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ABSTRACT:

A general approach is proposed to estimate the number

of occupants in a zone using different kinds of mea-

surements such as motion detection, power consump-

tion or CO2 concentration. The proposed approach

is inspired from machine learning. It starts by deter-

mining among different measurements those that are

the most useful by calculating the information gains.

Then, an estimation algorithm is proposed. It relies

on a C4.5 learning algorithm that yields human read-

able decision trees using measurements to estimate the

number of occupants. It has been applied to an office

setting.

1 INTRODUCTION

Recently, research about building turns to focus on oc-

cupant behavior. Most of these works deal with the

design stage: the target is to represent the diversity of

occupant behavior in order to guarantee minimal mea-

sured performance. Most of the approaches use statis-

tics about human behavior (Roulet et al., 1991; Page

et al., 2007; Haldi and Robinson, 2009). (Kashif et al.,

2013) emphasized that inhabitants’ detailed reactive

and deliberative behavior must also be taken into ac-

count and proposed a co-simulation methodology to

find the impact of certain actions on energy consump-

tion.

Nevertheless, human behavior is not only interesting

during the design step, but also during operation. It

is indeed useful for diagnostic analyses to discrimi-

nate human misbehavior from building system perfor-

mance, and also for energy management where strate-

gies depend on human activities and, in particular, on

the number of occupants in a zone. Unfortunately, the

number of occupants is not easy to measure. This pa-

per tackles this issue. It proposes an occupancy esti-

mator combining different measurements such as CO2

concentration, motion detection, power consumption

etc., because only one measurement proved to be not

reliable enough to estimate the number of occupants.

For instance, CO2 concentration may be useful but in

some configurations, when a window is opened for in-

stance, estimations become unreliable. Motion detec-

tion and power consumptions depend on occupant ac-

tivities. However, altogether, these measurements can

be combined to get a more reliable estimator. The or-

ganization of the rest of the paper as follows. Section 2

presents a state of the art about occupancy estimation.

Section 3 discusses the proposed process that yields

to an occupancy estimator suitable for a specific con-

text. Section 4 points out what are the most relevant

measurements to consider for an estimator. Section 5

compares the occupancy estimations with actual ones

in an office context. Finally, Section 6 presents con-

clusions and further directions.

2 STATE OF THE ART

Similar work for finding occupancy has been already

tackled and various methods have been investigated.

The methods vary from basic single feature classifiers

that distinguish among two classes (Presence and Ab-

sence) to multi-sensor, multi feature models. A pri-

mary approach, which is prevalent in many commer-

cial buildings is to use passive infrared (PIR) sensors

for occupancy. However, motion detectors fail to de-

tect presence when occupants remain relatively still,

which is quite common during activities like working

on a computer, or regular desk work. Furthermore,

drifts of warm or cold air on objects can be inter-

preted as motion leading to false positive detections.

This makes the use of only PIR sensors for occupancy

counting purpose less attractive. Conjunction of PIR

sensors with other sensors can be useful as discussed

in (Agarwal et al., 2010) which makes use of motion

sensors and magnetic reed switches for occupancy de-

tection to increase efficiency in the HVAC systems

of smart buildings, which is quite simple and non-

intrusive. Apart from motion, acoustic sensors (Pad-

manabh et al., 2009) may be utilized. However, au-

dio from the environment can easily fool such sensors,

and with no support from other sensors it can report

many false positives. In the same way, other sensors

like video cameras (Erickson et al., 2011; Milenkovic

and Amft, 2013b) which exploit the huge advances in

the field of computer vision and the ever increasing

computational capabilities, RFID tags (Philipose et al.,

2004) installed on id cards, sonar sensors (Milenkovic

and Amft, 2013a) plugged on monitors to identify

presence of a person on the computer, have been used

and have proved to be much better at solving the prob-

lem of occupancy count, yet can not be employed in

most office buildings for reasons like privacy and cost

concerns. The use of pressure and PIR sensors to de-

termine presence/absence in single desk offices has

been discussed in (Nguyen and Aiello, 2012); it fur-

ther tags activities based on this knowledge.

