
HAL Id: hal-01864700
https://hal.science/hal-01864700v1

Submitted on 30 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimized distributed implementation of multiparty
interactions with Restriction

Saddek Bensalem, Marius Bozga, Jean Quilbeuf, Joseph Sifakis

To cite this version:
Saddek Bensalem, Marius Bozga, Jean Quilbeuf, Joseph Sifakis. Optimized distributed implementa-
tion of multiparty interactions with Restriction. Science of Computer Programming, 2015, 98, pp.293
- 316. �10.1016/j.scico.2014.02.013�. �hal-01864700�

https://hal.science/hal-01864700v1
https://hal.archives-ouvertes.fr

Optimized Distributed Implementation of
Multiparty Interactions with RestrictionI

Saddek Bensalema, Marius Bozgaa, Jean Quilbeufa, Joseph Sifakisa,b

a UJF-Grenoble 1 / CNRS VERIMAG UMR 5104, Grenoble, F-38041, France
b RISD Laboratory, EPFL, Lausanne, CH-1015, Switzerland

Abstract

Using high level coordination primitives allows enhanced expressiveness of component-based frameworks to
cope with the inherent complexity of present-day systems designs. Nonetheless, their distributed imple-
mentation raises multiple issues, regarding both the correctness and the runtime performance of the final
implementation. We propose a novel approach for distributed implementation of multiparty interactions
subject to scheduling constraints expressed by priorities. We rely on new composition operators and se-
mantics that combine multiparty interactions with Restriction. We show that this model provides a natural
encoding for priorities. We provide a knowledge-based optimization that modifies the Restriction operator
to avoid superfluous communication in the final implementation. We complete our framework through an
enhanced conflict resolution protocol that natively implements Restriction. A prototype implementation
allows us to compare performances of different optimizations.

Keywords: multiparty interaction, priority, observation, conflict resolution, distributed systems

1. Introduction

Correct design and implementation of computing systems has been an active research topic over the
past three decades. This problem is significantly more challenging in the context of distributed systems
due to a number of factors such as non-determinism, asynchronous communication, race conditions, fault
occurrences, etc. Model-based development of such applications aims to ensure correctness through the
usage of explicit model transformations from high-level models to code.

In this paper, we focus on distributed implementation for models defined using the BIP framework [6].
BIP (Behavior, Interaction, Priority) is based on a semantic model encompassing composition of heteroge-
neous components. The behavior of components is described as an automaton extended by data and asso-
ciated functions written in C. BIP uses an expressive set of composition operators for obtaining composite
components from a set of components. The operators are parameterized by a set of multiparty interac-
tions between the composed components and by priorities, used to specify different scheduling mechanisms
between interactions1.

A multiparty interaction is a high-level construct that expresses a strong synchronization between a
fixed set of components. Such an interaction takes place only if all its participant components agree to
execute it. If two multiparty interactions involve a common component, they are conflicting because the

IThis article extends two papers, presented at the AGERE!2012 workshop and at the FMOODS/FORTE 2012 conference.
The research leading to these results has received funding from the European Community’s Seventh Framework Programme
[FP7/2007-2013] under grant agreement no. 248776 (PRO3D) and no 257414 (ASCENS) and from ARTEMIS JU grant
agreement ARTEMIS-2009-1-100230 (SMECY)

Email addresses: bensalem@imag.fr (Saddek Bensalem), bozga@imag.fr (Marius Bozga), quilbeuf@imag.fr (Jean
Quilbeuf), sifakis@imag.fr (Joseph Sifakis)

1Although our focus is on BIP, all results in this paper can be applied to any model that is specified in terms of a set of
components synchronized by interactions with priorities.

Preprint submitted to Elsevier August 30, 2018

common component cannot participate in both interactions. Transforming a BIP model into a distributed
implementation consists in addressing three fundamental issues:

1. Enabling concurrency. Components and interactions should be able to run concurrently while respect-
ing the semantics of the high-level model.

2. Conflict resolution. Interactions that share a common component can potentially conflict with each
other. Such interactions should be executed in mutual exclusion.

3. Enforcing priorities. When two interactions are simultaneously enabled, only the one with higher
priority can be chosen for execution. Priorities can be applied indifferently between conflicting or
non-conflicting interactions.

We developed a general method based on source-to-source transformations of BIP models with multiparty
interactions leading to distributed models that can be directly implemented [16, 17]. This method has been
later extended to handle priorities [18] and optimized by exploiting knowledge [12]. The target model
consists of components representing processes and Send/Receive interactions representing asynchronous
message passing. Correct coordination is achieved through additional components implementing conflict
resolution and enforcing priorities between interactions.

In particular, the conflict resolution issue has been addressed by incorporating solutions to the committee
coordination problem [20] for implementing multiparty interactions. Intuitively, this problem consists in
scheduling several meetings, every one involving a set of professors. A meeting requires the whole attendance.
A professor cannot participate in more than one meeting at a time. Bagrodia [3] proposes solutions to this
problem with different degrees of parallelism. The most distributed solution is based on the drinking
philosophers problem [19], and has inspired the later approaches of Pérez et al. [41] and Parrow et al.
[39]. In the context of BIP, a transformation addressing all the three challenges through employing a
centralized scheduler is proposed in [5]. Moreover, in [16], the transformations is extended to address both
the concurrency issue by breaking the atomicity of interactions and the conflict resolution issue by embedding
a solution to the committee coordination problem in a distributed fashion.

Distributed implementation of priorities is usually considered as a separate issue, and solved using com-
pletely different approaches. However, such an implementation should simultaneously enforce the priority
rules and the mutual exclusion of conflicting interactions. In [18], priorities are eliminated by adding ex-
plicit scheduler components and more multiparty interactions. This transformation leads to potentially more
complex models, having definitely more interactions and conflicts than the original one. In [7], situations
where priorities and multiparty interactions are intermixed, called confusion, are avoided by adding more
priorities.

Enforcing priority rules is done when deciding execution of low priority interactions, by checking that no
interaction with more priority is ready to execute. This check requires a synchronous view of the components
involved in higher priority interactions. The distributed knowledge [22] of a component consists of all the
informations that it can infer about other components state, based on its current state and the reachable
states. In [15, 8, 4], the focus is on reducing the overhead for implementing priorities by exploiting knowledge.
Yet, these approaches make the implicit assumption that multiparty interactions are executed atomically
and do not consider conflict resolution.

This paper is an extension of both [12] and [13], and combine the two approaches. This combination
yields several methods for obtaining a distributed implementation of multiparty interactions subject to
priorities. These methods rely on an appropriate intermediate model and transformations towards fully
distributed models. Each transformation, depicted by an arrow in Figure 1, either refines the composition
operator used to glue components of the model or optimizes the model. The contribution is manyfold:

1. First, we introduce an alternative semantics for BIP, that relies on a new composition operator named
Restriction. We show that this operator is general enough to encompass priorities, through a simple
transformation (Transformation 1 of Figure 1). The Restriction operator reveals two types of conflicts
occurring between interactions, that can be handled using different conflict resolution mechanisms (see
below).

2

Interactions
+ Priority

Interactions
+ Restriction

1

Interactions
+ Restriction

Knowledge-Based
Optimization

Interactions
3

Interactions
3

Message
Passing

5

Message
Passing

5

Message
Passing

4

Message
Passing

4

2

Restriction-Aware
Implementation

Restriction-Aware
Implementation

Multiparty-Based
Implementation

Multiparty-Based
Implementation

Figure 1: Possible paths to generate a distributed implementation from a model encompassing multiparty interactions and
priorities.

2. Second, we show that the knowledge-based optimization originally presented in [12] can be easily
applied to a model with Restriction, to reduce implicit synchronization of the model. This optimization
(Transformation 2 of Figure 1) modifies only the Restriction operator.

3. Third, a model with Restriction can be used as an intermediate step in the transformations leading to
a distributed implementation. We show that observation conflicts, that usually follow from encoding
of priorities, can be dealt more efficiently than structural conflicts, where two multiparty interactions
involve at least a common component. In particular, we compare two approaches for generating a
distributed implementation. The first consists in encoding Restriction with multiparty interactions
and then using a conflict resolution protocol (Transformations 3 and 4). The second is new and uses
a conflict resolution protocol designed to handle Restriction (Transformation 5).

