
HAL Id: hal-01864717
https://hal.science/hal-01864717

Submitted on 30 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compositional Verification for Timed Systems Based on
Automatic Invariant Generation

Lacramioara Astefanoaei, Souha Ben Rayana, Saddek Bensalem, Marius
Bozga, Jacques Combaz

To cite this version:
Lacramioara Astefanoaei, Souha Ben Rayana, Saddek Bensalem, Marius Bozga, Jacques Combaz.
Compositional Verification for Timed Systems Based on Automatic Invariant Generation. Logical
Methods in Computer Science, 2015, 11 (3), �10.2168/LMCS-11(3:15)2015�. �hal-01864717�

https://hal.science/hal-01864717
https://hal.archives-ouvertes.fr

COMPOSITIONAL INVARIANT GENERATION FOR TIMED SYSTEMS

SOUHA BEN RAYANA, LĂCRĂMIOARA AŞTEFĂNOAEI, SADDEK BENSALEM, MARIUS BOZGA
AND JACQUES COMBAZ

Univ. Grenoble Alpes, VERIMAG, F-38000 Grenoble
e-mail address: {Souha.BenRayana, lastefan, Saddek.Bensalem, Marius.Bozga, Jacques.Combaz}@imag.fr

Abstract. We propose a method for compositional verification to address the state space
explosion problem inherent to model-checking timed systems with a large number of com-
ponents. The main challenge is to obtain pertinent global timing constraints from the
timings in the components alone. To this end, we make use of auxiliary clocks to auto-
matically generate new invariants which capture the constraints induced by the synchroni-
sations between components. The method has been implemented in the RTD-Finder tool
and successfully experimented on several benchmarks.

1. Introduction

Compositional methods in verification have been developed to cope with state space ex-
plosion. Generally based on divide et impera principles, these methods attempt to break
monolithic verification problems into smaller sub-problems by exploiting either the struc-
ture of the system or the property or both. Compositional reasoning can be used in different
manners e.g., for deductive verification, assume-guarantee, contract-based verification, com-
positional generation, etc.

The development of compositional verification for timed systems remains however chal-
lenging. State-of-the-art tools [8, 16, 35, 25] for the verification of such systems are mostly
based on symbolic state space exploration, using efficient data structures and particularly
involved exploration techniques. In the timed context, the use of compositional reasoning
is inherently difficult due to the synchronous model of time. Time progress is an action
that synchronises continuously all the components of the system. Getting rid of the time
synchronisation is necessary for analysing independently different parts of the system (or
of the property) but becomes problematic when attempting to re-compose the partial veri-
fication results. Nonetheless, compositional verification is actively investigated and several
approaches have been recently developed and employed in timed interfaces [2] and contract-
based assume-guarantee reasoning [18, 30].

1998 ACM Subject Classification: D.2.4 Software/Program Verification, F.3.1 Specifying and Verifying
and Reasoning about Programs.

Key words and phrases: compositional verification, timed automata, invariants, component invariants,
interaction invariants, interactions.

Research supported by the European Integrated Project 257414 ASCENS and ICT Collaborative Project
288175 CERTAINTY.

LOGICAL METHODS
IN COMPUTER SCIENCE DOI:10.2168/LMCS-???

c© Ben Rayana et al.
Creative Commons

1

2 BEN RAYANA ET AL.

In this paper, we propose a different approach for exploiting compositionality for anal-
ysis of timed systems. The driving principle is to use invariants as approximations to exact
reachability analysis, the default technique in model-checking. We show that rather precise
invariants can be computed compositionally, from the separate analysis of the components
in the system and from their composition glue. This method is proved to be sound for the
verification of safety state properties. However, it is not complete.

The starting point is the verification method of [12], summarised in Figure 1. The
method exploits compositionality as explained next. Consider a system consisting of com-
ponents Bi interacting by means of a set γ of multi-party interactions, and let ϕ be a system
property of interest. Assume that all Bi as well as the composition through γ can be inde-
pendently characterised by means of component invariants CI (Bi), respectively interaction
invariant II (γ). The connection between the invariants and the system property ϕ can be
intuitively understood as follows: if ϕ can be proved to be a logical consequence of the
conjunction of components and interaction invariants, then ϕ holds for the system.

`
(∧

i CI (Bi)
)
∧ II (γ)→ ϕ

‖γBi |= �ϕ
(VR)

Figure 1: Compositional verification

In the rule (V R) the symbol “ ` ” is used to underline that the logical implication can
be effectively proved (for instance with an SMT solver) and the notation “‖γBi |= �ϕ” is
to be read as “ϕ holds in every reachable state of ‖γBi”.

The verification rule (VR) in [12] has been developed for untimed systems. Its direct
application to timed systems may be weak as interaction invariants do not capture global
timings of interactions between components. The key contribution of this paper is to im-
prove the invariant generation method so to better track such global timings by means of
auxiliary history clocks for actions and interactions. At component level, history clocks
expose the local timing constraints relevant to the interactions of the participating com-
ponents. At composition level, extra constraints on history clocks are enforced due to the
simultaneity of interactions and to the synchrony of time progress.

As an illustration, let us consider as running example the timed system in Figure 2
which depicts a “controller” component serving n “worker” components, one at a time.
The interactions between the controller and the workers are defined by the set of synchro-
nisations {(a | bi), (c | di) | i ≤ n}. Periodically, after every 4 units of time, the controller
synchronises its action a with the action bi of any worker i whose clock shows at least 4n
units of time. Initially, such a worker exists because the controller waits for 4n units of
time before interacting with workers. The cycle repeats forever because there is always a
worker “willing” to do b, that is, the system is deadlock-free. Proving deadlock-freedom
of the system requires to establish that when the controller is at location lc1 there is at
least one worker such that yi − x ≥ 4n− 4. Unfortunately, this property cannot be shown
if we use (VR) as it is in [12]. Intuitively, this is because the proposed invariants are too
weak to infer cross constraints relating the clocks of the controller and those of the workers:
interaction invariants II (γ) relates only locations of components and thus at most elimi-
nates unreachable configurations like (lc1, . . . , l2i, . . .), while the component invariants can
only state local conditions on clocks such as x ≤ 4 at lc1. Using history clocks allows to
recover additional constraints. For example, after the controller returns from lc2 to lc1 for

COMPOSITIONAL INVARIANT GENERATION FOR TIMED SYSTEMS 3

the first time, whenever it reaches lc1 again, there exists a worker i whose clock has an
equal value as that of the controller. Similarly, history clocks allow to infer that different
(a | bi) interactions are separated by at least 4 time units. These constraints altogether are
sufficient to prove the deadlock freedom property.

lc0

lc1x ≤ 4

lc2

x ≥ 4n
x := 0

a, x = 4
x:=0

c
x := 0

a

c

Controller

l11

l21

b1
y1 ≥ 4n

d1
y1 := 0

b1

d1

Worker1l12

l22

b2
y2 ≥ 4n

d2
y2 := 0

b2

d2

Worker2

l13

l23

b3
y3 ≥ 4n

d3
y3 := 0

b3

d3

Worker3

Figure 2: A timed system

Organisation of the paper. This paper is essentially an extended version of the con-
ference paper [5]. The extension is threefold with respect to (1) incorporating proofs, (2)
detailing technicalities about handling initial states, and (3) formalising three heuristics to
speed up and simplify invariant generation. Section 2 recalls the needed definitions for mod-
elling timed systems and their properties. Section 3 presents our method for compositional
generation of invariants. Section 4 describes the heuristics while Section 5 shows their use
in the case studies we experimented with in our implementation. Section 6 concludes.

2. Timed Systems and Properties

In the framework of the present paper, components are timed automata and systems are
compositions of timed automata with respect to multi-party interactions. The timed au-
tomata we use are essentially the ones from [3], however, slightly adapted to embrace a
uniform notation throughout the paper.

Definition 2.1 (Syntax). A component is a timed automaton (L,A,X , T, tpc, s0) where
L is a finite set of locations, A a finite set of actions, X is a finite set of local1 clocks,
T ⊆ L × (A × C × 2X) × L is a set of edges labelled with an action, a guard, and a set of
clocks to be reset, tpc : L→ C assigns a time progress condition2 to each location. C is the
set of clock constraints and s0 ∈ L×C provides the initial configuration. A clock constraint
is defined by the grammar:

C ::= true | x#ct | x− y#ct | C ∧ C
with x, y ∈ X , # ∈ {<,≤,=,≥, >} and ct ∈ Z. Time progress conditions are restricted to
conjunctions of constraints as x ≤ ct .

1Locality is essential for avoiding side effects which would break compositionality and local analysis.
2To avoid confusion with invariant properties, we prefer to adopt the terminology of “time progress

condition” from [14] instead of “location invariants”.

4 BEN RAYANA ET AL.

Before recalling the semantics of a component, we first fix some notation. Let V be the
set of all clock valuation functions v : X → R≥0. For a clock constraint C, v |= C denotes
the evaluation of C in v. The notation v+δ represents a new v′ defined as v′(x) = v(x)+δ
while v[r] represents a new v′ which assigns any x in r to 0 and otherwise preserves the
values from v.

Definition 2.2 (Semantics). The semantics of a component B = (L,A,X , T, tpc, s0) is
given by the labelled transition system (Q,A,→, Q0) where Q ⊆ L×V denotes the states
of B, → ⊆ Q× (A ∪ R≥0)×Q denotes the transitions according to the rules:

• (l,v)
δ→ (l,v + δ) if

(
∀δ′ ∈ [0, δ]

)
.(tpc(l)(v + δ′)) (time progress);

• (l,v)
a→ (l′,v[r]) if

(
l, (a, g, r), l′

)
∈ T , g(v) ∧ tpc(l′)(v[r]) (action step).

and Q0 = {(l0,v0)|s0 = (l0, c0) ∧ c0(v0)} denotes the initial states.