However, for various applications like activity recog-

nition or context analysis within a larger office space,

information regarding the presence or absence of peo-
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ple is not sufficient, and an estimation of the num-

ber of people occupying the space is essential. (Lam

et al., 2009) investigates this problem in open offices,

estimating occupancy and human activities using a

multitude of ambient information, and compare the

performance of HMMs, SVMs and Artificial Neural

Networks. However, none of these methods generate

human-understandable rules which may be very help-

ful to building managers.

An alternate approach aims to understand the relation-

ships between carbon dioxide concentration, IAQ (In-

door Air Quality) and the number of occupants. Such a

physical CO2 model built on sensor networks has been

extensively used (Aglan, 2003) in smart office projects

to improve occupant comfort and minimize building

energy use. In this paper, the model has been studied

to find out the value of using it in occupancy estima-

tion.

In general, an occupancy count algorithm that fully

exploits information available from low cost, non-

intrusive, environmental sensors and provides mean-

ingful information is an important yet little explored

problem in office buildings.

3 PROCESS USED FOR ESTIMATION

Experiment setup

The test bed (Figure 1) is an office in Grenoble Insti-

tute of Technology, which accommodates a professor

and 3 PhD students. The office has frequent visitors

with a lot of meetings and presentations all through

the week. The set-up for the sensor network includes:

• 2 video cameras for recording real occupancy

numbers and activities.

• An ambience sensing network, which measures

luminance, temperature, relative humidity (RH),

motion at a sampling rate of 30 seconds.

• A centralized database with a web-application for

retrieving data from different sources continu-

ously.

Generating features

To perform the task of finding the number of occu-

pants, a relation has to be discovered between the of-

fice environment and the number of people in it. The

office environment can be represented as a set of pa-

rameters, Pt = [p1, p2, . . . , pn]t. This set of param-

eters P at any instance of time t must be indicative of

occupancy. Such a parameter, can be termed as a fea-

ture, and therefore the set of features as feature vector.

Similarly, the n-dimensional space that contains all

possible values of such a feature vector is the feature

space. The underlying approach for the experiments is

to formulate the classification problem as a map from

a feature vector into some feature space that comprises

several classes of occupancy. Therefore, the success of

such an approach heavily depends on how good (those

which provide maximum separability among classes)

the selected features are. In this case, features are at-

tributes from multiple sensors accumulated over a time

interval. The choice of interval duration is highly con-

text dependent, and has to be done according to the

granularity required. However, some features do not

allow this duration to be arbitrarily small. As an ex-

ample, it has been observed that CO2 levels do not

rise immediately, and one of the factors affecting this

time is the ventilation of the space being observed. Re-

garding the results presented in this paper, an interval

of Ts = 30 minutes (which has been referred to here as

1 quantum) has been considered.

Before any features are calculated for the training data,

some basic preprocessing of data had to be done: basic

interpolation for non-existent data and application of

an outlier removal algorithm. The interpolation part

is necessary for filling in missing values from the sen-

sor data. This is frequent in devices which are event-

triggered i.e. no data points are reported if there is no

change in the feature being reported. Thus, the previ-

ous data point had to be copied into the voids.

Removing outliers

Despite having reliable sensors, some single data point

spikes have been observed in the recordings, which are

attributed to random faults from the sensor. The faults

can be easily identified visually in a continuous time-

series, but to identify and remove them statistically,

it is necessary to understand what makes a data point

an outlier. The removal afterwards is almost trivial.