4. These approaches have been fully implemented and evaluated through benchmarks.

The paper is organized as follows. Section 2 introduces the main concepts of the BIP framework together
with the new Restriction composition operator. An adaptation of the knowledge-based optimization from [12]
for Restriction is presented in Section 3. Section 4 recalls the principles for distributed implementation of
BIP models, focusing on conflict resolution by using counter-based protocols and present a solution for
distributed implementation of Restriction. Experiments are reported in Section 5. Section 6 presents the
related work for conflict resolution, priorities and knowledge. Section 7 provides conclusions and perspectives
for future work.

2. Semantic Models of BIP

In this section, we present BIP[6], a component framework for building systems from a set of atomic
components by using two types of composition operators: Interaction and Priority. We then present an
alternative type of composition, named Restriction, that can express Priority. Finally, we present a trans-
formation from a component with Restriction into an equivalent component with only Interaction.

Atomic Components. An atomic componentB is a labelled transition system represented by a tuple (Q, q0, P, T)
where Q is a set of control locations or states, q0 is the initial state, P is a set of communication ports and
T ⊆ Q× P ×Q is a set of transitions.

We write by q
p−→ q′ if (q, p, q′) ∈ T . If the target state is irrelevant, we write q

p−→ to express that an
outgoing transition labeled by p is possible at state q.

3

M S

off up

onup

bMhM

off
upg

rb

on

bMhM

upg

rb

hMbM

rb
upg

reboot

upgrade

lst

dwn

bS

hS

srv

ack
req

hS bS

ack

req
request

acknowledge

reboot <π request
reboot <π acknowledge

π

halt

boot

Figure 2: A BIP component. Initial state is (off, dwn).

2.1. Interactions & Priorities

In order to compose a set of n atomic components {Bi = (Qi, q
0
i , Pi, Ti)}i=1,n, we assume that their

respective sets of control locations and ports are pairwise disjoint; i.e., for any two i 6= j in {1..n}, we require

that Qi ∩Qj = ∅ and Pi ∩Pj = ∅. We define the global set P
def
=
⋃n
i=1 Pi of ports. An interaction a is a set

of ports such that a contains at most one port from each atomic component. In the sequel, we denote by
participants(a) the components that participate in a, and by Ia ⊆ {1, . . . , n} the corresponding indices. We
also denote a = {pi}i∈Ia , where pi ∈ Pi is the port of Bi participating in a.

Priorities. Given a set γ of interactions, we define a Priority as a strict partial order π ⊆ γ × γ. We write
a<π b for (a, b) ∈ π to express that a has lower priority than b.

Composite Components. A composite component πγ(B1, . . . , Bn) (or simply component) is defined by a
set of atomic components {Bi = (Qi, q

0
i , Pi, Ti)}i=1,n composed by a set of interactions γ and a Priority

π ⊆ γ × γ. If π is the empty relation, then we omit π and simply write γ(B1, . . . , Bn). A global state q of
πγ(B1, . . . , Bn) is defined by a tuple of control locations q = (q1, . . . , qn). The behavior of πγ(B1, . . . , Bn)
is a labelled transition system (Q, q0, γ,→πγ), where Q =

⊗n
i=1Qi, q

0 = (q01 , . . . , q
0
n) and →γ ,→πγ are the

least sets of transitions satisfying the rules:

a = {pi}i∈Ia ∈ γ ∀i ∈ Ia. (qi, pi, q
′
i) ∈ Ti ∀i 6∈ Ia. qi = q′i

(q1, . . . , qn)
a→γ (q′1, . . . , q

′
n)

[inter]

q
a−→γ q

′ ∀a′ ∈ γ. a<π a′ =⇒ q
a′9γ

q
a−→πγ q

′ [prio]

Transitions→γ defined by rule [inter] specify the behavior of the component without considering priorities.
A component can execute an interaction a ∈ γ iff for each port pi ∈ a, the corresponding atomic component
Bi can execute a transition labeled by pi. If this happens, a is said to be enabled. Execution of a modifies
atomically the state of all interacting atomic components whereas all others stay unchanged. The behavior
of the component is specified by transitions →πγ defined by rule [prio]. This rule restricts execution to
interactions which are maximal with respect to the priority order among the enabled ones. An enabled
interaction a can execute only if no other interaction a′ with higher priority is enabled.

Example 1. A BIP component is depicted in Figure 2 using a graphical notation. It consists of two atomic
components named M and S. The component S is a server, that may receive requests (through the port
req) and acknowledge them (through the port ack). Formally, S = ({lst , dwn, srv}, dwn, {hS , bS , req , ack},
{(lst , hS , dwn), (dwn, bS , lst), (lst , req , srv), (srv , ack , lst) }). The component M is a manager that may
perform upgrades (upg) and needs to reboot (rb) the server for the upgrade to be done. Interactions are rep-
resented using connectors between the interacting ports. There are 4 unary interactions, that are interactions

4

M S

off up

onup

bMhM

off
upg

rb

on

bMhM

upg

rb

hMbM

rb
upg

upgrade

lst

dwn

bS

hS

srv

ack
req

hS bS

ack

req
request

acknowledge

halt

boot

reboot [ρ(reboot) = ¬(at(lst) ∨ ¬at(srv))]

Figure 3: A component with Restriction.

involving a single port, and 2 binary interactions. Formally γ = {{bM , bS}, {hM , hS}, {rb}, {upg}, {req}, {ack}}.
On the figure, we use names to denote interactions, for instance {bM , bS} is called boot . The depicted
system goes up and down through the binary interactions boot and halt respectively. The priority π =
{(reboot , request), (reboot , acknowledge)} is used to prevent a reboot whenever a request or an acknowledge-
ment are possible.

2.2. Interaction and Restriction

The priority operator is defined over a system made of components composed by interactions. We
consider a new operator, defined over components composed by interactions, called Restriction operator.
A Restriction operator assigns a predicate, defined on the global states, to each interaction. This operator
inhibits execution of interactions, for which the predicate evaluates to false at the current state. We later
show that a priority operator can be expressed as a Restriction operator.

Given a BIP component γ(B1, . . . , Bn), we define Restriction as a function ρ, such that for each interac-
tion a ∈ γ, ρ(a) is a boolean formula involving atomic predicates of the form at(q), where q ∈ ⋃ni=1Qi is one
of the local states of the atomic components. The predicate at(q) is true at a given global state (q1, . . . , qn),
if q is a local state of the atomic component Bi and q = qi. We denote by ρa : Q → {True,False} the
predicate obtained by combining the at(q) predicates according to ρ(a), that is the semantics of ρ(a). In
the sequel, we often refer directly to the predicate ρa, instead of using the formula ρ(a).

A composite component with Restriction ργ(B1, . . . , Bn) is defined from a component γ(B1, . . . , Bn) and
a Restriction operator ρ over this component. The behavior of ργ(B1, . . . , Bn) is the labeled transition
system (Q, q0, γ,−→ργ), where Q =

⊗n
i=1Qi is the set of global states, q0 = (q01 , . . . , q

0
n) is the initial state,

and −→ργ is the least set of transitions satisfying the rule:

q
a−→γ q

′ ρa(q)

q
a−→ργ q

′ [restr]

The rule [restr] states that a transition a can execute if it is already a valid transition in the component
γ(B1, . . . , Bn) and if the predicate ρa holds for the current state of the components.

Although it is defined on the global state, a Restriction predicate ρa might depend only on a subset
of the components. We use the syntactical definition given for the formula ρ(a) to determine the set
of components on which ρa depends. More precisely, we denote by support(ρ(a)) the set of components

{Bi | ∃q ∈ Qi. at(q) appears in ρ(a)}. The components in observedρ(a)
def
= support(ρ(a)) \ participants(a)

play a particular role in the execution of the interaction a: they do not participate in the interaction but
their state is observed to decide whether it can execute.