Because the semantics defined above is in general infinite, we work with the so called
zone graph [27] as a finite symbolic representation. The symbolic states in a zone graph are
pairs (l, ζ) where l is a location of B and ζ is a zone, a set of clock valuations defined by
clock constraints. The initial configuration s0 = (l0, c0) corresponds trivially to a symbolic
state (l0, ζ0). Given a symbolic state (l, ζ), its successor with respect to a transition t of B
is denoted as succ(t, (l, ζ)) and defined by means of its timed and its discrete successor:

• time succ((l, ζ)) = (l,↗ ζ ∩ tpc(l))
• disc succ(t, (l, ζ)) = (l′, (ζ ∩ g)[r] ∩ tpc(l′)) if t =

(
l, (, g, r), l′

)
• succ(t, (l, ζ)) = norm(time succ(disc succ(t, (l, ζ))))

where ↗, [r], norm are usual operations on zones: ↗ ζ is the forward diagonal projection
of ζ, i.e., it contains any valuation v′ for which there exists a real δ such that v′ − δ is in
ζ; ζ[r] is the set of all valuations in ζ after applying the resets in r; norm(ζ) corresponds
to normalising ζ such that all bounds on clocks and clock differences are either bounded
by some finite value or infinite. Since our use of invariants is only as over-approximations
of the reachable states, a more thorough discussion on normalisation is not relevant for the
present paper. The interested reader may refer to [10, 15] for more precise definitions.

A symbolic execution of B is a sequence of symbolic states s0, . . . , si, . . .
3 such that

for any i > 0, there exists a transition t for which si is succ(t, si−1). The set of reachable
symbolic states of B is ReachB(s0) where ReachB is defined recursively as:

ReachB(s) = {s} ∪
⋃
t∈T

ReachB(succ(t, s))

for an arbitrary s and T the set of transitions in B . We remind that the set ReachB(s0)
can be shown finite knowing that the number of normalised zones is finite. In general, the
symbolic zone graph provides an over-approximation of the set of reachable states. This
over-approximation is exact only for timed automata without diagonal constraints [10, 15].

In our framework, components communicate by means of interactions, which are syn-
chronisations between actions. Given n components (Bi)i=1,...,n, with disjoint sets of actions
Ai, an interaction is a subset α ⊆ ∪iAi containing at most one action per component. We
denote interactions α as sets {ai}i∈I , with ai ∈ Ai for all i ∈ I ⊆ {1, . . . , n}. For readabil-
ity, in examples, we use the alternative notation (a1 | a2 | · · · | ai) instead. Given a set of
interactions γ, we denote by Act(γ) the set of actions involved in γ, that is, Act(γ) = ∪α∈γα.

3We tacitly assume that s0 is such that s0 = time succ(s0). If this is not the case, one can always consider
time succ(s0) instead of s0 for the definition of symbolic executions and reachable states.

COMPOSITIONAL INVARIANT GENERATION FOR TIMED SYSTEMS 5

Definition 2.3 (Timed System). For a given n and i ∈ {1, . . . , n} let Bi = (Li, Ai, Xi,
Ti, tpci, s0i) be n components with disjoint sets of actions and initial states s0i = (l0i, c0i).
Let γ be a set of interactions constructed from ∪iAi. The timed system ‖γBi is defined
as the component (L, γ,X , Tγ , tpc, s0) where L = ×iLi, X = ∪iXi, tpc(l̄) =

∧
i tpc(li),

s0 = ((l01, ..., l0n),
∧
i c0i) and

Tγ =

(l̄, (α, g, r), l̄′)
l̄ = (l1, ..., ln) ∈ L, l̄′ = (l′1, ..., l

′
n) ∈ L

α = {ai}i∈I ∈ γ, ∀i ∈ I.(li, (ai, gi, ri), l′i) ∈ Ti, ∀i 6∈ I.li = l′i
g =

∧
i∈I gi, r =

⋃
i∈I ri

In the timed system ‖γBi, a component Bi can execute an action ai only as part of an

interaction α, ai ∈ α, that is, along with the execution of all other actions aj ∈ α4. This
corresponds to the usual notion of multi-party interaction. We note that interactions can
only restrict the behaviour of components, i.e., the states reached by Bi in ‖γBi belong to
ReachBi(s0i). This is a property which is exploited in the verification rule (VR) in Figure 1.

To give a logical characterisation of components and their properties, we use invariants.
An invariant Φ is a state predicate which holds in every reachable state of B , in symbols,
B |= �Φ. We use CI (B) and II (γ), to denote component, respectively interaction
invariants. For component invariants, our choice is to work with their reachable symbolic
set. More precisely, for component B , its associated component invariant CI (B) is the
disjunction of (l ∧ ζ) for all symbolic states (l, ζ) in ReachB(s0). To ease the reading, we
abuse of notation and use l as a place holder for a state predicate “at(l)” which holds in
any symbolic state with location l, that is, the semantics of at(l) is given by (l, ζ) |= at(l).
As an example, the component invariants for the example in Figure 2 with one worker are:

CI (Controller) = (lc0 ∧ x ≥ 0) ∨ (lc1 ∧ 4 ≥ x ≥ 0) ∨ (lc2 ∧ x ≥ 0)

CI (Worker1) = (l11 ∧ y1 ≥ 0) ∨ (l21 ∧ y1 ≥ 4).

The interaction invariants are computed by the method explained in [12]. Interaction in-
variants are over-approximations of the global state space allowing us to disregard certain
tuples of local states as unreachable. As an illustration, consider the interactions invariant
for the running example when the controller is interacting with one worker:

II
(
{(a | b1), (c | d1)}

)
= (l11 ∨ lc2) ∧ (l21 ∨ lc0 ∨ lc1).

The invariant is given in conjunctive normal form to stick to the formalism in [12, 11]. Every
disjunction corresponds to the so called notion of “initially marked traps” in an underlying
Petri net associated to our model. Intuitively, a trap in Petri nets is a set of places which
always contains tokens if they have tokens initially.

We note that the proposed5 component and interaction invariants are inductive invari-
ants. A state predicate is called inductive for a component or system B if, whenever it holds
for a state s of B it equally holds for any of its successors s′. That is, the validity of an
inductive predicate is preserved by executing any transition, timed or discrete. An inductive
predicate which moreover holds at initial states is an (inductive) invariant. Trivially, such
a predicate holds in all reachable states.

4To simplify the notation, we omit unary interactions and the actions for transitions involved in them.
For example, in Figure 2, the initial transition in Controller does not have an explicit action associated.

5The rule (VR) is generic enough to work with other types of invariants. For example, one could use
any over-approximation of the reachable set in the case of component invariants, however, this comes at the
price of losing precision.

6 BEN RAYANA ET AL.

As for component properties, we are interested in arbitrary invariant state properties
that can be expressed as boolean combinations of “at(l)” predicates and clock constraints.
Invariant properties include generic properties such as mutual exclusion, absence of dead-
lock, unreachability of “bad” states, etc. As a simple illustration consider the property
lc1 →

∨
i(yi−x ≥ 4n− 4), discussed for our running example introduced in Section 1. As a

more sophisticated example, consider absence of deadlock. Intuitively, a timed system with
a set of interactions γ is deadlocked when no interaction in γ is enabled. Absence of deadlock
is therefore expressed as the disjunction ∨α∈γenabled(α). As for the enabledness predicate,
we borrow it from [34] where it is essentially constructed from the syntactic definition of
the timed system. More precisely, for an interaction α, enabled(α) is ∨tenabled(t), with t
being a transition triggered by α. In turn, for t =

(
l̄, (α, g, r), l̄′

)
, enabled(t) is defined using

elementary operations on zones as l̄∧ ↙ (g ∩ [r]tpc(l̄′)∩ tpc(l̄)), where ↙ ζ is the backward
diagonal projection of ζ, [r]ζ is the set of valuations v such that v[r] is in ζ.

3. Timed Invariant Generation

As explained in the introduction, a direct application of the compositional verification rule
(VR) may not be useful in itself in the sense that the component and the interaction
invariants alone are usually not enough to prove global properties, especially when such
properties involve relations between clocks in different components. More precisely, though
component invariants encode timings of local clocks, there is no direct way – the interaction
invariant is orthogonal to timing aspects – to constrain the bounds on the differences be-
tween clocks in different components. To give a concrete illustration, consider the property
ϕSafe = (lc1 ∧ l11 → x ≤ y1) that holds in the running example with one worker. We note
that if this property is satisfied, it is guaranteed that the global system is not deadlocked
when the controller is at location lc1 and the worker is at location l11. It is not difficult to see
that ϕSafe cannot be deduced from CI (Controller)∧CI (Worker1)∧ II

(
{(a | b1), (c | d1)}

)
as no relation can be established between x and y1.

3.1. History Clocks for Actions. In this section, we show how we can, by means of some
auxiliary constructions, apply (VR) more successfully. To this end, we “equip” components
(and later, interactions) with history clocks, a clock per action; then, at interaction time,
the clocks corresponding to the actions participating in the interaction are reset. This basic
transformation allows us to automatically compute a new invariant of the system with
history clocks. This new invariant, together with the component and interaction invariants,
is shown to be, after projection of history clocks, an invariant of the initial system.

Definition 3.1 (Components with History Clocks). Given component B = (L,A,X , T ,
tpc, s0), its extension with history clocks is the component Bh = (L,A,X ∪HA, T h, tpc, sh0)
where

• HA = {h0} ∪ {ha | a ∈ A} is the set of history clocks,
• T h =

{(
l, (a, g, r ∪ {ha}), l′

)
|
(
l, (a, g, r), l′

)
∈ T

}
,

• sh0 = (l0, c
h
0), where ch0 = (c0 ∧ h0 = 0 ∧

∧
a∈A ha > 0), given s0 = (l0, c0).

The clock h0 measures the time from the initialisation. This clock equals 0 in sh0 and is
never tested or reset. Due to this very restricted use, the same clock h0 can be consistently

COMPOSITIONAL INVARIANT GENERATION FOR TIMED SYSTEMS 7

used (shared) by all components Bh and consequently, allows to capture clock constraints
derived from the common system initialisation time.

Every history clock ha measures the time passed from the last occurrence of action a.
These history clocks are initially strictly greater than 0 and are reset when the corresponding
action is executed. As a side effect, whenever ha is strictly bigger than h0, we can infer
that the action a has not been (yet) executed. This initialisation scheme allows a more
refined analysis precisely because we can distinguish between actions which were executed
and those which were not.

Since there is no timing constraint involving history clocks, these have no influence on
the behaviour. The extended model is, in fact, bisimilar to the original model. Moreover,
any invariant of the extended model of Bh corresponds to an invariant of original compo-
nent. By abuse of notation, given set of actions A = {a1, ..., am} use ∃HA to stand for
∃ha1∃ha2 . . . ∃ham∃h0.

