconstructed at the source level using these markers and a path simulation code generated from the binary level CFG. The authors stated that this technique of path simulation deals with structural differences between source code and binary code caused by compiler optimizations. To overcome the inaccuracies caused by debug information, the authors of [START_REF] Stattelmann | Fast and accurate sourcelevel simulation of software timing considering complex code optimizations[END_REF] refined their work by proposing a technique that compares the execution order of source code statements and machine instructions using dominator homomorphism [START_REF] Stattelmann | Dominator homomorphism based code matching for source-level simulation of embedded software[END_REF].

In [START_REF] Lu | Hierarchical control flow matching for source-level simulation of embedded software[END_REF], the CFGs of the source code and binary code are matched using the dominance principle which is bound to fail, as stated by the authors, due to compiler optimizations. So, the source and binary codes are divided into sub-graphs of loop regions and branch regions. Each binary subgraph is matched to its source code counterpart in a top-down manner by matching their root nodes using debug information, which is yet again prone to errors. The problem is that due to compiler optimizations, there is no guarantee that the number of regions in the source code equals those of the binary code or that the dominance principle still holds which may cause the matching process not to go as smoothly as described by the authors. Besides, they treat manually each loop optimization apart (only two cases are explained in their article) which hampers the automation of their mapping algorithm. They also change the source code by explicitly adding control statements to account for certain loop optimizations.

IR-level simulation

As for IR-level simulation, it consists of inserting timing annotations in the compiler intermediate representation.

The intermediate source code instrumentation based simulation approach [START_REF] Zhonglei | An efficient approach for system-level timing simulation of compiler-optimized embedded software[END_REF] converts the IR to a C code called intermediate source code (ISC). In fact, their annotation flow goes through three compilation steps and the source code undergoes some modifications. The source code is cross compiled to generate an IR. The IR is then transformed to a source code (ISC). The ISC is cross-compiled to generate a binary code from which debug information as well as time measures are extracted. This step in particular makes us question the accuracy of the method because the ISC is different from the original source code which means that the binary generated from the ISC, and from which they extract time information, is definitely different from the one generated from the source code. Besides, the mapping between the binary code and the ISC is based on debug information which is not reliable due to compiler optimizations.

In [START_REF] Bouchhima | Automatic instrumentation of embedded software for high level hardware/software co-simulation[END_REF], the annotation scheme is based on the low level virtual machine (LLVM). The authors add passes to the compiler in order to keep track of all compiler optimizations and reverberate them to a high-level IR that they call "cross-IR". To do so, for all the target-dependent optimizations they had to find their equivalents in the LLVM's target-independent ISA. Finding such equivalences is not a sure-fire process which may lead to unmatching CFGs. Adding to the fact that this approach is compiler intrusive, it also relies on the target-specific instructions in order to find their match in the LLVM's target-independent ISA which implies that whenever a new target is simulated, the matching pass needs to be changed to cater for the new architecture.

The work in [START_REF] Gerstlauer | Abstract system-level models for early performance and power exploration[END_REF] is similar to [START_REF] Zhonglei | An efficient approach for system-level timing simulation of compiler-optimized embedded software[END_REF] in that debug information is used to map addresses of assembly instructions to source line numbers. To obtain the desired debug information, the binary is generated from the IR instead of the original source code which raises the same problems as before. To avoid the discrepancies caused by debug information the authors resorted to turning off compiler optimizations. They enhanced their approach in a later work [START_REF] Gerstlauer | Automated, retargetable backannotation for host compiled performance and power modeling[END_REF] by improving their mapping scheme with a more elaborate Binary-to-IR mapping algorithm using a heuristic subgraph matching scheme. However, this algorithm may lead to several possible matches for a single basic block which they dealt with using debug information. In their approach, they especially focus on CFG structure changes caused by branch optimizations. Loop optimizations, on the other hand, have a drastic impact on the CFG structure and when poorly-handled they may lead to far more erroneous estimations than "out-of-loop" mismatched blocks in that the time spent by a program on executing a loop usually outweighs the time spent on code portions outside a loop. Therefore loop optimizations need special attention which we will target in the following sections.