Example 2. Figure 3 depicts a composite component with Restriction. Each interaction is labeled by
the corresponding formula, which is omitted if it is true The Restriction operator specified in the example
implements the priority operator from the Example 1. Here, reboot is the only interaction whose formula is

5

not true, because it is the only low priority interaction. The formula assigned to reboot is ¬(at(lst)∨at(srv)).
It evaluates to false whenever interactions with more priority than reboot are enabled.

The Restriction operator violates the component encapsulation principle as it depends on the inner states
of components and not only on their interfaces (ports). It is however useful because it explicitly defines the
components to observe for deciding the execution of an interaction a. Indeed, this decision can be taken
solely based on the states of components in observedρ(a) and participants(a).

2.3. Implementing Priority with Restriction

In Figure 3, we presented an example of composite component with Restriction. Note that the predicate
associated to reboot actually encodes the priority rule of Figure 2, since it guarantees that nor request
neither acknowledge are enabled when executing reboot . We show that given a Priority π one can obtain a
Restriction ρπ such that the behaviors of the components with Priority and Restriction are identical. This
corresponds to the Transformation 1 of Figure 1.

Using at(q) predicates, we define the predicate ENa stating whether the interaction a is enabled. First,
we define the predicate EN i

pi characterizing enabledness of port pi in a component Bi = (Qi, Pi, Ti), that

is EN i
pi =

∨
(qi,pi,−)∈Ti at(qi). Then, the predicate ENa can be defined by: ENa =

∧
pi∈aEN

i
pi . Note that

this predicate depends only on components in participants(a).

Definition 1 (Priority Restriction). Let πγ(B1, . . . , Bn) be a prioritized BIP component. The priority
Restriction ρπ associates to each interaction a ∈ γ the predicate ρπa =

∧
a<π b

¬ENb.

For the example in Figure 2, the only low-priority interaction is reboot . For every other interaction a,
the predicate ρπa is True. The component with Restriction obtained from the component with Priority is
exactly the one depicted in Figure 3. Indeed, the predicate ρreboot is ¬at(lst)∧¬at(srv) which is equivalent
to ¬ENrequest ∧ ¬ENacknowledge .

Proposition 1. Given a component with Priority πγ(B1, . . . , Bn) and the component with Restriction
ρπγ(B1, . . . , Bn), where ρπ is constructed from π as specified in Definition 1, we have −→πγ = −→ρπγ .

Proof. For each interaction a, the predicate ρπa =
∧
a<π b

¬ENb is equivalent to ∀b ∈ γ.(a<π b =⇒ q
b9γ).

Thus the rules [prio] and [restr] define exactly the same set of transitions.

2.4. Implementing Restriction with Interactions

We start from a component with Restriction ργ(B1, . . . , Bn) and translate it into an observably equivalent
BIP component γ′(B′1, . . . , B

′
n) by using the Transformation 3 of Figure 1. In order to implement Restriction,

each atomic component has to make explicit its current state, both for interactions where it participates and
for interactions where it is observed. Then each interaction is extended so that components that are observed
by an interaction a because of the Restriction ρ become participants in the corresponding interactions in γ′.

2.4.1. Transforming Atomic Components.

Given an atomic component B = (Q, q0, P, T), we define the corresponding observable atomic component

as a labeled transition system B′ = (Q′, q′0P ′, T ′), where:

• Q = Q′ and q0 = q′0 the states are the same as in the original component as well as the initial state.

• P ′ = (P ∪ {obs}) × Q: we add a new port denoted obs, that will be used for observation. All ports
contain the information of the current state. We denote by p(q) the port (p, q) ∈ P ′.

• For each transition (q, p, q′) ∈ T , T ′ contains the transition (q, p(q), q′) where the current state of the
component is explicit in the offered port. For q ∈ Q, T ′ contains the loop transition (q, obs(q), q) that
is used when the component is observed.

The ports of the transformed atomic component are actually couples made of one port and one state of
the original component. These explicit the current state of the component to the interactions, in order to
evaluate Restriction predicates.

6

2.4.2. Transforming Interactions.

Given a set γ of interactions and a Restriction ρ, we define the set of interactions γ′. If a ∈ γ is an
interaction, it is transformed into a set of interactions that are included in γ′. By definition, given a global
state q = (q1, . . . , qn), the value of ρa(q) depends only on components in participants(a)∪ observedρ(a). We
denote by Ia (resp. Ja) the indices of components in participants(a) (resp. observedρ(a)), and we denote by
{i1, · · · , ik} the indices in Ia and Ja. For each interaction a = {pi}i∈Ia and each partial state (qi1 , . . . , qik)
that satisfies ρa, γ′ contains the interaction a(qi1 , . . . , qik) = {pi(qi)}i∈Ia ∪{obsj(qj)}j∈Ja . This construction
extends the each original interaction a = {pi}i∈Ia to a set of interactions defined over the transformed ports
pi(.) and the additional ports obsj(.) of the observed components. The interaction between ports pi(qi) and
obsj(qj) is added only if ρa(q1, . . . , qn) evaluates to true.

Proposition 2. We have −→γ′=−→ργ by mapping the interactions a(qj1 , . . . , qjk) of γ′ to a.

Proof. The state spaces of ργ(B1, . . . , Bn) and γ′(B′1, . . . , B
′
n) are the same. The transition q

a−→ργ q
′ can be

fired if and only if the components visible to a, namely participants(a)∪observedρ(a), denoted {Bi1 , . . . , Bik},
are in a state (qi1 , . . . , qik) satisfying the predicate ρa. In that case γ′ contains an interaction a(qi1 , . . . , qik).

This interaction only changes the state of participants in a, thus we have q
a−→γ′ q

′.
Conversely, if we have q

a−→γ′ q
′, with q = (q1, . . . , qn), there is an interaction a(qi1 , . . . , qik) in γ′. By

definition of γ′ we have ρa(q). If a(qi1 , . . . , qik) is enabled at state q, each port pi(qi) for i ∈ Ia is enabled,

thus a is enabled. By combining that a is enabled at q and ρa(q) holds, we have q
a−→ργ q

′′. If the transition

qi
pi(qi)−→ q′i is in the component B′i, then the transition qi

pi−→ q′i is in the component Bi, therefore q′′ = q′.
Note that the duplication of interactions can be avoided by using models extended with variables and

guards on interactions, such as the one presented in [17]. In that case, instead of creating a new port p(q) for
any pair in P ×Q, each port exports a state variable q. Then ρa is the guard associated with the interaction
a, and depends only on variables exported by the ports involved in a.

3. Knowledge-based Reduction of Observation

Before executing an interaction a, one must check that the states of atomic components in participants(a)
and in observedρ(a) satisfies ρa. In a distributed context, consistently checking this condition requires a
synchronized observation of the corresponding components. Therefore, our first optimization, corresponding
to Transformation 2 of Figure 1, tries to minimize the number of components to synchronize in order to
check ρa. Since executing an interaction a involves synchronizing its participants, the only set that could
be reduced is observedρ(a).

In this section, we use distributed knowledge to replace a given Restriction ρ by a new one ρ′. The
new Restriction reduces the set of observed components observedρ′(a) for each interaction. The distributed
knowledge ρ′a is a safe under-approximation of ρa, depending only on participants(a) and observedρ′(a).
Distributed knowledge assumes that every component knows the set of reachable states, or at least one
over-approximation of it.

There is a tradeoff between minimizing the number of observed components in ρ′ and the faithfulness of
the under-approximation. When restricting the set of observed components observedρ′(a), one also restricts
the set of global states where ρ′a detects a valid interaction, that is, evaluates to true. To characterize how
much of originally valid transitions are detected, we define detection levels.

We first explain in Subsection 3.1 how the set of reachable states is approximated using invariants. We
then present distributed knowledge in Subsection 3.2. In Subsection 3.3, we show how knowledge can be used
to compute a correct Restriction, provided that the set of components to observe is given. We also define
two detection levels that characterize faithfulness of the obtained component with respect to the original
one. In Subsection 3.4, we provide heuristics that try to minimize the number of observed components,
while ensuring a given detection level.

