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Abstract

A general approach is proposed to determine the common sensors that shall be
used to estimate and classify the approximate number of people (within a range)
in a room. The range is dynamic and depends on the maximum occupancy met
in a training data set for instance. Means to estimate occupancy include mo-
tion detection, power consumption, CO2 concentration sensors, microphone or
door/window positions. The proposed approach is inspired by machine learning.
It starts by determining the most useful measurements in calculating informa-
tion gains. Then, estimation algorithms are proposed: they rely on decision tree
learning algorithms because these yield decision rules readable by humans, which
correspond to nested if-then-else rules, where thresholds can be adjusted depend-
ing on the living areas considered. In addition, the decision tree depth is limited
in order to simplify the analysis of the tree rules. Finally, an economic analysis
is carried out to evaluate the cost and the most relevant sensor sets, with cost and
accuracy comparison for the estimation of occupancy. C45 and random forest al-
gorithms have been applied to an office setting, with average estimation error of
0.19-0.18. Over-fitting issues and best sensor sets are discussed.

Keywords: human behavior, building performance, activities recognition, office
buildings, machine leaning, data mining.

1. Introduction

Recently, research about building has turned to focusing on occupant behavior.
Most of these works deal with the design stage: the aim is to represent the diversity

Preprint submitted to Elsevier July 26, 2016



of occupant behaviors in order to guarantee minimal measured performance. Most
of the approaches use statistics about human behavior (Roulet et al., 1991; Page
et al., 2007; Robinson and Haldi, 2009). (Kashif et al., 2013) which emphasized
that inhabitants’ detailed reactive and deliberative behaviors must also be taken
into account and a co-simulation methodology proposed to find out the impact of
certain actions on energy consumption.
Nevertheless, human behavior is not only interesting during the design step, but
also during operation. It is indeed useful for diagnostic analyzes to discriminate
human misbehavior from building system performance, and also for energy man-
agement where strategies depend on human activities and, in particular, on the
number of occupants in a zone. Unfortunately, the number of occupants is not
easy to measure. Counting gates are expensive to deploy at room level inside a
whole building. This paper tackles this issue. It proposes occupancy estimators
combining different common measurements such as CO2 concentration, motion
detection, power consumption,. . . because only one measurement proved to be not
reliable enough to estimate the number of occupants. For instance, CO2 concen-
tration may be useful but in some configurations, when a window is opened for
instance, estimates become unreliable. Motion detection and power consumptions
depend on occupant activities. However, altogether, these measurements can be
combined to get a more reliable estimator.
Section 2 presents a state of the art about occupancy estimation. Section 3 dis-
cusses the proposed process that leads to an occupancy estimator suitable for a
specific context. Section 5 points out the most relevant measurements to con-
sider for an estimator. Section 6 focuses on how to obtain rules from a decision
tree structure. Section 7 compares estimates of occupancy with actual ones in the
context of an office.

2. State of the art

Occupant behavior is one of the major factors influencing building energy con-
sumption. (Honga et al., 2015) introduced methods in modeling occupant behav-
ior and quantifying its impact on building energy use. The major themes include
advancements in data collection techniques, analytical and modeling methods,
and simulation applications, which provide insights into behavior energy savings
potential and impact.
Numerous studies have developed various control systems and modeling methods
to better assist occupants to play active roles in buildings. In (Zhao et al., 2014),



electricity metered data of office appliances are used to build the occupant indi-
vidual and the group behavior models. An application is installed in the occupants
computer to reveal presence/absence information, whilst in this paper, the estima-
tion is totally based on common cheap non-intrusive sensors (i.e. motion detector,
CO2 concentration, . . . ).
Works aiming at finding occupancy using common sensors have been already
tackled and various methods have been investigated. Methods vary from basic sin-
gle feature classifiers that distinguish among two classes (presence and absence)
to multi-sensor, multi-feature models. A primary approach, which is prevalent in
many commercial buildings, is to use passive infrared ( PIR) sensors for occu-
pancy. However, motion detectors fail to detect presence when occupants remain
relatively still, which is quite common during activities like working on a com-
puter, or regular desk work. Furthermore, drifts of warm or cold air on objects can
be interpreted as motion leading to false positive detections. This makes the use
of only PIR sensors less attractive for occupancy counting purposes. Conjunction
of PIR sensors with other sensors can be useful as discussed in (Agarwal et al.,
2010). It makes use of motion sensors and magnetic reed switches for occupancy
detection in order to increase the efficiency of HVAC systems in smart buildings.
It is quite simple and non-intrusive. Apart from motion, acoustic sensors (Pad-
manabh et al., 2009) are also used. However, audio signals from the environment
can easily fool such sensors and, with no support from other sensors, it can report
many false positives. In the same way, other sensors like video cameras (Erickson
et al., 2011; Milenkovic and Amft, 2013b), which exploit the huge advances in the
field of computer vision and the ever increasing computational capabilities RFID
tags (Philipose et al., 2004) installed on ID cards, and sonar sensors (Milenkovic
and Amft, 2013a) plugged on monitors to detect the presence of a person at a com-
puter desk, have been used and proved to be much better at solving the problem
of occupancy counts, though they may not be used in most office buildings for
reasons like privacy and costs. The use of pressure and PIR sensors to determine
presence/absence in single desk offices has been discussed in (Nguyen and Aiello,
2012); further tagging of activities is based on this knowledge.
However, for various applications like activity recognition or context analysis
within a larger office space, information regarding the presence or absence of
people is not sufficient and an estimation of the number of people occupying the
space is essential. (Lam et al., 2009) investigates this problem in open offices,
estimating occupancy and human activities using a multitude of ambient infor-
mation, and compare the performance of hidden Markov models, support vector
machines and Artificial Neural Networks. Though none of these methods gen-