Binary-level simulation

The binary code is analyzed and statically converted to a high-level native code [START_REF] Plyaskin | System-level software performance simulation considering out-of-order processor execution[END_REF], [START_REF] Lazarescu | Compilation-based software performance estimation for system level design[END_REF], [START_REF] Zivojnovic | Compiled hw/sw co-simulation[END_REF] thus avoiding the major SLS pitfall, which is the mapping between source code and binary code because the reconstructed high-level code contains target compiler optimizations. The target binary code is usually translated into a "functionally-equivalent" C code where time annotations can be inserted. However, parsing a binary and reconstructing a high-level code is not an easy task because of the presence of indirect jumps and potentially run-time selfmodifying code. The authors of [START_REF] Zivojnovic | Compiled hw/sw co-simulation[END_REF] use interpretive simulation in addition to the compiled simulation as a fallback mechanism in case of self-modifying code which slows down the simulation speed. To deal with indirect branch instructions, authors in [START_REF] Lazarescu | Compilation-based software performance estimation for system level design[END_REF] consider every instruction as a possible indirect branch target and thus add a label in front of each one of them. The existence of such labels in the translated code hinders the compiler optimization process during host code generation.

IR-level annotation framework

Our main contribution is to accurately place annotations in the high-level IR code using a mapping algorithm that takes into account all compiler optimizations; both architecture dependent and independent optimizations. The algorithm pays particular attention to loop structures as they considerably affect the accuracy of the estimations.

Our choice of working with a dump file of a high-level IR has its side benefits: the high-level IR is architecture-independent so is the annotation framework. More precisely the mapping scheme is architecture-independent as opposed to the annotation data which quite evidently depends on the target architecture.

Choice of the intermediate representation

Due to compiler optimizations (branch optimizations, function inlining, loop otpimizations, etc.), accurate annotation of the source code with low-level target-specific information is challenging. The discrepancy in the CFG structure between the source code and the binary, which may lead to estimation errors, is avoided by working on the IR code whose structure is very close to the binary CFG. 3. The final optimized file generated by the back-end right before assembly code generation is gcc-RTL1 . Thus, the RTL format is the closest to machine code as it encompasses machine-dependent optimizations. However, RTL is a very low-level IR that highly depends on the target architecture. On the other hand, there are the GCC Tree optimizer IRs which are generated before the RTL. What interests us, is the last pass before RTL which is Gimple CFG generation (low-level Gimple Fig. 3) because it includes the last machine-independent optimizations. Gimple CFG is both source-language and target-machine independent.

Our approach is compiler non-intrusive as we operate on the dump file of the compiler (GCC) and not on the internal structure. In fact, as GCC's internal modules are continually overhauled, introducing changes in the internal infrastructure of GCC (or any other compiler) is hard to maintain.

The advantages of using such a representation are quite discernable in the example illustrated Fig. 5-a. Not only is the IR code very close in its syntax to C code but also the basic blocks are delimited and the CFG is already established. First, the source code is cross-compiled generating both the intermediate representation (IR-CFG), after high-level compiler optimization passes are performed, and the target binary (Fig. 4) containing both front-end and back-end compiler optimizations.

The annotation framework overview

Despite its easy-to-understand syntax, Gimple CFG is not compilable. So, we converted it into a compilable and optimized C code that maintains the CFG structure (uppermost flow Fig. 4). So, we developed a tool called GIMPLE-CFG-To-C that carries out the transformation of the IR to a particular compilable C code that preserves the functionality of the original source code but has an optimized structure (inherited from Gimple CFG) that exposes the basic block boundaries and accounts for the high-level optimizations. This is the only transformation applied on Gimple CFG before inserting the annotations.

As for the binary, a CFG is recovered from it and nonfunctional information is extracted from each basic block of the binary CFG and stored in a basic block data base (lowermost flow Fig. 4). However, extracting precise non-functional information from the target binary is not enough in producing accurate performance estimates. This information has to be inserted at the right place in the IR, hence the need for a precise mapping between the binary CFG and the IR CFG (the middle flow Fig. 4). The mapping algorithm results in a Mapping data base which will come in handy during the Time analysis and annotation insertion. Finally, annotations are inserted in the IR-like C code according to the mapping algorithm.