7

3.1. Invariants and reachable states

Let B = ργ(B1, · · · , Bn) be a component with Restriction. We say that the state q is reachable (from
the initial state q0) if there exist a sequence of interactions a1, · · · , ak ∈ γ and states q1, · · · , qk such that

q0
a1−→ργ q

1 a2−→ργ · · · ak−→ργ q
k = q. We denote by R the set of reachable states of B.

An invariant of B is a predicate I : Q → {True, False} satisfied by all reachable states of B. The
characteristic set R̃ of I provides an over-approximation of the reachable states (R ⊆ R̃). We are interested
in two types of inductive invariants that can be generated automatically [14], respectively:

• boolean invariants, that is, conjunctions of boolean constraints of the form
∨
j∈J at(qj). For the

example of Figure 2, at(onup) ∨ at(on) ∨ at(dwn) is a boolean invariant. Indeed, by executing any
transition from a state where the invariant holds, we reach a state where the invariant still holds.
For instance, executing the interaction halt disables the predicates at(on) or at(onup) but enables the
predicate at(dwn). It characterizes a set of control locations such that at each global state, at least
one location of the set is active. Such constraints are obtained using methods described in [14].

• linear invariants, that is, conjunctions of linear constraints of the form
∑
j∈J kjat(qj) = k0, where

all kj and k0 are integer constants, and at(qi) is equal to 1 if qi is active and 0 otherwise. For the
example of Figure 2, at(onup) + at(on) + at(dwn) = 1 is a linear constraint. Again, by executing any
transition from a state where the invariant holds, we reach a state where the invariant still holds. A
linear constraint corresponds to a set of places such that the weighted sum of tokens in the places
remains constant throughout the execution. Linear invariants are obtained using algebraic techniques
as described in [34].

The two above categories of invariants are particularly useful for several reasons. First, they provide good
approximations for the enabling/disabling conditions of interactions. This has been empirically demon-
strated by the successful application of such invariants for checking deadlock-freedom of component-based
systems in BIP [14, 10]. Second, the methods for computing these invariants are tractable and scale for
large systems. Their computation is based on the (interaction) structure of the system and can be done
incrementally [9]. In particular, it does not involve fixpoints computation and avoids state space exploration.

3.2. Knowledge and Undistinguishability

Given a model γ(B1, . . . , Bn), the knowledge of a set of atomic components L ⊆ {B1, · · · , Bn} is the
information about the current global states through a synchronized observation of the components in L.
Intuitively, the synchronized observation of the components gives a partial state of the system. The corre-
sponding global state is (1) reachable and (2) coherent with the partial state observed on L. The information
obtained through an observation of L correspond to properties that are true in all global states verifying
condition (1) and (2). Any subset L induces an equivalence relation on the global states, defined as follows.

Definition 2 (Undistinguishability Equivalence for L). Given L, we define the undistinguishability
equivalence ∼L on global states q ∈ Q as q ∼L q′ iff ∀Bj ∈ L qj = q′j .

Intuitively, two states are undistinguishable for L if their restrictions to the states of atomic components
in L are identical. An equivalence class of this relation is a set of global states that are coherent with an
observation of the local state of atomic components in L. Given an over-approximation R̃ of the reachable

states and an arbitrary state predicate φ, we define the predicate “L knows φ” as follows KR̃L φ(q) = ∀q′ ∈
R̃ q′ ∼L q =⇒ φ(q′). This predicate is defined on R̃. Intuitively, a set of components L knows a predicate
φ at a global state q if φ holds in any reachable state q′ that L cannot distinguish from q.

Figure 4 illustrates KL with respect to φ and R̃. Each global state within R̃ is a point characterized
by two coordinates: the projections of this state on the states of L and the states of its complement
L = {B1, . . . Bn} \ L. On the left, the gray region represents the characteristic set of φ. In the middle,
the gray region represents the characteristic set of “L knows φ” that is the set of the global states where
observation of L suffices to assert “φ is true”. On the right, the gray region represents the set of the states
where “L knows not φ” that is the set of the global states where observation of L suffices to assert “φ is
false”.

8

L

φ
L

R̃
L

KR̃
L ¬φ

L

R̃
L

KR̃
L φ

L

R̃

Figure 4: Knowledge-based approximation of φ for observation L, within reachable states R̃.

3.3. Building a Restriction with reduced observation

This subsection defines a new Restriction ρ′ built as a knowledge approximation of ρ. This new Re-
striction is parameterized by assigning to each interaction a ∈ γ a set of components obs(a) that defines
observation. We require that obs(a) ∩ participants(a) = ∅.

Definition 3. Given a component B = ργ(B1, . . . , Bn), an over-approximation R̃ of its reachable states
and the sets of observed components {obs(a)}a∈γ , the Restriction ρ′ with reduced observation associates to

each interaction a ∈ γ the predicate ρ′a = KR̃Laρa where La = participants(a) ∪ obs(a).

By definition of knowledge, we have ρ′a =⇒ ρa. Furthermore, ρ′a depends only on the state of com-
ponents in La. In other words, the actual set of observed components for each interaction a is exactly
observedρ′(a) = La \ participants(a), that is the parameter obs(a). Therefore, in the sequel, we directly
denote by observedρ′(a) the parameter obs(a).

on onup off off up

dwn

lst

srv

State of observed
components (L)

State of
non-observed

components (L)

Reachable states

ρreboot

Figure 5: Global states of the example from Figure 3, assuming that the component M is observed.

Example 3. We detail the reduction of the Restriction predicate for the interaction reboot of the example
in Figure 3. The predicate ρreboot = ¬at(srv)∧¬at(lst) depends on the state of the component S, and thus
we have originally observedρ(reboot) = {S}. In that very simple example, the only possible reduction is to
take observedρ′(reboot) = ∅. It means that we rely only on the state of M , that is the unique participant in
reboot , to determine whether ρreboot holds.

In Figure 5, we present all the global states of the system, and indicate whether they are reachable or not.
This figure is the instantiation of the Figure 4 when considering the example in Figure 3 and observing only
M . On this example, boolean and linear invariants yield the same result. For instance, the state (off , lst)
is not reachable as it does not satisfy the boolean constraint at(onup) ∨ at(on) ∨ at(dwn). We obtain the
same conclusion by using the linear constraint at(onup) + at(on) + at(dwn) = 1.

In the Figure, each local observation (state of M) corresponds to a column representing the global states
that are undistinguishable from that local observation. The interaction reboot is enabled at local state onup

and off up. When the local state is onup, the system is either at state (onup , lst) or (onup , srv). In both
cases, ρreboot does not hold, thus “M knows ¬ρreboot” at that state. Conversely, at local state off up, the
global state is (off up, dwn). Therefore, M knows that ρreboot holds if its current state is off up. Finally, the
new Restriction predicate for reboot is ρ′reboot = at(off up), which depends only on the state of M .

9

By restricting too much the set observedρ′(a), one takes the risk of always obtaining ρ′a = false, as the
observation might not be sufficient to ensure that ρa holds. We define two criteria characterizing different
detection levels, namely basic and complete. Intuitively, the condition for basic detection ensures that the
sets of states enabling at least one interaction from γ is the same for ρ and ρ′. In contrast, the condition
for complete detection ensures that every interaction in γ is enabled in the same states for ρ and ρ′.

Definition 4 (Detection levels). Let ργ(B1, · · · , Bn) be a component and ρ′ be a Restriction obtained
by restricting observation in ρ using the over-approximation R̃ of the reachable states. We say ρ′ is:

• basic iff ∀q ∈ R̃.
(∨
a∈γ

(ρa(q) ∧ ENa(q)) =
∨
a∈γ

(ρ′a(q) ∧ ENa(q))

)
.

• complete iff for each interaction a ∈ γ: ∀q ∈ R̃. (ENa(q) ∧ ρ′a(q) = ENa(q) ∧ ρa(q)).

