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Chapter 3
Raman Mapping for the Investigation
of Nano-phased Materials

G. Gouadec, L. Bellot-Gurlet, D. Baron and Ph. Colomban

Abstract Nanosized and nanophased materials exhibit special properties. First they
offer a good compromise between the high density of chemical bonds by unit vol-
ume, needed for good mechanical properties and the homogeneity of amorphous
materials that prevents crack initiation. Second, interfaces are in very high concen-
tration and they have a strong influence on many electrical and redox properties.
The analysis of nanophased, low crystallinity materials is not straigtforward. The
recording of Raman spectra with a geometric resolution close to 0.5 µm3 and the
deep understanding of the Raman signature allow to locate the different nanophases
and to predict the properties of the material. Case studies are discussed: advanced
polymer fibres, ceramic fibres and composites, textured piezoelectric ceramics and
corroded (ancient) steel.

3.1 Raman Spectroscopy and (Nano)materials
Properties

Nanosized and nanophased materials possess a high concentration of interfaces,
which results in unique optical and redox properties, as well as a good resistance
to crack propagation. Not all conventional materials science research techniques are
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Fig. 3.1 The basics of Raman spectra interpretation. The vibrational wavenumbers are often called
Raman shifts as they correspond to a Raman-induced wavenumber shift of the scattered photons
with respect to the laser excitation

applicable to study the structure–properties relationship in such materials and Raman
microspectroscopy (µRS) is one of them (Fig. 3.1) [1, 2]:

• The actual probes are vibrational modes, which strongly depend on atoms mass,
bond lengths and the angles between atom-sharing bonds.

• In the most frequent case where a visible laser is used for the excitation (IR and
UV-Raman are also possible), the excitation and collection of the signal is per-
formed through a standard optical microscope, which makes a selection of the
analysis point very easy.

• Even low crystallinity materials like those often found at interfaces (which seldom
reach thermodynamic equilibrium during the synthesis process) are available for
analysis.

More generally, Raman spectroscopy being a non contact, non destructive, and
relatively fast technique, it offers the possibility to characterize a material under
working conditions and assess how external perturbations (mechanical stress, thermal
cycling, electrochemical cycling, corroding atmosphere, …) may affect it.

Modern Raman microspectrometers are equipped with motorized tables and
acquisition softwares allowing for the automated mapping of a surface. The user
ultimately gets a “hyperspectral map”, which is a collection of individual Raman
spectra, each being associated with a given point on the sample surface (Fig. 3.2).
Note that Raman mapping must not be confused with Raman imaging, where a large
area is lit by a defocused laser beam and photons from only one selected wavenumber
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Fig. 3.2 In-line Raman map of a SCS-6 fiber radius (adapted from Ref. [6]). The shaded rectangle
in the optical picture indicates the region mapped in Fig. 3.16

range form an image of that area on a mosaic detector (CCD) [3]. The possibility
exists to use hyperspectral maps data to build a “map” of the investigated area where
the color of each point indicates the integrated Raman intensity in a wavenumber
Range Of Interest (ROI). Such a map may be useful to locate a phase with strong
Raman scattering in the ROI (Figs. 3.3 and 3.4) but a much more sophisticated analy-
sis is achieved with maps of spectral parameters (position, width, area or intensity of
a given band) obtained through the mathematical fitting of the Raman spectra. If a
physical property can be expressed as a function of one or several such parameters,
it is eventually possible to draw a “smart map” [4, 5] of that property based on the
treatment of Raman spectra (see for instance Figs. 3.14, 3.16–3.19, and 3.21c).

3.2 Recording a Raman Map

Raman mapping is most valuable to point out subtle spectral modifications taking
place from one place of a sample to another (Figs. 3.2–3.4 and 3.17). A large number
of good quality spectra are thus necessary and the overall recording time (trec) will
possibly reach several hours. Some preliminary thinking is advisable to make the
most of it.

3.2.1 The Lateral Resolution of µRS

First of all, the microscope objective should be chosen for the resulting probing to
match the sample details of interest. From a practical point of view, microscope
objectives are usually characterized by the numerical aperture NA [8]:
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Fig. 3.3 The selection of graphite signal (ROI at 1300–1600 cm−1) in a Raman map (boxed rec-
tangle; 1 µm ×1 µm square pixels) reveals the different regions of an SCS-6 fiber (the darker a
pixel, the lower the graphite signal)

Fig. 3.4 The Raman mapping of a drug tablet (18.0 × 8.5 mm) makes it possible to discriminate
paracetamol (ROI at 850 cm−1) from caffeine (ROI at 555 cm−1). Reprinted with permission from
Elsevier [7]

NA = n sin(θback) (3.1)

In Eq. (3.1), θback is the maximum collection angle for the backscattered light and
n is the refractive index in the medium between the sample and the microscope lens
(Fig. 3.5).