erates human-understandable rules, this may be helpful to manually adapt and
customize estimators without requiring a time-consuming occupancy labeling.
(Ebadat et al., 2013) focuses on how to accurately estimate the number of occu-
pants in a room by processing CO2 concentration, temperature and HVAC actu-
ation levels in order to identify a dynamic model. In (Dong et al., 2010), hidden
Markov models have been used for estimating occupancy using a wireless ambi-
ent sensing system as well as wired carbon dioxide sensors and a wired camera
network in order to establish actual occupancy levels.
The problem of real time estimation of occupancy in a commercial building has
also been investigated in (Liao and Barooah, 2010), where merging sensor data
with model predictions was essential. Additionally, real-time estimation of build-
ing occupancy is extremely valuable during emergency egress. In (Tomastik et al.,
2010), an extended Kalman filter, which combines sensor readings and a dynamic
stochastic model of people movements, was used.
An alternate approach aims at understanding the relationships between carbon
dioxide concentration, IAQ (Indoor Air Quality) and the number of occupants.
Such a physical CO2 model built on sensor networks has been extensively used in
(Aglan, 2003) with smart office projects to improve occupant comfort and min-
imize building energy use. In this paper, a model has been proposed to find out
the usefulness of using CO2 in occupancy estimation. (Nishi, 2012) uses CO2

concentration sensors to estimate the number of occupants in a small room with
controlled ventilation maintaining a constant CO2 concentration for environmen-
tal comfort. (Tachikawa and akihiro Oda, 2008) verifies the effectiveness of CO2

sensor installed in KNIVES terminals to estimate the number of people. (Risuleo
et al., 2015) presented a modeling of the dynamic relationship between occupancy
of a room and CO2concentration. In fact, since occupancy affects the indoor en-
vironment through heat gains and CO2, its estimation is crucial to determine the
evolution of indoor environmental conditions. A CO2 sensor is used to measure
CO2 concentration for assessing indoor vitiation. (Tachikawa et al., 2008) con-
firmed the effectiveness of this sensor in estimating the number of people. This
estimation has been done by estimating the amount of air ventilation using CO2

concentration measurements and the actual number of people, then estimating the
number of people by measured values of CO2 concentration and estimated amount
of air ventilation. Here, the number of people is one of the parameter needed for
effective control.
In (D’Oca and Honga, 2014), a data mining learning process has been proposed
to extrapolate office occupancy patterns and working user profiles from big data
streams. A data mining schedule learning method has been applied with the open



source data mining program RapidMiner to provide insights into patterns of oc-
cupancy in 16 offices.
(Hailemariam et al., 2011) exploits numerous features derived from multiple sen-
sor types. The classifiers use only two classes: one which represents the absence
of occupants and one which represents the presence of at least one occupant us-
ing decision tree. While in our paper the method aims at counting the number
of occupants in a space, so separate classes are used, also overfitting problem are
solved with analysing to the readable C4.5 method.
In general, an occupancy counting algorithm that fully exploits all the available
information coming from low cost and non-intrusive sensors is an important yet
little explored tool to solve problems in office buildings.

3. Data processing
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Figure 1: Sensor test bed at Grenoble INP

The test bed (figure 1) is an office in Grenoble Institute of Technology, which ac-
commodates a professor and 3 PhD students. The office frequently houses visitors
with a lot of meetings and presentations all throughout the week. The set-up for
the sensor network includes:
• 2 video cameras for recording real occupancy numbers and activities.
• An ambiance sensing network, which measures luminance, temperature,

relative humidity (RH), motions, CO2 concentration, power consumption,



door and window positions, acoustic pressure from microphone (described
as ’microphone’ in the rest of the article). Data are sent thanks to ENO-
CEAN protocol on significant value change event.
• A centralized database with a web application for continuously retrieving