Theorem 1 below, relates the detection levels and corresponding guarantees on the component equipped
with the computed Restriction ρ′. Baseness ensures that ρ′ does not introduce deadlocks. Completeness
ensures that the global behaviors of the component equipped with ρ and the component equipped with ρ′

are identical.

Theorem 1. Let ργ(B1, · · · , Bn) be a component and ρ′ be the Restriction obtained by restricting observation
in ρ. Then, −→ρ′γ⊆−→ργ and:

1. If ρ′ is basic, then q ∈ R̃ is a deadlock for −→ρ′γ only if q is a deadlock for −→ργ .

2. If ρ′ is complete, then −→ρ′γ=−→ργ .

Proof. Since for each a ∈ γ, ρ′a =⇒ ρa, we have −→ρ′γ⊆−→ργ .

1. By contraposition, let q ∈ R̃ be a deadlock-free state for −→ργ , i.e. such that ∃a ∈ γ (ENa(q)∧ρa(q)).

Baseness ensures that
∨
a∈γ(ENa ∧ ρ′a) holds and thus ∃b ∈ γ such that ENb(q)∧ ρ′b(q). Thus q

b−→ρ′γ and
q is a deadlock-free state for −→ρ′γ .

2. Assume that q
a−→ργ q

′. Then ENa ∧ ρa(q) holds. Completeness ensures that ENa ∧ ρ′a(q) also holds.

Thus q
a−→ρ′γ q

′.
These results characterize to what extent the original Restriction can be captured through partial obser-

vation. The approach suggested by this subsection is to come up with some sets of components to observe,
then compute the corresponding Restriction and see whether it fits a given detection level. In the next
subsection, we propose the reverse approach, that is heuristics that minimize the number of observed atomic
components, yet ensuring the required detection level.

3.4. Heuristics to minimize observed components

In this subsection, we propose for each detection level from Definition 4 a heuristic that takes as input
a component with Restriction and outputs minimized sets of observed components {observedρ′(a)}a∈γ . In
general, finding the optimal solution, that is which minimizes the number of observed components while
ensuring baseness or completeness is hard. This problem is actually similar to the identification of the
minimal number of attributes required to distinguish a set of objects in the rough set theory [40] which is
known to be NP-hard. Each of the proposed heuristics guarantees that the reduced Restriction ρ′ built using
the returned sets of observed components meets the corresponding detection level. The results depend upon
the approximation R̃ of the reachable states used for computing the knowledge. We assume throughout
this subsection a fixed over-approximation R̃ of the reachable states. In practice, R̃ is provided by linear or
boolean invariants.

We propose a solution to the minimizing observation problem based on the simulated annealing meta
heuristic [33]. A pseudo-code for the simulated annealing is shown in Algorithm 1. This heuristic allows
searching for optimal solutions to arbitrary cost optimization problems. The search through the solution
space is controlled by a temperature parameter Θ that ranges from Θmax to Θmin during the execution. At
every iteration of the simulated annealing, temperature decreases slowly (line 9) and the current solution

10

Algorithm 1 Pseudo-code of Simulated Annealing

Input: An initial solution init, a cost function, an alter function, temperature bounds Θmax and Θmin .
Output: A solution with a minimized cost.

1: sol:=init
2: Θ:=Θmax

3: while Θ > Θmin do
4: sol′ := alter(sol)
5: ∆ := cost(sol′) - cost(sol)

6: if ∆ < 0 or random() < e
−∆
Θ then

7: sol:=sol′

8: end if
9: Θ:= 0.99×Θ

10: end while
11: return sol

moves into a new, nearby solution still ensuring either baseness or completeness (line 4). If the new solution
is better (i.e. observes fewer components), then it becomes the current solution. Otherwise, it may be
accepted with a probability that decreases when (1) the temperature decreases or (2) the extra cost of the
new solution increases (line 6). The idea is to temporarily allow a bad (but correct) solution whose neighbors
may be better than the current one. By the end of the process, the temperature is low, which prevents bad
solutions from being accepted. The choice of the parameter Θmin and Θmax depends on the possible cost
values that depend on the model, and also define the execution time of the simulated annealing. These
values should be chosen so that a very bad solution can be accepted when temperature Θ = Θmax and that
the probability to accept a solution worse than the current one is almost 0 when Θ = Θmin . However, we
provide initial solutions init as well as alter and cost functions that are used to ensure either completeness
or baseness.

3.4.1. Ensuring Completeness

According to Definition 4, checking for completeness is performed interaction by interaction. Therefore,
minimizing observation can be carried out independently for each interaction. Given an interaction a we

are seeking for a minimal set of atomic components La such that KR̃Laρa = ρa. Note that finding such a set
La yields the corresponding set of components to observe by taking observedρ′(a) = La \ participants(a).

The initial solution is obtained by taking the set of atomic components that are needed to decide ρa,
that is inita = participants(a) ∪ observedρ(a). At each iteration of the simulated annealing, a new solution
is computed using the alter function shown in Algorithm 2. First, one atomic component is removed
from the solution (perturbation, line 3), possibly breaking completeness. Then, new atomic components are
added randomly until the solution ensures complete detection again (completion, line 6). Note that loop
terminates, as in worst case, observing all components is sufficient to decide whether ρa holds. Finally, atomic
components are removed randomly, provided they do not contribute to completeness (reduction, line 10).
This loop stops when removing a component breaks completeness or when there is no more component
to remove. The latter case arises when observing the participants is enough to evaluate the Restriction
predicate. In that case (line 12), the simulated annealing can be stopped as participant(a) is an optimal
solution.

After completion and during reduction steps, the completeness condition is checked (line 9). On termi-
nation, this ensures that the solution returned by the heuristic is complete.

The cost of a solution is obtained by counting the number of atomic components in observedρ′(a) =
La \ participants(a). The cost function is thus cost(La) = |La \ participants(a)|.

3.4.2. Ensuring Baseness

Baseness is achieved if for every state where an interaction is allowed by ρ, at least one interaction is
also allowed in ρ′. Baseness is a global property for the set of all interactions. Indeed, when restricting

11

Algorithm 2 Function alter for ensuring completeness

Input: A component ργ(B1, . . . , Bn), an interaction a and a solution La.
Output: A solution L′a that is a neighbor of La.

1: L′a:=La
2: choose Bi in L′a \ participants(a)
3: L′a:=L′a \{Bi} //perturbation

4: while EN a ∧KR̃L′aρa 6= EN a ∧ ρa do

5: choose Bi in {B1, . . . , Bn} \ L′a
6: L′a:=L′a ∪ {Bi} //completion
7: end while
8: choose B′i in L′a \ participants(a)

9: while EN a ∧KR̃L′aρa = EN a ∧ ρa do

10: L′a:=L′a \ {B′i} //reduction
11: if L′a = participants(a) then
12: EXIT participants(a) //cannot observe less components
13: end if
14: choose B′i in L′a \ participants(a)
15: end while
16: return L′a

the set of components observed by an interaction, one restricts the set of states where this interaction can
be executed. Whether this restriction breaks baseness depend on whether there exists another interaction
which can execute at the removed states. Therefore, a solution {La}a∈γ to the minimizing observation
ensuring baseness cannot be built independently for each interaction.

The initial solution assumes that each interaction a observes all atomic components that are needed to
decide ρa, that is inita. Thus the initial solution is init = {inita}a∈γ . As for completeness, the alter

function for baseness presented in Algorithm 3 computes a new solution based on the same three steps
(perturbation, completion, reduction) being performed on a family of sets of observed atomic components,
instead of a single set. As in the previous case, the completion terminates by observing all components in
the worst case. Conversely, the reduction terminates either when the baseness property is broken or when
no more component can be removed. Again, in the latter case the whole algorithm can be stopped as an
optimal solution has been found.

After completion and during reduction steps, the baseness condition is checked (line 9). This guarantees
that the returned solution is basic. Here the cost of the solution is the sum of the number of atomic
components observed by each interaction. Thus, we define the cost function as cost({La}a∈γ) =

∑
a∈γ |La\

participants(a)|.

