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Undoped, 5%, and 10% lanthanum doped lithium tantalate thin films were annealed at 550◦C 
temperature for 12.5 hours and their properties were characterized. The results showed that the 
dopant addition affects the crystal formation of LiTaO3, especially the 10% La2O5 dopant, where the 
lattice of a = 5.11 Å, c = 13.30 Å, and its crystal was hexagonal. The observed functional groups 
were O-H, N-H, C = C, Li-O, Ta-O. The higher La2O5 dopant concentration leads to the higher 
absorption of Ta-O and Li-O, the lower the energy gap, the higher the refractive index, and the 
smaller the particle size of thin films.
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1. Introduction

Development of Lithium Tantalate (LiTaO3) films can be carried out by using various
methods, such as Chemical Solution Deposition (CSD), Metal Organic Chemical Vapor
Deposition (MOCVD), rf sputtering, and Pulsed Laser Ablation Deposition (PLAD) [1], and
it does not need complicated treatment [1,2]. LiTaO3 is one of the widely used optoelectric
materials to its ferroelectric, piezoelectric, and pyroelectric properties [1,3-8,15-16,]. It is
also an attractive materials for integrated-optic applications due to its nonlinear optical
properties [9-13], large electroptic and piezoelectric coefficient and its superior resistance
to laser-induced optical damage [16-19,24,35,37,38,44]. In other hand, it is a ferroelectric
crystal which undergoes high Curie temperature of 608 ◦C and it also has high melting
temperature at 1650 ◦C [34].

However, most of the techniques used to make LiTaO3 are not only expensive but also
involve difficult stoichiometric quantification and complex equipment. Sol-gel processing
[10], a solution-based method, is interesting due to its ease of production and lower cost,
and large area thin film. However, the commonly used alkoxide precursors to produce



LiTaO3 films by sol-gel method are highly reactive and require careful control of the
hydrolysis-condensation reaction [3].

In this research, LiTaO3 thin films were coated on p-type silicon substrates by using
CSD method, followed by spin-coating technique and annealed at the temperature of
550◦C then characterized using X-Ray Diffraction (XRD), Fourier Transform Infrared
Spectroscopy (FTIR), UV-Vis Wave Analyzer, and Particle Size Analyzer (PSA). This
research aims to manufacture the lanthanum doped LiTaO3 thin films and determine its
optical and structural properties.

2. Experimental

The thin films preparation was started by cutting the Si substrate with the size of 8 mm ×
8 mm, each as many as 5 pieces. Then, the substrates were cleaned using aqua bidest and
dried [35,37,45]. In this case, three LiTaO3 solutions were prepared using CSD (Chemical
Solution Deposition) method. The first solution was prepared by mixing 0.1650 gram of
LiCH3COO and 0.5524 gram of Ta2O5 which were soluted inside 2.5 ml of 2-metoxy
methanol which called undoped LiTaO3 solution. The second solution was prepared by
mixing 0.1650 gram of LiCH3COO and 0.5524 gram of Ta2O5 which were soluted LiTaO3

2.5 ml of 2-metoxy methanol with the addition of 0.0295 gram of La2O5 as dopant which
called 5% lanthanum doped LiTaO3 solution. Afterwards, the third solution was prepared
by mixing 0.1650 gram of LiCH3COO and 0.5524 gram of Ta2O5 which were soluted
inside 2.5 ml of 2-metoxy methanol with the addition of 0.0590 gram of La2O5 which
called 10% lanthanum doped LiTaO3 solution.

After the preparation of those three solutions, they were sonificated for 90 minutes
using Branson 2510. Afterwards, the solution was dropped towards the substrate’s surface
on spin coating rotator with speed of 3000 rpm, conducted twice. The remaining solution
then dried at 80◦C for 24 hours, then characterized using FTIR and PSA. The dropped
substrate was then annealed using Furnace with the increasing rate of temperature at
1.7◦C/minute, started from room temperature until it reaches 550◦C and held constantly
for 12.5 hours, and then cooled down into room temperature. The formed thin films were
characterized using XRD and Optical Ocean USB 2000.

3. Results and Discussion

3.1 XRD Pattern

Figure 1 shows the XRD pattern of LiTaO3 thin films with p-type Si (100) substrate after
annealing at 550◦C. The data were obtained with interval of 0.02o in the range of 20o–80o

[32,33]. These three patterns show a peak at 2θ = 70◦ because the used substrate is silicon.
XRD pattern shows that LiTaO3 thin films have both crystalline and amorphous struc-

tures. Undoped LiTaO3 thin films have mixed structure with lattice parameter of a = 5.13
Å and c = 13.54 Å. Meanwhile, for 5% La doped LiTaO3 thin films, the structure is not
significantly different with the undoped. However, it has smaller lattice parameter of a =
4.92 Å and c = 14.19 Å. Moreover, for 10% La2O5 doped LiTaO3 thin films, there is a
peak (crystalline) of LiTaO3 with lattice parameter of a = 5.11 Å and c = 13.30 Å.