Mapping the binary CFG to the Gimple CFG

In order to accurately place the annotations in the IR code, a precise mapping needs to be performed. As discussed before, Gimple CFG does not take into account the target specific optimizations which will lead, in certain cases, to a CFG different from the target binary one. However, many optimizations take place in the GCC Tree Optimizer as the trend in GCC consists of advancing the RTL optimization passes to the Tree Optimizer level [START_REF] Novillo | Gcc -an architectural overview, current status, and future directions[END_REF]

The need for an accurate mapping scheme

As we can notice Fig. 5, the IR and the binary code have the same CFG structure. So, there is a one-to-one relationship between the basic blocks of the CFGs which facilitates the mapping process. In this case, we benefit the most from the IR representation because the code preserves its structure till the end of the compilation. However, once a loop is introduced, which is illustrated Fig. 6, the CFGs are not isomorphic anymore. In addition to loops, the compiler back-end may optimize branch statements by using target-specific instructions which may further change the structure of the code. However, mapping branch structures is not very complicated as it falls back either to ignoring the extra basic blocks in the IR (i.e. extra BBs remain unmapped) or to mapping a basic block in the IR to more than one basic block in the binary. The different cases of branch optimizations and their effect on the structure of the code are detailed in [START_REF] Lu | Hierarchical control flow matching for source-level simulation of embedded software[END_REF] and [START_REF] Gerstlauer | Automated, retargetable backannotation for host compiled performance and power modeling[END_REF]. The main focus of our mapping scheme is to match IR basic blocks to their equivalents in the binary CFG with special consideration to loop structures.

Compilers perform several loop transformations such as loop unrolling, loop permutation, loop fusion, loop fission, etc, to enhance the speedup of a program. Due to these optimizations, even a small annotation error will lead to serious repercussions on the overall performance of the software because this insignificant error will be magnified as it will be repeated as many times as the number of loop iterations.

In our mapping scheme, we focus on loops because codes without loop statements do not engender major mapping problems. Indeed, programs spend the majority of their execution time on code inside loops, thus we consider loops as hotspots. On the bright side, target-independent loop optimizations are more and more carried out before the back-end (i.e. before RTL) [START_REF] Pop | Graphite: Polyhedral analyses and optimizations for gcc[END_REF], thus minimizing stucture dissimilarity between the IR and the binary CFGs. As a result, analyzing loop structures at the IR level is very profitable as opposed to source code [START_REF] Wang | Accurate source-level simulation of embedded software with respect to compiler optimizations[END_REF]. In fact, finding which loop in the binary code corresponds to which loop in the source code is not a trivial task [START_REF] Lu | Hierarchical control flow matching for source-level simulation of embedded software[END_REF] as source code and binary code have very different structures. end if 18: end for Our mapping process aims at finding a correspondence between the basic blocks of IR and binary codes using an algorithm based on CFG condensation and the principle of fixed points. Algorithm 1 presents the high-level view of our mapping scheme. We now give a detailed explanation using the example of Fig. 6. i) We decompose the CFGs into SCCs 2 using Tarjan's algorithm [START_REF] Tarjan | Depth-first search and linear graph algorithms[END_REF] (line 2) which is O(n + m) where m is the number of vertices and n is the number of arcs of a given graph. A SCC with at least one arc represents a level-0 loop (i.e. an outermost loop, line 4) that we will call LP0_i for the IR and LP 0_i for the binary. SCCs with at least one arc (i.e. loop blocks) are contracted into a single node (line 6). Fig. 6 shows the Gimple CFG (a) and the binary CFG (b) of the toy example BubbleSort. In the Gimple CFG there are 8 SCCs (eg. S CC 1 = {bb2}, S CC 2 = {bb3, bb4} , S CC 3 = {bb5}, ..., S CC 8 = {bbExit}) among which there are three SCCs that are composed of at least one arc. These SCCs are contracted into one node each: LP0_1, LP0_2 and LP0_3. In the binary CFG, the same process is applied leading to three contracted loop blocks as well: LP 0_1, LP 0_2 and LP 0_3.

The proposed mapping algorithm

ii) We reconnect the SCCs again forming a new CFG that is the condensation of the original CFG (line 8). This resulting CFG is a directed acyclic graph since its nodes are SCCs. For example (Fig. 6-a), the condensed IR CFG is: bb2

⇒ LP0_1 ⇒ bb5 ⇒ LP0_2 ⇒ bb13 ⇒ LP0_3 ⇒ bb16 ⇒ bbEXIT .
2 SCC: a strongly-connected component is a maximal set of vertices such that for every pair of vertices u and v in the set there is a path from u to v and a path from v to u.

iii) We match the binary and IR condensed CFGs (line 11). The mapping process becomes easier as we contracted the loops into single nodes. At this level, basic blocks outside level-0 loops as well as level-0 loops are matched.