4. Decentralized Implementation of BIP

We provide here the principle of the method for distributed implementation of BIP as presented in
[17, 16]. This method relies on a systematic transformation from arbitrary BIP components into distributed
BIP components. A distributed BIP component relies only on message passing interactions. A message
passing interaction is defined by a send port and a receive port and models the passing of a message between
the corresponding components. The transformation guarantees that the receive port is always enabled
when the corresponding send port becomes enabled, and therefore Send/Receive interactions can be safely
implemented using any asynchronous message passing primitives (e.g., MPI send/receive communication,
TCP/IP network communication, etc...).

In a distributed setting, each atomic component executes independently and thus has to communicate
with other atomic components in order to ensure correct execution with respect to the original semantics.
Thus, a reasonable assumption is that each component will publish its offer, that is the list of its enabled

12

Algorithm 3 Function alter for ensuring basic detection

Input: A component ργ(B1, . . . , Bn), a solution {La}a∈γ ,
Output: A solution {L′a}a∈γ that is a neighbor of {La}a∈γ .

1: {L′a}a∈γ :={La}a∈γ
2: choose b in γ and Bi in Lb \ participants(b)
3: L′b:=L′b \{Bi} //perturbation

4: while
∨
a∈γ(EN a ∧KB̃

L′aρa) 6= ∨a∈γ(EN a ∧ ρa) do

5: choose b in γ and Bi in {B1, . . . , Bn} \ Lb
6: L′b:=L′b ∪ {Bi} //completion
7: end while
8: choose b in γ and Bi in Lb \ participants(b)

9: while
∨
a∈γ(EN a ∧KB̃

L′aρa) =
∨
a∈γ(EN a ∧ ρa) do

10: L′b:=L′b \ {Bi} //reduction
11: if ∀a ∈ γ,L′a = participants(a) then
12: EXIT {participants(a)}a∈γ //cannot observe less components
13: end if
14: choose b in γ and Bi in Lb \ participants(b)
15: end while
16: return {L′a}a∈γ

ports, and then wait for a notification indicating which interaction has been chosen for execution. This
behavior is obtained by splitting each transition: one part sends the offer, the other part is triggered by the
notification and executes the chosen interaction.

A set of distributed atomic components that send offers and wait for notifications requires a mechanism
that receives offers and send the notifications, accordingly to the offers received and the semantics of the
original model. In our implementation, this mechanism consists of one or several additional components.
Respecting the semantics of the original model can be described as two tasks:

1. Detect enabled interactions, that is, whose Restriction predicate evaluates to true,

2. Resolve conflicts between interactions that involve a common component.

Our solutions rely on Bagrodia’s algorithms from [3]. These algorithms use counters to implement mutual
exclusion of conflicting interaction. We propose an extended version that encompasses the Restriction
operator.

In Subsection 4.1, we present the different kinds of conflicts that arise between interactions subject to
Restriction. We then describe in Subsection 4.2 how atomic components are modified to send offers and
receive notifications. In Subsection 4.3, we formally describe a solution relying on a single manager and prove
its correctness in Subsection 4.4. Finally, we informally describe how this manager can be decentralized to
obtain a 3-layer distributed implementation.

4.1. Conflicts and Observation

A conflict appears when two entities compete for a single resource. In our case, the potentially competing
entities are the interactions and the resource is the participation of a component. Intuitively, two interactions
are conflicting if they involve a common component, which is a participant for at least one of them.

As an example, consider the composite component depicted in Figure 6. It contains three atomic compo-
nents and three fragments of interaction. Interactions a and b observe the atomic component B2. Execution
of a or b will not change the state of B2 since none of its transitions is involved. Intuitively, a and b
can be executed in parallel, they do not really conflict. However, execution of c changes the state of the
atomic component B2 and may disable the predicate associated to a or b. Thus a and c cannot be executed
simultaneously. They are conflicting.

13

B2
q

p p

c
.

B1

p1

a [at(q)]
. . .

B3

p3

b [at(q)]
. . .

Figure 6: A composite component with Restriction.

B2

q

p(q)

obs(q)

p(q)

c
.

obs(q)

B1

p1(q1)

. . .
a(q1, q, . . .)

B3

p3(q3)

. . .
b(q, q2, . . .)

Figure 7: Observable model obtained from the composite com-
ponent with Restriction in Figure 6.

These types of conflicts also appear in transactional memories [31]. In this context, different transactions
(interactions) can simultaneously read (observe) a variable (an atomic component), but writing on a variable
(executing a transition) requires exclusive access to the variable.

The transformation of the model from Figure 6 into an observable model, as described in Subsection 2.4,
yields the model depicted in Figure 7. The Restriction is implemented by adding a new port obs(q) to B2

and extending interactions a and b to that new port. In this model, B2 becomes a participant, through the
port obs(q) in the interactions a and b. This results in a structural conflict between a and b.

In the context of multiparty interactions, a component either participates in or does not interfere with
an interaction. In particular, models where interactions can observe components without modifying them,
such as the one in Figure 6, cannot be directly implemented. The transformation presented in Subsec-
tion 2.4 allows to transform a model with Restriction into a model containing only multiparty interaction.
Nevertheless, the obtained distributed implementation involves an unnecessarily high number of exchanged
messages: Consider the model presented in Figure 7. Execution of interaction a followed by interaction b
requires at least 4 messages between the component B2 and the protocol. Indeed, each interaction requires
at least one offer and one notification (on the port obs(q)). These four messages could be replaced by a
single one, indicating that B2 is at state q to the protocol, since the component B2 does not need to be
notified when it is observed.

4.2. Distributed Atomic Components

The transformation of atomic components consists in splitting each transition into two consecutive tran-
sitions: (i) an offer that publishes the current state of the component, and (ii) a notification that triggers the
transition corresponding to the chosen interaction. The offer transition publishes its enabled ports through
a port, labeled o.

Definition 5 (Distributed atomic components). Let B = (Q, q0, P, T) be an atomic component. The

corresponding transformed atomic component is B⊥ = (Q⊥, q0
⊥
, P⊥, T⊥), such that:

• Q⊥ = Q ∪ {⊥q |q ∈ Q} is the union of stable states Q and busy states {⊥q |q ∈ Q}.

• q0⊥ =⊥q0 the initial state is the busy state associated to the initial state of the original component.

• P⊥ = P ∪ {o}, where o is a new port which publishes the currently enabled ports and the current
state of the component.

• the set of transitions T⊥ includes, for every transition τ = (q, p, q′) ∈ T :

1. an offer transition (⊥q, o, q) that goes from a busy to a stable state and publishes the port enabled
from this stable state.

2. a notification transition q
p−→⊥q′ that goes from a stable to a busy state and executes the

transition from the original component.

14

We introduced a new port that publishes offers. The actual offer sent depends on the current state of

the component. Given a stable state q ∈ Q, we denote by offer(q) = {p ∈ P | ∃q′ ∈ Q, q p−→ q′} the set of
ports enabled at state q. In a more concrete implementation, the port o exports the set offer(q) and the
current state q through the offer port [17].

4.3. Counter-based Conflict Resolution

In Bagrodia’s solutions, the protocol is implemented through one or several managers that receive of-
fers from the atomic components and reply with notifications. We extend these solutions to encompass
Restriction predicates.

The first solution consists of a single manager. In order to ensure mutual exclusion of conflicting inter-
actions, the protocol maintains two counters for each atomic component Bi:

• The offer-count ni which counts the number of offers sent by the component so far. This counter is
initially set to 0 and is incremented each time an offer from Bi is received.

• The participation-count Ni which counts the number of times the component participated in an inter-
action. This counter is initially set to 0 and is incremented each time the manager selects an interaction
involving Bi for execution.

Intuitively, the offer-count ni associated to an offer from a component Bi correspond to a time stamp.
The manager maintains the last used time stamp (Ni) for each component. If the time stamp (ni) of an offer
is greater than the last used time stamp (Ni), then the offer from Bi has not been consumed yet. Otherwise,
some interaction has taken place and the manager has to wait for a new offer from the component Bi.

