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Abstract—Humans are increasingly spending their time 

indoors. This, along with higher wealth levels and rise of internet 

of things, has provided designers and planners the opportunity to 

reimagine living spaces. Smart homes come in many different 

shapes, but to gain widespread acceptance they have to increase 

the utility of building occupants in some meaningful way. The 

most straightforward way of creating these smart homes is 

assumed to be through artificial intelligence. In this paper, we 

take a critical look at some algorithmic approaches that have 

been formulated to do so and the opportunities they will create in 

the short term. We also present some key challenges that must be 

overcome before these opportunities can be realized in practice.  

Keywords— smart homes, control, automation, reasoning, 

challenges, opportunities 

I.  INTRODUCTION (HEADING 1) 

Imagine waking up in the morning to sunlight streaming 
into the living space, the temperature is just right and the home 
has just drawn a warm bath. Later, LED’s light up the path to 
the living room where a hot mug of coffee sits, freshly brewed, 
next to the breakfast. Having run out of groceries, the 
refrigerator has already ordered more for dinner. The 
autonomous electrical car in the garage is fully charged and 
ready to drive to work. As it pulls out of the garage, lights in 
the living room dim and fade out, the spatial heating and 
ventilation too are placed on hold. 

This is one vision of a more synergistic future, enhancing 
the relationship between humans and their homes – entirely 
plausible in a few decades, if not sooner. There is no single 
monolithic vision for smart homes however, and they come in 
many different forms and futurisms. Ranging from the readily 
habitable to the wildly experimental, research has led us to 
diverging visions for the future of smart homes [1]. On the one 
hand is the fully connected, automated home which can 
anticipate every single one of its occupant’s needs and desires. 
On the other lies reality which has to grapple with technical, 
legal and economic challenges to making such a complex 
endeavor work. The unifying theme across all these visions, 
despite numerous challenges, is the use of artificial intelligence 
for determining the practical appeal of smart homes. 

Recent advances in artificial intelligence and more 
specifically machine learning have created a new hype cycle 
around possible applications to smart homes. Amongst the 

most popular of these lies in creating a connected intelligence 
that can, over time, learn the building occupants’ behavior and 
moods. By tighter integration with voice activated systems and 
assistive robots, this has the potential to revolutionize modern 
living spaces, even to the extent of exceeding the comfort 
levels pictured earlier in ways we can’t imagine at present. 

With an increasingly urban population spending most of its 
time indoors [1], such smart homes can considerably improve 
the utility of residents by providing an array of cosmetic and 
pragmatic benefits. Cosmetic applications of smart homes 
range from scheduling robot vacuums [3] to setting up mood 
lighting [4] etc. Integration with voice activated systems [5] 
has greatly aided in the popularization of such systems and will 
undoubtedly continue to keep doing so in the future [6]. Living 
in such a smart home can greatly enhance the experience and 
free up the residents to spend their time pursuing more 
productive tasks. However, in the near term, it is the more cost-
effective pragmatic benefits of smart homes that is more likely 
to drive growth. These arise from smart lighting [7] as well as 
intelligent control of heating, ventilation and air conditioning 
(HVAC) systems [8] etc. Such ‘smartening’ can lead to both 
financial as well as comfort or health gains for the occupant. 
Obvious applications include higher energy efficiency and 
better indoor air quality etc. 

These pathways to smart homes are enabled by internet of 
things [9], [10]. Smartphones, wearable devices and connected 
sensors allow service providers to gather and process data at 
unprecedented scales. However, even in the presence of 
ubiquitous sensors, the gathered data might be insufficient to 
perform the required tasks. Additional challenges remain as 
well, these include possibly storage, bandwidth and processing 
power requirements for transferring the generated data to a 
central server where it is processed. The alternative of 
distributed computation [11], while theoretically attractive, 
requires stringent hardware constraints placed at the end users 
premises. Large scale collection and storage of occupant data 
also creates data privacy and security concerns [12], either 
through negligence or malicious attacks by hackers. 
Furthermore, many of the sensory requirements placed on data 
collection for reasoning in smart homes are simply not possible 
at the moment. 