Proposition 3.2.

(1) If Φh is an invariant of Bh then Φ = ∃HA.Φh is an invariant of B.
(2) If Φh is an invariant of Bh and Ψh an inductive assertion of Bh expressed on history

clocks HA \ {h0} then Φ = ∃HA.(Φh ∧Ψh) is an invariant of B.

Proof. (1) It suffices to notice that any symbolic state (l, ζh) in the reachable set ReachBh(sh0)
corresponds to a symbolic state (l, ζ) in the reachable set ReachB (s0) such that ζ is the
projection of ζh to clocks in X , that is ζ ≡ ∃HA.ζh. Henceforth, ∃HA.ReachBh(sh0) ≡
ReachB (s0). Moreover, for any invariant Φh of Bh it holds ∃HA.ReachBh(sh0) ⊆ ∃HA.Φh.
By combining the two facts, we obtain that Φ is an invariant of B .

(2) Consider the modified component with history clocks Bh
Ψ defined as Bh but with

initial configuration (l0, c
h
0 ∧ Ψh). This initial configuration is valid, as Ψh constrain ex-

clusively clocks in HA whereas ch0 leaves all of them unconstrained. Now, it can be easily
shown that Φh ∧Ψh is an invariant of Bh

Ψ. Then, following the same reasoning as for point

(1) we obtain that ∃HA.(Φh ∧Ψh) is an invariant of B .

The only operation acting on history clocks is reset. Its effect is that immediately after
an interaction takes place, all history clocks involved in the interaction are equal to zero.
All the remaining ones preserve their previous values, thus they are greater than or equal
to those being reset. This basic observation is exploited in the following definition, which
builds, recursively, all the inequalities that could hold given an interaction set γ.

Definition 3.3 (Interaction Inequalities for History Clocks). Given an interaction set γ,
we define the following interaction inequalities E(γ):

E(γ) =
∨
α∈γ

((∧
ai,aj∈α

ak∈Act(γ	α)

hai = haj ≤ hak
)
∧ E(γ 	 α)

)
.

where γ 	 α = {β \ α | β ∈ γ ∧ β 6⊆ α} and E(∅) = true.

The mechanism of history clocks is as follows. When an interaction α takes place, the
history clocks ha associated to any action a ∈ α are reset. Thus they are all equal and
smaller than any other clocks and measure the time passed from the last occurrence of a.

The operation γ	α eliminates in any interaction β the actions from α. As an illustra-
tion, for β = (a | a1 | a2), α = (a1 | a2), γ = {α, β}, γ 	 α = {a}.

8 BEN RAYANA ET AL.

We can use the interpreted function “min” as syntactic sugar to have a slightly more
compact expression for E(γ) as follows:

E(γ) =
∨
α∈γ

(∧
ai,aj∈α

hai = haj ≤ min
ak∈Act(γ	α)

hak ∧ E(γ 	 α)
)
.

As an example, for γ = {(a | b1), (c | d1)} corresponding to the interactions between the
controller and one worker in Figure 2, the compact form is:(

ha = hb1 ≤ min(hc, hd1) ∧ hc = hd1
)
∨
(
hc = hd1 ≤ min(ha, hb1) ∧ ha = hb1

)
.

E(γ) characterises the relations between history clocks during any possible execution.
It can be shown that this characterisation is, in fact, an inductive predicate of the extended
system with history clocks.

Proposition 3.4. E(γ) is an inductive predicate of ‖γBh
i .

Proof. Assume E(γ) holds in some arbitrary state s of ‖γBh
i . We have two categories of

successor states for s, namely time successors and discrete successors. Obviously E(γ)
holds for all time successors s′, as all clocks progress uniformly and henceforth all the
relations between them are preserved. Let now s′ be a discrete successor of s by an arbitrary
interaction α. As all the history clocks for actions in α have just been reset, s′ satisfies∧

ai,aj∈α
ak∈Act(γ	α)

0 = hai = haj ≤ hak (3.1)

To conclude the proof, we need to show that moreover, for the remaining clocks of actions
in Act(γ 	 α), they satisfy E(γ 	 α) in s′. Actually, we can show the additional fact that
for any set of interactions γ and for any interaction α the implication E(γ) → E(γ 	 α) is
valid in any reachable state. This fact can be simply proven by induction on the size of the
set interactions γ following the definition of E . Consequently, assuming that E(γ) holds at
s, it follows that E(γ 	 α) holds at s. Then E(γ 	 α) also holds at s′ because α does not
modify any clock involved in γ 	 α and this concludes the proof.

By using Proposition 3.4 and Proposition 3.2, we can safely combine the component
and interaction invariants of the system with history clocks with the interaction inequalities.
We can eliminate the history clocks from

∧
i CI (Bh

i)∧ II (γ)∧E(γ) and obtain an invariant
of the original system. This invariant is usually stronger than

∧
i CI (Bi)∧ II (γ) and yields

more successful applications of the rule (VR).

Corollary 3.5. Φ = ∃HA.(
∧
i CI (Bh

i) ∧ II (γ) ∧ E(γ)) is an invariant of ‖γBi.

Example 3.6. We reconsider the model of a controller and a worker from Figure 2. We
show how the generated invariants are enough to prove the safety property ϕSafe = (lc1 ∧
l11 → x ≤ y1) from Section 1. The invariants for the components with history clocks are
computed precisely as illustrated in Section 1, that is, they represent zone graphs:

CI (Controllerh) =(lc0 ∧ x = h0 < ha ∧ h0 < hc) ∨
(lc1 ∧ x ≤ h0 − 4 ∧ x ≤ 4 ∧ h0 < ha ∧ h0 < hc) ∨
(lc1 ∧ x ≤ 4 ∧ x = hc ≤ ha ≤ h0 − 8) ∨
(lc2 ∧ x ≤ h0 − 8 ∧ ha = x ∧ h0 < hc) ∨
(lc2 ∧ x = ha ∧ hc = ha + 4 ≤ h0 − 8)

COMPOSITIONAL INVARIANT GENERATION FOR TIMED SYSTEMS 9

CI (Workerh1) =(l11 ∧ y1 = h0 < hd1 ∧ h0 < hb1) ∨
(l11 ∧ y1 = hd1 ≤ hb1 ≤ h0 − 4) ∨
(l21 ∧ hb1 + 4 ≤ y1 = h0 < hd1)) ∨
(l21 ∧ y1 = hd1 ≤ h0 − 4 ∧ hb1 ≤ hd1 − 4)

By using the interaction invariant described in Section 2 and the inequality constraints
E((a | b1), (c | d1)), after the elimination of the existential quantifiers in(

∃ha.∃hb1 .∃hc.∃hd1 .∃h0

)
CI (Controllerh) ∧ CI (Workerh1) ∧ II (γ) ∧ E(γ)

)
we obtain the following invariant Φ :

Φ =(l11 ∧ lc0 ∧ x = y1)∨(
l11 ∧ lc1 ∧ (y1 = x ∨ x + 4 ≤ y1)

)
∨(

l21 ∧ lc2 ∧ (y1 = x + 4 ∨ x + 8 ≤ y1)
)
.

We used bold fonts in Φ to highlight relations between x and y1 which are not in
CI (Controller) ∧ CI (Worker1) ∧ II (γ). It can be easily checked now that Φ→ ϕSafe holds
and consequently, this proves that ϕSafe holds for the system.

To sum up, the basic steps of our invariant generation method described so far are:

(1) compute the interaction invariant II (γ);
(2) extend the components Bi to components with history clocks Bh

i ;
(3) compute component invariants CI (Bh

i);
(4) compute inequality constraints E(γ) for interactions γ;
(5) finally, eliminate the history clocks in

∧
i CI (Bh

i) ∧ II (γ) ∧ E(γ).

We note that, due to the combination of recursion and disjunction, E(γ) can be large.
Much more compact formulae can be obtained by exploiting non-conflicting interactions,
i.e., interactions that do not share actions.

Proposition 3.7. If γ = γ1∪γ2 such that Act(γ1)∩Act(γ2) = ∅ then E(γ) ≡ E(γ1)∧E(γ2).

Proof. By induction on the number of interactions in γ. In the base case, γ has a sin-
gle interaction and the property trivially holds. For the induction step, for the ease of
reading, we introduce eq(α) and leq(α, γ) to denote respectively

∧
ai,aj∈α hai = haj and∧

ai∈α
ak∈Act(γ	α)

hai ≤ hak . E(γ) can be rewritten as follows:

E(γ) =
∨
α∈γ1

eq(α) ∧ leq(α, γ) ∧ E((γ1 ∪ γ2)	 α) ∨
∨
α∈γ2

eq(α) ∧ leq(α, γ) ∧ E((γ1 ∪ γ2)	 α)(
using γ2 	 α = γ2 for α ∈ γ1 and by ind. for γ′ = (γ1 	 α) ∪ γ2

)
≡
∨
α∈γ1

eq(α) ∧ leq(α, γ) ∧ E(γ1 	 α) ∧ E(γ2) ∨
∨
α∈γ2

eq(α) ∧ leq(α, γ) ∧ E(γ1) ∧ E(γ2 	 α)

(
using

∨
α∈γi

eq(α) ∧ leq(α, γi) ∧ E(γi 	 α) = E(γi) for i ∈ {1, 2}
)

≡ E(γ1) ∧ E(γ2) ∧
(∨
α∈γ1

leq(α, γ2) ∨
∨
α∈γ2

leq(α, γ1))

(using totality of ”≤” and disjointness of γi)

≡ E(γ1) ∧ E(γ2)

10 BEN RAYANA ET AL.

The following corollary is an immediate consequence of Proposition 3.7.

Corollary 3.8. If the interaction model γ has only disjoint interactions, i.e., for any

α1, α2 ∈ γ, α1 ∩ α2 = ∅, then E(γ) ≡
∧
α∈γ

(∧
ai,aj∈α

hai = haj

)
.

The two interactions in γ = {(a | b1), (c | d1)} are disjoint. Thus, we can simplify the
expression of E(γ) to (ha = hb1) ∧ (hc = hd1).