Contextual outliers are defined as data points, which,

in the contact of previous and future data points, seem

highly improbable. These points have been detected

as the ones that follow the equations simultaneously:

pdiffk = xk − xk−1

fdiffk = xk+1 − xk

|pdiffk| > m∆x + λσ∆x

|fdiffk| > m∆x + λσ∆x

pdiffk . fdiffk > 0

where:
xk : value of the feature at time quantum k

pdiffk: difference between the current and pre-

vious data point

fdiffk : difference between the current and next

data point

m∆x : average difference between two con-

secutive data points for the whole

dataset

σ∆x : standard deviation of the difference be-

tween two consecutive data points for

the whole dataset

λ : configurable parameter, here λ = 5
All the data points that satisfy the above equation are

removed.

In this section, both generic and specific features ex-

tracted from various sensors are discussed. Let Tk =
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Figure 1: Sensor test bed at Grenoble INP

{ti : ti ∈ [kTs, (k+1)Ts]} be the time samples related

to time quantum k:

• 30 minutes average: 1
|Tk|

∑

ti∈Tk
data(ti), where

0 ≤ k ≤ 47 for one day, since the number of

‘half-hours’in a day are limited to 48. This fea-

ture is calculated for carbon dioxide and temper-

ature sensors.

• Contact state: This feature is extracted for the

door and window contact sensors. Possible val-

ues for this feature can be 0: door/window open,

1: door/ window closed, a real number fstate ∈
[0, 1], which denotes the time ratio of door open-

ing during a time quantum.

• Fluctuation count: the PIR sensor in use is a bi-

nary sensor that reports a value of 1 whenever it

senses some motions. The number of times a mo-

tion is detected within the specified duration of 1

quantum has been computed.
∑

ti∈Tk
data(ti)

• Difference between outdoor and indoor tempera-

tures.

• Time slot generated from calendar: NIGHT,

PRELUNCH, LUNCH, POSTLUNCH. It corre-

sponds respectively to time intervals [20-8),[8-

12),[12-14),[14-20).

• Type of day generated from calendar: one among

Weekday,Weekend

As occupancy in an office is a continuous event, there

exist temporal dependencies within some of the fea-

tures. To utilize those, some features which purely de-

pend on sensor data in the past, have been extracted.

• Previous classification.

• First order difference: data(tk) − data(tk−1).
This feature is calculated for CO2, temperature,

and the difference between outdoor and indoor

temperatures.

• first order derivative: it gives the trend of data.

The data points are interpolated to a first-order

linear equation, and then the derivative of the re-

sultant line is recorded. This feature is useful

to quantify the rate of increase/decrease of occu-

pancy relative to the previous time interval.

Selecting features

From the large set of features discussed above, some

of them may not be worthwhile to consider, to achieve

our target of occupancy classification. These features

are the ones which, when added to the classification

algorithm make no difference to the overall output. In

other words they are not useful enough for our pur-

poses. For an example, using the absolute temperature

readings would be useless, as it is not representative

of occupancy at all. One quantitative measurement of

the usefulness of a feature is information gain. Before

detailing what is an information gain, it is imperative

to discuss the concept of entropy. Entropy is an at-

tribute of a random variable that categorizes its disor-

der. Higher the entropy, higher is the disorder associ-

ated with the variable i.e. the less it can be predicted.

Mathematically, entropy is defined by:

H(y) =
n−1
∑

i=0

−p(yi) log2 p(yi)

where:
y : a random variable whose value domain

is dom(y) = {y0, . . . , yn−1}
H(y) : entropy of a random variable y

p(yi) : probability for y to be equal to the value

yi
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Figure 2: Entropy vs. probability [If probability of an event

is 0.5, it means the highest disorder: entropy=1]

Now, Information gain can now be defined between

two random variables, x and y as:

IG(x, y) = H(y)−H(y|x) (1)

where:
y : target random variable

H(y) : entropy of y

H(y|x) : conditional entropy of y given x

The higher the reduction of disorder by fixing feature

x is, more is the information gained for determining y

thus making x a good feature to use for classifying y.

