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ABSTRACT
The expressive variability in producing a musical note conveys
information essential to the modeling of orchestration and style. As
such, it plays a crucial role in computer-assisted browsing of mas-
sive digital music corpora. Yet, although the automatic recognition
of a musical instrument from the recording of a single “ordinary”
note is considered a solved problem, automatic identification of in-
strumental playing technique (IPT) remains largely underdeveloped.
We benchmark machine listening systems for query-by-example
browsing among 143 extended IPTs for 16 instruments, amount-
ing to 469 triplets of instrument, mute, and technique. We identify
and discuss three necessary conditions for significantly outper-
forming the traditional mel-frequency cepstral coefficient (MFCC)
baseline: the addition of second-order scattering coefficients to ac-
count for amplitude modulation, the incorporation of long-range
temporal dependencies, and metric learning using large-margin
nearest neighbors (LMNN) to reduce intra-class variability. Evalu-
ating on the Studio On Line (SOL) dataset, we obtain a precision
at rank 5 of 99.7% for instrument recognition (baseline at 89.0%)
and of 61.0% for IPT recognition (baseline at 44.5%). We interpret
this gain through a qualitative assessment of practical usability and
visualization using nonlinear dimensionality reduction.

CCS CONCEPTS
• Information systems→Music retrieval;Multimedia databases;
Nearest-neighbor search; • Applied computing → Sound and
music computing;

KEYWORDS
playing technique similarity, musical instrument recognition, scat-
tering transform, metric learning, large-margin nearest neighbors

The source code to reproduce the experiments of this paper is made available at:
https://www.github.com/mathieulagrange/dlfm2018

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DLfM, Sep. 2018, Paris, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference format:
Vincent Lostanlen, Joakim Andén, and Mathieu Lagrange. 2018. Extended
playing techniques: The next milestone in musical instrument recognition.
In Proceedings of DLfM, Paris, France, Sep. 2018, 11 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The gradual diversification of the timbral palette in Western classi-
cal music since the dawn of the 20th century is reflected in five con-
current trends: the addition of new instruments to the symphonic
instrumentarium, either by technological inventions (e.g. theremin)
or importation from non-Western musical cultures (e.g. marimba)
[53, epilogue]; the creation of novel instrumental associations, as
epitomized by Klangfarbenmelodie [54, chapter 22]; the temporary
alteration of resonant properties through mutes and other “prepa-
rations” [18]; a more systematic usage of extended instrumental
techniques, such as artificial harmonics, col legno batutto, or flutter
tonguing [32, chapter 11]; and the resort to electronics and digital
audio effects [64]. The first of these trends has somewhat stalled.
To this day, most Western composers rely on an acoustic instru-
mentarium that is only marginally different from the one that was
available in the Late Romantic period. Nevertheless, the remaining
trends in timbral diversification have been adopted on a massive
scale in post-war contemporary music. In particular, an increased
concern for the concept of musical gesture [24] has liberated many
unconventional instrumental techniques from their figurativistic
connotations, thus making the so-called “ordinary” playing style
merely one of many compositional – and improvisational – options.

Far from being exclusive to contemporary music, extended play-
ing techniques are also commonly found in oral tradition; in some
cases, they even stand out as a distinctive component of musical
style. Four well-known examples are the snap pizzicato (“slap”) of
the upright bass in rockabilly, the growl of the tenor saxophone in
rock’n’roll, the shuffle stroke of the violin (“fiddle”) in Irish folklore,
and the glissando of the clarinet in Klezmer music. Consequently,
the organology (the instrumental what?) of a recording, as opposed
to its chironomics (the gestural how?), is a poor organizing principle
for browsing and recommendation in large music databases.