3.2. History Clocks for Interactions. The equality constraints on history clocks allow
to relate the local constraints obtained individually on components. In the case of non-
conflicting interactions, the relation is rather “tight”, that is, expressed as conjunction of
equalities on history clocks. In contrast, the presence of conflicts lead to a significantly
weaker form. Intuitively, every action in conflict can be potentially used in different inter-
actions. The uncertainty on its exact use leads to a disjunctive expression as well as to
more restricted equalities and inequalities amongst history clocks.

Nonetheless, the presence of conflicts themselves can be additionally exploited for the
generation of new invariants. That is, in contrast to equality constraints obtained from
interactions, the presence of conflicting actions enforce disequalities (or separation) con-
straints between all interactions using them. In what follows, we show a generic way of
automatically computing such invariants enforcing differences between the timings of the
interactions themselves. To effectively implement this, we proceed in a similar manner as
in the previous section: we again make use of history clocks and corresponding resets but
this time we associate them to interactions, at the system level.

Definition 3.9 (System with Interaction History Clocks). Given a timed system ‖γBi, its

extension with history clocks for interactions is the timed system B∗‖γhBh
i where:

• B∗ is an auxiliary component ({l∗}, Aγ ,Hγ , T, (l∗ 7→ true), (l∗, true)) where:
– the set of actions Aγ = {aα | α ∈ γ}
– the set of interaction history clocks Hγ = {hα | α ∈ γ}
– the set of transitions T = {(l∗, (aα, true, {hα}), l∗) | α ∈ γ}

• γh = {(aα | α) | α ∈ γ} with (aα | α) denoting {aα} ∪ {a | a ∈ α}.

As before, it can be shown that any invariant of B∗‖γhBh
i corresponds to an invariant

of ‖γBi. The history clocks for interactions do not impact the behaviour and henceforth
the two systems are bisimilar.

Proposition 3.10.

(1) If Φh is an invariant of B∗‖γhBh
i , then Φ = ∃HA∃Hγ .Φh is an invariant of ‖γBi.

(2) If Φh is an invariant of B∗‖γhBh
i and Ψh an inductive predicate of B∗‖γhBh

i ex-
pressed on history clocks for actions and interactions Hγ ∪ HA \ {h0} then Φ =

∃HA∃Hγ .(Φh ∧Ψh) is an invariant of ‖γBi.

Proof. Similar to Proposition 3.2.

COMPOSITIONAL INVARIANT GENERATION FOR TIMED SYSTEMS 11

We use history clocks for interactions to express additional constraints on their timing.
The starting point is the observation that when two conflicting interactions compete for
the same action a, no matter which one is first, the latter must wait until the component
which owns a is again able to execute a. This is referred to as a “separation constraint” for
conflicting interactions.

Definition 3.11 (Separation Constraints for Interaction Clocks). Given an interaction set
γ, the induced separation constraints, S(γ), are defined as follows:

S(γ) =
∧

a∈Act(γ)

∧
α 6=β∈γ
a∈α∩β

| hα − hβ |≥ ka

where | x | denotes the absolute value of x and ka is a constant computed locally on the com-
ponent executing a, and representing the minimum elapsed time between two consecutive
executions of a.

In our running example the only conflicting actions are a and c within the controller,
and both ka and kc are equal to 4. The expression of the separation constraints reduces to:

S((a | bi)i, (c | di)i) ≡
∧
i 6=j
|hc|di − hc|dj | ≥ 4 ∧

∧
i 6=j
|ha|bi − ha|bj | ≥ 4.

Proposition 3.12. Let

S∗(γ) =
∧

a∈Act(γ)

∧
α6=β∈γ
a∈α∩β

(ha ≤ hα ≤ hβ − ka ∨ ha ≤ hβ ≤ hα − ka)

We have that:

(1) S∗(γ) is an inductive predicate of B∗‖γhBh
i .

(2) The equivalence S(γ) ≡ ∃HA.S∗(γ) is a valid formula.

Proof. (1) Let us fix an arbitrary term S(a, α, β) defined as

S(a, α, β) = (ha ≤ hα ≤ hβ − ka ∨ ha ≤ hβ ≤ hα − ka)
Assume S(a, α, β) holds in an arbitrary state s of B∗‖γhBh

i . Then, it obviously holds for
any time successors as well as for any discrete successors by interactions not containing the
action a. For an interaction involving a, but different than α and β, ha is reset to zero
whereas hα and hβ are unchanged. Henceforth, S(a, α, β) remains valid as only ha changes
to 0. Let consider the situation α is executed (the case of β is perfectly dual). In this case,
both ha and hα are reset to 0, whereas hβ is unchanged. Two situations can happen:

(a) ha ≤ hα ≤ hβ − ka holds in s. Then, obviously, the same holds in s′ where ha and
hα are reset.

(b) ha ≤ hβ ≤ hα − ka holds in s. This is the interesting case where we need the
assumption about the separation time ka. As consecutive executions of a are sep-
arated by ka, to execute α it must actually hold that ha ≥ ka in s. Consequently,
hβ ≥ ka in s, as well as in s′ (because hβ does not change from s to s′). Then,
knowing that ha = hα = 0 in s′ we have that ha ≤ hα ≤ hβ − ka in s′.

(2) We can equivalently write

S∗(γ) ≡
∧

a∈Act(γ)

∧
α 6=β∈γ
a∈α∩β

(ha ≤ hα ∧ ha ≤ hβ∧ | hα − hβ |≤ ka)

12 BEN RAYANA ET AL.

≡ S(γ) ∧
∧

a∈Act(γ)

∧
α 6=β∈γ
a∈α∩β

(ha ≤ hα ∧ ha ≤ hβ)

and this concludes our proof.

The predicate S(γ) is expressed over history clocks for interactions. Component in-
variants CI (Bh

i) are however expressed using history clocks for actions. In order to “glue”
them together in a meaningful way, we need some tighter connection between action and
interaction history clocks. This aspect is addressed by the constraints E∗ defined below.

Definition 3.13 (E∗). Given an interaction set γ, we define E∗(γ) as follows:

E∗(γ) =
∧

a∈Act(γ)

ha = min
α∈γ,a∈α

hα.

By a similar argument as the one in Proposition 3.4, it can be shown that E∗(γ) is
an inductive predicate of the extended system B∗‖γhBh

i . Moreover, there exists a tight
connection between E and E∗ as given in Proposition 3.14.

Proposition 3.14.

(1) E∗(γ) is an inductive predicate of B∗‖γhBh
i .

(2) The equivalence ∃Hγ .E∗(γ) ≡ E(γ) is a valid formula.

Proof. (1) To see that E∗(γ) is an inductive predicate it suffices to note that the predicate
is preserved by time progress transitions and for any discrete action a, there is always an
interaction α containing a such that ha and hα are both reset in the same time.
(2) The proof follows directly from the definitions of E(γ) and E∗(γ). Consider that γ =
{α1, α2, ..., αm}. We have the following equivalences:

∃Hγ .E∗(γ) ≡ ∃Hγ .
∨

αk1≺αk2≺...≺αkm

(
hαk1 ≤ hαk2 ≤ ... ≤ hαkm ∧ E

∗(γ)
)

(by choosing an arbitrary ordering ≺ on interactions)

≡ ∃Hγ .
∨

αk1≺αk2≺...≺αkm

(
hαk1 ≤ hαk2 ≤ ... ≤ hαkm∧∧

a∈αk1

(ha = hαk1) ∧
∧

a∈αk2\αk1

(ha = hαk2) ∧ ...
∧

a∈αkm\αk1 ...αkm−1

(ha = hαkm)
)

(by expanding the definition of E∗(γ) along the chosen order)

≡ ∃Hγ .
∨

αk1≺αk2≺...≺αkm

(
hαk1 ≤ hαk2 ≤ ... ≤ hαkm ∧

m∧
`=1

∧
a∈αk`\αk1 ...αk`−1

(ha = hαk`)
)

(by rewriting to a more compact form)

≡
∨

αk1≺αk2≺...≺αkm

∃Hγ .
(
hαk1 ≤ hαk2 ≤ ... ≤ hαkm ∧

m∧
`=1

∧
a∈αk`\αk1 ...αk`−1

(ha = hαk`)
)

(by distributing the existential quantifiers over the disjunction)

COMPOSITIONAL INVARIANT GENERATION FOR TIMED SYSTEMS 13

≡
∨

αk1≺αk2≺...≺αkm

m∧
`=1

∧
ai,aj∈αk`\αk1 ...αk`−1

ak 6∈αk1 ...αk`

(hai = haj ≤ hak) ≡ E(γ)

(by eliminating the existential quantifiers)

From Propositions 3.14, 3.10, and 3.12, it follows that ∃HA∃Hγ .(
∧
i CI (Bh

i) ∧ II (γ) ∧
E∗(γ) ∧ S(γ)) is an invariant of ‖γBi. This new invariant is in general stronger than

∃HA.(
∧
i CI (Bh

i)∧II (γ)∧E(γ)) and it provides better state space approximations for timed
systems with conflicting interactions.

Corollary 3.15. Φ = ∃HA∃Hγ .(
∧
i CI (Bh

i)∧ II (γ)∧E∗(γ)∧S(γ)) is an invariant of ‖γBi.