Before we can arrive at fully connected homes which are 
able to anticipate occupant’s whims, a better understanding of 
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the artificial intelligence that will control our environment is 
required. This paper presents a brief overview of some of the 
advances that will one day make this goal possible, the 
opportunities that will be created and some of the many 
obstacles we face today. The focus of this work will be 
algorithmic and it will only allude to some relevant regulatory 
and economic challenges that need to be overcome for the 
vision of smart homes to become a reality. 

II. ALGORITTHMIC FRAMEWORKS 

The concept of smart homes, bottom-up, can be divided 
into providing innovative services to the end user. A non-
exhaustive list of practical use cases includes (1) automatically 
adjusting the temperature and lighting in the building as desired 
by a user, (2) maintaining air quality in the building at 
appropriate levels by e.g. forced or natural ventilation, and (3) 
ensuring adequate supply of hot water when necessary. Other 
more futuristic use cases are also possible, however these 
require even higher levels of abstraction for control. 

Towards this end, a detailed understanding of the behavior 
of the building, its occupants and the environment is required. 
As a concrete example, the façade of the building, the presence 
(or absence) and nature of HVAC systems and the choice of 
lighting all affect the choice of intelligence in a building. The 
behavior of the occupant can only be modelled when it is 
sufficiently predictable (i.e. demonstrating high levels of 
cyclical patterns such as diurnal, annual etc.). An improved 
understanding of occupant behavior can considerably improve 
the quality of decisions made by the artificial intelligence 
system. Finally, the environment has a huge influence on living 
spaces and whether a building exists in one geographic location 
or the other has a critical effect. 

In this section, we explain three increasingly automated 
strategies of reasoning in smarter living spaces before 
explaining some abstract objectives these reasoning 
frameworks can optimize towards. 

a. Rule-based reasoning systems 

The most straightforward example of reasoning and control 
implemented in most real world systems is rule-based control 
[13]. While this might be archaic, it remains popular even now 
because it is easy to implement, understand and predict. Such 
systems simply implement rules based on the beliefs of the 
programmer. Reasoning in such systems follows logical 
patterns and it is straightforward to explain decision processes 
[14]. For example, a rule based controller for an HVAC system 
with a thermostat will try to keep the temperature being certain 
bounds. Lighting can be always on during certain hours of the 
day or as soon as an ambient sensor detects motion. Such 
control does not necessarily have to be trivial however. IFTTT 
controllers, a popular platform for smart homes, offer users the 
chance to create their own rules to better meet their needs [16]. 
While an improvement on the original formulation, this 
requires considerable user involvement and is ultimately 
constrained by the controls made available by the product 
creators. 

More sophisticated examples of rule based systems also 
exist which learn rules from observational data. These are 

hybrids between reinforcement learning agents and rule based 
systems, and we defer their discussion to the section on 
reinforcement learning systems. 

A. Model Predictive Control (MPC) 

Historically, creating a model for the building (and its 
components such as the thermal system etc.) was done using 
offline methods. This meant significant effort had to be 
expended to gather the necessary data which would then be fit 
laboriously by a human expert to create a model that could 
approximate a building and its behavior. For instance, such a 
model could be created to explain the building temperature 
dynamics. Another example is reasoning about the ventilation 
system controlling air quality in confined living spaces. This 
would take the form of predicting future temperatures based on 
current observations. Once a model of the environment and the 
building is available, it is relatively straightforward to plan 
optimal actions for the future. This is usually done by 
maximizing (or minimizing) some reward function which is the 
‘reasoning’ part [15]. The same logic can be applied to every 
aspect of a building’s operation from heating, ventilation and 
cooling to lighting. 

This method creates a huge reliance on the human modeler 
and the quality of control becomes a function of the effort put 
into creating this initial dynamics model. This is obviously not 
a practical solution since millions upon millions of houses exist 
worldwide and it would require an impossible amount of work 
to model each of them. It also does not account for possible 
non-stationarities in the system, since while the thermal 
equipment or even the façade of a building might change, it is 
not necessary that the ‘reasoning’ artificial intelligence will be 
informed of these changes. In the absence of proper sensory 
data and dynamic learning models, this would create sub-
optimal control behavior, to the extent of adversely affecting 
occupant utility. A related drawback of such reasoning 
techniques is that occupant influence is usually relegated to a 
secondary concern because it is not available offline. Some 
work in using occupancy forecasts has mitigated this to a large 
extent however [17]. 