Yet, past research in music information retrieval (MIR), and es-
pecially in machine listening, rarely acknowledges the benefits
of integrating the influence of performer gesture into a coherent
taxonomy of musical instrument sounds. Instead, gesture is often
framed as a spurious form of intra-class variability between instru-
ments without delving into its interdependencies with pitch and
intensity. In other works, it is conversely used as a probe for the
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Figure 1: Ten factors of variations of a musical note: pitch
(1c), intensity (1d), tone quality (1f), attack (1g), tonguing
(1h), articulation (1i), mute (1e), phrasing (1j), and instru-
ment (1b).

acoustical study of a given instrument without emphasis on the
broader picture of orchestral diversity.

One major cause of this gap in research is the difficulty of collect-
ing and annotating data for contemporary instrumental techniques.
Fortunately, this obstacle has recently been overcome, owing to
the creation of databases of instrumental samples for music orches-
tration in spectral music [43]. In this work, we capitalize on the
availability of this data to formulate a new line of research in MIR,
namely the joint retrieval of organological (“what instrument is
being played in this recording?”) and chironomical information
(“how is the musician producing sound?”), while remaining invari-
ant to other factors of variability deliberately regarded as contextual.
These include at what pitch and intensity the music was recorded,
but also where, when, why, by whom, and for whom it was created.

Figure 1a shows the constant-Q wavelet scalogram (i.e. the com-
plex modulus of the constant-Q wavelet transform) of a trumpet
musical note, as played with an ordinary technique. Unlike most
existing publications on instrument classification (e.g. 1a vs. 1b),
which exclusively focus on intra-class variability due to pitch (Fig-
ure 1c) and intensity (Figure 1d), and mute (1e), this work aims to
also account for the presence of instrumental playing techniques
(IPTs), such as changes in tone quality (Figure 1f), attack (Figure
1g), tonguing (Figure 1h), and articulation (Figure 1i). These factors
are considered either as intra-class variability, for the instrument
recognition task, or as inter-class variability, for the IPT recognition
task. The analysis of IPTs whose definition involves more than a
single musical event, such as phrasing (Figure 1j), is beyond the
scope of this paper.

Section 2 reviews the existing literature on the topic. Section 3
defines taxonomies of instruments and gestures from which the IPT
classification task is derived. Section 4 describes how two topics in
machine listening, namely characterization of amplitude modula-
tion and incorporation of supervised metric learning, are relevant
to address this task. Section 5 reports the results from an IPT classi-
fication benchmark on the Studio On Line (SOL) dataset.

2 RELATEDWORK
This section reviews recent MIR literature on the audio analysis of
IPTs with a focus on the datasets available for the various classifi-
cation tasks considered.

2.1 Isolated note instrument classification
The earliest works on musical instrument recognition restricted
their scope to individual notes played with an ordinary technique,
eliminating most factors of intra-class variability due to the per-
former [7, 12, 20, 27, 30, 44, 60]. These results were obtained on
datasets such as MUMS [50], MIS,1 RWC [25], and samples from
the Philharmonia Orchestra.2 This line of work culminated with
the development of a support vector machine classifier trained on
spectrotemporal receptive fields (STRF), which are idealized compu-
tational models of neurophysiological responses in the central au-
ditory system [15]. Not only did this classifier attain a near-perfect
mean accuracy of 98.7% on the RWC dataset, but the confusion
matrix of its predictions was close to that human listeners [52].

1http://theremin.music.uiowa.edu/MIS.html
2http://www.philharmonia.co.uk/explore/sound_samples

http://theremin.music.uiowa.edu/MIS.html
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Therefore, supervised classification of instruments from recordings
of ordinary notes could arguably be considered a solved problem;
we refer to [9] for a recent review of the state of the art.