Example 3.16. To get some intuition about the invariant generated using separation con-
straints, let us reconsider the running example with two workers. The subformula which we
emphasise here is the conjunction of E∗ and S. The interaction invariant is:

II (γ) =(l11 ∨ lc1 ∨ lc2) ∧ (l12 ∨ lc1 ∨ lc2) ∧ (lc2 ∨ l11 ∨ l12) ∧ (lc0 ∨ lc1 ∨ l21 ∨ l22)

The components invariants are:

CI (Controllerh) =(lc0 ∧ x = h0 ∧ h0 < ha ∧ h0 < hc) ∨
(lc1 ∧ x ≤ h0 − 8 ∧ x ≤ 4 ∧ h0 < ha ∧ h0 < hc) ∨
(lc1 ∧ x ≤ 4 ∧ x = hc ≤ ha ≤ h0 − 12) ∨
(lc2 ∧ x ≤ h0 − 12 ∧ ha = x ∧ h0 < hc)) ∨
(lc2 ∧ x = ha ∧ hc = ha + 4 ≤ h0 − 12)

CI (Workerhi) =(l1i ∧ yi = h0 ∧ h0 < hdi ∧ h0 < hbi) ∨
(l1i ∧ yi = hdi ≤ hbi ≤ h0 − 8) ∨
(l2i ∧ yi ≥ hbi + 8 ≤ h0 < hdi)) ∨
(l2i ∧ yi = hdi ≤ h0 − 8 ∧ hbi ≤ hdi − 8)

The inequalities for action and interaction history clocks are:

E∗(γ) =(hb1 = ha|b1) ∧ (hb2 = ha|b2) ∧ (ha = min
i=1,2

(ha|bi))∧

(hd1 = hc|d1) ∧ (hd2 = hc|d2) ∧ (hc = min
i=1,2

(hc|di))

By recalling the expression of S(γ) we obtain that:

∃Hγ .E∗ (γ) ∧ S(γ) = (|hb2 − hb1 | ≥ 4 ∧ |hd2 − hd1 | ≥ 4)

and thus, after quantifier elimination in

∃HA∃Hγ .(CI (Controllerh) ∧
∧
i

CI (Workerhi) ∧ II (γ) ∧ E∗(γ) ∧ S(γ))

14 BEN RAYANA ET AL.

after simplification, we obtain the following invariant Φ:

Φ =
(
l11 ∧ l12 ∧ lc0 ∧ x = y1 = y2

)
∨(

l11 ∧ l12 ∧ lc1 ∧ x ≤ 4 ∧ (y1 = y2 ≥ x+ 8∨
(y1 = x ∧ y2− y1 ≥ 4)∨
(y1 ≥ x+ 8 ∧ y1 − y2 ≥ 8)∨
(y2 = x ∧ y1− y2 ≥ 4)∨
(y2 ≥ x+ 8 ∧ y2 − y1 ≥ 8))

)
∨(

l21 ∧ l12 ∧ lc2 ∧ y1 ≥ x+ 8 ∧ ((y2 ≥ x+ 4 ∧ |y1− y2| ≥ 4)∨
y2 ≥ x+ 12)

)
∨(

l11 ∧ l22 ∧ lc2 ∧ y2 ≥ x+ 8 ∧ ((y1 ≥ x+ 4 ∧ |y1− y2| ≥ 4)∨
y1 ≥ x+ 12)

)
We emphasised in the expression of Φ the newly discovered constraints. All in all, Φ is
strong enough to prove that the system is deadlock free.

We conclude the section with a discussion about the computation of the separation
constants ka. A simple but incomplete heuristics to test that a given value ka is a correct
separation constraint for an action a is as follows. Consider all paths connecting two tran-
sitions (not necessarily distinct) labelled by a. If on every such path, there exists a clock x
which is reset and then tested in a guard x ≥ ct, with ct ≥ ka then, it is safe to conclude
that actually ka is a correct separation value. Nonetheless, alternative methods to exactly
compute ka have been already proposed in the literature. For details, the interested reader
can refer, for instance, to [17] which reduces this computation to finding a shortest path in
a weighted graph built from the zone graph associated to the component.

4. Improving (VR) - Three Heuristics

We describe and elaborate on heuristics allowing to strengthen the generated invariants and
to reduce the generation time. These heuristics have been successfully applied on our case
studies considered later in Section 5.

4.1. Refining conflicting interactions. The initialisation of the history clock h0 provides
a convenient way to express and reason about invariants relating occurences of various
actions and interactions at execution. The assertion hα ≤ h0 has the intuitive meaning
that “α has been executed”. We describe below a new family of invariants providing a finer
characherisation for the execution of conflicting interactions and related actions.

We fix a as a potential conflicting action within some component B = (L,A, T,X , tpc).
We define the set of preceding actions Prec(a) as all actions of B that can immediately

precede a in an execution, formally Prec(a) = {a′ ∈ A | ∃l, l′, l′′ ∈ L. l a′→ l′, l′
a→ l′′}. For

any two conflicting interactions α1, α2 involving a, the following assertion:

hα1 ≤ h0 ∧ hα2 ≤ h0 ⇒
∨

a′∈Prec(a)

ha′ ≤ h0

COMPOSITIONAL INVARIANT GENERATION FOR TIMED SYSTEMS 15

is an invariant. Intuitively, the assertion states that whenever α1 and α2 have both been
executed (implying that a has also been executed two or more times), at least one of the
preceding actions of a must also has been executed. We remark that the invariant above is
rather weak and can be implied by the component invariant CI(B) and the glue invariant
E∗ in many situations. In fact, whenever a is an action which is not enabled at the initial
location of B, the component invariant CI(B) implies that

ha ≤ h0 ⇒
∨

a′∈Prec(a)

ha′ ≤ h0.

This states that whenever a has been executed, at least one of its preceding actions has been
executed as well. Knowing moreover that ha = mina∈α hα, we can then infer the invariant
above.

Nonetheless, if a is an action that is enabled at the initial location, the newly proposed
invariant is stronger and cannot be derived as shown before. In this case, a can be actu-
ally executed once while none of its predecessors has been executed yet. The component
invariant alone does not relate anymore the execution of a to the execution of its preceding
actions. Moreover, the component invariant considers always the last occurence of a and has
no means of distinguishing cases where a has been executed only once or more often. This
information can sometimes be re-discovered when interaction history clocks hα1 , hα2 are
taken into account, henceforth, leading to the proposed invariant. A concrete illustration
is provided later in Section 5.

4.2. Invariant computation using regular expressions. There exist situations where
the computation of component invariants can be extremely costly. In particular, for un-
timed components extended with history clocks, their zone graphs will most likely have
an exponential size. In fact, due to history clocks, the zones will record the order of (the
last) occurences of actions, and there could be exponentially many of them, reachable at
different locations. We note that, in timed components, clocks restrict the dynamics of the
components, consequently, it cannot be the case that all the orders are possible.

The above observation suggests (and was confirmed by our experiments) that applying
the same methodology for computing component invariants (based on the reachability graph
of the corresponding components with history clocks) regardless of the components being
timed or not leads to large formulae when possibly shorter ones exist.

Example 4.1. Consider the untimed component presented in Figure 3 (left) and its ex-
tension with history clocks (right). The entire zone graph reachable from 〈l0, ζ0〉, with
ζ0 = (h0 = 0, ha,b,c > 0) has 6 symbolic states. Therefore, the component invariant is
expressed as a disjunction of 16 terms, 9 of them are related to location l0 and 7 are related
to location l1.

We recall that untimed automata have elegant and compact encodings as regular ex-
pressions. This basic fact can be exploited in order to provide an alternative computa-
tion method for component invariants. More concretely, given an untimed component
B = (L,A, T) we show how to automatically compute the invariant describing the rela-
tions between the history clocks of Bh at some location `, from the language accepted by
B at some designated location `. The first key observation is that only the last occurrence
of each action should be retained. This implies that it is safe to abstract, with respect to
last occurrences, the regular expression characterising the language accepted at the chosen

16 BEN RAYANA ET AL.

l0 l1

a

b

b

c

a b c

l0 l1

a, ha := 0

b, hb := 0

b, hb := 0

c, hc := 0

a b c

Figure 3: An untimed component (left) and its extension with history clocks (right).

control location. The second key observation is that, regular expressions in some restricted
form, can be used to directly generate less constraints on the history clocks. Our regular
expression based method can be therefore summarised as follows:

(1) construct the regular expression E` representing the language accepted by B at
location `,

(2) abstract E` with respect to the last occurence retention towards some restricted

form E]` =
∑

i e
]
i where, every e]i contains each action at most once, and does not

contain nested *-operators,

(3) generate from every e]i a characteristic formula on history clocks φ(e]i) and obtain

as invariant for B the assertion `⇒ ∨iφ(e]i).

The first step is well known for finite automata and will not be detailed here. For the
second abstraction step, the key ingredients are the simplification rules in Figure 4.

Rule 1 [Last Occurrence Retention]: E · a −→ (E r a) · a
Rule 2 [Back-unfolding]: E∗ −→ (E∗ · E) + ε

Figure 4: Simplification Rules

Rule 1 eliminates all but the last occurrence of the trailing a symbol from a regular
expression of the form E · a. The “r” denotes a syntactic elimination operator defined
structurally on expressions as follows. Let a and x be two symbols and E, E1 and E2 be
arbitrary regular expressions.

εr a = ε

xr a =

{
ε if x = a

x if x 6= a

(E1 + E2) r a = (E1 r a) + (E2 r a)

(E1.E2) r a = (E1 r a).(E2 r a)

E∗ r a = (E r a)∗

Rule 2 simply unfolds *-expressions once. By using this rule and other basic manipu-
lation of regular expressions, further simplification opportunities for Rule 1 are enabled.

Example 4.2. Let us consider again the example presented in Figure 3. The language
accepted at l1 is defined as (a + bc∗b)∗bc∗. This expression is progressively abstracted into

COMPOSITIONAL INVARIANT GENERATION FOR TIMED SYSTEMS 17

the restricted form as follows:

(a+ bc∗b)∗bc∗ (a+ c∗)∗bc∗ (by Rule 1)

≡ (a+ c∗)∗b(c∗c+ ε) (by Rule 2)

≡ (a+ c∗)∗bc∗c+ (a+ c∗)∗b (by splitting the last +)

 (a+ ε)∗bc+ (a+ c∗)∗b (by Rule 1)

≡ a∗bc+ (a+ c)∗b (by standard transformation)

In the example above, we have applied the iterative strategy consisting of (1) choosing
symbols from right to left and applying Rule 1 until no longer possible and then (2) applying
Rule 2 to unfold the rightmost *-expression and split the incoming +. It can be shown that
such a strategy always terminates with expressions in the restricted form. Intuitively, what
happens is that Rule 2 splits larger expressions into smaller ones and, further, for each of
these Rule 1 eliminates repetitions of symbols.

For the third step, we construct from a regular expression e] in restricted form an
equivalent formula φ(e]) on history clocks. This formula represents exactly the set of orders
on actions (the strings) encoded by the regular expression:

φ(e]) ≡
∨

a1...an∈L(e])
distinct a1,...,an

(
h0 ≥ ha1 ≥ ... ≥ han ∧

∧
c 6=a1,...,an

hc > h0

)
where L(e]) is the language of e]. We note that since we only consider words with distinct
symbols, they are finitely many and the disjunction is finite as well.