The numerical aperture is a key parameter because it sets the resolution R of the
microscope, defined as the shortest spacing for two points on a sample surface to be
resolved with λ wavelength observation [9]:
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Fig. 3.5 Basic schematic of
the Raman microscope in
backscattering configuration.
The labels signification is
given throughout the text
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Equation (3.2) is usually referred to as Rayleigh criterion and follows from Abbe
theory of the diffraction pattern created by distinct point sources observed through
a microscope [10]. The best objectives (oil immersion objectives) having numerical
apertures around 1.4, Rayleigh criterion is sometimes referred to as a “λ/2 diffraction
limit”. The focusing of incoming laser beams, even perfectly parallel ones, is diffrac-
tion limited by their finite diameter. Rayleigh criterion therefore forbids to obtain a
laser spot smaller than about half the laser wavelength (Fig. 3.5), even though smaller
objects will still give a Raman signal. Figure 4.2 in the next chapter illustrates this
last point: 170 nm diameter GaN nanowires were indeed observed with a lateral reso-
lution of, at best, 230 nm (confocal microscope—see further; 0.9 NA; λ = 514.5 nm)
[11]. Besides, the polarization sensitivity of GaN nanowires Raman modes demon-
strates the possibility to analyze growth directions and crystallographic orientations
in nanophases.

Actual laser beams are not perfectly parallel (which has been exaggerated in
Fig. 3.5) and their focusing through a microscope lens actually gives an elongated
volume, which is called the focal domain or focal cylinder [12, 13]. The diameter
φ(z) of the focal domain at z axial coordinate must be defined arbitrarily as the

http://dx.doi.org/10.1007/978-3-642-28252-2_4
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electric field obviously does not drop to zero for a definite r distance away from the
optical axis. The radial decrease of the electric field in a laser beam actually obeys
a Gaussian law and φ(z) is often taken where the maximum field E0(z, 0) is divided
by e [13]:

E(z, r) = E0(z, 0)e−4(r/φ(z))2 , with φspot = φ(z = 0) (3.3)

We will assume for simplicity that the lens (focal length: f; Diameter: Dlens) is
fully lit by the incident beam. In such conditions (the incoming beam diameter equals
Dlens and θincoming = θback = θ in Fig. 3.5), it can be shown that [12, 13]:

φspot ∼ 4λ f

πDlens
= 2λ

π sin θ
= 2nλ

πNA
(3.4)

Combining Eqs. (3.2) and (3.4), one finds:

φspot

R
= 2n

0.61π
∼ n (3.5)

φspot is thus very close to the diameter of the smallest circle in which all incoming
energy can, in theory, be focused. Remember however that, according to Eq. (3.3),
φspot delimits a zone receiving only 86 % of the total laser irradiance [13].

3.2.2 The Axial Resolution of µRS

Similar to the lateral resolution, the in-depth or axial resolution of Raman spec-
troscopy cannot be defined unambiguously. Indeed, the laser intensity does not drop
to zero for a given z value and one has to choose an arbitrary threshold. It is common
to use the depth of field �z (Fig. 3.5), which is the distance along which the irradi-
ance is cut by half (or, equivalent, φ(z) is multiplied by

√
2) [13]. Note that Raman

spectroscopists often improperly refer to�z as a depth of focus (which should refer
to the focus tolerance in the image plane of the microscope). For the lens focusing
of a Gaussian beam, one finds [12, 13] (there is a missing λ factor in Eq. (11) from
Ref. [13]):

�z ∼ 8λ

π
×

(
f

Dlens

)2

= 2n2λ

πNA2 (3.6)

The calculation in Eq. (3.6) is based on the laser focal cylinder but the actual
probing depth (δ in Fig. 3.5) can be significantly lower in absorbent materials
(δ is inversely proportional to the linear absorption (or attenuation) coefficient [14]),
making µRS a surface technique.

In the confocal microscopy setup, pinholes are placed in the microscope at inter-
mediate image planes, resulting in a better in-depth discrimination power [15].
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In that case, the integrated intensity coming from a given plane perpendicular to
the optical axis is no longer a constant but, rather, decreases by 50 % between the
focal plane (z = 0) and �zconfocal (the half width of the so-called point spread
function), which is well approximated with [16, 17]:

�zconfocal ∼ 4.4nλ

2πNA2 (3.7)

The use of confocal pinholes goes with a lateral resolution improvement of about
one third [17] but confocal microscopy interest mainly consists in the possibility to
select sample layers axially.

Note that�z and�zconfocal should obviously not be compared as the former only
considers intensity variations along the optical axis, whereas the latter is based on the
total intensity distribution at a given z value. Moreover, it might seem surprising that
Eq. (3.7) does not involve the confocal pinholes diameter but it is implicitly assumed
to be at an optimum corresponding to Rconfocal (the lateral resolution in confocal
mode) times the total magnification (usually greater than the nominal magnification
of the objective) at the pinhole image plane [18].

3.2.3 Practical Aspects of Raman Mapping

Because µRS is sensitive to chemical bonds (through their vibrations), the tech-
nique obviously provides useful information about the nano-organization of matter.
However, even with the best dry (n = nair = 1, NA = 0.95) or oil immersion
(n = 1.51, NA = 1.4) objectives, and in the most favorable case of a blue excitation
(λ ∼ 400 nm), φspot will remain above 275 nm (Eq. 3.4). Unless nano-objects are
extremely dispersed in the sample (and the signal is still strong enough for analysis,
which can be obtained by Surface Enhanced Raman Scattering—SERS [19, 20]),
each Raman spectrum will therefore give the average response of a very large number
of nano-objects. Mathematical simulations of the spectra should then ideally include
statistical distributions of size or size-governed properties [21–32].