2.2 Solo instrument classification
A straightforward extension of the problem above is the classifi-
cation of solo phrases, encompassing some variability in melody
[33], for which the accuracy of STRF models is around 80% [51].
Since the Western tradition of solo music is essentially limited
to a narrow range of instruments (e.g. piano, classical guitar, vi-
olin) and genres (sonatas, contemporary, free jazz, folk), datasets
of solo phrases, such as solosDb [29], are exposed to strong biases.
This issue is partially mitigated by the recent surge of multitrack
datasets, such as MedleyDB [10], which has spurred a renewed
interest in single-label instrument classification [62]. In addition,
the cross-collection evaluation methodology [35] reduces the risk
of overfitting caused by the relative homogeneity of artists and
recording conditions in these small datasets [11]. To date, the best
classifiers of solo recordings are the joint time-frequency scattering
transform [1] and the spiral convolutional network [38] trained
on the Medley-solos-DB dataset [37], i.e., a cross-collection dataset
which aggregates MedleyDB and solosDb following the procedure
of [19]. We refer to [26] for a recent review of the state of the art.

2.3 Multilabel classification in polyphonic
mixtures

Because most publicly released musical recordings are polyphonic,
the generic formulation of instrument recognition as a multilabel
classification task is the most relevant for many end-user applica-
tions [13, 45]. However, it suffers from two methodological caveats.
First, polyphonic instrumentation is not independent from other
attributes, such as geographical origin, genre, or key. Second, the
inter-rater agreement decreases with the number of overlapping
sources [22, chapter 6]. These problems are all the more trouble-
some since there is currently no annotated dataset of polyphonic
recordings diverse enough to be devoid of artist bias. The Open-
MIC initiative, from the newly created Community for Open and
Sustainable Music and Information Research (COSMIR), is working
to mitigate these issues in the near future [46]. We refer to [28] for
a recent review of the state of the art.

2.4 Solo playing technique classification
Finally, there is a growing interest for studying the role of the per-
former in musical acoustics, from the perspective of both sound
production and perception. Apart from its interest in audio signal
processing, this topic is connected to other disciplines, such as
biomechanics and gestural interfaces [48]. The majority of the liter-
ature focuses on the range of IPTs afforded by a single instrument.
Recent examples include clarinet [40], percussion [56], piano [8],
guitar [14, 21, 55], violin [63], and erhu [61]. Some publications
frame timbral similarity in a polyphonic setting, yet do so accord-
ing to a purely perceptual definition of timbre – with continuous
attributes such as brightness, warmth, dullness, roughness, and so
forth – without connecting these attributes to the discrete latent

space of IPTs (i.e., through a finite set of instructions, readily inter-
pretable by the performer) [4]. We refer to [34] for a recent review
of the state of the art.

In the following, we define the task of retrieving musical timbre
parameters across a range of instruments found in the symphonic
orchestra. These parameters are explicitly defined in terms of sound
production rather than by means of perceptual definitions.

3 TASKS
In this section, we define a taxonomy of musical instruments and
another for musical gestures, which are then used for defining the
instrument and IPT query-by-example tasks. We also describe the
dataset of instrument samples used in our benchmark.

3.1 Taxonomies
The Hornbostel-Sachs taxonomy (H-S) organizes musical instru-
ments only according to their physical characteristics and purpose-
fully ignores sociohistorical background [49]. Since it offers an
unequivocal way of describing any acoustic instrument without
any prior knowledge of its applicable IPTs, it serves as a lingua
franca in ethnomusicology and museology, especially for ancient
or rare instruments which may lack available informants. The clas-
sification of the violin in H-S (321.322-71), as depicted in Figure
2, additionally encompasses the viola and the cello. The reason is
that these three instruments possess a common morphology. In-
deed, both violin and viola are usually played under the jaw and
the cello is held between the knees, these differences in performer
posture are ignored by the H-S classification. Accounting for these
differences begs to refine H-S by means a vernacular taxonomy.
Most instrument taxonomies in music signal processing, including
MedleyDB [10] and AudioSet [23], adopt the vernacular level rather
than conflating all instruments belonging to the same H-S class. A
further refinement includes potential alterations to the manufac-
tured instrument – permanent or temporary, at the time scale one
or several notes – that affect its resonant properties, e.g., mutes and
other preparations [18]. The only node in the MedleyDB taxonomy
which reaches this level of granularity is tack piano [10] . In this
work, we will not consider variability due to the presence of mutes
as discriminative, both for musical instruments and IPTs.