The idea behind our matching scheme (line 11) is inspired from [START_REF] Dullien | Graph-based comparison of executable objects[END_REF] in which the authors conduct a bijective mapping using "fixedpoints" (two elements, each from a graph, that are determined to be equivalent) between two differeing executables of the same source code, for the purpose of malware analysis. However, loop optimizations were not considered. Needless to say that finding fixedpoints in our case is more delicate because we are working with two different CFG representations: IR and binary. The way our matching scheme works is to find as many fixedpoints as possible. A fixedpoint is an SCC in the IR-CFG that has a surefire corresponding SCC in the binary CFG which is also considered as a fixedpoint (for example entry SCCs are fixedpoints). Entry SCCs are insufficient in propagating fixedpoints across the CFGs. So, we need to find more fixedpoints. Under the assumption that the number of loops in the IR remains the same in the binary (this assumption may not hold when using optimization level O3 as several loop optimizations that are susceptible of changing the number of loops are activated whereas in this work we use O2), each loop in the IR will map to exactly one loop in the binary. So, if we find out which loop in the IR corresponds to which one in the binary we will have loop blocks as fixedpoints which will facilitate the matching process of the whole CFG. To do so, we use debug information to match each loop in the IR code to its corresponding loop in the binary. And since, in our case, there is only one possible match for each loop block in the IR, debug information is conclusive. Thus, loop blocks are matched and considered as fixed points. More fixed points can be created iteratively starting with the already-established fixedpoints (loop blocks and the entry SCCs) and the relation PRED(S CC) (resp. S UCC(S CC)), which returns the immediate predecessor (resp. successor) of a given fixedpoint (eg. PRED(S CC 2ir) = S CC 1ir = bb 2ir , S UCC(S CC 3ir) = S CC 4ir = LP0_2), until no more fixedpoints can be found. Some instructions contained in the basic blocks (such as function calls, exit and return statements) along with debug information may be used as clues to curtail the ambiguity that may arise when designating fixedpoints and thus improve the accuracy of the mapping. This may sound contradictory as we previously denounced the use of debug information. However, our mapping scheme does not rely entirely on debug information. Instead, debugging is only used to solve equivocal cases.

The mapping between the condensed IR and the binary CFGs in our example considering loop blocks as fixedpoints and using the PRED/S UCC relations is straightforward: bb2 ir ⇔ bb2 bin , LP0_1 ⇔ LP 0_1, bb5 ir ⇔ bb4 bin , LP0_2 ⇔ LP 0_2, bb13 ir ⇔ bb10 bin , LP0_3 ⇔ LP 0_3, bb16 ir ⇔ bb12 bin , bbEXIT ir ⇔ bbEXIT bin . To differentiate between basic blocks from the IR CFG and the binary CFG, we will use (respectively) this notation (only when an ambiguous situation arises): bbi ir and bbi bin . In order to take into account basic blocks that constitute the level-0 loop, we have to recursively apply the same process (steps i), ii) and iii) but for loop blocks instead of the entire CFGs (line 13): iv) We start by removing the back arcs of the loop block, in that if we keep them we cannot decompose it into SCCs, by definition of a SCC (line 15). For example, the SCCs of the "modified" subgrapgh LP0_1 after removing the back arc bb3 ⇒ bb4 are bb3 and bb4. Similarly, the SCC of LP 0_1 is bb3. v) We apply i), ii) and iii) by replacing the CFG with loop block and level-0 loop with level-1 loop (line 16).

Since LP0_1 is composed of two single-node SCCs (bb3 and bb4) and LP'0_1 is composed of one single-node SCC (bb3), then bb3 is mapped to one basic block of LP0_1. Given that the control flow in the IR CFG enters LP0_1 from bb4 and leaves through bb4 then bb4 ir ⇔ bb3 bin . This way, information extracted from bb3 bin will only be annotated to bb4 ir thus avoiding any duplication of the same information which may lead to erroneous estimates.