B. Reinforcement Learning 

A longstanding alternative to model predictive control that 
has gained practical traction recently is in using reinforcement 
learning methods to reason in smart homes. The intent here is 
to create online, dynamic representations of the three key 
components forming a smart home: the environment, the 
occupant and the home itself [18], [19].  

In reinforcement learning, two strands of research exist, 
model-free and model-based reinforcement learning. Model-
free learning usually pertains to an agent that translates its state 
observations directly to control actions. In the context of smart 
homes, this means agents which observe the state of the smart 
home, the building and the occupant and then reason about 
possible next actions which can then be executed (a practical 
example of such an approach appears in [20]). Model-based 
reinforcement learning includes an additional step, whereby the 
controller first learns a representation of the environment, 
which it then uses to reason about next actions (a practical 



example of such an approach appears in [21]). These 
differences are elaborated on in Fig. 1. 

   
Figure 1: (a) Model-free reinforcement learning translates states (s) 

and actions (a) to a Q-value (the ‘goodness’ or desirability of a 

certain state-action pair), which is then mapped to optimal control 

actions in new (possibly unseen) states; (b) Model-based 

reinforcement learning learns a mapping from states and actions to a 

dynamic transition model (T) and the immediate rewards (R) which 

are then used to find the optimal control action given a certain state 

 

Hybrids of the two approaches are possible and some 
potential applications include separating the three components 
into individual models, some of which are learnt online and 
some are derived from elsewhere (an example is the Dyna 
family of reinforcement learning algorithms [22]). These 
hybrids frequently appear in practice, especially in cases where 
inadequate sensing or considerable prior knowledge exists. The 
most obvious example of these is to use weather predictions for 
a certain geographic location from an online repository and 
only learn how these weather variations influence the system 
under consideration.  

The action chosen by the reinforcement learner can have 
two competing objectives, often referred to as the exploration-
exploitation dilemma [23], [24]. On the one hand, the agent can 
choose to accept its representation of the universe as ground 
truth and reason using this model. At the same time, if it has 
never observed the system in such a state before, it stands to 
reason that its beliefs about the system will be incorrect. This is 
true for the obvious case of seasonality (e.g. a learner trained 
using data only from the winter months will have poor 
generalization to summer months). More subtle cases exist as 
well, these include a sudden change in occupancy patterns (e.g. 
occupants leaving the building on vacation) and special events 
(such as unforeseen holidays which disrupt the normal 
occupancy patterns).  

A representation of uncertainty in the reasoning agent’s 
knowledge can be critical in performing risk-aware control of 
buildings [25], [26]. Such uncertainty can also be used to 
integrate the information arising from sensors (which are 
themselves plagued with noise – quantization, sampling etc.) 
with the model predictions. When the model is sure about its 
prediction, it can be weighted higher and vice versa. The 
Kalman filter offers a theoretically sound way of doing this 
computation in real time [27]. Just as in autonomous driving of 

cars, it is better to be safe than sorry in the case of controlling 
smart homes. Such representations also help in alleviating the 
exploration-exploitation dilemma. 

By virtue of being data-driven, the approach solves many of 
the problems which plague model predictive control. Some 
challenges remain however. Key amongst these is the 
requirement of sufficient data collection for the learner to 
create an accurate representation of its operating conditions. 
Black swan type events might lead to catastrophic failure in 
such situations. Secondly, the concept of responsibility 
becomes diffuse in such autonomous systems when things go 
wrong with many different parties involved in different parts of 
the lifecycle. Finally, if the occupant demonstrates extremely 
erratic behavior, it is often impossible for a reasoning agent to 
anticipate the occupant’s next move. 

III. OPPORTUNITIES 

In this section, we discuss some of the higher level 
objectives a reasoning smart home can work towards 
achieving. It is possible to do this with all three frameworks 
presented in the last section, albeit with varying success.  

It is possible to see these opportunities as bi-level. On the 
one hand, smart homes raise the standard of living of their 
occupants. On the other, additional opportunities can be created 
when many smart homes are aggregated into a societal 
optimization problem forming smart cities.  