Furthermore, the manager knows the set of ports enabled and the current state through the offers sent
by each component. Thus in order to schedule an interaction, it must check that

1. the interaction is enabled according to the last offers received,

2. the Restriction predicate associated to the interaction evaluates to true according to the last offers,
and

3. these offers are still valid according to the ni and Ni counters.

If these three conditions hold, the interaction can be executed. Upon execution the participation-counts
(Ni) associated to the participants are updated to the values of the offer-counts (ni), so that participants
cannot interact again until a new offer is sent and ni > Ni holds again. In particular, any other interaction
that involve (as participants or for observation) one of the participants of the previously executed interaction
is blocked until new offers from the conflicting components are sent. Hence, mutual exclusion of conflicting
interactions is ensured.

The participation-count of the observed components are not updated, even if they are checked to ensure
that offers satisfying the Restriction predicate are still valid. Thus a component can be “observed” many
times, as long as it does not participate in an interaction. We define formally the behavior of the composition
of the centralized protocol with the distributed atomic components.

Definition 6. Given a BIP component with Restriction ργ(B1, . . . , Bn) we define the behavior of the
adapted counter-based centralized implementation as an infinite state LTS (Q⊥, q0, γ⊥, T⊥) where:

• The set of states Q⊥ is the product of the states of the atomic components with the state of the
protocol:

Q⊥ =

n⊗
i=1

Q⊥i ×
n⊗
i=1

(
N×N× 2Pi ×Qi

)
The state of the manager is defined by n quadruples mi = (ni, Ni, offeri, qi), one for each component
Bi, where ni and Ni are the values of the corresponding counters, offeri is the last offer from Bi and
qi is the last known state from Bi. We denote by (q,m) a state of Q⊥, q[i] and m[i] represent the ith
element of the tuples q and m.

15

• q0 = ((⊥q0
1
, . . . ,⊥q0

n
), ((0, 0, ∅, q01), . . . , (0, 0, ∅, q0n))). The initial state of system is obtained by taking

the initial states of the distributed atomic components, and assigning 0 to each counter in the manager.

• The interactions of γ⊥ include the interactions from the original component and the offers:

γ⊥ = γ ∪
n⋃
i=1

{oi}

• There are two types of transitions in T⊥:
(1) offer transitions: From state (q,m) ∈ Q⊥, there is an offer transition in T⊥ if for some component

B⊥i an offer is enabled: (q[i], oi, q
′
i) ∈ T⊥i . In that case, T⊥ contains the transition (q,m)

oi−→ (q′,m′),
where:

– q′[i] = q′i,

– m′[i] = (ni + 1, Ni, offer(q′i), q
′
i), with m[i] = (ni, Ni, ,),

– for all j 6= i, q′[j] = q[j] and m′[j] = m[j].

(2) execute transitions: From state (q,m) ∈ Q⊥, there is an execute transition in T⊥ if there is an
interaction a = {pi}i∈Ia , such that (we denote m[i] = (ni, Ni, offeri, qi)):

– ∀Bi ∈ participants(a), pi ∈ offeri: the interaction is enabled according to the last offers,

– ρa((q1, . . . , qn)) evaluates to true according to the values stored in the manager state m,

– ∀Bi ∈ participants(a) ∪ observedρ(a), ni > Ni: the last offers of participants and observed com-
ponents are still valid.

Then, the transition (q,m)
a−→ (q′,m′) is in T⊥ with (q′,m′) defined by:

– ∀i ∈ participants(a), q′[i] is the state such that (q[i], pi, q
′[i]) ∈ T⊥i ,

– ∀i ∈ participants(a), m′[i] = (ni, Ni + 1, offeri, qi): counters of participants are incremented.

– ∀j /∈ participants(a), q′[j] = q[j] ∧m′[j] = m[j]

A global state (q,m) of this protocol clearly separates the state of the components q and the state of the
manager m. The enabling of offer transitions depends exclusively on the state of the component sending the
offer. Similarly, the enabling of execute transitions is decided by the manager alone. Thus we can assume
an asynchronous execution where an offer or an execute transition correspond to a message passing. In the
case of the offer transition, the message is sent from the atomic component to the manager. For the execute
transition, messages are sent from the manager to each participant in the interaction.

With components where all Restriction predicates are always true, the above construction falls back to the
original solution from Bagrodia. Therefore, we can compare a multiparty-based implementation, obtained
by encoding Restriction predicates into multiparty interactions, with a Restriction-aware implementation
that directly encompass Restriction predicates.

Example 4. Consider again the model depicted in Figure 6. We obtain a Multiparty-based implementation
by transforming it into the model of Figure 7 and building a distributed implementation from that model.
The protocol presented here is able to build a Restriction-aware implementation directly from the model
in Figure 6. In Figure 8, we compare the behavior of the two approaches, when executing the interaction
sequence a, b, c. On the left, we show the messages exchanged in the Multiparty-based implementation. On
the right we show the messages exchanged in the Restriction-aware implementation. For each process (the
distributed components Bi and the protocol P) Figure 8 presents the sequence of messages received and sent.
The black circles indicate that an interaction is scheduled by the Protocol. Note that the component B2 is
observed by a and b and is a participant in c. With the Multiparty-based implementation, the observation
is treated as a participation. Both execution of a and b trigger the emission of a notification (obs) to B2

16

B1 B3 P B2

o3 o2o1

a

p1
obs

o2

b
p3 obs

o2

c
p

Multiparty-based
implementation

B1 B3 P B2

o3 o2o1

a

p1
b

p3
c

p

Restriction-aware
implementation

Figure 8: Exchanges of messages to execute the sequence a, b, c in the model of Figure 6, for the two implementations.

followed by a new offer (o()). With the Restriction-aware implementation, the first offer sent by B2 is
observed but not consumed by a and b. So, there is no need to send notifications and wait for corresponding
offers. Only the execution of c consumes the offer. For this particular execution sequence, the Restriction-
aware implementation spares 4 messages and increases parallelism since b and c can be launched directly
after a, without waiting for a new offer.

4.4. Correctness

We show that the component ργ(B1, . . . , Bn) and the corresponding counter-based implementation are
observationally equivalent in the sense of Milner [38]. We first prove the following lemma on the reachable
states of the distributed implementation.

Lemma 1. Let B⊥i be a distributed atomic component. The component B⊥i is in a stable state qi iff ni > Ni.
Furthermore, if B⊥i is in a stable state we have mi = (ni, Ni, offer(qi), qi).

Proof. The construction of B⊥i implies that it alternates offer and execute transitions. In the initial config-
uration, ni = Ni = 0 and B⊥i is in a busy state. Therefore the equivalence holds.

The only possible transition from this configuration is an offer, which brings the system to a state where
ni = Ni + 1 > Ni and the B⊥i is in a stable state. In this configuration, the equivalence holds as well.
Furthermore, the offer transition ensures that the offer and state in mi correspond to those of B⊥i .

In the configuration where B⊥i is in a stable state and ni = Ni + 1 > Ni, the only next possible step in
B⊥i is an execute action. By executing this step we reach again a configuration where ni = Ni and B⊥i is a
busy state.

In order to show observational equivalence, we have to define the observable actions of both systems. For
the component γ(B1, . . . , Bn) the observable actions are the interactions γ. These interactions correspond
to the execute interactions of the distributed implementation, that are also γ. We denote by β the offer
interactions.

We define a relation between states Q of the centralized component and states Q⊥ of its distributed
implementation. To each state (q⊥,m) ∈ Q⊥ of the distributed implementation, we associate a state
e((q⊥,m)) ∈ Q of the original component. For each component B⊥i , q⊥[i] is either a stable state qi or a
busy state ⊥qi . In both cases, we take e((q⊥,m))[i] = qi. We say that a state q ∈ Q and (q⊥,m) ∈ Q⊥ are
equivalent, denoted by (q⊥,m) ∼ q, if q = e((q⊥,m)).

Proposition 3 (Correctness of Centralized Counter-based Implementation). Given a component ργ(B1, . . . , Bn),

the labeled transitions systems (Q, q0, γ,→ργ) and (Q⊥, q0
⊥
, γ⊥,→⊥) of its distributed implementation are

observationally equivalent.