LP0_1 and LP 0_1 are both composed of SCCs with one vertex each and no arcs, then the mapping stops at this level as there are no nested loops to inspect. However, when we apply iv) and v) on LP0_2 and LP 0_2 (which they each enclose one nested loop) we will have two SCCs as loop blocks that we contracted (respecively) to LP1_1 and LP 1_1. So, iv) and v) are further applied on LP1_1 and LP 1_1. We repeat the same process iv) and v) for each loop level in the CFG until no more SCCs with at least one arc are found (in other words, no more loops are found).

To further explain how to apply iv) and v) on a multi-level loop, we will use LP0_2 and LP 0_2 from Fig. 6. S CC(LP0_2) : {bb12, bb6, LP1_1, bb11}, S CC(LP 0_2) : {bb5, LP 1_1, bb9}

There are less SCCs in LP 0_2 than in LP0_2 due to compiler optimizations. To reflect these optimizations in the IR, certain nodes in LP0_2 will remain unmapped. To decide which nodes will be unmapped, we start first by matching the loop blocks as they constitute our fixedpoints at this level of the recursion from which we will infer more: LP1_1 ⇔ LP 1_1. PRED(LP1_1) = bb6, PRED(LP 1_1) = bb5. So, bb6 ir ⇔ bb5 bin (bb6 ir and bb5 bin become fixedpoints). S UCC(LP1_1) = bb11, S UCC(LP 1_1) = bb9. So, bb11 ir ⇔ bb9 bin (bb11 ir and bb9 bin become fixedpoints).

As a result, bb12 ir remains unmapped. We then, apply iv) and v) on LP1_1 and LP 1_1. S CC(LP1_1) : {bb10, bb7, bb8, bb9}, S CC(LP 1_1) : {bb6, bb7, bb8}.

Here we also have more SCCs in LP1_1 than in LP 1_1. In this case, we have a branch inside the loop blocks. In the IR (Fig. 6-a), the loop header (bb10) and the branch statement (bb7) are in two separate basic blocks. However, in the binary (Fig. 6b), they are grouped together in one block bb6. To reflect this optimization, the basic block containing the branch statement in the IR will be mapped to the basic block of the branch and the loop in the binary: bb7 ir ⇔ bb6 bin . The branch targets in the IR are mapped to their equivalents in the binary: bb8 ir ⇔ bb7 bin , bb9 ir ⇔ bb8 bin . bb10 ir will stay unmapped.

By following these mapping steps, multi-level loops can be easily matched because the problem of dealing with complicated loop structures always falls back to dealing with a one-level loop thanks to the contraction method. The only challenge we may face with a loop is when it encompasses branches (like in our example when the loop header and the branch statement are amalgamated in one block in the binary). Loops with a condition-free body are relatively easy to match: if the number of basic blocks in the loop block is the same in the IR and the binary code then the mapping is straightforward. Otherwise, if the basic blocks in the IR outnumber the ones in the binary code, certain blocks will remain unmapped in the IR. In the opposite case, several basic blocks of the binary code will be mapped to one basic block in the IR.

Using this mapping scheme allows us also to reflect the behavior of the fully-optimized binary code onto the IR. There are however, extreme cases where the mapping cannot take into account all the optimizations in the binary code. These cases occur when a node in the binary code has more (ingoing or/and outgoing) arcs than its corresponding node in the IR. These arcs represent possible execution paths that the code may take. These paths are not represented in the IR as we do not introduce any structural modification to the original IR (we neither add nor reduce any arcs or nodes).

Experimentations

Once compiler optimizations, both target dependent and independent, are reflected on the compilable Gimple CFG through accurate mapping, the insertion of annotations becomes straightforward. After the mapping has been carried out, the accuracy of the estimations depends only on the precision of the extracted non-functional information. A fully-fledged software performance analysis is out of the scope of this article as the purpose of this work is to provide a precise mapping scheme, that along with an exhaustive performance analysis, yields accurate estimates.

For the sake of validating our mapping scheme, we extracted information from the target binary CFG (as indicated Fig. 4) that corresponds to the original C code. As we can notice, a basic block data base is created, in which information of each basic block of the binary CFG is logged.

The metric we retain is the number of instructions: indeed, it depends only on the control flow path followed during execution and not on the accuracy of the SystemC models within the system as would timing do. So, the accuracy of the instruction count depends uniquely on the mapping algorithm between the IR and the binary unlike cycle count, for example, which depends both on the mapping and the time analysis strategy. We also measure the simulation time of the original code and the optimized code (compilable IR-CFG).