A. Smart Homes 

1) Resource efficiency 

There are two aspects to the utilization of resources 
optimally. The first is by automatically consuming in such a 
way that it is tailored to occupant behavior, the second is by 
informing the occupant of choices that are harming their own 
utility. The former falls under the ambit of the reasoning 
systems presented in the last section; the latter is more akin to a 
recommender system. In conversations on smart homes, it is 
often one or the other but the two form a natural feedback loop 
which can be leveraged to arrive at the optimal consumption of 
resources. 

The primary example of such resource efficiency is in 
energy consumption. The energy consumption can be for any 
end draw, e.g. for thermal conditioning of the building or to 
providing adequate lighting under all possible conditions [15], 
[18], [21]. It can also be extended to other use cases such as 
minimizing the amount of water being consumed by informing 
the user of any leaks or the fact that a dishwasher might save 
them additional water. These are only representative examples 
and plenty more crop up in practice. 

2) Cost minimization 
While making efficient use of resources invariably leads to 

a minimization of costs, there can be additional factors to be 
taken into consideration while explicitly minimizing 
operational costs [30]. Foremost amongst these is time-of-use 
tariffs which brings homeowners a step closer to the real 
market dynamics. Under these tariff schemes, electricity is 
more expensive during daytime hours reflecting the general 
situation of the electricity grid (based on supply and demand 



principles). Minimizing for costs under such a pricing structure 
would therefore prioritize electricity consumption during night 
hours. While this can lead to peak shaving and valley filling 
globally, it can also lead to an increase in the overall energy 
consumption both directly and through indirect, unforeseen 
effects. An example of such an unforeseen effect is the 
efficiency of heat pump based systems which have usually 
higher efficiency when the ambient temperature is higher. 
Since the temperature is higher during the day, efficiency is 
likely to be decreased by prioritizing electricity consumption 
during the night (when ambient temperatures are lower). 

Another example of a cost minimization strategy in a smart 
home can be to prioritize local consumption of energy 
generated by rooftop or building integrated solar PV panels 
[29]. This is becoming increasingly attractive from an 
economic perspective as governments rollback renewable 
subsidies and slash or debate feed-in tariffs and net metering 
rules. 

3) Comfort maximization 
Arguably the most important purpose of a smart home is to 

maximize (or improve in a quantifiable manner) the occupants’ 
utility [31]. This takes on multiple forms from never being left 
in the dark to the temperature in the living room being just 
right without manually tweaking the thermostat. Beyond these 
smart lighting and thermostat functionalities are more complex 
and upcoming value propositions. Among these are smart 
charging of electric vehicles in a way that respects the users’ 
wishes and smart reheating of water for showers etc. The latter 
is seen as a practical alternative to buffer-less heating systems 
which usually consume enormous amounts of electric power.  

Furthermore, in the medium term, assistive technologies, 
possibly in the forms of robots, are expected to understand and 
anticipate the needs of the users, based both on historic patterns 
and stated commands. This will find increasing utility in caring 
for elderly people in the years to come with aging populations 
in many developed parts of the world [32] . For this to mature, 
natural language technologies and actuators need to improve 
drastically. While deep learning (a form of machine learning 
using neural networks) has meant that natural language 
processing has improved by leaps and bounds recently, the 
gains have not been uniform across all languages spoken by the 
people of the world. Smart homes should not be constrained by 
the occupants’ proficiency in English (or a language which is 
not their own). 

B. Smart Cities 

1) Demand response 

So far, we have discussed smart home concepts in 

isolation. With increasing electrification and greater 

proliferation of solar PVs, individual homes will wield 

significant influence on especially the distribution electricity 

grid [33], [34], [35]. Peak shaving and valley filling will thus 

become important concepts in the pursuit of smart homes 

which act in an environmentally responsible way. The most 

representative example of this is perhaps the feed-in 

phenomenon where individual houses offload their excess 

solar production to the electric grid. This might be undesirable 

behavior, especially if the grid has already a surplus of 

electricity. A context aware smart home is one which isn’t just 

cognizant with the needs of its occupants but also of the 

environment it is operating in. Overloading local low voltage 

distribution networks could be locally optimal, but a 

community wide black-out is in no one’s best interest. 