Unlike musical instruments, which are amenable to a hierarchi-
cal taxonomy of resonating objects, IPTs result from a complex
synchronization between multiple gestures, potentially involving
both hands, arms, diaphragm, vocal tract, and sometimes the whole
body. As a result, they cannot be trivially incorporated into H-S,
or indeed any tree-like structure [31]. Instead, an IPT is described
by a finite collection of categories, each belonging to a different
“namespace.” Figure 3 illustrates such namespaces for the case of
the violin. It therefore appears that, rather than aiming for a mere
increase in granularity with respect to H-S, a coherent research
program around extended playing techniques should formulate
them as belonging to a meronomy, i.e., a modular entanglement of
part-whole relationships, in the fashion of the Visipedia initiative
in computer vision [6]. In recent years, some works have attempted
to lay the foundations of such a modular approach, with the aim
of making H-S relevant to contemporary music creation [41, 59].
However, such considerations are still in large part speculative
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and offer no definitive procedure for evaluating, let alone training,
information retrieval systems.

3.2 Application setting and evaluation
In what follows, we adopt a middle ground position between the
two aforementioned approaches: neither a top-down multistage
classifier (as in a hierarchical taxonomy), nor a caption generator
(as in a meronomy), our system is a query-by-example search en-
gine in a large database of isolated notes. Given a query recording
x(t), such a system retrieves a small number k of recordings judged
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similar to the query. In our system, we implement this using a k-
nearest neighbors (k-NN) algorithm. The nearest neighbor search
is not performed in the raw waveform domain of x(t), but in a fea-
ture space of translation-invariant, spectrotemporal descriptors. In
what follows, we use mel-frequency cepstral coefficients (MFCCs)
as a baseline, which we extend using second-order scattering coeffi-
cients [3, 42]. All features over averaged over the entire recording to
create single feature vector. The baseline k-NN algorithm is applied
using the standard Euclidean distance in feature space. To improve
performance, we also apply it using a weighted Euclidean distance
with a learned weight matrix.

In the context of music creation, the query x(t)may be an instru-
mental or vocal sketch, a sound event recorded from the environ-
ment, a computer-generated waveform, or any mixture of the above
[43]. Upon inspecting the recordings returned by the search engine,
the composer may decide to retain one of the retrieved notes. Its
attributes (pitch, intensity, and playing technique) are then readily
available for inclusion in the musical score.

Faithfully evaluating such a system is a difficult procedure, and
ultimately depends on its practical usability as judged by the com-
poser. Nevertheless, a useful quantitative metric for this task is the
precision at k (P@k) of the test set with respect to the training set,
either under an instrument taxonomy and an IPT taxonomy. This
metric is defined as the proportion of “correct” recordings returned
for a given query, averaged over all queries in the test set. For our
purposes, a returned recording is correct if it is of the same class as
the query for a specific taxonomy. In all subsequent experiments,
we report P@k for the number of retrieved items k = 5.

3.3 Studio On Line dataset (SOL)
The Studio On Line dataset (SOL) was recorded at IRCAM in 2002
and is freely downloadable as part of the Orchids software for
computer-assisted orchestration.3 It comprises 16 musical instru-
ments playing 25444 isolated notes in total. The distribution of these
notes, shown in Figure 4, spans the full combinatorial diversity of
intensities, pitches, preparations (i.e., mutes), and all applicable
playing techniques. The distribution of playing techniques is unbal-
anced as seen in Figure 5. This is because some playing techniques
are shared between many instruments (e.g., tremolo) whereas other
are instrument-specific (e.g., xylophonic, which is specific to the
harp). The SOL dataset has 143 IPTs in total, and 469 applicable
instrument-mute-technique triplets. As such, the dataset has con-
siderable intra-class variability under both the instrument and IPTs
taxonomies.

4 METHODS
In this section, we describe the scattering transform used to capture
amplitude modulation structure and supervised metric learning
which constructs a similarity measure suited for our query-by-
example task.