The target architecture is Kalray K1 core [START_REF] Dupont De Dinechin | A clustered manycore processor architecture for embedded and accelerated applications[END_REF], a core with a 5-issue 32-bit VLIW architecture. The host processor, on which the native simulation platform is executed, is an Intel x86_64 CPU that runs at 3.47GHz.

Simulation setup

For accurate counting of instructions, we use the ISS platform (provided by Kalray in its design kit) as a reference to validate our IR-based annotation framework.

Regarding native simulation, we developped a HW/SW cosimulation tool in which we compile and execute the software code directly on the host processor with the possibility of communicating with transactional-level hardware models described in SystemC. Our native simulation platform employs the hardware assisted virtualization (HAV) technology to solve the problem of conflicting address spaces [START_REF] Shen | Native Simulation of MPSoC Using Hardware-Assisted Virtualization[END_REF] that we touched on in Section 2.

Simulation results

To validate the accuracy of the proposed method we carried out our experimentations on applications taken from benchmark Polybench [START_REF] Pouchet | Polybench benchmark[END_REF], as they encompass a significant number of loops, and a few applications from Splash2 and other custom applications. These applications are compiled with gcc O2 optimization level.

Table 1 lists the main optimizations, in each application, observed at the optimization level O2. Optimizations that are enabled by the compiler in a given application are marked with the "×" symbol, otherwise they are marked with "-". The table also provides information about the number of loops in each application and the degree of loop nests. Fig. 7 shows the simulation time in seconds of the original codes executed using the ISS and the native simulation platform. Native Simulation offers a significant speedup for all the applications. As we can notice, the use of the IR code that we transformed to C code (referred to as optimized code in Fig. 7) does not introduce any prominent effect on the simulation time compared to the original code using the native simulation platform. In fact, the slowdown is approximately a factor of 1 for the different applications.

In order to evaluate the accuracy of the mapping, we used the instruction count as a metric. We extracted the number of instructions of each basic block of the binary CFG and inserted them in the corresponding basic block of the optimized code according to the mapping scheme that we previously explained. An instruction counter is introduced in the optimized code which follows the execution path and provides us with the number of the executed instructions at the end of the execution. Table 2 shows the number of the executed instructions of the nativelyexecuted optimized code (ILS) compared to the number of the executed instructions of the original code run on the ISS and the resulting error (ILS-ERROR). In addition to ILS we also implemented the traditional SLS approach [START_REF] Wang | Scisim: A software performance estimation framework using source code instrumentation[END_REF] in which the mapping between the source code and the binary code is conducted based on debug information. As can be noticed, the SLS-ERROR has elevated values. These high values are caused by the unreliable debug information that failed to keep track of compiler optimizations. The impact of these optimizations on the structure of the code is significant especially in the presence of a large number of loops. On the other hand, the use of our mapping scheme that takes into account compiler optimizations and focuses on loops led to a small percentage of error. This small ILS-ERROR is due to some differences between the binary CFG and the IR CFG (caused by some compiler back-end optimizations which are target-specific optimizations that are not present in the IR) that could not be handled by our mapping scheme.

Perspectives

Algorithm 1 is efficient at providing an accurate mapping between an IR CFG and its corresponding binary CFG compiled with the gcc O2 optimization level where the number of loops in the IR is identical to the one in the binary. The efficiency of the mapping algorithm is validated with the results showcased in Table 2. However, at the O3 optimization level, aggressive compiler optimizations such as loop unrolling are activated. As a reminder, loop unrolling is a compiler optimization that replicates the loop body UF (unrolling factor) times. The value of UF is chosen by the compiler based on the loop trip count. These optimizations can have a radical impact on the structure of the code and may lead in certain cases (eg. partial loop unrolling in the LLVM compiler Fig. 8-b) to a different number of loops between the IR and the binary. Fig. 8 shows the CFG of a simple program (consisting of the addition of two arrays inside a loop with an unknown trip count) at two different compilation stages: after machine-independent optimizations are performed (Fig. 8-a) and after all (i.e. frontend and back-end) compiler optimizations are carried-out (Fig. 8b was obtained using the LLVM compiler and Fig. 8-c using gcc, with the highest level of optimizations enabled in both cases).