data from different sources.
To perform the task of finding the number of occupants, a link needs to be estab-
lished between the office environment and the number of people in it. The office
environment can be represented as a set of state variables, Vt = [v1, v2, . . . , vn]t.
This set of state variables Vmust be indicative of occupancy at any instance of
time t . A state variable can be termed as a feature, and therefore the set of features
as a feature vector. Similarly, the n-dimensional space that contains all possible
values of such a feature vector is the feature space. The underlying approach for
the experiments is to formulate the classification problem as a map from a fea-
ture vector into some feature space that comprises several classes of occupancy.
Therefore, the success of such an approach depends heavily on how good (those
which provide maximum separability between classes) the selected features are.
In this case, features are attributes from multiple sensors accumulated over a time
interval. The choice of interval duration is highly context-dependent, and has to
be done according to the granularity required. However, some features do not al-
low this duration to be arbitrarily small. As an example, it has been observed that
CO2 levels do not rise immediately, and one of the factors affecting this delay is
the ventilation of the space being observed. The results presented in this paper
are based on an interval of Ts = 30 minutes (which has been referred to here as 1
quantum).
Before computing any feature for the training data, some basic data pre-processing
had to be carried out: application of an outliers removal algorithm and interpola-
tion for non-existent data. The interpolation part is necessary to fill in the missing
values from sensor data. This is frequent in devices which are event-triggered
i.e., no data points are reported if there is no change in the feature being reported.
Thus, the previous data point had to be duplicated to fill the blanks.

3.1. Data preprocessing
Despite the use of reliable sensors, some single data point spikes have been ob-
served in the recordings, which are attributed to random faults in the sensors. The
faults can easily be visually identified in a continuous time-series, but in order to
identify and remove them statistically, it is necessary to understand what makes
a data point an outlier. Subsequent removal is almost trivial. Contextual outliers
are defined as data points which, when compared with its preceding and ensuing



data points, seem highly improbable. These points were identified as those that
simultaneously answer the equations ∀k:

|∆xk| > m(∆x) + λσ(∆x)

|∆xk+1| > m(∆x) + λσ(∆x)

∆xk+1.∆xk < 0

with:
xk the value of the feature at time quantum k
∆x the sequence of differences between two consecutive data:

(xk+1 − xk,∀k) with ∆xk = xk − xk−1

m(.)the average value
σ(.) the standard deviation
λ a configurable parameter, typically λ = 5

All the data points that satisfy the above equation were removed.

3.2. Data interpolation
Let Tk = {ti : ti ∈ [kTs, (k + 1)Ts]} be the time samples related to time quantum
k. Two kinds of sensors exist:

counters such as PIR motion detectors which send impulses that have to be com-
puted for each time quantum

states which send a value any time the measured state such as the temperature,
the CO2 concentration, or a door or window contact changes. The way of
averaging state variables is given in figure 2.

The following measurements directly corresponding to a basic feature were taken
into consideration:
• averaged CO2 concentration in this office and in the corridor (outdoor CO2

concentration is assumed to be 395ppm)
• averaged temperature in this office, the corridor and outdoor
• averaged opening for door and windows. This feature is extracted for the

door and window contact sensors. 0 means the door/window was always
closed and 1 always opened. A value in (0, 1) denotes the time ratio during
which it was opened during the related time quantum.
• motion counter. The PIR sensor in use is a binary sensor that reports a value

of 1 whenever it senses some motion.
• time slot generated from calendar: NIGHT, PRELUNCH, LUNCH, POSTLUNCH.

It corresponds to the respective time intervals [20-8),[8-12),[12-14),[14-20).



Figure 2: State averaging principle

• type of day generated from calendar: one among working, absence
Additional compound features are also considered:
• averaged opening for door and windows. This feature is extracted for the

door and window contact sensors. 0 means the door/window was always
closed and 1 always opened. A value in (0, 1) denotes the time ratio during
which it was opened during the related time quantum.
• difference between outdoor and indoor averaged temperatures
• CO2 trend defined as ∆CO2K = CO2k − CO2k−1

4. Calculation of information gains

From the large set of features discussed above, some of them may not be worth
considering in order to achieve our target of occupancy classification. These fea-
tures are the ones which, when added to the classification algorithm, make no
difference to the overall output. In other words they are not useful enough for
our purpose. As an example, absolute temperature readings would be useless, as
it is not representative of occupancy at all. One quantitative measurement of the
usefulness of a feature is information gain. Before detailing what an information
gain is, it is imperative to discuss the concept of entropy. Entropy is an attribute of
a random variable that categorizes its disorder. The higher the entropy, the higher
the disorder associated with the variable i.e. the less it can be predicted.
A supervised learning approach has been used. Hence, for preparing training
data, occupancy count was manually annotated using the video feed from two