Classification algorithm

A supervised learning approach has been used. Hence,

for preparing training data, occupancy count was man-

ually annotated using the video feed from two cameras

strategically positioned in the office. The weighted av-

erage of the number of people visiting the office was

recorded for each 30 minutes of the day. To comple-

ment this data, a keyboard connected to a Raspberry PI

module had been set up to be used by the visitors for

updating person-count in the office as they left/entered

the office. Data recorded in this way is much easier

to feed to a script, hence completely automating the

training part, but only after sufficient care by the visi-

tors and inmates the data can be termed reliable.

The decision tree classification technique has been se-

lected as our prediction model because it provides

human-readable results which can be analyzed and

adapted by building managers easily. The decision tree

algorithm selects a class by descending a tree of deci-

sion nodes where each internal node represents a com-

parison of a single feature value with a learned thresh-

old. The leaf nodes represent the selected class for

the given features. The target of the decision tree al-

gorithm is to select features that are more useful for

classification. As information gain (discussed earlier)

approaches to zero, the difference between initial dis-

order (entropy) of the target variable, and the entropy

of the variable after adding the observation from the

test feature x, is negligible. Hence, the particular fea-

ture is not probably going to help very much during

the decision making process.

A decision tree algorithm provides quite a few advan-

tages. As per (Quinlan, 1986), the features with higher

information gain are much higher up the tree, there-

fore making the process of feature selection intrinsic

to the classifier. Since the path to the leaf may con-

sist of many internal nodes, each of which may check

different feature values, such paths exploit the corre-

lation among the various features. The decision tree

approach offers the advantage of generating rules that

the path towards the leaf node is quite informative and

it clearly points out direct causes for the selection of

a particular class. Unlike methods that use decision

boundaries (SVMs, regression techniques), decision

tree analyses are independent of the scale of the input

data, so no or little conditioning of the data is neces-

sary.

Learning process

Using this raw training data, the features previously

mentioned were extracted. A vector of features and

target 〈f1, f2, f3, . . . , fN ; y〉 had been generated for

each time quantum, where fi stands for the ith fea-

ture and y, for the level of occupancy. Here, level

corresponds to an interval in the partition L =
〈I0, . . . , Il−1〉 where l in the number of occupancy lev-

els.

Two decision tree models, D1 and D2, were trained

for each level l. D1 is trained with raw sensor fea-

tures only and D2 with raw as well as the temporal

features. The reason these two models had to be cre-

ated is because of the fact that using previous esti-

mations as a feature during the test phase may (and

in most cases does) introduce a classification error,

which propagates and accumulates throughout the pro-

cedure. To prevent this from happening: (1) temporal

dependencies altogether should be ignored by not us-

ing those features, or (2) some randomness to the pro-

cess should be introduced, which does not let the error

to propagate. Some investigations into method (2) led

us to develop the following algorithm. Once the tree

D2 has given its classification, membership probabil-

ity is estimated, say p2 of the test instance for the pre-

diction. Similarly, membership probability p1 is also

calculated for the tree (D1) without the temporal fea-

tures.

if p1 ≥ p2 then

Use classification from tree D1

else

if getRandom() ≥ 0.5 then

Use classification from tree D2

else

Use classification from tree D1

end if

end if

4 SELECTION OF BEST FEATURES

This section introduces the most relevant features that

have been considered.

Occupancy from power consumption

Power consumption sensors are easy to deploy in most

households and offices. In order to investigate the pos-

sibility of using power consumption data in occupancy

recognition, 4 sensors have been connected to inhab-

itant laptops in the studied office. Through analyz-

Proceedings of BS2015: 
14th Conference of International Building Performance Simulation Association, Hyderabad, India, Dec. 7-9, 2015.

- 1444 -



ing the power consumption data, a threshold is deter-

mined to discriminate cases of computer standby from

cases where someone is working on a laptop, which

increases the power consumption and leads to wrong

occupancy estimation (Kleiminger et al., 2013).