Applying a first pass of Algorithm 1 (no recursion) on the IR CFG in Fig. 8-a and its corresponding binary CFG obtained with the gcc compiler in Fig. 8-c have no match in the IR). These unmapped basic blocks are the result of partial loop unrolling with an UF of 3. A transformation called peeling is performed by gcc during the loop unrolling optimization. Peeled instructions are placed before the unrolled loop, bb12 gcc bin , as a prologue, which explains the difference between S CC3 ir and S CC3 gcc bin LLVM, on the other hand, gathers the peeled instructions in a loop block and places it as an epilogue, bb6 llvm bin . If we apply the same algorithm on Fig. 8-a and Fig. 8-b, we will end up with an unmapped loop block: bb6 llvm bin has no match in Fig. 8-a. In addition to this obvious structural CFG transformation, another modification is present inside the unrolled loop. In fact, the unrolled loop has more instructions than the original loop but requires less iterations. This is true for gcc as well as llvm. Consequently, we will only consider gcc in the remainder of the explanation. Let's suppose that the original loop in our example is composed of nb_instr = 2. After loop unrolling is performed, the number of instructions inside bb12 bin becomes nb_instr × (UF + 1) = 8 and the loop iteration bound becomes (trip_count/(UF + 1)). If we back-annotate this number of instructions of bb12 bin into its corresponding IR loop block bb6 ir without taking into consideration the maximum iteration bound of the unrolled loop, the instruction execution count after natively simulating the IR will be multiplied (UF + 1 = 4) times. To fix this problem, a counter and a test are added in the IR loop body to protect the instruction count (Fig. 9). The test is only entered when the counter satisfies the following condition: (*) cnt <= (trip_count/(UF + 1)).

To show the limitation of Algorithm 1, we applied it on several applications compiled with gcc's highest level of optimization O3 where loop unrolling is enabled. Table 3 shows a comparison of the number of executed instructions in each application using ISS, ILS with the mapping scheme explained in Section 5.B (called ILS for short in Table 3), and ILS+ which consists of using the same mapping scheme but with consideration to the new iteration bound of the unrolled loop (*). As expected, ILS causes overestimations in the instruction count which are proved by the high error values that reached 584.75% for application 3mm.

By simulating the number of iterations of the unrolled loop in its corresponding loop in the IR (ILS+), the error values dropped down significantly. Although the error values improved, they are still far from being satisfactory because ILS+ does not handle the loop peeling transformation as we do not alter the structure of the IR CFG neither by adding nor by removing basic blocks. Moreover, the O3 level encompasses far more optimizations (loop distribution, loop vectorization, loop inversion, loop unswitching, further branch optimizations, etc. [START_REF] Berlin | High-level loop optimizations for gcc[END_REF]) than just loop unrolling, which are not yet supported in ILS+.

In a future work, we will investigate O3 level optimizations and we will focus on the different cases of loop unrolling:

• the trip count is known at compile time:

the trip count is a multiple of (UF + 1).

the trip count is not a multiple of (UF + 1).

• the trip count is unknown at compile time.

We will attempt to adapt the proposed algorithm to O3 optimizations and, if necessary, change the IR CFG to cater for those that drastically alter the structure of the code (Fig. 8). We will also perform further experiments than presented in Table 3 to validate the enhanced algorithm.

Conclusions

In this paper, we proposed an IR-level annotation framework that takes into account front-end compiler optimizations thanks to the choice of the IR level and back-end optimizations with the help of the proposed CFG matching strategy. The mapping is conducted recursively between SCCs of the binary and IR CFGs until reaching the basic block level. We transformed loop blocks from a puzzling issue into a facilitator in the mapping process by considering them as fixedpoints and propagating the fixedpoints throughout the CFGs. The experiments conducted at the O2 optimization level underline the accuracy of the proposed framework by showing a reasonable value of error in the number of the executed instructions of the compilable IR. As for the native simulation time of the compilable IR, it remains tightly close to the original source code's simulation time and considerably faster than the ISS.