As a matter of fact, there is a possibility to break the λ/2 diffraction limit of optical
microscopes and make Raman lateral resolution nanometric by maintaining a sharp
metallic tip extremely close to the sample, with micro-manipulation tools borrowed
from Atomic Force and Scanning Tunneling Microscopes (AFM/STM) [33, 34]. This
Tip-Enhanced Raman Scattering (TERS) became a very hot topic in the past decade
but its implementation still requires too much experimental and theoretical expertise
for a generalized use [35]. We shall leave TERS aside and focus on the nano-related
information that can be retrieved using conventional µRS. For that matter, let us first
stress that the VRaman volume drawn in Fig. 3.5 to represent the region probed in
the sample neither matches φspot, nor�z. Equations (3.4) and (3.6) may indeed give
good estimates for the lateral and axial resolution of µRS but a number of factors
will affect the actual values:
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Fig. 3.6 Determination of the
spatial resolution of a Raman
microscope by crossing the
interface between phases A
and B at right angles. The
wavenumber domain over
which intensity is integrated
must be chosen so as to
maximize the difference in
scattering efficiency between
A and B phases
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• Optical aberrations of the optical parts (lenses, mirrors, etc).
• Imperfect laser alignment along the optical axis of the microscope.
• Parasite refractions at the sample/light propagation medium interface [36, 37].
• A poor phase contrast on the sample surface.
• Light absorption in the sample (if δ << �z).
• Multiple scattering.

It might be advisable, especially in view of large-scale mapping campaigns, to get
experimental spatial resolution values in the actual working conditions. A precise
measurement of the spot diameter is easily achieved with a line-mapping across the
interface of two phases (for instance a metal piece polished in a resin block) having
different scattering cross-sections in a given wavenumber window [5, 38–40]. The
plot of the intensity recorded in that window as a function of the displacement across
the interface will resemble that shown in Fig. 3.6, thus providing the effective probe
diameter φprobe. As for the axial resolution, it can be measured from the intensity
profile recorded when a mirror replacing the sample is taken away from the image
focal plane of the microscope [41, 42].

3D-Raman mapping is possible in low absorbance samples or when small scatter-
ers are dispersed in a transparent matrix [43], but 2D-raster mapping with �X and
�Y displacement steps of the sample-baring motorized table is much more common
(Fig. 3.7a). However, if the microscope has the autofocus option, the axial degree
of liberty may still serve to compensate the lack of planarity and/or horizontality of
the sample surface. We shall further focus on Raman mapping with square pixels
(�Y = �X , as shown in Fig. 3.7a), which obviously optimizes the sample surface
coverage by a circular spot. The condition guaranteeing full probing of the mapped
area (Amap) is:

�X = φprobe

C
; with C ≥ √

2 (3.8)



3 Raman Mapping for the Investigation of Nano-phased Materials 93

In Eq. (3.8),
√

2 is the limit value for the laser spot to just reach the corners of each
targeted “pixel” (the sample zone to which the recorded spectrum will be attached),
but even in that case (mapping with �X1 step in Fig. 3.7a), some part of the signal
will actually come from neighboring pixels. Increasing C (decreasing�X ) will raise
the proportion of light backscattered from untargeted pixels (see the mapping with
�X2 step in Fig. 3.7a) but it will also improve the rendering of the sample details.

As a matter of fact, Raman intensity measured at pixel coordinate (x p, yp) is
a convolution of the Raman scattering efficiency (σ function) by the (Gaussian)
lineshape of the laser beam cross-section (half width at half maximum w):

I
(
v̄, x p, yp

) ∝
∫ ∫

σ (v̄, x, y)× e
− ln 2 (

x−x p)2+(y−yp)2

w2 dxdy (3.9)

According to Eq. (3.9), the exact position of any heterogeneity at the surface of
the mapped area (for instance the L-wide inclusion in Fig. 3.7b) will necessarily be
somewhere in the pixel showing the strongest heterogeneity-related Raman contri-
bution. Details will thus be located with a precision of �X . Yet, even in the limit
of �X → 0, they will appear about as large as φprobe. This can be understood with
the situation depicted in Fig. 3.7b: the L-wide inclusion will clearly contribute to the
targeted pixel even though it is located outside the region associated with the said
pixel.

Only a mathematical deconvolution of the hyperspectal map by the laser line-
shape will “isolate” the signal truly coming from each pixel [4, 5, 39] (Fig. 3.8)
but it will not be reliable if the phase repartition changes for depths lower than the
laser penetration (the case illustrated for the irregular inclusion in Fig. 3.7b). Most
2D-imaging software programs offer the possibility to interpolate data points but it
is only a smoothing of the images (Figs. 3.4, 3.14, 3.16, 3.20 and 3.21), which does
not actually involve any deconvolution procedure [44].