πi =

{

0 if poweri < Threshold

1 otherwise

where poweri stands for the actual laptop aver-

age power consumption during time quantum i and

threshold = 15W . The number of occupants is then

estimated by l̂consumption =
∑

i πi. It has to be no-

ticed that although this estimator is one of the most

relevant feature, it is not reliable in case of visitors.

Occupancy from CO2 physical model

An alternative approach for occupancy is to use a

physical CO2 model. According to (ASHRAE, 1985),

the model given by (2) represents the relation between

carbon dioxide generation, the volumetric flow rate of

fresh air entering the office, the volumetric air flow rate

outgoing from the office and occupancy (Aglan, 2003).

The proposed approach relies on the data coming from

CO2 concentration sensor, door contact, window con-

tact, occupancy labels extracted from video cameras

for tuning air flows, and constant parameters associ-

ated to the office.

V.
dCin

dt
= −Q.Cin +Q.Cout + n.S (2)

Equation (2) has been discretized, considering the time

interval as 1 quantum:

nk =
Q

S

(

Cin,k+1 − e
−Q.Ts

V

1− e
−Q.Ts

V

− Cout

)

(3)

where:

V : Volume of the space being modelled

Cout : Outdoor CO2 concentration

Cin,k : Indoor CO2 concentration at time k

Q : Rate of renewal air-flow

S : CO2 production for 1 average person

(7 ppm)

nk : Number of people at time k

For this model, carbon dioxide readings averaged on 1

time quantum (hence Ts=30 minutes or 1800 seconds)

were used, and the supervised occupancy count(n) ex-

tracted from the video cameras. The approximate vol-

ume of the office was 45m3. We take Cout to be 400

ppm, which is the standard outdoor carbon dioxide

concentration.

Next, to find the best value for Q(office air flow rate),

we need to consider all the configurations for the door

and window, as Q would be different in each of the

case. However, since the study was done in the month

of January(winter season), the window were always

closed, so the flow rates at open window configura-

tions could not be found out. To minimize the objec-

tive function, the SLSQP optimization subroutine was

utilized which provided the following air-flow rates af-

ter converging.

door’s position Qair(best)

close Q1=0.0237

open Q2=0.0333

Table 1: Qair corresponding to the positions of win-

dow and door

The next step is to use these best average airflow val-

ues for calculating the number of occupants over a

time quantum lasting 30 minutes. Occupancy estima-

tion is obtained from equation (2). Finally, the last step

is to use this estimation of occupants as one feature in

the classification model.

Figure 3: Occupancy estimation from CO2

Figure 3 shows the results from the physical model for

the period 26-Jan-2015 until 30-Jan-2015, with an ac-

curacy of 41%. Obviously, the fault in estimation from

the model happens when the door position changes,

this problem can be solved by considering the actual

corridor CO2 concentration data instead of a constant

value i.e. 400ppm to improve the results.

Analysis of the most relevant features

To mathematically calculate the information gain at-

tribute discussed earlier, it is necessary to discretize

the features which have values that are continuous in

nature. A typical discretization function splits a large

continuous range into several sub-ranges. However,

such a function relies upon: a) sorting the values of

the feature to be discretized b) determining a cut-point

for splitting, according to some criterion (maximum

and minimum value for each feature). The first con-

dition requires the elements in the ranges to be com-

parable. The considered features (CO2 concentration,

motion fluctuations, number of people) are continuous

ranges of real numbers, hence can be sorted. For the

second, we calculated information gain by distributing

our continuous features into 5, and 8 (chosen at ran-

dom) ranges respectively to get a better insight into the

relation between the number of ranges and usefulness

of the feature. Using these information gain values,

the most relevant features to estimate occupancy can

be determined.Table 2 presents the information gains

for the considered discretizations.
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1. CO2 (in ppm):