4.1 Scattering transform
The scattering transform is a cascade of constant-Q wavelet trans-
forms alternated with modulus operators [3, 42]. Given a signal
x(t), its first layer outputs the first-order scattering coefficients
3http://forumnet.ircam.fr/product/orchids-en/

S1x(λ1, t), which captures the intensity of x(t) at frequency λ1.
Its frequency resolution is logarithmic in λ1 and is sampled using
Q1 = 12 bins per octave. The second layer of the cascade yields the
second-order scattering coefficients S2x(λ1, λ2, t), which extract
amplitude modulation at frequency λ2 in the subband of x(t) at
frequency λ1. Both first- and second-order coefficients are averaged
in time over the whole signal. The modulation frequencies λ2 are
logarithmically spaced withQ2 = 1 bin per octave. In the following,
we denote by Sx(λ, t) the concatenation of all scattering coefficients,
where λ corresponds to either a single λ1 for first-order coefficients
or a pair (λ1, λ2) for second-order coefficients.

The first-order scattering coefficients are equivalent to the mel-
frequency spectrogram which forms a basis for MFCCs [3]. Second-
order coefficients, on the other hand, characterize common non-
stationary structures in sound production, such as tremolo, vibrato,
and dissonance [2, section 4]. As a result, these coefficients are
better suited to model extended IPTs.We refer to [3] an introduction
on scattering transforms for audio signals and to [36, sections 3.2
and 4.5] for a discussion on its application to musical instrument
classification in solo recordings and its connections to STRFs.

To match a decibel-like perception of loudness, we apply the
adaptive, quasi-logarithmic compression

S̃x i (λ, t) = log
(
1 + Sx i (λ, t)

ε × µ(λ)

)
(1)

where ε = 10−3 and µ(λ) is the median of Sx i (λ, t) across t and i .

4.2 Metric learning
Linear metric learning algorithms construct a matrix L such that
the weighted distance

DL(x i ,x j ) = ∥L(̃Sx i − S̃x j )∥2 (2)

between all pairs of samples (x i ,x j ) optimizes some objective func-
tion. We refer to [5] for a review of the state of the art. In the
following, we shall consider the large-margin nearest neighbors
(LMNN) algorithm. It attempts to construct L such that for every
signal x i (t) the distance DL(x i ,x j ) to x j (t), one of its k nearest
neighbors, is small if x i (t) and x j (t) belong to the same class and
large otherwise. The matrix L is obtained by applying the special-
purpose solver of [58, appendix A]. In subsequent experiments,
disabling LMNN is equivalent to setting L to the identity matrix,
which yields the standard Euclidean distance on the scattering
coefficients S̃x(λ, t).

Compared to a class-wise generative model, such a Gaussian
mixture model, a global linear model ensures some robustness to
minor alterations of the taxonomy. Indeed, the same learned metric
can be applied to similarity measures in related taxonomies without
retraining. This stability is important in the context of IPT, where
one performer’s slide is another’s glissando. A major drawback of
LMNN is its dependency on the standard Euclidean distance for
determining nearest neighbors [47]. However, this is alleviated for
scattering coefficients, since the scattering transform Sx(t , λ) is
Lipschitz continuous to elastic deformation in the signal x(t) [42,
Theorem 2.16]. In other words, the Euclidean distance between the
scattering transform of x(t) and a deformed version of the same
signal is bounded by the extent of that deformation.

http://forumnet.ircam.fr/product/orchids-en/
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5 EXPERIMENTAL EVALUATION
In this section, we study a query-by-example browsing system
for the SOL dataset based on nearest neighbors. We discuss how
the performance of the system is affected by the choice of fea-
ture (MFCCs or scattering transforms) and distance (Euclidean or
LMNN), both quantitatively and qualitatively. Finally, we visualize
the two feature spaces using nonlinear dimensionality reduction.