If tspec is the time to be devoted to each spectrum acquisition,1 the total number
of spectra Nspec in a Raman map will be:

Nspec = trec

tspec
= Amap

�X2 (3.10)

And the combination of Eqs. (3.8) and (3.10) yields:

φprobe = C

√
Amap tspec

trec
(3.11)

Mapping a sample with a given objective, that is to say a given φprobe value, will
involve adjusting parameters C (hence �X step), Amap, tspec and trec so as to satisfy

1 tspec must include the effective acquisition time but also the time-out for the displacements of the
motorized table (usually negligible) for the (optional) auto-focus sequence, for the gratings rotation
(in case of multi-window recording) and for data saving.
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Fig. 3.7 a Schematic of two 8 × 6 raster mappings with square pixels (displacement steps �X =
�Y ); b schematic of the in-line mapping (�X step) of material M (laser penetration δM ) with one
L-wide and one irregular inclusions (laser penetration δincl). Each of the N spectra is attached to
a �X -wide pixel. Ispot gives the Gaussian distribution (half width w) of the laser intensity across
the experimental spot diameter (φprobe) and all the scattering collected from the illuminated region
contributes to the targeted pixel (xt ). The Raman contribution of the L-wide inclusion is proportional
to the gray area below the laser intensity curve
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Fig. 3.8 The laser spot line-
shape can be deconvoluted
from the in-line Rayleigh map
along the radius of a BN/SiC-
covered SiC fiber in order to
enhance the lateral resolution.
The same procedure would
apply to Raman mapping.
Reprinted with permission
from Elsevier [1].

Eq. (3.11). Because of the square root, increasing C (decreasing �X) for a given
mapping time trec will involve strong concessions on the map dimension (cutting
�X by two divides Amap by four; Fig. 3.7a) and/or the signal to noise ratio (reduced
tspec).

3.3 Data Processing

3.3.1 Spectra Simulation

The scattering of light by identical vibrators (wavevector v̄c) should result in a
lorentzian-shaped band (half width γ ), but most experimental lineshapes are best
fitted by a convolution with a Gaussian profile (half width: σ

√
(2ln2)) representing

the distribution of vibrators in slightly different states:

I (v̄c + v̄) ∝
+∞∫

−∞

γ

σ
× e

−
(

v̄′2
2σ2

)
dv̄′

(v̄ − v̄′)2 + γ 2
(3.12)

The use of simple Gaussian and Lorentzian profiles is often preferred to the
Voigt profile described by Eq. (3.12) as they depend on three parameters instead of
four (many fitting modules misleadingly name Voigt profile the simple sum of one
Lorentzian and one Gaussian).
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Fig. 3.9 Modeling spherical nanocrystals vibrations as a function of the grain size (Dielectric
Continuum (DC); Hydrodynamic model (HD). After Ref. [1]

To the second order, the exact position, intensity, width, and lineshape of each
band depend on many different parameters [1, 45] such as neighboring defects (inclu-
sions, substitutions, or vacancies) [46–51], grains size and shape [25, 52–61], phase
orientation (polarization effects [11, 62–66]), or thermomechanical stress (anhar-
monic effects) [67–71] (Fig. 3.1). Taking full benefit of the available information
thus requires some critical interpretation of the raw spectra and an adaptation of
standard fitting procedures to the specific case under focus. For instance, different
models may be necessary to correlate Raman spectra to grain size (Fig. 3.9):

• In grains much larger than the wavelength, phonons propagate almost in the same
way as in perfect “infinite” crystals.

• When the grain size falls in the tens of nanometer range, the Phonon Confinement
Model (PCM; see Sect. 3.3.2) accounts for the phonon coherence length limitation
by a weighed integration of the optical dispersion curves from Brillouin zone
center outwards [1, 72, 73].

• Below a certain size, the very notion of collective vibrations disappears and the
Elastic Sphere Model (ESM) takes over, using first principle description of low
wavenumber vibrations in a “free-standing” sphere of a homogeneous (constant
density) elastic medium [1, 74–78]. In this scheme, the Raman wavenumber values
are inversely proportional to nanoparticles diameter [1, 77, 79, 80].

• In semiconductor quantum structures too small to be seen as homogeneous,
macroscopic approximations taking the geometry of the sample into account by
mechanical and/or electrostatic boundary conditions (the so-called dielectric con-
tinuum and hydrodynamic models, with all their modified versions) can be used
[56, 81–86].

3.3.2 “Blind” Data Processing

In the (unfavorable but frequent) case when one has no preconceived idea about
the Raman parameters most relevant to a specific issue, the comparison of spectra
recorded on different samples and/or for different conditions is necessary. If nothing
appears at first sight, a chemometric analysis might prove very useful. The main
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Fig. 3.10 Synchronous (top) and asynchronous (bottom) 2D-correlation for “model” 20 cm−1-
wide bands at 1100 and 1200 cm−1 having opposite wavenumber (a), width (b), or intensity (c)
variations. The 1100 cm−1 peak shifts up by 10 cm−1, widens by 2 cm−1 and rises in intensity by
50 %. Reprinted with permission from Elsevier [92].

option is to use statistical multivariate analysis (principal components analysis, fac-
tor analysis, … [87]) to isolate the linear combinations of spectral features changing
the most from one spectrum to another (the so-called principal components). These
well-documented methods are very valuable to tell whether different samples should
be connected or not but two-dimensional correlation (C2D) is a good alternative if
one is interested in the effect of a given physical parameter p (which can be time
but also temperature, pressure, voltage, …) on a given sample [88, 89]. Supposing
that spectra I(v̄,p) are recorded from pmin to pmax, the synchronous and asynchro-
nous components of the spectra bidimensional correlation (Fig. 3.10), respectively
Φ (v̄1, v̄2) and ψ (v̄1, v̄2), are obtained through the following calculation:

Φ (v̄1, v̄2)+ iψ (v̄1, v̄2) =
∫ ∞

0 FT [I (v̄1, p)] × FT∗ [I (v̄2, p)] dP

π (pmax − pmin)
(3.13)

In Eq. (3.13), FT designate Fourier transform, P being the conjugate variable of
p parameter. The level curves of Φ (v̄1, v̄2) and ψ (v̄1, v̄2) give a bi-dimensional
representation of the correlated spectral features: Any local maximum on φ diagonal
(v̄1 = v̄2) indicates a p-driven band shift, whereas off-diagonal extrema (v̄1 
= v̄2)
indicate coupled variations in v̄1 and v̄2 (a positive (negative) sign corresponding to
variations proceeding in the same (opposite) direction). If Φ (v̄1, v̄2)×ψ (v̄1, v̄2) is
positive, then the signal starts changing in v̄1 “before” (i.e. at lower p value) it does
in v̄2 (and conversely).
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Fig. 3.11 Six spectra of
an FT700 carbon fiber
strained from 0.093 to 0.533 %
(λlaser = 457.9 nm) and the
corresponding synchronous
component of a 2D-correlation
treatment. After [92]

2D-correlation should in theory apply to as-recorded spectra. Yet, baseline fluc-
tuations and noise variations generate typical “streak-like” features and a baseline
subtraction improves the results. The interpretation becomes even simpler if spec-
tra are normalized prior to the calculations [90, 91]. Figure 3.10 shows the C2D
spectra for two “model” bands at 1100 and 1200 cm−1 having opposite variations in
wavenumber, width, or intensity. Intensity fluctuations give circular “halos” whereas
width changes give “butterfly wings”-like features. As for wavenumber fluctuations,
they can easily be recognized by crossing “egg timers” (of opposite signs) on the
synchronous component and crescent-shaped features on the asynchronous one. The
main limitation of C2D is that unless p is applied harmonically, there is no quanti-
tative information associated with the values of Φ (v̄1, v̄2) and ψ (v̄1, v̄2). Yet, the
technique is very sensitive to the smallest variations. A very didactic illustration
is provided with the spectra of a carbon fiber strained uniaxially (Fig. 3.11). There
is little apparent effect of straining on the wavenumbers but the synchronous C2D
function clearly shows a shift of G band.

3.3.3 “LADIR-PARADIS” Program

The proprietary softwares of Raman spectrometers manufacturers allow for hyper-
spectral maps mathematical treatment but many do not allow for the use of distinct
models depending on the region of the map under consideration. Yet, the goal of
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Fig. 3.12 The mapping module in “LADIR-PARADIS” program. Each pixel in the lower left
window corresponds to one spectrum. The other two windows show the mathematical adjustment
(lower right) and band parameters (top) of the active spectrum (in pink). Spectra in the 1 × 1 and
9 × 4 boxes were fitted with specific models

Raman mapping being to point spectral variations, a predefined model may not
apply equally well to all spectra, especially if different phases are probed.

This led us to write the “LADIR-PARADIS” program (the French word for par-
adise is an acronym for “Programme d’Ajustement de RAies Destiné à l’Imagerie de
Surfaces”—“Peak adjustment program devoted to surface mapping”).2 The opening
window is very similar to what most programs offer, with the possibility to choose
a baseline form and input as many bands as wanted for a spectrum adjustment. The
parameters of the bands (lineshape, starting width, starting height, and starting cen-
ter) are set individually and a fit using the Levenberg-Marquardt algorithm can then
be launched (there is a possibility to restrict the variations of each spectral parameter
between preset values). If a fitted spectrum has been chosen from a map, it can be
saved as a model for the global treatment of any hyperspectral map. One specificity
of “LADIR-PARADIS” is to include phonon confinement-based fits (see further;
Sect. 3.3.2) but its true originality lies within the mapping window (Fig. 3.12):

• the pixels take different colors depending on the correlation factor between the
adjusted and experimental spectra (green = good adjustment, red = unsatisfactory
adjustment, black = aborted adjustment)

2 This program is available from the authors.
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Fig. 3.13 LADIR-PARADIS program working chart

• it is possible to readjust all spectra from any area using a “local” model file
(Figs. 3.12 and 3.13).

3.4 Case Studies

3.4.1 Raman Mapping of Carbon in SiC Fibers

Most natural and synthetic fibers exhibit radial structural and compositional vari-
ability. Hence the need for cross-sectional mapping which, considering a typical
diameter in the range of tens of micrometers, can be easily done by µRS.

Graphite (sp2 hybridization) has doubly degenerate E2g modes at 42 and
1582 cm−1. The latter is referred to as G band and corresponds to vibrations in
the graphene planes. Additional modes called D and D′ (the letter stands for “disor-
der”) appear in the Raman spectra whenever flaws are created, grain size is reduced
or graphene planes are curved (Fig. 3.11). Thomsen et al. showed that only a double
resonance mechanism can rigorously account for the D band [93] but an empirical
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relation linking its intensity to the size of graphitic domains (Lg) has been used since
1970 [94]:

I
D1350cm−1

I
G1580cm−1

= C (λ)

Lg (nm)
; C (λ = 514.5 nm) = 44 (3.14)

Figure 3.14 gives an example where Eq. (3.14) was used to measure the size of
carbon moieties (at the limit of the validity range [95]) on the cross-section of a
silicon carbide fiber.