2) Ancillary services 

In addition to providing automatic demand response 
capabilities to the electricity grid, smart homes in an 
aggregated form can also provide ancillary services. By 
ancillary services, we mean reacting to supply and demand 
imbalances at (extremely) short time intervals [36]. While an 
individual home has negligible impact on the overall 
machinations of the electric grid, aggregated residential 
clusters can provide this functionality in an effective manner, 
in theory at least. The effort to realize these ancillary services 
using residential homes has been elusive historically, but there 
is no reason to assume that with advances in smart home 
reasoning, this will stay the case in the years to follow. 

IV. CHALLENGES 

Despite technological gains and the allure of commercially 
available systems, substantial challenges persist. Primarily, 
there are questions of technical feasibility and whether artificial 
intelligence research has advanced to the point where such an 
endeavor is practical in the general sense. At the same time, 
economic questions linger relating to whether this can ever be 
more than a passing fad. The economic and technical questions 
are intricately tied together because eventually algorithms rely 
on input provided by sensors and output to actuators. If these 
are of insufficient quality because of economic choices, the 
reasoning component can’t perform its job well. 

In the following, we describe some of the many technical 
challenges faced while reasoning in smart homes. 

A. Limited sensing capabilities 

A key factor limiting real time robust reasoning in smart 
homes is the limited sensing capabilities available in most 
houses. While internet of things has translated into an 
abundance of data, often data can’t be reliably retrieved in a 
timely manner. This is exacerbated further when 
communication creates a bottleneck and control is 
implemented in a centralized manner. 

A concrete example of limited sensing capabilities is 
controlling the HVAC of a building. While the thermostat 
might create a temporal mapping for the temperature for one 
particular location, it has no way of knowing the spatial 
temperature distribution in the entire room or building. It might 
be located right next to a window, heating radiator or cooling 
duct. This means that the temperature it senses won’t be 
representative of the room, or home, in general. Using this 
sensor measurement to reason about the state of the home will 
therefore lead to erroneous control actions. The obvious 
solution of increasing the number of sensors also poses 
multiple problems: (1) it raises sensor costs, (2) it increases 
problem complexity considerably to learn spatiotemporal 



temperature mappings rather than just temporal ones, and (3) it 
creates more points of failure, i.e. unless properly designed, a 
single temperature breaking down can cause the entire system 
to crash. 

This matches well with the partially observable formulation 
of reinforcement learning problems. However, in many cases, 
this partial observability might inconvenience the human users. 
In cases where feedback to the control system is not directly 
possible (or even possible but not implemented in a very 
straightforward manner), this might well lead to 
disillusionment and the system being disabled eventually. 

B. Disaggregation 

A special case of sensing limitations is disaggregation of 
consumption data. Disaggregation refers to deconstructing 
aggregated data into its individual sources. In the context of 
smart homes, disaggregation usually refers to decomposing 
aggregated electricity smart meter data. Such knowledge can 
provide insights into occupancy patterns as well as preferences. 
Occupancy profiles can be built from appliance usage and 
individual consumption profiles for separate appliances can be 
learnt over time. 

In practical settings, overall household electricity 
consumption is disaggregated into individual draws such as for 
heating, ventilation, lighting and other appliances etc. This is 
an extremely ill-posed problem. Multiple devices can have 
similar consumption profiles and similar devices can have 
different consumption profiles based on usage patterns. 
Furthermore, it is impossible to enumerate all possible devices 
and their behavior in different settings. While supervised 
learning has been used both in research and commercially as a 
pattern recognition technique, this makes far too many 
assumptions and relies on extensive occupant feedback which 
can usually not be counted upon.  

Another practical limitation of disaggregation techniques is 
that they require high frequency consumption data at the smart 
meters. This frequency can often be in the range of hundreds or 
thousands of hertz (many thousands times higher than what 
commercial smart meters capture data at). In addition to 
creating huge amounts of data which is problematic for storage 
and communication, it is also often physically impossible for 
commercial smart meters to log data at such high frequencies. 
Similar problems are also encountered for disaggregating water 
and natural gas consumption. 

C. Difficulty in estimating occupant behavior 

As mentioned before, design and operation of buildings 
should not only consider building physics and HVAC systems, 
but also human behavior. This largely depends on energy 
monitoring and management systems (EMMS), which are a 
framework to collect sensor data from within a building. More 
concretely such a system can be used to (1) estimate the 
number of people residing in a living space and taking 
appropriate control actions (e.g. to turn on HVAC or not), (2) 
identify the person occupying the space and provide 
customized services and / or feedback, and (3) create future 
forecasts for occupancy profiles (of individual or aggregated 
occupants). Another key purpose of including occupant 

behavior in considerations early on is to estimate the relevance 
of their activities in building simulation in order to reduce the 
so called performance gap with reality [40]. 