5.1 Instrument recognition
In the task of instrument recognition, we provide a query x(t) and
the system retrieves k recordings x1(t), . . . ,xk (t). We consider a
retrieved recording to be relevant to the query if it corresponds
to the same instrument, regardless of pitch, intensity, mute, and
IPT. We therefore apply the LMNN with instruments as class labels.
This lets us compute the precision at rank 5 (P@5) for a system by
counting the number of relevant recordings for each query.

We compare scattering features to a baseline of MFCCs, defined
as the 13 lowest coefficients of the discrete cosine transform (DCT)
applied to the logarithm of the 40-band mel-frequency spectrum.
For the scattering transform, we vary the maximum time scale
T of amplitude modulation from 25ms to 1 s. In the case of the
MFCCs,T = 25ms corresponds to the inverse of the lowest audible
frequency (T−1 = 40Hz). Therefore, increasing the frame dura-
tion beyond this scale has little effect since no useful frequency
information would be obtained.

The left column of Figure 6 summarizes our results. MFCCs
reach a relatively high P@5 of 89%. Keeping all 40 DCT coefficients
rather than the lowest 13 brings P@5 down to 84%, because the
DCT coefficients are most affected by spurious factors of intra-class
variability, such as pitch and spectral flatness [36, subsection 2.3.3].

At the smallest time scale T = 25ms, the scattering transform
reaches a P@5 of 89%, thus matching the performance of theMFCCs.
This is expected since there is little amplitudemodulation below this
scale, corresponding to λ2 over 40Hz, so the scattering transform
is dominated by the first order, which is equivalent to MFCCs [3].
Moreover, disabling median renormalization degrades P@5 down to
84%, while disabling logarithmic compression altogether degrades
it to 76%. This is consistent with [39], which applies scattering
transform to a query-by-example retrieval task for acoustic scenes.

On one hand, replacing the canonical Euclidean distance by a
distance learned by LMNNmarginally improves P@5 for the MFCC
baseline, from 89.3% to 90.0%. Applying LMNN to scattering fea-
tures, on the other hand, significantly improves their performance
with respect to the Euclidean distance, from 89.1% to 98.0%.

The dimensionality of scattering coefficients is significantly
higher than that of MFCCs, which only consists of 13 coefficients.
A concern is therefore that the higher dimensionality of the scat-
tering coefficients may result in overfitting of the metric learning
algorithm, artificially inflating its performance. To address this, we
supplement the averaged MFCCs by higher-order summary statis-
tics. In addition the 13 average coefficients, we also compute the
average of all polynomial combinations of degree less than three.
The resulting vector is of dimension 494, comparable to the that of
the scattering vector. This achieves a P@5 of 91%, that is, slightly
above the baseline. The increased performance of the scattering

Figure 6: Summary of results on the SOL dataset.

transform is therefore not likely due overfitting but to its better
characterization of multiresolution structure.

Finally, increasing T from 25ms up to 1 s – i.e., including all
amplitude modulations between 1Hz and 40Hz – brings LMNN
to a near-perfect P@5 of 99.7%. Not only does this result confirm
that straightforward techniques in audio signal processing (here,
wavelet scattering and metric learning) are sufficient to retrieve the
instrument from a single ordinary note, it also demonstrates that
the results remain satisfactory despite large intra-class variability
in terms of pitch, intensity, usage of mutes, and extended IPTs. In
other words, the monophonic recognition of Western instruments
is, all things considered, indeed a solved problem.

5.2 Playing technique recognition
The situation is different when considering IPT, rather than instru-
ment, as the reference for evaluating the query-by-example system.
In this setting, a retrieved item is considered relevant if and only if
it shares the same IPT as the query, regardless of instrument, mute,
pitch, or dynamics. Therefore, we apply the LMNNwith IPTs instead
of instruments as class labels, yielding a different distance function
optimized to distinguish playing techniques. The right column if
Figure 6 summarizes our results. The MFCC baseline has a low P@5
of 44.5%, indicating that its coarse description of the short-term
spectral envelope is not sufficient to model acoustic similarity in
IPT. Perhaps more surprisingly, we find that optimal performance
is only achieved by combining all proposed improvements: log-
scattering coefficients with median renormalization, T = 500ms,
and LMNN. This yields a P@5 of 63.0%. Indeed, an ablation study of
that system reveals that, all other things being equal, reducingT to
25ms brings the P@5 to 53.3%, disabling LMNN reduces it to 50.0%,
and replacing scattering coefficients by MFCCs yields 48.4%. This
result contrasts with the instrument recognition setting: whereas
the improvements brought by the three aforementioned modifica-
tions are approximately additive in P@5 for musical instruments,
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they interact in a super-additive manner for IPTs. In particular,
it appears that increasing T above 25ms is only beneficial to IPT
similarity retrieval if combined with LMNN.