Disc.1 {[390, 450), [450, 690), [690, 900),
[900, 1300), [> 1300]}

Disc.2 {[390, 420), [420, 500), [500, 600),
[600, 700), [700, 800),[800, 900),
[900, 1300), [> 1300]}

2. Occupancy number from physical model dis-

cretization (in average number of occupants

during a time quantum):

Disc.1 {[0, 0.5), [0.5, 1.5), [1.5, 3), [3, 4.5),
[> 4.5]}

Disc.2 {[0, 0.5), [0.5, 1), [1, 1.5),[1.5, 2),
[2, 3), [3, 4), [4, 5), [> 5]}

Thus, it is imperative that methods for choosing the

optimal discretization be applied, this is done implic-

itly by the C4.5 classification algorithm which is pre-

sented in the next section.

Feature IG1 IG2

motion fluctuations 0.79 0.93

power consumption 0.59 0.91

CO2 mean 0.54 0.68

time slot 0.63 0.63

CO2 derivative 0.52 0.62

door’s position 0.43 0.43

occupancy from physical model 0.33 0.41

mean (tempoutside-tempinside) 0.19 0.22

day type 0 0

window position 0 0

Table 2: Information Gain values

The information gain coming from CO2 physical

model is not informative enough because of the miss-

ing data from corridor CO2 sensor for the considered

period. Finally, after removing less important features,

the main informative features are found to be:

1. Motion detector counting

2. Occupancy estimation from power consumption

3. CO2 average value

4. Time slot

5. CO2 derivative

6. Door position

5 RESULTING OCCUPANCY ESTIMATORS

Generating decision trees

The C4.5 decision tree algorithm (Quinlan, 2014) had

been used to perform recognition by using aggregated

features, and the labels extracted from video cameras.

5 occupancy levels have been defined to generate de-

cision trees because of the maximum number of occu-

pants in the office. Training data covers for 11 days

from 12-Jan-2015 to 22-Jan-2015, while testing data

is collected over a span of 5 days from 26-Jan-2015 to

30-Jan-2015. During the training period, 110000 data

points have been collected as indicated in Table 3.

Type of sensor Datapoints

Power consumption (4 laptops) 18977

Motion detector 3301

CO2 concentration 39349

Door contact 2100

Window contact 615

Indoor temperature 39373

Table 3: Raw sensor data collected over 11 days

Figure 4 shows the result obtained from the learned de-

cision tree considering all the features as input to the

detection model, where we plot both actual occupancy

profile and the estimated profile as a graph of number

of occupants with respect to time (quantum time is 30

minutes). The accuracy achieved is 46% (number of

correctly estimated points divided by the total number

of points), and average error 0.7 (average distance be-

tween actual points and estimated points). In addition,

for each level some performance measures, and their

support (the number of times an instance of a given

class appears in the data) have been shown in Table 4.

The following measures have been considered:

• Precision: Fraction of elements correctly classi-

fied as positive out of all the elements the algo-

rithm classified as positive.
tp

(tp+fp)

• Recall: Fraction of elements correctly classified

as positive out of all the positive elements
tp

(tp+fn)

• F1-score: The harmonic mean of precision and

recall 2 ∗ (precision∗recall)
(precision+recall) . The best score possi-

ble for a class is 1 and worst is 0.

where:
tp: true positive i.e. element predicted to be in

class i is really in class i

fp: false positive i.e. element predicted to be

in class i is really not in class i

fn: false negatives i.e. element predicted not

to be in class i, but is really in class i

Figure 4: Occupancy estimation from DT using all

features
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precision recall f1-score support

level 0 0.73 0.712 0.72 130

level 1 0.11 0.19 0.14 31

level 2 0.40 0.18 0.25 45

level 3 0.17 0.19 0.18 21

level 4 0.00 0.00 0.00 13

avg/total 0.50 0.46 0.47 240

Table 4: Decision tree classification results with con-

sidering all features

Figure 5 shows the result obtained from the decision

tree considering only the main features. It leads to im-

provement in occupancy estimation with an accuracy

of 65% and an average error of 0.47 occupant in av-

erage. Additionally, the results indicate that motion

detector, power consumption, CO2 concentration and

door contact have the largest correlation with the num-

ber of occupancy detection.