Living area systems are highly human-machine cooperative 
systems. Indeed, the purpose of developing a smart home is to 
create additional value for building occupants but occupants 
are also part of the system and influence the available 
possibilities with their own behavior. Thus, in reasoning about 
occupants and their behavior it is important to include 
contextual information. This is composed of: (1) context 
related to time, weather conditions, energy costs, heat gains per 
zone but also occupant current positions and activities, (2) 
controls related to doors, windows, flaps and shutters positions, 
configurations of the HVAC system and other electric 
appliances, and (3) reactions related to indoor temperature and 
air quality, and to satisfaction of occupants regarding services 
provided by electric appliances. 

The problem is to identify and calculate features that could 
be used in a classification model for identifying various 
activities happening in a building space. The features must 
provide rich context for the learning system to classify various 
states of interest. Since, the use of video cameras and audio 
recorders is a problem for most residential spaces, the solution 
must keep privacy issues as well as cultural sensitivities and 
rely largely on non-intrusive sensors. These include electricity 
and hot water consumption, CO2 measurements as well as 
motion sensors and door / window contact sensors [41]. These 
come with additional complications since they increase initial 
installation costs and bring only marginal improvement in 
occupancy detection. It is important to stress here that even 
with all these sensors, it is very difficult to estimate the exact 
number of occupants, let alone the identity of individual 
occupants. 

D. Robustness to broken sensors or missing inputs 

Creating reasoning systems dependent on multiple relevant 
sensors can improve the learning performance of a task 
substantially. This follows intuitions from the human 
experience whereby we rely on multiple senses to gather 
environmental input which we then combine to form decisions 
for subsequent actions. Humans can however adapt to their 
context and learn to compensate for loss of one sensory source 
by focusing on a different one. As alluded to earlier, unless 
explicitly designed for, reasoning in smart homes is unable to 
follow the same principles. This creates fragile systems which 
rely on their individual components to work well to create the 
desired output. Likewise, in the case of missing inputs from a 
sensor, the decision making process can be impeded which can 
lead to loss of occupant comfort etc. 

E. Robustness to actuators 

In addition to broken sensors, it is not guaranteed that the 
control commands will be mapped out as expected. 
Unexpected behavior can occur at any given time, especially in 
complex systems such as buildings. The simplest example of 
this is hardware implemented overrides, a common ‘last 
defense’ mechanism in many systems. These have the ability to 
overrule any commands generated by a reasoning system based 
on what they perceive as preserving occupant comfort. A 



possible fix is human intervention to configure the device 
correctly, but this is not always practical.  

F. Robustness to goal oriented approaches and perverse 

decision making 

As discussed earlier, reasoning in smart homes is usually to 
maximize some preconceived notion of utility. If care is not 
taken in formulating this notion, it can have disastrous 
unintended consequences. An early example of such an awry 
system is a robot vacuum which is designed to collect reward 
by gathering garbage. A robot with such a reward framework 
might, unless explicitly designed otherwise, repeatedly dump 
and collect garbage from the same location instead of cleaning 
the entire space [38]. These kinds of unintended consequences 
can be spotted in the testing phase and can be corrected by 
tweaking the reward streams a reasoning agent receives. 

A second more complex example is of a perverse spatial 
heating controller. Assume a heating system which reheats a 
room and gathers reward to keep the temperature between 
certain boundaries and is penalized for the amount of electricity 
it consumes from the grid. At the same time, it can consume 
electricity from solar PV panels; such consumption is usually 
incentivized because of changes (or upcoming changes) in 
regulation surrounding feed-in tariffs so the heating system is 
rewarded for heating the building when there is surplus solar 
electricity available. Now, also assume a cooling system which 
is being controlled by a different reasoning agent, except 
operating in the opposite direction. The heating agent will soon 
come to realize that it should always reheat the building 
whenever solar power is available, prompting the cooling 
system to also come on to keep the temperature within the 
specified bounds. Both systems collect rewards while doing 
something that is obviously not the design intent. This is just 
one example of learning agents learning perverse policies 
which don’t reflect the original intent of the system at all.  