3.4.2 Raman Mapping of SiC in SiC Fibers

The Phonon Confinement Model (PCM) was originally proposed to describe the
selection rule breaking for phonons confined in isotropic nanospheres of diameter
L [72, 73]. It was later adapted to specific cases such as non isotropy [47, 96], size
distribution [25, 47], or non spherical shapes (for instance in nanowires and slabs
[52, 54, 55, 97]) but we shall present the original approach.

Taking kBZ as the edge of Brillouin zone, q as the reduced wavevector (0 ≤
q = k/kB Z ≤ 1), and assuming isotropic mode dispersion, the Raman intensity is
modeled with a weighed integration of dispersion curves v̄disp(q):

I(v̄) ∝
q=1∫

q=0

dq × e−C0k2
BZ(q−q0)

2L2

[
v̄ − v̄disp(q)

]2 +
(
�0
2

)2 (3.15)

In Eq. (3.15), �0 is the natural Raman linewidth and C0 governs the confinement
strength [52].

The PCM does not apply to acoustic modes (their energy is nil at Brillouin zone
center) and is very seldom used with Transverse Optical (TO) modes (on account of
their low dispersion). Because the Longitudinal Optical (LO) branches usually reach
their maximum frequency at the Brillouin zone center, the integration in Eq. (3.15)
introduces contributions on the low frequency side of Raman modes and the resulting
peaks are asymmetrical (Fig. 3.1).

“LADIR-PARADIS” program offers the possibility to adjust the Raman bands
using Eq. (3.15). The fit returns q0 and L values based on dispersion curves of the
form given in Eq. (3.16) [73], but the program could easily be adapted to alternative
expressions [54, 55, 97, 98].

v̄disp(q) =
√

A +
√

A2 − B (1 − cosπq) (3.16)
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Fig. 3.14 Smart Raman maps (25 × 25 spectra) of the cross-section of an SA3 SiC fiber after
10 h-annealing at 1600 ◦C in reducing atmosphere (see Refs. [99, 100] for details)

Fig. 3.15 Examples of SiC spectra fitted with a combination of Lorentz, Gauss, and “PCM” bands.
The spectra were recorded at the inner (a) and outer (b) limits of the “pure SiC” region visible in
Fig. 3.2. “With permission from Springer Science+Business Media: [101], figure N◦6”

Figure 3.15 shows the frontier spectra of the “pure SiC” region pointed in Fig. 3.2.
Their TO and LO contributions at ∼795 and 970 cm−1 were fitted with the PCM.
Note that a significant contribution from amorphous SiC was also present.

The physical interpretation of L parameter is a key element of the PCM as the
phonon coherence length may either correspond to an actual grain size [24, 72, 102,
103] or to the size of any homogeneous domain limited by defects/impurities [48,
73, 104–110]. Carles et al. even showed in Gex C1−x films that L corresponded to
the actual particle size for diameters above ∼20 nm but characterized domains where
alloying had taken place in smaller ones [96].
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Fig. 3.16 Smart map of the Phonon Confinement Model L parameter (in nm unit) after mathematical
adjustment (Eqs. 3.15 and 3.16) of the rectangular mapping from Fig. 3.2 in the SiC-rich region of
SCS-6 fiber. Adapted from Ref. [101]

The L values calculated using the PCM in Fig. 3.16 are almost two orders of mag-
nitude smaller than the diameters of the nanocrystals observed by TEM in the same
region of the SCS-6 fiber [111]. The phonons appear to be confined by some free
carbon in this slightly non stoichiometric region [111, 112]. In the SA-3 fiber how-
ever, the calculated L value corresponds to SiC domains extension and is unaffected
by the many stacking faults appearing in TEM [113].

Disorder and nanometric dimensions often contribute to phonon confinement and
their relative contributions can theoretically be isolated whenever q0 
= 0 is allowed
in Eq. 3.15:

• Disorder disturbs short range order and results in Brillouin zone folding. q0 should
then stand away from Brillouin zone center and L will be inversely proportional
to the density of defects.

• If the confinement takes place in perfectly ordered nanocrystals, then the activated
modes should be centered at the � point (q0 = 0) and L will represent the grain
size.

3.4.3 In situ Micro-Raman Extensometry of Fibers
and Fiber-Reinforced Composites

Because bonds vibrations have some anharmonic character, Raman bands have a ten-
dency to shift in materials submitted to external stress ([1] and references therein).
In perfect crystals, symmetry considerations make Raman bandshifts simple lin-
ear combinations of the stress tensor components [114–116]. Conversely, if several
Raman bands are observed simultaneously and/or simplifying assumptions are made
on the stress state, the latter can be measured from experimentally observed band
shifts (Fig. 3.17) [41, 42, 69, 117–119].