Figure 5: Occupancy estimation from DT using main

features

precision recall f1-score support

level 0 0.89 0.92 0.90 130

level 1 0.30 0.42 0.35 31

level 2 0.50 0.31 0.38 45

level 3 0.25 0.29 0.27 21

level 4 0.36 0.31 0.33 13

avg/total 0.66 0.65 0.65 240

Table 5: Decision Tree classification results after se-

lecting main features

Comparing the results obtained from the decision tree

using all the features (Table 4) with the one using only

the main features (Table 5), a significant improvement

in occupancy estimation for all levels can be observed.

Decision tree structure

Decision tree structure represents the classification

rules, data are split at each node in a tree according to

a decision rules, which corresponds to nested if-then-

else rules. In the if part of such a rule, the decision

is made based on a feature of the data record. These

rules are for both binary (fi ∈ {0, 1}) and continuous

data. For example, Figure 2 shows part of the final tree

structure with root node and some leaf nodes. Nodes

in the tree are named as follows.

X0: CO2 average value

X1: CO2 derivative

X2: Motion detector fluctuations

X3: Occupancy estimation from power consumption

X4: Time slot

X5: Door position

In this example, the root is the feature test X2 i.e. CO2

average value is the most meaningful feature in terms

of information gain, and the subtrees occur due to the

rules:

Figure 6: Part of final Decision Tree structure

if Xi ≤ threshold then

left child node

else

right child node

end if

These rules are repeated in order to build all sub-trees

and determined the classification levels, depending on

the most informative feature in each subtree i.e.:

• X2∧X3∧X4 → classification level1.

• X2∧X3∧X0 → classification level2.

For binary data the threshold is 0.5, while for con-

tinuous data is defined by sorting the data ascending,

then calculate the mid point between each two points

(fi,fi+1), and choose an accurate value for the thresh-

old to be used in the decision tree (Mitchell, 2007).

6 CONCLUSIONS

A supervised learning approach has been proposed in

this paper to estimate the number of occupants in an

office setup. It results in a virtual sensor that relies

on other sensors but with a superior performance. The

proposed process makes it possible to determine valu-

able sensors using the concept of information gain. In

the proposed work, motion fluctuation counters using

PIR sensors, power consumption sensors, CO2 mean

and derivative, and the door position are found to be

the most interesting sources of information. The es-

timation of the number of occupants using a physi-

cal CO2 model is also very promising but an addi-

tional CO2 sensor has to be installed in the corridor

to improve results when the door is opened. Decision

trees have been obtained using C4.5 classification al-

gorithm. Occupancy estimation using these trees gave
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a superior performance with an average estimation er-

ror of 0.47 occupants for a test period of one week.

Supervised learning has been done using 2 video cam-

eras but this approach is limited because of privacy

issues. Another option has been envisaged: using

discrete feedback from occupants themselves such as

with a keyboard or any other means. In addition, be-

cause decision trees are human readable, they can be

adjusted using expert knowledge. For instance, thresh-

olds can be adjusted and nodes for which information

is not available can be removed depending on the con-

sidered living areas. The two extensions can be com-

bined to avoid the use of video cameras. It will be in-

vestigated further in the future. Estimating the number

of occupants is very interesting in many areas: simu-

lating occupant behavior at design stage, predicting the

number of occupants at energy management stage, dis-

criminating physics from usage at diagnosis stage etc..

The proposed approach can be extended to the estima-

tion of occupant activities, which is useful to develop

interactive systems where relevant advice can be pro-

vided to occupants at relevant times.
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