5.3 Qualitative error analysis
For demonstration purposes, we select an audio recording x(t)
to query two versions of the proposed query-by-example system.
The first version uses MFCCs with T = 25ms and LMNN; it has a
P@5 of 48.4% for IPT retrieval. The second version uses scattering
coefficients with T = 1 s, logarithmic transformation with median
renormalization (see Equation 1), and LMNN; it has a P@5 of 63.0%
for IPT retrieval. Both versions adopt IPT labels as reference for
training LMNN. The main difference between the two versions is
the choice of spectrotemporal features.

Figure 7 shows the constant-Q scalograms of the five retrieved
items for both versions of the system as queried by the same audio
signal x(t): a violin note from the SOL dataset, played with ordinary
playing technique on the G string with pitch G4 and mf dynamics.
Both versions correctly retrieve five violin notes which vary from
the query in pitch, dynamics, string, and use of mute. Therefore,
both systems have an instrument retrieval P@5 of 100% for this
query. However, although the scattering-based version is also 100%
correct in terms of IPT retrieval (i.e., it retrieves five ordinario notes),
the MFCC-based version is only 40% correct. Indeed, three record-
ings exhibit on of the tremolo or sul ponticello playing techniques.
We hypothesize that the confusion between ordinario and tremolo
is caused by the presence of vibrato in the ordinary query since
MFCCs cannot distinguish amplitude modulations (tremolo) from
frequencymodulations (vibrato) for the samemodulation frequency
[2]. These differences, however, are perceptually small and in some
musical contexts vibrato and tremolo are used interchangeably.

The situation is different when querying both systems with
recording x(t) exhibiting an extended rather than ordinary IPT. Fig-
ure 8 is analogous to Figure 7 but with a different audio query. The
query is a trumpet note from the SOL dataset, played with the flat-
terzunge (flutter-tonguing) technique, pitch G4, and mf dynamics.
Again, the scattering-based version retrieves five recordings with
the same instrument (trumpet) and IPT (flatterzunge) as the query.
In contrast, four out of the five items retrieved by the MFCC system
have an ordinario IPT instead of flatterzunge. This shortcoming
has direct implications on the usability of the MFCC query-by-
example system for contemporary music creation. More generally,
this system is less reliable when queried with extended IPTs.

Unlike instrument similarity, IPT similarity seems to depend on
long-range temporal dependencies in the audio signal. In addition, it
is not enough to capture the raw amplitude modulation provided by
the second-order scattering coefficients. Instead, an adaptive layer
on top of this is needed to extract the discriminative elements from
those coefficients. Here, that layer consists of the LMNN metric
learning algorithm, but other methods may work equally well.

5.4 Feature space visualization
To visualize the feature space generated by MFCCs and scattering
transforms, we embed them using diffusion maps. These embed-
dings preserve local distances while reducing dimensionality by
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Figure 7: Five nearest neighbors of the same query (a violin
note with ordinary playing technique, at pitch G4, mf dy-
namics, played on the G string), as retrieved by two differ-
ent versions of our system: with MFCC features (left) and
with scattering transform features (right). The captions de-
note the musical attribute(s) that differ from those of the
query: mute, playing technique, pitch, and dynamics.
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Figure 8: Five nearest neighbors of the same query (a trum-
pet note with flatterzunge technique, at pitch G4, mf dy-
namics), as retrieved by two different versions of our system:
withMFCC features (left) and with scattering transform fea-
tures (right).The captions of each subfigure denotes the mu-
sical attribute(s) that differ from those of the query.

forming a graph from those distances and calculating the eigenvec-
tors of its graph Laplacian [17]. Diffusion maps have previously
been used to successfully visualize scattering coefficients [16, 57].