As an illustration, let e] be the regular expression in the restricted form a∗bc+(a+ c)∗b
obtained in Example 4.2. The finite words on which φ(e]) builds upon are abc and bc (from
a∗bc) and acb, cab, cb, ab, b from (a+ c)∗b. By applying the above encoding, we obtain:

(h0 ≥ ha ≥ hb ≥ hc) ∨ (ha > h0 ≥ hb ≥ hc)∨ (corr. to abc, resp. bc)

(h0 ≥ ha ≥ hc ≥ hb) ∨ (h0 ≥ hc ≥ ha ≥ hb)∨ (corr. to acb, resp. cab)

(ha > h0 ≥ hc ≥ hb) ∨ (hc > h0 ≥ ha ≥ hb)∨ (corr. to cb, resp. ab)

(h0 ≥ hb ∧ hc, ha > h0) (corr. to b)

Such encodings are, in fact, invariants. Intuitively, the inequalities in φ(e]) reflect
precisely the order in which the last action occurences have taken place.

Proposition 4.3. Let B be an untimed component, El the regular expression characterising

the language accepted by B at location l, and E]l be the result of applying the simplification

rules. We have that
∨
l(l ∧ φ(E]l)) is an invariant of Bh.

Proof. (sketch) The local component invariant at some location l is precisely characterised
by the orders of the last occurrences of actions on traces reaching l. To show that these

orders are captured by φ(E]l), it suffices to note that, on the one hand, El and E]l preserve
the language of the last occurrences of actions. This follows from the simplification rules.
As for regular expressions e] in restricted form we can prove the following property. For
every word w in L(e]), the restricted sub-word wloc obtained from w by removing all but
last occurrences of every symbol belongs to L(e]) as well. Henceforth, one can enumerate
over all last occurrence words wloc by simply considering all accepted words of L(e]) having

18 BEN RAYANA ET AL.

distinct symbols. To conclude the proof we only need to note that the inequalities in φ(E]l)

encode the enumeration of all possible words corresponding to traces of Bh ending at l.

We can exploit the structure of regular expressions in restricted form to optimise the
technique described above even further. To illustrate this, we consider the regular expression
(b1 + ... + bm)∗a1...an in restricted form (whenever a1, ..., an, b1, ..., bm are distinct). The
corresponding formula on history clocks is

h0 ≥ ha1 ≥ ... ≥ han ∧ hb1 ≥ ha1 ∧ ... ∧ hbm ≥ ha1 ∧
∧

c 6=ai,bj

hc > h0.

The first part encodes the ordering constraints on the mandatory string a1...an. All these
actions occur (consequently, their history clocks are smaller than h0) in this precise order.
The second part considers constraints on occurences of bj actions, which are optional: if some
occur, their executions are unconstrained by each other, however, they take place before a1.
Finally, the last part deals with actions c which do not appear in the regular expression.
For all of them, their history clocks should be strictly greater than h0. We remark that, for
this particular example, the obtained formula has linear size with respect to the size of the
regular expression. In contrast, the number of strings encoded (i.e., whenever restricted to
last occurrences of symbols) is exponential, with respect to the number of b actions. The
construction above can be generalised for arbitrary restricted regular expressions without
much difficulty. The resulting formula remains of polynomial size (at worse quadratic) with
respect to the size of the restricted regular expression provided as input.

Example 4.4. Following the approach described above, the regular expression in the re-
stricted form a∗bc+ (a+ c)∗b translates into:

(h0 ≥ hb ≥ hc ∧ ha ≥ hb) ∨ (h0 ≥ hb ∧ ha ≥ hb ∧ hc ≥ hb)
We note this expression is significantly smaller, yet logically equivalent to the disjunction
of 7 distinct terms corresponding to symbolic zones reached at l1 as initially presented in
Example 4.1.

To sum up, we described a heuristic which can be applied to untimed components to
automatically compute an invariant with a reasonable enough size to be handled by existing
SMT solvers. Given an untimed component B, our heuristic makes use of the regular
expressions characterizing the language accepted by B to avoid a direct construction of the
zone graph of Bh which would result in considerably large invariants.

4.3. Exploiting Symmetry. At a closer examination of the definition of separation con-
straints in Section 3.2, it can be noticed that it characterises all possible orderings of con-
flicting interactions with respect to permutations. The size of the corresponding search
space is exponential in the number of conflicting interactions and this, in turn, may be a
bottleneck for the solver. Such situations can and must be avoided especially in the case of
symmetric systems. What we show next is how the inherent symmetry in the formula can
be eliminated such that the search space becomes considerably smaller.

The use of symmetry has long been addressed, mostly with the intention of making
model-checking more feasible and especially in the context of parameterised systems [22,
23, 21, 32]. There the goal is to show the existence of a small cutoff bound which allows
the reduction of the verification problem from an arbitrary number of instances to a small,

COMPOSITIONAL INVARIANT GENERATION FOR TIMED SYSTEMS 19

fixed one. Our context is different, that is, breaking the symmetry in some of the generated
invariants, for an a priori known number of components.

The types of systems we consider next are formed of a fixed number, be it n, of isomor-
phic components interacting with a controller, thus the interactions are binary. Isomorphic
components are obtained from a generic component B by attaching an index i (from 1 to
n) to all symbols in B . The resulting component is denoted by Bi. For any i, j, Bi and Bj

are isomorphic6. For the ease of reference, we denote systems like C‖nγBi by the letter M
and we use Exec to denote the set of their global executions.

In this framework, the notion of symmetry is intrinsically related to permutations. Let
Πn denote the group of permutations of n. The application of permutations is defined on
the structure of systems and properties. For a system M as C‖nγBi, and a permutation π,
π(M) is defined as C‖nπ(γ)π(Bi) where π(Bi) is defined as Bπ(i) and π(γ) as {π(α) | α ∈ γ}
with π(ac | ai) = ac | aπ(i) for α an arbitrary binary interaction between an action ac
of C and an action ai of a Bi. For an execution σ = α1, . . . αi, . . . αk, π(σ) is defined as
π(α1), π(α2) . . . π(αi), . . . , π(αk). For a global state s = (sc, s1, . . . , sn), π(s) is defined as
(sc, sπ(1), . . . , sπ(n)). As for system properties ϕ, we restrict to those built (with the usual
logical connectors) from clock constraints and locations, and define:

π(ϕ) =

xπ(i) rop xπ(j) if ϕ = xi rop xj and rop ∈ {<,≤,=, >,≥}
lπ(i) if ϕ = li

¬π(ϕ1) if ϕ = ¬ϕ1

π(ϕ1) op π(ϕ2) if ϕ = ϕ1 op ϕ2 and op ∈ {∧,∨}
where li, xi denote a location, respectively, a clock in Bi.

The symmetric systems we consider are symmetric in a “strong” sense, i.e., they are
fully symmetric. A system M is fully symmetric if for any π ∈ Πn, π(M) is syntactically
identical to M . Similarly, a property ϕ is fully symmetric if for any permutation π, π(ϕ) is
equivalent to ϕ. A property like l1∧ l2∧ ...∧ ln is symmetric. On the contrary, G = x1 ≤ x2

is not as for the permutation π(1) = 2, π(2) = 1, π(G) = xπ(1) ≤ xπ(2) = x2 ≤ x1 which is
not equivalent to G.

Symmetric systems have the convenient property that, whenever started in a symmetric
state, for any of its executions σ ∈ Exec, π(σ) is itself an execution, that is, π(σ) ∈ Exec.
To see why this is indeed the case, let γ be the interaction set and α = (ac | ai) an interaction
in γ. It suffices to note that if α is possible after σ, then it is also the case for π(α) after
π(σ). Note also that, thanks to symmetry, π(α) is in γ.

The idea behind simplifying the separation constraints S is to break the symmetry by
replacing the constraints on absolute values | hαi−hαj |. More precisely, given a conflicting
(controller) action ac, in an execution where interaction αi = ac | ai executes before αj =
ac | aj for j > i, we can naturally replace | hαi−hαj | by hαi−hαj . As for an execution which
violates this natural ordering (or “canonicity”), we show that we can make use of symmetry
to rearrange it. First, we formalise what we mean more precisely by canonicity. Given an
execution σ and an interaction αi = ac | ai we denote by lpos(σ, αi) the last position of
αi in σ. An execution σ is canonical with respect to ac if lpos(σ, αi) < lpos(σ, αj) for any
i < j. Let Execc be the set of canonical executions. Thanks to symmetry, any execution
has a corresponding canonical execution. Assume σ is such that there is a conflicting ac

6We note that, by construction, isomorphic components cannot have clock constraints involving indices:
any constraint in a worker Bi is obtained from those in B which are oblivious to indices i.

20 BEN RAYANA ET AL.

and for i > j the last occurrence of αi = ac | ai appears latter than that of αj = ac | aj .
Let π be such that π(i) = j and π(j) = i. Then π(σ) is itself an execution and is canonical.

For a canonical execution with ac being the action of interest S simplifies to:

Sc(γ) =
∧
i<j

ac∈αi∩αj

hαi − hαj ≥ kac ∧
∧
b6=ac

b∈βi∩βj

| hβi − hβj |≥ kb

We note that Sc reduces S by n!. This is the best we can get in general. However,
under particular conditions, S can be further reduced. For instance, if the controller is such
that it considers components one by one and moreover, requires the use of some designated
action ac, then S further reduces to:∧

a∈Act(C)

∧
i<j

a∈αi∩αj

hαi − hαj ≥ kac

This is because by considering components one by one, all conflicting interactions involving
the controller follow the same order as defined for the designated action ac. We anticipate
and note that such a scenario is the “temperature controller” case study from Section 5.

Finally, we show that for symmetric systems and properties it is correct to consider Sc
instead of S.

Proposition 4.5. Let M be a symmetric system, ϕ be a symmetric property and Φ the
global invariant as defined in Section 3.2. We have that if ` Φ[S ← Sc]→ ϕ then M |= �ϕ.

Proof. (sketch) It suffices to show that ` Φ[S ← Sc]→ ϕ iff ` Φ→ ϕ.
“⇐”: trivial. “⇒”: It boils down to show that if ϕ is an invariant of Execc then it is also
an invariant of the remaining executions σ in Exec\Execc. If σ does not have a conflicting
action, we are done, as Sc is an invariant by default. Else, we make use of the fact that σ
has a canonical representation and that ϕ is symmetric.