Figure 1 :

 1 Figure 1: IR and binary CFGs of a simple C code compiled with gcc O2

Figure 2 :

 2 Figure 2: Example of native simulation platform

Figure 3 :

 3 Figure 3: GCC's intermediate representations

Figure 4 :

 4 Figure 4: IR-level annotation framework Fig. 4 outlines the proposed annotation framework through which the source code is percolated leading to the generation of an optimized high-level code: Annotated compilable IR-CFG.First, the source code is cross-compiled generating both the intermediate representation (IR-CFG), after high-level compiler optimization passes are performed, and the target binary (Fig.4) containing both front-end and back-end compiler optimizations.Despite its easy-to-understand syntax, Gimple CFG is not compilable. So, we converted it into a compilable and optimized C code that maintains the CFG structure (uppermost flow Fig.4). So, we developed a tool called GIMPLE-CFG-To-C that carries out the transformation of the IR to a particular compilable C

Figure 5 :

 5 Figure 5: An example of isomorphic CFGs

Figure 6 :

 6 Figure 6: The IR CFG (a) and the binary CFG (b) of the BubbleSort example

Figure 7 :

 7 Figure 7: Comparison of the simulation time

Figure 8 :

 8 Figure 8: Mapping IR and binary CFGs using Algorithm 1

Figure 9 :

 9 Figure 9: Simulating the number of iterations of the unrolled loop in the IR loop (UF = 3)

 .

	<bb2>		<bb2>	
	D.3434=n.2 & 1;	lw $r0=28[$r12]
	If (D.3434==0)	cb.even $r0, .L5
	goto <bb3>;		
	else			
	goto <bb4>;	<bb3>	<bb4>
			make $r0=.LC3	.L5: make $r0=.LC2
			call puts	call puts
	<bb3>	<bb4>	goto .L3	goto .L3
	printf("Even");	printf("Odd");		
	goto <bb5>;	goto <bb5>;	<bb5>	
			.L3:lw $r8=16[$r12]
	<bb5>		make $r0=0
	D.3438=0;		add $r12=$r12.16
	n={CLOBBER};	set $ra=$r8
	return D.3438;	ret	
	a) Odd even IR CFG	b) Odd even binary CFG

 Algorithm 1 MAPCFG(CFG ir ,CFG bin) CFG ir_cond , CFG bin_cond) 12: builds mapping (⇔) between IR and binary SCCs 13: for all {scc ir , scc bin } ∈ (S CC ir_loop , S CC bin_loop) do

	2:	S CC x ← EXTRACTSCC(CFG x)
	3: 4:	S CC x is a set of CFGs, CFG x is a CFG S CC x_loop ← EXTRACTLOOP(S CC x)
	5: 6:	S CC x_loop is a set of CFGs S CC x_cont ← CONTRACTSCC(S CC x_loop)
	7: 8:	S CC x_cont is a set of single-node CFGs CFG x_cond ← CONDENSECFG(CFG x , S CC x_cont)
	9:	CFG x_cond is a directed acyclic graph
	10: end for
	11: MATCH(14: if scc ir ⇔ scc bin then 15: REMOVEBACKARCS(scc ir , scc bin) 16: MAPCFG(scc ir , scc bin)

1: for x ∈ {ir, bin} do 17:

Table 1 :

 1 O2 optimizations observed for each application

			FFT	BbSort MMult Radix Trmm	Lu	atax	3mm
	# loops # NL * (ND *)	9(35	2	3	24	3	23	4	9

Table 2 :

 2 NL: nesting loop (outer loop or level 0 loop), * ND: nesting degree (number of inner loops inside a NL) Comparison of the number of executed instructions (O2)

) 3(2,2,2)

*

Table 3 :

 3 Comparison of the number of executed instructions (O3)

			trisolv	jacobi	syr2k	3mm	matmult	bbSort	atax	trmm
		ISS	14089	63726	464043	836817	155993	2646028	25748	136033
	instr_count	ILS	25236	179452	1778442	5730076	954293	10498510	109985	862273
		error_ILS	+79.12% +181.60% +283.25% +584.75% +511.75% +296.76% +327.16% +533.87%
		ILS+	2836	31561	445450	741148	102893	3600010	14625	88129
		error_ILS+ -79.87%	-50.47%	-4.01%	-11.43%	-34.04%	+36.05%	-43.20%	-35.21%

RTL: register transfer level, not to be confused with the RTL used in hardware description languages, is the final optimization pass in gcc.

ACKNOWLEDGEMENTS

This work is funded in part by BPI France through the Investissement d'Avenir project Capacités.