Decreasing in crystal size is also influenced by the radii of its constituent ions. Ionic
radii of Li+, Ta5+ and La3+ are 0.90 Å, 0.78 Å and 1.172 Å, respectively. It can be seen
that the ionic radius of La3+ is closer to that of Li+ so that La3+ can occupy the positions of



Figure 1. the XRD pattern of LiTaO3 thin film with p type Si (100) substrate after annealing at
550◦C.

Li+ in the crystal structure. The difference of Ionic radii between dopant and replaced ion
affects the formation of spinel phase. This leads to crystal size decreasing which is caused
by the existence of dopant cations in the structure of LiTaO3.

3.2. FTIR Results

The results show the existence of stretching vibration of OH group, C = C aromatic
bonding, Li-O bonding, and Ta-O bonding at wave numbers of 3100—3900 cm−1,
1650—1450 cm−1, 1440—1420 cm−1, and 610-945 cm−1, respectively [29]. According
to these results, it is implied that there is a change in absorbance value of LiTaO3 for

Figure 2. The FTIR spectra of LiTaO3 thin films.



Figure 3. Energy gap of undoped thin films.

each of dopant addition. Thus, the absorption value tends to increase with the increasing in
dopant concentration.

3.3. Optical Analysis

3.3.1 Energy Gap. The results show the energy gap of undoped, 5% La doped, and 10%
La doped thin films are 2.550 eV, 2.020 eV, and 2.199 eV, respectively (Figs. 3–5). It can
be concluded that the higher dopant concentration leads to the lower energy gap, which
means the electron will be easier to move from the valence band area into the conduction
band.

In this research, the overall values of energy gap of thin films from silicon substrate
are in the range of 2.0–3.45 eV for all concentrations. According to other researches, the
energy gap of pure silicon is in the range of 1.0–1.3 eV [5–53]. Silicon itself is usually used
as semiconductor material and has been applied on many electronic devices for its unique
energy gap [56, 57]. In this research, the usage of Si as substrate makes a medium level
of energy gap, makes the obtained thin films are capable to be applied in high-voltation
electronic components [52].

From the results, it is also found that there is energy gap increasing from 5% to 10%
dopant. According to several researches, energy gap can increase after the dopant addition
[56–66]. This is the result of Burstein-Moss effect, increasing in band gap value of a thin
film-doped semiconductor due to their electrons in the conduction band push the fermi
level [67] which lead to the increasing band gap.

Figure 4. Energy gap of 5% lanthanum doped thin films.



Figure 5. Energy gap of 10% lanthanum doped thin films.

3.3.2 Refractive Index. The addition of 5% La dopant significantly increases the refractive
index from the undoped thin films. However, 10% La dopant decreases the refractive
index (Figure 6). Previous researches [68, 69] showed that the refractive index tends to
increase with the increasing in dopant concentration, which is caused by the occurrence of
disorder in structure, changes in stoichiometry, and internal strain caused by polarizability.
Consequently, if containing dopant materials have high polarizability, the refractive index
will thus increase [70]. In addition, the phenomenon in dopant increasing decreases the
refractive index may be caused by the thinning of the material or the widening of energy
gap [71, 72]. From the previously observed energy gaps, it can be seen that there was indeed
an increase of energy gap from thin film with 5% dopant to 10% dopant, so that it is likely
the cause of decreasing in refractive index.

3.4. PSA

To determine the particle size of LiTaO3 thin films, particle size analyzer (PSA) device with
scale of 0.6nm–7μm was used. Figure 7 shows that the LiTaO3 thin films have different

Figure 6. Refractive index of undoped, 5% La doped, and 10% La doped LiTO3 thin films.



Figure 7. The particle size of LiTaO3 thin films at various mole fractions.

particle sizes. Undoped LiTaO3 thin films have the largest particle size range, which is
745.33 nm. Meanwhile, the particle size of 5% and 10% La doped LiTaO3 thin films
were 372.84 nm and 296.98 nm, respectively. These results indicate that the higher dopant
concentration, the smaller the particle size.

4. Conclusion

The addition of lanthanum dopant ignites the formation of LiTaO5 crystal, especially in
the addition of 10% lanthanum dopant with the hexagonal-shaped crystals. From FTIR,
the higher the dopant concentration given, the larger the absorption of Ta-O and Li-O.
Moreover, from PSA, it is found that the dopant addition leads to smaller particle size. The
optical measurements show that the higher the dopant concentration leads to the lower the
energy gap and the higher the refractive index of thin films.
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