An immediate application of the above reduction results in the simplification we make
use of in the temperature controller example from Section 5. Naturally, the results can
be extended also to systems with less symmetry by adapting the standard constructions
of automorphisms from, for example, [23]. More precisely, for a system M for which
Aut(M) = {π | π(M) = M} is a proper subgroup of Πn, we need to restrict to canon-
ical executions which are consistent with the permutations in Aut(M). However, though
such a generalisation is possible, it is not clear if it is also useful: as it is well pointed out
in the literature about symmetries, determining Aut(M) is, in itself, a hard problem. This,
together with the goal of keeping the presentation as clear as possible, were the reasons why
we strictly considered only fully symmetric systems.

5. Implementation and Experiments

The method has been implemented in the RTD-Finder tool designed to check safety prop-
erties for real-time component-based systems modelled in the RT-BIP language [1]. The
tool and the examples are available at http://www-verimag.imag.fr/RTD-Finder.

In RT-BIP, components are modelled as timed automata and synchronise by means of
n-ary multi-party interactions. The tool takes as input a real-time BIP model and a file
containing the safety property. It subsequently generates a Yices [20] output file where the
invariants are expressed together with the property. RTD-Finder proceeds by the following

COMPOSITIONAL INVARIANT GENERATION FOR TIMED SYSTEMS 21

steps. It extends the components with history clocks and computes their local invariants.
The computation of those invariants requires the implementation of several operations on
zones. For this purpose, we developed a DBM (Difference Bound Matrices) library. RTD-
Finder subsequently computes the history clocks constraints and the interaction invariant. It
writes all these invariants to a file and calls Yices to check the satisfiabilty ofGI∧¬Ψ. IfGI∧
¬Ψ is unsatisfiable, the property is valid. Otherwise, Yices generates a counter-example.
We note that, at present, the tool cannot conclude if it is a valid counter-example, however,
a guided backward analysis module is currently under development. The benchmarks we
used in our experiments with RTD-Finder are described in what follows.

5.1. Train gate controller (TGC). This is a classical example from [3]. The system is
composed of a controller, a gate and a number of trains. For simplicity, Figure 5 depicts
only one train interacting with the controller and the gate. The controller lowers and
raises the gate when a train enters, respectively exits. We propose to check that when all
the trains are at far location, the gate cannot be going down (g2 location). The results
are presented in Table. 1. When there are more than one train, be it n, the interactions
approachi | approach (respectively exiti | exit), for 1 ≥ i ≥ n are in conflict on approach
(respectively exit) of the controller. In this case, in addition to the separation constraints,
we made use of the first heuristic presented in Section 4.1. More precisely, the invariant
generated by the heuristic is as follows:∧

i 6=j

(
(happroachi ≤ h0 ∧ happroachj ≤ h0)→ hraise ≤ h0

)

far1 near1

x1 ≤ 5

in1

x1 ≤ 5

Train

approach

x := 0

x1 ≥ 3exit1

a
p
p
ro

a
ch

1
ex

it
1

c0 c1

z ≤ 1

c2c3

Controller

z ≤ 1

exit
c

lo
w

er
c

a
p
p
roa

ch
c

ra
is

e
c

approachc

z := 0

z = 1
lower c

z := 0

exitc

raisec

g0 g1

y ≤ 1

g2g3

y ≤ 2

Gate

lo
w

er
g

ra
ise

g

lowerg

y := 0

raiseg

y := 0

y ≥ 1

Figure 5: A controller interacting with a train and a gate

5.2. Fischer protocol. This is a well-studied protocol for mutual exclusion [29]. The
protocol specifies how processes can share a resource one at a time by means of a shared
variable to which each process assigns its own identifier number. After θ time units, the
process with the id stored in the variable enters the critical state and uses the resource.
We use an auxiliary component Id Variable to mimic the role of the shared variable. The
system with two concurrent processes is represented in Figure 6. The property of interest
is mutual exclusion: (csi ∧ csj)→ i = j.

The component Id Variable has combinatorial behavior and a large number of actions
(2n+1), thus the generated invariant is huge except for very small values of n. To overcome
this issue, we made use of the second heuristic presented in Section 4.2. To simplify, we write
si instead of seti and ei instead of eqi. We construct the regular expression corresponding

22 BEN RAYANA ET AL.

to location li and project it for actions ei, ej , si, sj , respectively ei, e0, si, s0. The latter
projection leads to the following regular expression in restricted form:

Ri = (e0 + s0)∗ei.si + (e0 + s0)∗si.ei + (e0 + ei)
∗s0si + (ei + s0)∗e0si + si

This regular expression translates into the following constraint on history clocks:

φ(Ri) =(he0 ≥ hei ∧ hs0 ≥ hei ∧ hei ≥ hsi ∧ hei ≤ h0) ∨
(he0 ≥ hsi ∧ hs0 ≥ hsi ∧ hei ≤ hsi ∧ hsi ≤ h0) ∨
(he0 ≥ hs0 ∧ hei ≥ hs0 ∧ hs0 ≥ hsi ∧ hs0 ≤ h0) ∨
(hs0 ≥ he0 ∧ hei ≥ he0 ∧ he0 ≥ hsi ∧ he0 ≤ h0) ∨
(hsi ≤ h0 ∧ hs0 , he0 , hei > h0)

We deduce that at(li) → φ(Ri) is an invariant of the Id Variable, for any i. These
invariants in addition to component invariants of processes and inequality constraints E(γ)
are sufficient to show that mutual exclusion holds.

S1 S2

S0

Id Variable

eq1, set1 eq2, set2

eq0

set1 set2

set2

set1

eq0 eq2

se
t 2

eq1

se
t 1

i1r1

x1 ≤ θ

w1 cs1

Process1

try1, x1 := 0

set1
x1 := 0

enter1, x1 > θ

enter1try1

se
t 1

i2 r2

x2 ≤ θ

w2cs2

Process2

try2, x2 := 0

set2
x2 := 0

enter2, x2 > θ

enter2 try2

se
t 2

Figure 6: The Fischer protocol

5.3. Gear controller system. Our third example is taken from [31]. There it is described
a model of gear controller components in embedded systems operating inside vehicles. A
gear controller system is composed of five components: an interface, a controller, a clutch,
an engine and a gear-box. The interface sends signals to the controller to change the gear.
In turn, the controller interacts with the engine, the clutch and the gear-box. The engine
is either regulating the torque or synchronising the speed. The gear-box sets the gear
between some fixed bounds. The clutch works as the gear-box and it is used whenever the
engine is not able to function correctly (under difficult driving conditions, for instance).
One requirement that such a system should satisfy in order to be correct is predictability.
This requirement ensures a strict order between components. For instance, it ensures that
when the engine is regulating the torque, the clutch is closed and the gear-box sets the gear.
Another property of interest that we checked is that the controller is in an error location
only when one of the other four components is in an error location also.

5.4. Temperature controller (TC). This example is an adaptation from [12]. It repre-
sents a simplified model of a nuclear plant. The system consists of a controller interacting
with an arbitrary number n of rods (two, in Figure 7) in order to maintain the temperature
between the bounds 450 and 900: when the temperature in the reactor reaches 900 (resp.
450), a rod must be used to cool (resp. heat) the reactor. The rods are enabled to cool only
after 900n units of time. The global property of interest is the absence of deadlock, that is,
the system can run continuously and keep the temperature between the bounds. When the

COMPOSITIONAL INVARIANT GENERATION FOR TIMED SYSTEMS 23

controller should take the cool action, at least one of the rods is ready to synchronise with
it. For one rod, E(γ) is enough to show the property. For more rods, because interactions
are conflicting, we need the separation constraints which basically bring as new informa-
tion conjunctions as ∧i(hrestπ(i) − hrestπ(i−1)

≥ 1350) for π an ordering on rods. Recalling
the discussion from Section 4.3, such a reduction is correct because the system enjoys the
particularly helpful property of being symmetric.

l00

l10

l20

t0 := 1800

cool0
t0 ≥ 1800

rest0, t0:= 0

rest0

cool0

Rod0

lc0

lc1t ≤ 900

lc2t ≤ 450

Controller

t := 0

cool, t=900
t:=0

heat, t=450
t := 0

heat

cool

l01

l11

l21

t1 := 1800

cool1
t1 ≥ 1800

rest1, t1:= 0

rest1

cool1

Rod1

Figure 7: A Controller interacting with two rods

5.5. Dual chamber implantable pacemaker. As a last benchmark, we consider the
verification of a dual chamber implantable pacemaker presented in [28]. A pacemaker is a
device for the management of the cardiac rhythm. It paces both the atrium and the ventricle
of the heart, and based on sensing both chambers it can activate or inhibit further pacing.
The model of pacemakers we experimented with has five components, for (1) keeping the
heart rate above a minimum value, (2) maintaining delays between atrial and ventricular
activation, (3) preventing pacing the ventricle too fast, filtering noise after (4) ventricular
and (5) atrial events. In our experiments, we considered the upper rate limit (URI) property
stating that the ventricles of the heart should not be paced beyond a maximum rate, equal
to a constant called TURI. The property states the existence of a minimum time elapse
between a ventricular sense (VS) event and the following ventricular pace (VP) event. As
in [28], we verified the property by translating it into a monitor component which is shown
in Figure 8. The actions VS and VP of the monitor are synchronised with those of the other
components. We verified that when the monitor reaches the location interval, its clock t is
greater than TURI. The corresponding property is interval → t ≥ TURI.

wait_v wait_vp
VS VP

interval

VS VP
VS

t:=0

τ
t:=0

Figure 8: Monitor for the upper rate limit property: the interval between a VS venticular
event and a VP venticular event should be longer than TURI

Our method offers an additional way to check this property without resorting to the
monitor. We expressed it by means of the introduced history clocks. The difference between
the history clocks relative to those two events is longer than the required time elapse:

(hV P ≤ hV S ∧ hV S ≤ h0)→ hV S − hV P ≥ TURI

24 BEN RAYANA ET AL.

5.6. Results. We ran our experiments on a Linux machine with Intel Core 3.20 GHz ×4
and 15.6 GiB memory. The results, synthesised in Table 1, show the potential of our method
in terms of accuracy and scalability. In Table 1, n is the number of components, q is the
total number of control locations, c (resp. h) is the number of system clocks (resp. history
clocks), i is the number of interactions, while t shows the total verification time and tyices
is the timed taken by Yices for satisfiability checking of GI ∧ ¬Ψ.