cameras strategically positioned in the office. The weighted average of the number
of people visiting the office was recorded for each 30 minutes of the day. To
complement this data, a keyboard connected to a Raspberry PI module was set up
for use by the visitors for updating person-count in the office as they entered/left
the office. Data recorded in this way is much easier to feed to a script, hence
allowing full automation of the training part; provided visitors and office workers
care to follow procedures, it would be possible to consider the data obtained as
reliable.
The decision tree classification technique has been selected as our prediction
model because it provides human-readable results which can be analyzed and eas-
ily adapted by building managers. The decision tree algorithm selects a class by
descending a tree of decision nodes where each internal node represents a compar-
ison of a single feature value with a learned threshold. The leaf nodes represent
the selected classes for the given features. The target of the decision tree algo-
rithm is to select features that are more useful for classification. As information
gain approaches zero, the difference between the initial disorder (entropy) of the
target variable and the entropy of the variable after adding the observation from
the test feature x becomes negligible. Hence, this particular feature will not be
very helpful during the decision-making process.
A decision tree algorithm provides quite a few advantages. As per (Quinlan,
1986), the features with higher information gains are situated much higher up
the tree, therefore making the process of feature selection intrinsic to the classi-
fier. Since the path to the leaf may consist of many internal nodes, each of which
may check different feature values, such paths exploit the correlation among the
different features. The decision tree approach offers the advantage of generating
rules that the path towards the leaf node is quite informative and it clearly points
out direct causes for the selection of a particular class. Unlike methods that use
decision boundaries (SVMs, regression techniques), decision tree analyzes are in-
dependent of the scale of the input data, so no or little conditioning of the data is
necessary.
Using this raw training data, the features previously mentioned were extracted.
A vector of features and target 〈f1, f2, f3, . . . , fN ; y〉 was generated for each time
quantum, where fi stands for the ith feature and y, for the level of occupancy.
Here, the level corresponds to an interval in the partition L = 〈I0, . . . , Il−1〉where
l in the number of occupancy levels.



5. Selection of best features

This section introduces the most relevant features that have been identified.

5.1. Occupancy from power consumption
Power consumption sensors are easy to deploy in most households and offices. In
order to investigate the possibility of using power consumption data in occupancy
recognition, 4 sensors have been connected to inhabitant laptops in the office stud-
ied. By analyzing the power consumption data, a threshold was determined to
discriminate between cases of computer standby and cases in which someone was
working on a laptop, which increased the power consumption and lead to wrong
occupancy estimations (Kleiminger et al., 2013).

πi,k(threshold) =

{
0 if poweri,k < threshold
1 otherwise

where poweri stands for the ith laptop averaged power consumption during time
quantum ki and threshold = 15W typically. The level of occupancy is then esti-
mated with l̂πk (threshold) =

∑
i πi,k(threshold). It has to be noticed that although

this estimator is one of the most relevant feature, it is not reliable in the presence
of visitors.

5.2. Occupancy from CO2 physical model
An alternative approach for occupancy estimation can be done by using physical
CO2 model. According to ASHRAE (1985), the model given by (1) represents
the relationship between carbon dioxide generation, volumetric flow rate of fresh
air entering the office, volumetric air flow rate going out of the office, and oc-
cupancy (Aglan, 2003). The proposed approach relies on the data for tuning air
flows coming fromCO2 concentration sensors, door contact, window contact, and
occupancy labels extracted from video cameras, and from constant parameters as-
sociated with the office.

V
dCin(t)

dt
= −

(
Qout(t) +Qcor(t)

)
Cin(t)+Qout(t)Cout+Qcor(t)Ccor(t)+n(t)S

(1)



parameter initial value adjusted value
S 7ppm. m3/s 19.6ppm. m3/s
Cout 395ppm 420ppm
Q0
out 0.004m3/s 0.076m3/s

Q0
cor 0.004m3/s 0m3/s

QD 0.04m3/s 0.1m3/s
QW 0.04m3/s 0.09m3/s

Table 1: Adjusted parameter values for physical CO2 model

It yields the following estimator:

nk =
Cin,k+1 − αkCin,k

Sβk
− Qout

0 Cout + (DkQD +Qcor
0 )Ccor,k

S
(2)

αk = e−
(WkQW+Qout

0 +DkQD+Qout
0 +Qcor

0 )Ts

V and βk =
1− αk

WkQW +DkQD +Qout
0 +Qcor

0

where:
• time quantum Ts=1800 seconds
• indoor CO2 concentration: Cin(t)
• corridor CO2 concentration: Ccor(t)
• average opening of the door during a time quantum k: Dk ∈ [0, 1]
• average opening of the window during a time quantum k: Wk ∈ [0, 1]
• CO2 production for 1 average person: S
• number of persons: nk
• air flow exchange with corridor: Qcor,k = DkQD +Qcor

0 where Qcor
0 stands

for leaked air flow with corridor
• air flow exchange with outside: Qout,k = WkQW +Qout

0

The first step is to find the best parameter values for invariant parameters S, Cout,
Q0
out, Q

0
cor, QW and QD using an iterative nonlinear optimization approach, tak-

ing into account the positions of the door and the window as shown in table 1.
An objective function is determined in order to minimize the difference between
actual and measured numbers of occupants within the room. Optimization covers
a long time span but it can be imagined that less frequent observations could be
sufficient.
The next step is to use these adjusted parameters for calculating the number of
occupants over a time quantum lasting 30 minutes. Occupancy estimation is ob-
tained from equation (2). Finally, the last step is to use this estimation of occupants
as one feature in the classification model.