While it is easy to think that such problems are only 
theoretical, these concerns will become increasingly real. As 
technologies mature, rooting out these inconsistencies will take 
on greater importance. 

G. Centralized vs. distributed architectures 

In addition to the question of devising robust reasoning 
strategies, there are questions pertaining to the choice of 
centralized and distributed architectures. Both have their 
advantages and disadvantages [39]. The distinction between 
centralized and distributed systems can span many levels of 
abstraction. At the most fundamental, a distributed system can 
involve different sensors directly taking control actions to 
maximize some reward signal. On the other hand, a centralized 
system would combine information from multiple sensors to 
create a more holistic picture, which can then be used to make 
decisions. Centralized systems can have far superior 
computational resources and can thus solve more complicated 
reasoning tasks. However, complexity can grow quickly in the 
presence of multiple sensors. Furthermore, data privacy issues 
might necessitate distributed architectures.  

H. Security and privacy 

As mentioned before, data security and privacy are key 
concerns in how effective automated reasoning can be in smart 
homes [37]. Data security means that the data has to be 
communicated and stored in a secure manner. Usually, this 
involves setting up of encrypted protocols. The primary threat 
in this domain comes from hackers who can gather insights 
into occupancy patterns from historic consumption profiles. 
Data privacy, on the other hand, refers to sharing of data 
unnecessarily. The need to know principle has to be applied in 
production settings to preserve user data privacy. A sensor that 
doesn’t aid in the reasoning process is not only a useless 
expenditure, it is a needless liability. 

The EU directive on General Data Protection (GDPR) lays 
down clearly defined rules for gathering and processing of data 
in an automated manner [28]. Automated decisions have to be 
explainable under the purview of this law and the user has a 
right to know what data was used to make a certain decision 
and how it affected them. This can complicate the 
implementation of many black-box reasoning systems but will 
also bring transparency to the decision making process. 

V. DISCUSSION 

In this paper, we have highlighted three major frameworks 
used to reason in smart home settings. The focus of this paper 
has been on realistic applications such as smart lighting and 
thermostat functionality. For residential settings, rule-based 
and model predictive control might be too expensive to set up 
and generalize. This is because the initial high cost of creating 
a prior model that effectively captures building physics in a 
detailed manner requires significant manual effort. 
Reinforcement learning presents a low cost alternative that has 
been demonstrated to work in a cost effective manner. Hybrids 
between different formulations offer an attractive way to 
design the best solution for a problem on a case by case basis.  

Some of the most obvious opportunities arising from such a 
control framework would be to achieve increased resource 
efficiency, either in the form of reduced electricity (or water / 
natural gas) consumption or reduced costs. While largely 
aligned today, these might well diverge in the future with time-
of-use tariffs and rapidly changing renewable integration 
subsidy schemes. Another explicit objective to optimize 
towards is simply maximizing the occupant comfort regardless 
of cost. At the same time, more global objectives are being 
formulated as well, these will require many smart homes to be 
connected together in a microgrid or grid. 

Questions remain around whether the presented framework 
will be sufficient to realize the functionality envisaged in smart 
homes. Sensors form the critical backbone of this enterprise, 
and without sufficient sensing reinforcement learning 
algorithms can’t operate reliably. The question of limited 
sensing includes both temporal and spatial resolution, and 
draws realistic questions about something even as basic as 
estimating occupant presence, much less detecting occupant 
identity and offering customized services. This also opens the 
door to questions on data security and privacy and the 
possibility for abuse and surveillance. While distributed 
frameworks have been touted as possible solutions, it is not 



entirely clear if these will have the necessary computational 
resources to perform complex reasoning tasks. 

In the end, despite considerable challenges, there is much to 
be optimistic about. The progress made in just the past few 
decades has been astounding. As the sphere of technological 
influence grows, it is not unimaginable that sensing will 
become even more pervasive. Combined with gains in 
available computational resources and more efficient artificial 
intelligence algorithms, this has the potential to completely 
transform our living spaces. Whether the end result is the 
hedonistic vision of a smart home painted at the beginning of 
this paper is something that remains to be seen. 
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