Model n q c i h t tyices

Train gate controller (50 trains) 52 158 52 102 106 0.5s 0.3s
Train gate controller (100 trains) 102 308 102 202 206 5.3s 0.6s
Train gate controller (200 trains) 202 608 202 402 406 1m33s 5s
Train gate controller (300 trains) 302 908 302 602 606 9m8s 20s
Train gate controller (500 trains) 502 1508 502 1002 1006 1h13m20s 2m52s

Temperature control system (20 rods) 21 42 21 40 42 0.07s 0.01s
Temperature control system (50 rods) 51 102 51 100 102 0.35s 0.04s
Temperature control system (100 rods) 101 204 102 200 204 3.7s 0.08s
Temperature control system (300 rods) 301 602 302 600 602 5m47s 0.9s

Fischer protocol (100 processes) 101 400 101 300 501 2.7s 0.06s
Fischer protocol (200 processes) 201 800 201 600 1001 0m47s 0.22s
Fischer protocol (300 processes) 301 1200 301 900 1501 4m27s 0.5s

Gear controller 5 65 4 17 32 15.1s 0.14s

Implantable pacemaker (with monitor) 7 19 11 6 21 15.23s 0.044s
Implantable pacemaker (without monitor) 6 16 9 6 19 15s 0.032s

Table 1: Results from experiments

To the best of our knowledge, there are no tools to compositionally verify safety prop-
erties of timed systems. Consequently, there are no relevant tools to compare RTD-Finder
with. Netherveless, we did a small comparison with Uppaal. Uppaal is a well-known model-
checking tool which is highly optimised. For instance, thanks to some reduction techniques,
it has better scores on the first example (the TGC system) in particular and on smaller
systems in general. Nonetheless, generally, the state space exploration is costly. This can
be illustrated by means of the temperature controller example: for 10 rods, Uppaal gen-
erated no results after five hours and 436519 explored states. Nevertheless, RTD-Finder
checked the property for 300 rods in few minutes, as shown in Table 1. The timings for
the RTD-Finder tool are obtained by the java command getCpuTime called to compute
the total verification time, while the results for Uppaal come from the command verifyta

which comes with the Uppaal 4.1.14 distribution.

Related Work

Automatic generation of invariants for concurrent systems is a long-time studied topic. Yet,
to our knowledge, specific extensions or applications for timed systems are rather limited.
As an exception, the papers [6, 24] propose a monolithic, non-compositional method for
finding invariants in the case of systems represented as a single timed automaton.

Compositional verification for timed systems has been mainly considered in the context
of timed interface theories [2] and contract-based assume guarantee reasoning [18, 30, 4].

COMPOSITIONAL INVARIANT GENERATION FOR TIMED SYSTEMS 25

These methods usually rely upon choosing a “good” decomposition structure and require
individual abstractions for components to be deterministic timed I/O automata. Finding
the abstractions is in general difficult, however, their construction can be automated by
using learning techniques [30] in some cases. In contrast to the above, we are proposing a
fully automated method generating, in a compositional manner, an invariant approximating
the reachable states of a timed system.

Abstractions serve also for compositional minimisation, for instance [13] minimises by
constructing timed automata quotients with respect to simulation; these quotients are in
turn composed for model-checking. Our approach is orthogonal in that we do not compose
at all. Compositional deductive verification as in [19] is also orthogonal on our work in
that, by choosing a particular class of local invariants to work with, we need not focus on
elaborate proof systems but reason at a level closer to intuition.

The use of additional clocks has been considered, for instance, in [9, 26]. There, extra
reference clocks are added to components to faithfully implement a partial order reduction
strategy for symbolic state space exploration. Time is allowed to progress desynchronised
for individual components and re-synchronised only when needed, i.e., for direct interaction
within components. Clearly, the history clocks in our work behave in a similar way, however,
our use of clocks is as a helper construction in the generation of invariants and we totally
avoid global state space exploration. Finally, another successful application of extra clocks
has been provided in [33] for timing analysis of asynchronous circuits. There, specific history
clocks are reset on input signals and used to provide a new time basis for the construction
of an abstract model of output signals of the circuit.

6. Conclusions

We presented a fully automated compositional method to generate global invariants for
timed systems described as parallel compositions of timed automata components using
multi-party interactions. The soundness of the method proposed has been proven. In
addition, it has been successfully tested on several benchmarks. This method has been im-
plemented in the RTD-Finder tool. The results show that it may outperform the existing ex-
haustive exploration-based techniques for large systems, thanks to the use of compositional-
ity and over-approximations. Nonetheless, the generated invariant is an over-approximation
of the reachable states set and false-positives may raise. To remedy this, we are working on
a guided backward analysis module to decide upon their validity.
In order to achieve a better integration, we are working on handling richer classes of systems,
including systems with data variables and urgencies [7] on transitions. Actually, urgencies
provide an alternative way to constrain time progress, which is more intuitive to use by pro-
grammers but very difficult to handle in a compositional way. A second direction of research
which is potentially interesting for systems containing identical, replicated components and
closely related to the symmetry-based reduction is the application of our method to the ver-
ification of parameterised timed systems. Finally, we are considering specific extensions to
particular classes of timed systems and properties, in particular, for schedulability analysis
of systems with mixed-critical tasks.

Acknowledgement. We are grateful to the anonymous referees for their constructive input
and for their thorough feedback. We would also like to thank our colleague Mahieddine
Dellabani for his help with two benchmarks.

26 BEN RAYANA ET AL.

References

[1] T. Abdellatif, J. Combaz, and J. Sifakis. Model-based implementation of real-time applications. In
EMSOFT, 2010.

[2] L. D. Alfaro, T. A. Henzinger, and M. Stoelinga. Timed interfaces. In EMSOFT, 2002.
[3] R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci., 1994.
[4] R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K. Rajamani, and S. Tasiran. MOCHA:

modularity in model checking. In CAV, 1998.
[5] L. Astefanoaei, S. B. Rayana, S. Bensalem, M. Bozga, and J. Combaz. Compositional invariant gener-

ation for timed systems. In TACAS, 2014.
[6] B. Badban, S. Leue, and J.-G. Smaus. Automated invariant generation for the verification of real-time

systems. In WING@ETAPS/IJCAR, 2010.
[7] A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous real-time components in BIP. In SEFM,

2006.
[8] G. Behrmann, A. David, K. G. Larsen, J. H̊akansson, P. Pettersson, W. Yi, and M. Hendriks. UPPAAL

4.0. In QEST, 2006.
[9] J. Bengtsson, B. Jonsson, J. Lilius, and W. Yi. Partial order reductions for timed systems. In CONCUR,

1998.
[10] J. Bengtsson and W. Yi. On clock difference constraints and termination in reachability analysis of

timed automata. In ICFEM, 2003.
[11] S. Bensalem, M. Bozga, T. Nguyen, and J. Sifakis. Compositional verification for component-based

systems and application. IET Software, 4, 2010.
[12] S. Bensalem, M. Bozga, J. Sifakis, and T.-H. Nguyen. Compositional verification for component-based

systems and application. In ATVA, 2008.
[13] J. Berendsen and F. W. Vaandrager. Compositional abstraction in real-time model checking. In FOR-

MATS, 2008.
[14] S. Bornot and J. Sifakis. An algebraic framework for urgency. Information and Computation, 1998.
[15] P. Bouyer. Forward analysis of updatable timed automata. Form. Methods Syst. Des., 2004.
[16] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos: A model-checking tool

for real-time systems. In CAV, 1998.
[17] C. Courcoubetis and M. Yannakakis. Minimum and maximum delay problems in real-time systems.

Formal Methods in System Design, 1992.
[18] A. David, K. G. Larsen, A. Legay, M. H. Møller, U. Nyman, A. P. Ravn, A. Skou, and A. Wasowski.

Compositional verification of real-time systems using Ecdar. STTT, 2012.
[19] F. S. de Boer, U. Hannemann, and W. P. de Roever. Hoare-style compositional proof systems for

reactive shared variable concurency. In FSTTCS, 1997.
[20] B. Dutertre and L. de Moura. The Yices SMT solver. Technical report, SRI International, 2006.
[21] E. A. Emerson and V. Kahlon. Reducing model checking of the many to the few. In CADE, 2000.
[22] E. A. Emerson and K. S. Namjoshi. Reasoning about rings. In POPL, 1995.
[23] E. A. Emerson and A. P. Sistla. Symmetry and model checking. Formal Methods in System Design,

9(1/2), 1996.
[24] A. Fietzke and C. Weidenbach. Superposition as a decision procedure for timed automata. Mathematics

in Computer Science, 2012.
[25] G. Gardey, D. Lime, M. Magnin, and O. H. Roux. ROMEO: A tool for analyzing time Petri nets. In

CAV, 2005.
[26] J. H̊akansson and P. Pettersson. Partial order reduction for verification of real-time components. In

FORMATS, 2007.
[27] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for real-time systems.

Inf. Comput., 1994.
[28] Z. Jiang, M. Pajic, S. Moarref, R. Alur, and R. Mangharam. Modeling and verification of a dual chamber

implantable pacemaker. In TACAS, 2012.
[29] L. Lamport. A fast mutual exclusion algorithm. ACM Trans. Comput. Syst., 1987.
[30] S.-W. Lin, Y. Liu, P.-A. Hsiung, J. Sun, and J. S. Dong. Automatic generation of provably correct

embedded systems. In ICFEM, 2012.
[31] M. Lindahl, P. Pettersson, and W. Yi. Formal design and analysis of a gear controller. In TACAS, 1998.

COMPOSITIONAL INVARIANT GENERATION FOR TIMED SYSTEMS 27

[32] K. S. Namjoshi. Symmetry and completeness in the analysis of parameterized systems. In VMCAI,
2007.

[33] R. B. Salah, M. Bozga, and O. Maler. Compositional timing analysis. In EMSOFT, 2009.
[34] S. Tripakis. Verifying progress in timed systems. In ARTS, 1999.
[35] F. Wang. Redlib for the formal verification of embedded systems. In ISoLA, 2006.