5.3. Occupancy from acoustic sensor
Acoustic features are a very important part of occupancy classification when other
non-intrusive sensors offer poor class separation. A single omni-directional mi-
crophone can be used as an important tool, when it comes to occupancy classifi-
cation. Omni-directional microphones are those which can pick up sound from
virtually any direction. They are considerably cheaper than equivalent multi-
ple unidirectional microphones, and have proven valuable in places where track-
ing/listening to multiple sources is required (Chen et al., 2012; Nuria et al., 2004)
like during meetings or discussions. In this paper, the recording signal from an
office generally consisted of background environmental noise with a few human
voices, some doors opening, and tapping events. From the recording signal the
RMS amplitude feature was defined, which is the root mean square (or average)
of the amplitude of a sound. However, it is related to the volume of the sound:

VRMS =

√∑i=1
n (Si

2)

n
, where n is the number of samples taken and Si the ith sam-

ple. High and low RMS value will give an indication of the level of occupants
within the office; this relationship is easy to visualize in figure 6, which represents
both the RMS amplitude in dB for 4 days, and the actual occupancy profile with
respect to time (quantum time is 30 minutes).

5.4. Deciding the number of occupancy levels
In this section, a method for choosing the number of levels (L) of occupancy for
classification purposes will be discussed. This number is not fixed and can be
changed in accordance with the required average error (average distance between
the actual occupancy numbers and the mid points of estimated levels). To de-
termine the number of levels and related non overlapping ranges of occupancy,
training data are partitioned into L clusters with 2 ≤ L ≤ N , where N is the
maximum possible number of occupants. At L = 2, the problem amounts to
classifying the presence and absence of people. Table 2 shows the different dis-
cretizations considered.

5.5. Analysis of the most relevant features
To calculate the information gain, it is necessary to discretize features which con-
tain values that are continuous in nature. A typical discretization function splits
a large continuous range into several sub-ranges. However, such a function relies
upon:
• sorting the values within the feature to be discretized.



Number of levels Discretizations
L=2 {[= 0], [> 0]}
L=3 {[= 0], [> 0,≤ 3], [> 3]}
L=4 {[= 0], [> 0,≤ 2], [> 2,≤ 4], [> 4]}
L=5 {[= 0], [> 0,≤ 1], [> 1,≤ 2.2], [> 2.2,≤ 3.2], [> 3.2]}
L=6 {[= 0], [> 0,≤ 1], [> 1,≤ 2], [> 2 ≤ 3], [> 3,≤ 4], [> 4]}

Table 2: Levels of occupancy considered with ranges

• determining a splitting cut-point, in accordance with given criteria (maxi-
mum and minimum values for each feature).

The first condition requires the elements in the ranges to be comparable. The
considered features (CO2 concentration, motion fluctuations, number of people)
are continuous ranges of real numbers, hence can be sorted. For the second, we
calculated information gain by distributing our continuous features, respectively
into 5 and 8 (intuitively chosen) ranges, to get a better insight into the relationship
between the number of ranges and the usefulness of the feature.

CO2 concentration
disc. 1 {[390, 450], [450, 690], [690, 900], [900, 1300], [> 1300]}
disc. 2 {[390, 420], [420, 500], [500, 600], [600, 700], [700, 800],[800, 900],

[900, 1300], [> 1300]}
motion counter

disc. 1 {[0, 2], [2, 4], [4, 6],[6, 9],[> 9]}
disc. 2 {[0, 2), [2, 3), [3, 4), [4, 5),[5, 7), [7, 9),[9, 11),[> 11]}

occupancy levels from physics
disc. 1 {[0, 0.5], [0.5, 1.5], [1.5, 3], [3, 4.5], [> 4.5]}
disc. 2 {[0, 0.5], [0.5, 1], [1, 1.5],[1.5, 2], [2, 3], [3, 4.5], [> 4.5]}

Using information gain values (see Table 3), the most relevant features to esti-
mate occupancy could be determined. The table presents the information gains
for the considered discretizations. Selected classifiers would have to determine
an optimal discretization. It is done implicitly by the C4.5 and random forest
classification algorithms which are presented in the next section.
Finally, after removing less important features, the following main features were
considered:

1. motion counter
2. acoustic pressure(microphone)
3. occupancy from power



Feature IG1 IG2

acoustic pressure 0.68 0.78
motion counter 0.62 0.75
occupancy from physical model 0.55 0.56
occupancy from power 0.5 0.55
CO2 concentration 0.5 0.53
CO2 trend 0.452 0.49
door opening 0.41 0.41
window opening 0.341 0.341
indoor temperature 0.08 0.093
indoor/outdoor temperature dif-
ference

0.07 0.082

day type 0 0

Table 3: Information gain for discretization 1 and 2

Let’s now use these features alongside C45 and random forest classifiers to get
estimators combining some of features.