In nano/polycrystalline or amorphous materials, there is no direct relationship
between bonds straining, which commands Raman shifts, and the macroscopic stress
field. Yet, if one (or several) direction is made particular by the geometry of the
sample, empirical calibrations of stress-induced shifts remain possible. This is the
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Fig. 3.17 The experimental measurement of Raman shifts in silicon (points) can be fitted with a
stress-parameterized model (lines) taking into account the compression induced by silicon nitride,
the laser probe diameter, the penetration depth, etc. Reproduced with permission from Wiley-
Blackwell [119]

principle of Raman microextensometry (µRE) technique, which was mainly applied
to fiber-reinforced composite materials. In these composites, the fibers are expected
to resist axial tensions transferred from the surrounding matrix through interfacial
shear stress. Their mechanical characterization therefore calls for a non destructive
in situ measurement of the fiber axial stress [67, 68].

The first step is to calibrate the Sε and Sσ factors linking the wavenumber shift of
any specific band to, respectively, the axial strain (ε f ) and axial stress (σ f ) applied
to a free-standing fiber (Young’s modulus E f ; radius r f ):

Sε = v̄vib − v̄no strain
vib

εf
= Ef × v̄vib − v̄no strain

vib

σf
= Ef × Sσ (3.17)

The in situ analysis of a similar fiber through a polymer matrix (or a thin ceramic
matrix layer [120, 121]) can then be used to estimate the axial stress in an embedded
fiber. A mapping along the fiber axis gives a strain profile ε f (l) from which the
Interfacial Shear Stress τ (ISS), a key element in the damage tolerance of composites,
can be derived :

τ = −Ef
rf

2

[
dεf (l)

dl

]
= − rf

2

[
dσf (l)

dl

]
(3.18)

The microdroplet test (where a matrix droplet is deposited and dried on a fiber)
provides the simplest way of actually preparing a sample and measuring the inter-
facial shear stress for a given fiber/matrix system [122–124] (Fig. 3.18a). The inter-
facial to axial stress ratio measures how well the stress will transfer to the reinforc-
ing fiber in a true composite. Its diminution for increasing strains results from the
degradation of the fiber/matrix interface. A number of “in line” Raman mappings
have been performed to measure axial stress and ISS in polymer-embedded fibers
[68, 125–127, 129–132]. Figure 3.18b shows an example for the in-line mapping of
an aramid fiber reinforcing an epoxy matrix strained to 1.7 % [131]. The horizontal
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Fig. 3.18 The wavenumber shift of Kevlar-29 fiber 1610 cm−1 Raman peak was measured through
(a) epoxy droplets (at 0.25 or 1.09 % fiber strain) and (b) the epoxy matrix of a 1.7 %-strained
uniaxial composite. The fiber axial stress (σ f ) was then derived from preliminary calibrations and
converted into the interfacial shear stress (ISS or τ ) using Eq. 3.18. The τ/σ f ratio measures the
stress transfer efficiency (STE). Reprinted with permission from Elsevier [124] and [131]

axis origin corresponds to a fiber break where the nil stress results from full debond-
ing. The ineffective length, over which the stress supported by the fiber builds up
from zero (at a fiber tip or a matrix crack) to its maximum value, is around 400µm.

Because the Raman signal of Carbon NanoTubes (CNTs) shifts under axial
stress [133], these nanotubes were investigated as possible small dimension embed-
ded stress gauges in the vicinity of weakly scattering reinforcing fibers (Fig. 3.19)
[134–136] or in composites directly reinforced with CNTs [136, 137]. More gener-
ally, Raman spectroscopy is a lead technique for the analysis of CNTs [1, 138, 139]
because a CNT is formally obtained by rolling the na1 + ma2 vector of a graphene
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Fig. 3.19 The axial stress
along a glass fiber was
measured in an epoxy
matrix stressed to 0, 5,
and 10 MPa based on the
band shifts of embedded
CNTs Raman scattering
(nil abscissa = fiber end).
Reprinted with permission
from Elsevier [135]

plane (n and m two integers; a1 and a2 basal lattice vectors) and each {n, m} set,
which relates to properties such as the tube diameter or the electrical properties
(metallic vs. semiconducting), resonates for a specific excitation wavelength.

3.4.4 Raman Mapping of Micro-Indented Samples

Microindentation load-displacement curves are used to measure mechanical proper-
ties such as hardness (defined according to the indenter geometry), Young’s modulus,
strength, plasticity, etc. The stress can reach very high values locally (as evidenced
through wavenumber shifts) and the Raman study of micro/nano-indentations is a
possible way of monitoring phase transitions under non hydrostatic stress [140, 141].
Mapping capabilities are a great asset as the pressure conditions vary from one point
to another (the imprints dimensions are in the range of a few tens of micrometers)
because of the imperfect geometry of the indenters, the possibility of intragranular
versus intergranular indentation, crack propagation at the imprints corners, materials
pileup at the imprint periphery, etc., [38, 44, 141–148].

Figure 3.20 illustrates the Raman mapping of a Vickers microindentation in
ZnSe. The indenter pyramid shape is easily recognized from the intensity variations
(Fig. 3.20c; the deeper the imprint, the lower the intensity collected with a focus on
the sample surface plane) but the wavenumber shifts are random, indicating a very
inhomogeneous stress repartition in the imprint [149].
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Fig. 3.20 a Raman spectra of ZnSe indented with a Vickers pyramid-shaped diamond micro-
indenter (λlaser = 632.8 nm); b Micrograph of the indenter imprint after 50 g loading; c Intensity
variation (top) and wavenumber shifts (bottom) of the 206 cm−1 peak on the map of (b) imprint
(X- and Y- scales in µm). Adapted from Ref [149]

3.4.5 Metal Corrosion Layers

Raman spectroscopy is interesting for the study of corrosion because the technique
has a strong sensitivity to metal-corroding anions bonds. Raman scattering allows
for a phase selective microscopic scale characterization [150, 151], with the addi-
tional advantages of easy implementation, minimal sample preparation and imaging
possibilities [152]. Corrosion spots may even be observed through coatings such as
paint.