Figure 9 shows embeddings of MFCCs and scattering coefficients,
both post-processed using LMNN, for different subsets of record-
ings. In Figure 9a, we see how the MFCCs fail to separate violin
and trumpet notes for the ordinario playing technique. Scattering
coefficients, on the other hand, successfully separate the instru-
ments as seen in Figure 9b. Similarly, Figures 9c and 9d show how,
restricted to bowed instruments (violin, viola, violoncello, and con-
trabass), MFCCs do not separate the ordinario from tremolo playing
techniques, while scattering coefficients discriminates well. These
visualizations provide motivation for our choice of scattering coef-
ficients to represent single notes.

6 CONCLUSION
Whereas the MIR literature abounds on the topic of musical in-
strument recognition for so-called “ordinary” isolated notes and
solo performances, little is known about the problem of retrieving
the instrumental playing technique from an audio query within
a fine-grained taxonomy. Yet the knowledge of IPT is a precious
source of musical information, not only to characterize the physical
interaction between player and instrument, but also in the realm
of contemporary music creation. It also bears an interest for orga-
nizing digital libraries as a mid-level descriptor of musical style.
To the best of our knowledge, this paper is the first to benchmark
query-by-example MIR systems according to a large-vocabulary,
multi-instrument IPT reference (143 classes) instead of an instru-
ment reference. We find that this new task is considerably more
challenging than musical instrument recognition as it amounts to
characterizing spectrotemporal patterns at various scales and com-
paring them in a non-Euclidean way. Although the combination of
methods presented here – wavelet scattering and large-margin near-
est neighbors – outperforms the MFCC baseline, its accuracy on
the SOL dataset certainly leaves room for future improvements. For
example, we could replace the standard time scattering transform
with joint time-frequency scattering transform [1].

The evaluation methodology presented here uses ground truth
IPT labels to quantify the relevance of returned items. This ap-
proach is useful in that the labels are unambiguous, but it might be
too coarse to reflect practical use. Indeed, as it is often the case in
MIR, some pairs of labels are subjectively more similar than others.
For example, slide is evidently closer to glissando than to pizzicato-
bartok. The collection of subjective ratings for IPT similarity, and its
comparison with automated ratings, is left as future work. Another
promising avenue of research is to formulate a structured predic-
tion task for isolated musical notes, simultaneously estimating the
pitch, dynamics, instrument, and IPT to construct a unified machine
listening system, akin to a caption generator in computer vision.
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(a) Instrument embedding with MFCC. (b) Instrument embedding with scattering transform.

(c) Playing technique embedding with MFCC. (d) Playing technique embedding with scattering transform.

Figure 9: Diffusionmaps produce low-dimensional embeddings ofMFCC features (left) vs. scattering transform features (right).
In the two top plots, each dot represents a different musical note, after restricting the SOL dataset to the ordinario playing
technique of each of the 31 different instrument-mute couples. Blue (resp. orange) dots denote violin (resp. trumpet in C)
notes, including notes played with a mute: sordina and sordina piombo (resp. cup, harmon, straight, and wah). In the two
bottom plots, each dot corresponds to a different musical note, after restricting the SOL dataset to 4 bowed instruments (violin,
viola, violoncello, and contrabass), and keeping all 38 applicable techniques. Blue (resp. orange) dots denote tremolo (resp.
ordinary) notes. In both experiments, the time scales of both MFCC and scattering transform are set equal to T = 1 s, and
features are post-processed by means of the large-margin nearest neighbor (LMNN) metric learning algorithm, using playing
technique labels as reference for reducing intra-class neighboring distances.
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