6. Getting rule-based estimators

With decision trees. data are split at each node forming a tree according to deci-
sions, which corresponds to nested if-then-else rules. In the if part of such a rule,
the decision is made according to a feature of the recorded data. These rules cover
both binary (fi ∈ {0, 1}) and continuous data. For example, figure 3 shows part
of the final tree structure with root nodes and a few leaf nodes.
In this example, the root is the feature test X2 i.e., acoustic pressure average value
from microphone. It is the most meaningful feature in terms of information gain,
and the sub trees unravel in accordance to the rules:

if Xi ≤ threshold then
left child node

else
right child node

end if
These rules were repeated in order to build all sub-trees and determine the classi-
fication levels, depending on the most informative feature in each sub tree i.e.,:



Figure 3: Part of final Decision Tree structure

• motion detector ∧ acoustic pressure ∧ occupancy from power consumption
∧ motion detector→ classification level3.

For binary data the threshold was 0.5, while for continuous data defining the
threshold involved sorting out the data in ascending order then calculating the
mid point between successive points (fi,fi+1), and choosing a precise value for
the threshold to be applied in the decision tree (Mitchell, 2007).

6.1. Random forest
A random forest is a meta estimator that fits a number of decision tree classifiers
on various sub-samples of the dataset and uses averaging to improve the predic-
tive accuracy and control over-fitting. In other words, random forest is a learning
method for classification and regression that operates in constructing a lot of deci-
sion trees during training time, then choosing the appropriate classification among
all the trees within. Using random forest allows testing of several classifiers, each
tree is then constructed using a different bootstrap sample among the original data.
About one third of the cases are left out of the bootstrap sample and not used in
the construction of the actual tree. In addition, random forest will provide more
validation to classification results and avoids the risk of over-fitting training data



. However, over fitting happens when the learning algorithm continues to develop
hypotheses, that reduces training set error at the cost of an increased test set error.

6.2. Limiting tree depth
Decision trees provide human-readable classification (if-then) rules that could eas-
ily be read to check their realism but could also easily be adapted to another room
environment. Indeed, generating a decision tree requires the labeling of a data
set with actual occupancies: it raises privacy issues because of the video; also
the labeling is time consuming. Reading the parameters of another classifier is
more complicated than reading decision tree rules e.g. the hyper parameters in
support of a vector machine. Readability of classifier parameters open the gate to
its generalization onto different environments.
The maximum tree depth is considered to be a limiting factor to stop further split-
ting of nodes when the specified tree depth has been reached during the building
of the initial decision tree.
The depth of a tree varies according to the size and nature of the sample set.
For example if the depth of the tree is set to ’1’, a tree with a single node is gen-
erated. Otherwise, the most complicated case builds a complete tree, where every
path tests every feature. Limiting the depth avoids data over-fitting phenomena
by rejecting non significant features. Assume ns samples and nf features, at each
level (i), the remaining(nf − i) features for each sample at the level(i) should be
examined to calculate the information gain. However, a learned tree is seldom
complete (number of leaves is smaller or equal to ns). In practice, complexity
is proportional to both the number of features (nf ) and the number of training
samples (ns).
Furthermore, a trade-off appears between the impurities and the depth of the
leaves of a tree. The nodes are expanded until every feature has already been
included along this path through the tree, or all the training samples associated
with this leaf node reached the same target value (i.e. their entropy is zero), or
there are no remaining features for further partitioning. In general, a deep tree
with many leaves is usually highly accurate when using the training data but less
with the validation data. In addition, finding a shorter decision tree is preferred: it
is indeed easier to understand and more reliable than longer trees, and also easier
to implement and use.
Using labels is essential with supervised learning. These labels were obtained
from video camera footage as discussed before. However, this occupancy detec-
tion system gave rise to concerns regarding the occupants’ privacy. Another refer-
ence estimator could have been used instead: for instance the ‘motion counter’ or



Average error decision tree average error random forest support
class 1 0.02 0.02 422
class 2 0.39 0.0.35 87
class 3 1 0.91 41
class 4 1.5 1.4 17
class 5 2 2 7
avg/total 0.24 0.23 547

Table 4: Decision tree classification results considering all features

the ‘occupancy from power’ that proved reliable in many situations. Then, should
a problematic situation occur, it could be more deeply investigated.