The observation and characterization of ancient artefact corrosion products is a
key to judging the validity of long-term corrosion models since laboratory accel-
erated corrosion testing does not simulate long-term corrosion properly [153]. The
nature and extent of long-term corrosion processes in metal-based cultural heritage
objects and monuments is strongly influenced by the environment (usually soils or
the atmosphere) they have stayed in [154] and a better understanding of the mech-
anisms at play will lead to new corrosion diagnostics tools, to improved restoration
treatments, or to propose alternative conservation strategies. The possibility to predict
corrosion progress will also be very helpful in view of considering iron for nuclear
waste storage overcontainers.

In the specific frame of a study on the indoor atmospheric corrosion of iron,
a “qualitative” Raman-based localization of corrosion phases was achieved [155].
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Each phase was detected either directly through the integrated intensity in a specific
ROI or, on occasion, through the ratio of intensities integrated in two ROIs. This
led to images such as those shown in Fig. 3.21b. For each phase, the color levels
were user-adjusted to highlight the regions of higher content but gave no indica-
tion on the phase proportion relative to the others. This approach was sufficient to
describe the corrosion layers organization but a “quantitative approach” was needed,
in addition to the characterization of each phase reactivity [156, 157], in order to
propose quantitative diagnosis indexes [158] and confront predictive corrosion mod-
els. “LADIR-CAT” (for “Corrosion ATmosphérique”—“ATmospheric Corrosion”)
program was thus developed for the treatment of Raman corrosion layer hyperspec-
tral maps [159], following a strategy initiated at LADIR for the quantitative study of
organic molecule redox conformers [160] and wool dye mixtures [161]: each spec-
trum is fitted by a linear combination of spectra previously recorded under strictly
similar conditions on pure reference phases. The different intensities of the refer-
ences thus account for the difference in Raman scattering efficiency and light pene-
tration of the different phases. This approach circumvents the difficulty (specially for
solids) of calibrating the Raman intensity versus concentration relationship, which
is mandatory when spectra are adjusted from normalized references [162]. However,
it implicitly assumes the phase distribution is invariant along the whole investigated
thickness (see Sect. 3.2.2 and discussion of Eq. 3.9 in Sect. 3.2.3).

Figure 3.22 gives an example of “LADIR-CAT” fitting and Fig. 3.23 presents the
general working scheme of the program, which returns two kinds of data:

• One matrix for each phase, with as many columns and rows as there are respectively
X and Y pixels in the Raman map. The number in each cell represents the calculated
phase percentage for the corresponding pixel. Each matrix can be opened in a
commercial software for a 2D contour fill plotting (Fig. 3.21c).

• A table giving the average percent content of each phase over the whole map,
which can be presented in the form of a sector diagram (Fig. 3.21a).

LADIR-CAT was successfully used to map nine samples from the reinforcing
chains of the Amiens cathedral (fifteenth century) and propose a quantitative esti-
mation of phase composition in the corrosion system [158].

3.4.6 Raman Mapping of Biological Samples

When too many scatterers contribute to micro-Raman spectra for any one of
them to be tracked, which is typically the case in samples of biological interest
(lipids, proteins, carbohydrates, nucleic acids, etc., are probed simultaneously), a
selectivity can be achieved with specific signal enhancers (SERS). A Raman mapping
then becomes possible, as illustrated in Fig. 3.24 and in-vivo analysis possibilities
were even demonstrated in small animals [163]. Because of the signal complexity
in biological samples, a multivariate statistical analysis might prove useful for the
analysis of Raman maps [164].
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Fig. 3.24 532 nm-excited Raman scattering was recorded in XY-raster pattern (50 × 50 microm-
eters) over a tissue section spanning some stromal tissue (S) and prostate glands epithelia (E) or
lumen (L). The sample had been stained with i) CK18 and PSA antibodies-conjugated Composite
Organic–Inorganic Nanoparticles (COINS) associating silver (for resonance enhancement) with
either basic fushin (BFU) or acridin orange (AOH) Raman labels; ii) DNA-specific YOYO® fluo-
rescent dye. Localization images were obtained after applying thresholds to each probe weight in
a spectral deconvolution based on reference spectra. The colocalization image identifies epithelial
nuclei (magenta) and coexpression of CK18 and PSA specifically in the epithelium (yellow). Scale
bars, 10 microns. Adapted, with permission from American Chemical Society [165]

3.5 Perspectives

Raman micro-spectroscopy with mapping capabilities offers great promise for fast
and non-destructive analysis of various nanophased samples. From a technical point
of view, the lateral resolution (about 1 square micrometer) will probably increase
in the future with new objectives (×200 magnification) and tip-enhancement heads.
However, the automated recording of hyperspectral maps is advantageous only if the
large amount of data generated can be processed at once. Existing software packages
provide a number of data treatment options but the possibility for users to write their
own procedures would probably greatly improve the versatility of the method.
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