7. Resulting occupancy estimators

The C4.5 decision tree and random forest algorithms (Quinlan, 2014) have been
used to perform recognition tests using aggregated features and labels extracted
from video cameras. Five occupancy levels were defined to generate decision
trees because of the maximum number of occupants in the office.
Training data covered 22 days from 02-November-2015 to 23-November-2015,
whilst the validation data was collected over 12 days from 04-May-2015 to 15-
May-2015. Figure 4 shows the results obtained from the learned decision tree
and the random forest considering all the features as input to the detection model,
where we plotted both actual and estimated occupancy profiles as a graph of the
number of occupants with relation to time (quantum time was 30 minutes). The
accuracy achieved from decision tree and random forest was 81% (number of cor-
rectly estimated points divided by the total number of points), and the average
error from decision tree was 0.24 persons, while it was 0.23 from random forest
(average distance between actual points and estimated points). Table 4 represents
the average error values for each class of estimation. Average error is more inter-
esting than accuracy in the validation of occupancy estimation. Indeed, average
error allows us to distinguish each change in the estimated values while accuracy
only considers the correctly estimated points.
Figure 5 represents the results obtained from the decision tree and random forest
considering only the main features. It lead to an improvement in the estimation
of occupancy with an accuracy of 88% and an average error of 0.19 occupant
on average, while random forest accuracy was 86% and average error was 0.18.



Figure 4: Occupancy estimation from DT using all features

Average error decision tree Average error random forest support
class 1 0.018 0.015 422
class 2 0.09 0.5 87
class 3 0.7 0.4 41
class 4 1 1 17
class 5 1.85 1.9 7
avg/total 0.19 0.18 547

Table 5: Decision Tree classification results after selecting main features

Additionally, the results indicate that motion detector, microphone, and power
consumption have the largest correlation with the number of occupants.
A significant improvement in occupancy estimation for all levels could be ob-
served by comparing the results obtained from the decision tree and random forest
classifiers using all the features (table 4) with the one using only the main features
(table 5). Acoustic pressure (figure 6) was identified as one of the most important
feature for occupancy classification according to the final decision tree classifica-
tion, which ranked the features in an ascending order according to the information
gain for each feature, (figure 7). Acoustic pressure improved the estimation in
occupancy at high levels.
A deeper analysis has been done regarding the accuracy and the average error



Figure 5: Occupancy estimation from DT using main features

for each day during the testing period ; see table 6. It’s obvious the accuracy
has a strong relation with the type of the day, in other words, it’s very related to
the actual level of occupancy in the studied area. Video camera has been used
to investigate what happened during the days with poor results. The highest ac-
curacy is achieved during the non-working days (08/05/15, 09/05/15, 14/05/15,
15/05/15) with almost 100% while the lowest accuracy (70% to 75%) is met dur-
ing the days of high level of occupancy with more than four persons (04/05/15,
05/05/15, 06/05/15, 07/05/15, 13/05/15). For days where occupancy does not
exceed 2 persons (09/05/15, 10/05/15, 11/05/15), an accuracy of 96% is obtained.
Figure 8 shows average errors associated with each level when applying decision
tree and random forest procedures. Accordingly, five levels of occupancy was the
best option for the occupancy classification.
Figure 9 represents the results of average errors on occupancy estimation when
reducing the decision tree and random forest depths from maximum depth (i.e.,
12 to 1).
Figure 9 shows the best depth for decision trees is equal to 5, but it is important
to notice that a depth equal to 3 is a good compromise for simplicity. A depth 4 is
really interesting according to the random forest results. For the sake of readability



Day Accuracy DT Accuracy RF Average DT Average RF
04/05/15 76% 76% 0.32 0.3
05/05/15 78% 76% 0.4 0.4
06/05/15 70% 70% 0.48 0.46
07/05/15 76% 74% 0.3 0.28
08/05/15 100% 100% 0 0
09/05/15 97% 97% 0.01 0.01
10/05/15 93% 94% 0.08 0.07
11/05/15 92% 93% 0.19 0.16
12/05/15 81% 78% 0.27 0.23
13/05/15 76% 78% 0.3 0.4
14/05/15 100% 100% 0 0
15/05/15 100% 100% 0 0

Table 6: Accuracy of each day for testing data

Figure 6: Microphone for three days



Figure 7: Ranking of features

Figure 8: Optimal number of levels for estimation



Figure 9: Maximum depth

and because it yields good results still, a depth limited to 2 has been chosen for
the next analyses of occupancy estimation.
The tree is easily readable as shown in figures 10 and 11. Note that (if-then) rules
from the tree structure could now be extracted easily and be applied to another
context and the problem of overfitting is solved.

if motion detector is low and power consumption is low then
≈ 0 person

else if motion detector is low and and power consumption is high then
≈ 1 person

else if motion detector is high and microphone is low then
≈ 2 persons

else if motion detector is high and microphone is high then
≈ 3 persons

end if
To validate these rules, figure 12 shows the estimation of occupancy levels for 20
half working hours. The average errors achieved was 0.39 for 20 half hours during
working hours.
For more validation and generalizing the occupancy estimation process, more data



Figure 10: Decision tree structure for max depth=2

Figure 11: Decision tree rules



Figure 12: Results for 20 time quanta for occupancy estimation

Figure 13: Data sets used for the occupancy estimation

were collected and were divided into three periods (see figure 13):

1. training period for 22 days

2. validation period for 12 days

3. extrapolation period for 37 days

During the estimation process, almost 275000 data points were collected as indi-
cated in table 7.
Figure 14 shows two different strategies for the estimation of occupancy taking
into account the limitation to depth=2:



Type of sensor Datapoints
Power consumption (4 lap-
tops)

92100

Motion detector 3874
microphone 1937
Labels 1728

Table 7: Raw sensor data collected over 11 days

Figure 14: Estimation occupancy for training data

• First strategy: applying the decision tree estimation process for the train-
ing period, where achieved average error was 0.09 for the maximum depth
and 0.2 for depth=2, according this results 0.09 is the lowest average error
that can be achieved in any another period for estimation process, then the
validation period where achieved average error was 0.19.

• Second strategy: applying the rules, which were extracted and obtained
from the decision tree structure, for the extrapolation period.

Finally, the average number of occupants can be estimated for long periods of
time, up to 2 months. Figure 15 shows the average number of occupants for each
day of the week. The above results indicate that using decision tree rules gives
quite a good estimate of the occupancy.



Figure 15: Periods for occupancy estimation



type of sensor Price (e)
power consumption 4*88.75e
motion detector 119e
microphone 150 e

Table 8: Price of the sensors

type of sensor estimation
average
error

motion detector 0.26
power consumption 0.265
microphone 0.48

Table 9: Price of the sensors

7.1. Economical analysis
To complete the study, let us show how to select classifiers from an economical
point of view i.e. the average price of the requested sensors. Costs are presented
in table 8 according to (Eltako, 2014).
Since decision tree algorithms have different estimation results for different input
features, it is possible to decide the most relevant features to retain according to
two factors: sensor costs and average error in occupancy.
With three main features, the number of feature combinations is seven combi-
nations, according to C =

∑i=n
i=1

n !
ri !(n−ri) ! , where n is the maximum number of

features (i.e., 3), and ri the number of features in the combination i. However,
these combinations give the opportunity to determine the best compromises.
The 7 combinations allow a comparison between all the different possible arrays
of sensors including each sensor alone. It is obvious from figure 16 that the best
average error is achieved by using the 3 main sensors i.e. point (4) with an average
error of 0.19. Point (0) refers to the use of motion detector sensor alone with an
average error of 0.26. Table 9 shows different scenarios of occupancy estimation
using each single sensor, it is obvious that using all the three main features makes
the estimation process more accurate.
The points in figure 16 shows the 7 different combinations of features. The red
ones are those which represent Pareto optimal i.e. the best compromise in terms
of cost and average error; they are detailed in table 10.



Figure 16: Occupancy estimation with different input features

8. Conclusion

A supervised learning approach has been proposed in this paper to estimate the
number of occupants in an office setup. It results in a virtual sensor that relies
on other sensors but with a superior performance. The proposed process makes it
possible to determine the valuable sensors using the concept of information gain.
In the proposed work, motion fluctuation counters using PIR sensors, power con-
sumption sensors, a CO2 physical model, a microphone as well as door opening
contacts are found to be the most interesting sources of information. Decision
trees have been obtained using C4.5 classification algorithms. Occupancy esti-
mation using these trees gave a superior performance with an average estimation
error of 0.19 occupants over a twelve days’ test period. Supervised learning has
been carried out using two video cameras but this approach was limited because of
privacy issues. Another option has been envisaged: using discrete feedback from
occupants themselves through devices like a keyboard or any other means, using



number
of
case

price
(e)

average
error

used features

1 119 0.26 motion detector
2 335 0.24 motion detector and microphone
3 407 0.196 motion detector and power consumption
4 662 0.19 motion detector, power consumption and mi-

crophone

Table 10: The best cases for occupants estimation

occupancy from other estimators such as power consumption. In addition, because
decision trees are human-readable, they can be adjusted using expert knowledge
and estimation rules (if-then) extracted from the decision tree structure. For in-
stance, thresholds can be adjusted and nodes for which information is not available
can be removed depending on the considered living areas. These two extensions
can be combined to avoid the use of video cameras.
Estimating the number of occupants is very interesting in many areas: simulating
occupant behavior at design stage, predicting the number of occupants at energy
management stage, dissociate physical surroundings from building usage at di-
agnosis stage etc.. The proposed approach can be extended to the estimation of
occupant’s activities, which would be useful for developing interactive systems
where suitable advice could be provided to occupants at appropriate times.
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