17

Proof. We have to prove that:

1. If (q⊥,m)
β−→⊥ (r⊥,m′), then

∀q ∈ Q.(q ∼ (q⊥,m) =⇒ q ∼ r⊥).

2. If (q⊥,m)
a−→⊥ (r⊥,m), then

∀q ∈ Q.(q ∼ (q⊥,m) =⇒ ∃r ∈ Q.(q a−→ργ r ∧ r ∼ (r⊥,m′))).

3. If q
a−→ργ r, then

∀(q⊥,m) ∈ Q⊥.((q⊥,m) ∼ q =⇒ ∃(r⊥,m) ∈ Q⊥.((q⊥,m)
β∗a−→⊥ (r⊥,m) ∧ r ∼ (r⊥,m))).

1. This is a consequence of the definition of ∼.
2. The transition ((q⊥,m), a, (r⊥,m)) is possible at state (q⊥,m) ∈ Q⊥ if for each participant and observed
component Bi in the interaction, the counters verify ni > Ni, for each port pi ∈ a, we have pi ∈ offeri, and
ρa evaluates to true according to the state m of the manager. The Lemma 1 ensures that in the equivalent
state q ∈ Q, we have for each component Bi participant in a pi ∈ offer(qi). Furthermore, the Lemma
ensures that for all participant and observed component, the state stored in m is the actual state in q⊥,
which is equal to q by definition of ∼. Therefore ρa(q) evaluates to true and q

a−→ργ r. The construction of
distributed atomic components ensures that r ∼ (r⊥,m).

3. If q
a−→ργ r, then for each state (q⊥,m) ∼ q, each participant Bi in a is either in a busy or in a stable

state. In the first case, it can perform an offer transition, labeled β, and reach a stable state. Let (s⊥,m′′)

be a state such that (q⊥,m)
β∗−→⊥ (s⊥,m′′)

β9⊥. Such state is attained when all components have performed
their offer transitions. Since offers transitions do not modify any common part of the state, executing same
in any order yields the same final state and therefore there is a unique state (s⊥,m′′) as above. By Lemma 1,
since at (s⊥,m′′) all distributed components are in a stable state, we have for 1 ≤ i ≤ n:

• ni > Ni

• m′′i = (ni, Ni, offer(q′i), q
′
i) where q′i = qi by definition of ∼.

According to m′′, ρa((q′1, . . . , q
′
n)) = ρa(q) evaluates to true and for each port pi ∈ a, we have pi ∈ offer(qi).

Thus (s⊥,m′′)
a−→⊥ (r⊥,m′). By construction (r⊥,m′) ∼ r.

4.5. 3-layer Distributed Architecture

With a single manager we obtain a 2-layer implementation, namely the components layer and the man-
ager. In [17], we further decompose the manager in two layers, respectively an interaction layer, and a
conflict resolution layer.

The interaction layer receives the offers from the components, compute the enabled interaction and
evaluates the Restriction predicates. Whenever an interaction can be executed, the interaction layer sends
a reservation request rsv to the conflict resolution layer for executing the interaction. The request contains
the offer-count (ni) of each component participant in or observed by the interaction. The interaction layer
then waits for an answer from the conflict resolution layer. If the answer is positive (ok), the interaction is
executed and the interaction layer sends a notification to each participant in the interaction. Otherwise the
answer is f (fail), and the interaction protocol waits for a new offer before trying a new reservation.

The conflict resolution layer receives the requests along with the offer-count. It is also responsible for
maintaining the participation-count Ni. Upon reception of a request, it compares the received ni with the
maintained Ni. If for all involved components ni > Ni, then all for all participants the value of Ni is updated
to ni and a positive answer ok is sent back. Otherwise a negative answer f (fail) is sent back.

As shown in Figure 9, the interaction layer can be separated in several processes (here IP1, IP2, IP3),
in order to allow concurrent execution of interactions. The transformation from a BIP model into a 3-layer
implementation is actually parameterized by a partition of the interaction. Each class of the partition
yields a distinct process in the final implementation. For our example, the partition is {{upgrade, reboot},
{boot , halt}, {request , acknowledge}}. Thus in our case, the process IP1 is responsible for detecting whenever
the interaction reboot or the interaction upgrade is enabled.

18

M⊥

oMrb hMupg bM
Components layer

S⊥

oShS bS req ack

IP1

oMnrbnupg

rsv ok f
IP2

oM oSnbt nhlt

rsv ok f
IP3 Interaction layer

oS nreq nack

rsv ok f

CRP Conflict resolution layer

Figure 9: 3-layer distributed implementation of component from Figure 2.

If there are several processes handling interactions, each component maintain its ni counter and send
it with the offer. The components send offer only to processes handling interactions in which they are
observed or participate. If some interaction conflicts only with interactions that are handled in the same
process, the conflict can be resolved locally. Thus, taking a coarser partition reduces the parallelism between
execution of interactions but also reduce the load on the conflict resolution layer as more conflicts can be
solved internally.

Finally, the conflict resolution layer can be decentralized as well. Intuitively, the key property to ensure
tis correctness is the atomicity of the operation consisting in checking that the offer-counts are greater than
the participation-counts and updating the latter ones if true. Following Bagrodia [3], we propose three
implementations:

• A centralized implementation, where a single process receives all the requests. In that case, atomicity
is ensured as only this process can access the Ni variables.

• A token ring implementation, where each interaction yields a separate process in the conflict resolution
layer. Each process receives only the requests for executing the interaction it handles. A token carrying
all the Ni variables circles through all processes in the layer. Only the process holding the token can
access these variables, which ensures the needed atomicity.

• An implementation based on a solution to the dining philosophers problem [20]. This is the most
decentralized solution. Each interaction yields a process in the conflict resolution layer. Interactions
are mapped to philosophers, and forks represent conflicting components. Hence, two processes cor-
responding to two conflicting interactions share a fork, that is a token with the Ni variables of the
components causing the conflict. In order to execute an interaction, each process must acquire all forks
shared with its neighbors. Then it is the only one to access the needed Ni variables which ensures
atomicity. Using a solution to the dining philosopher problem ensures that any process will eventually
be able to acquire all the forks shared with its neighbors (no starvation).

5. Experiments

We compare the execution time and the number of exchanged messages for several distributed imple-
mentations of a component with priority. As shown in Figure 1, several sequences of transformations and
optimizations can be applied to generate a distributed implementation. The first step (Transformation 1
in Figure 1) involves transformation of this component into a component with Restriction. The obtained
component may be optimized using knowledge as explained in Section 3 (Transformation 2 in Figure 1).
Whether the component is optimized or not, we consider the two following sequences of transformations
leading to a distributed implementation.

• Transform the component with Restriction into a component with only interactions as explained
in Subsection 2.4. Then generate a 3-layer distributed model embedding original embedding the

19

thinking

eating
eat

cleaning
clnl

clnr

clnl clnr

eatPi

free

used

cln eat

eat

cln

Fi

free

used

cln eat

eat

cln

Fi+1

eatieati−1

Ei

eati+1

cleanlefti cleanrighticleanrighti−1 cleanlefti+1

Ci Ci+1

Figure 10: Fragment of the dining philosopher component. Braces indicate how interactions are grouped into interaction
protocols.

conflict resolution protocol described in Subsection 4.3, which in this case falls back to the original
version by Bagrodia. This method (Transformations 3 and 4 in Figure 1) results in a multiparty-based
implementation.

• Directly transform the component with Restriction into a 3-layer distributed model embedding the
conflict resolution protocol described in Subsection 4.3. This method (Transformation 5 in Figure 1)
results in a Restriction-aware implementation.

For both cases, we used the centralized version of the conflict resolution protocol.

5.1. Dining Philosophers

We consider a variation of the dining philosophers problem, denoted by PhiloN where N is the number
of philosophers. A fragment of this composite component is presented in Figure 10. In this component, an
“eat” interaction eat i involves a philosopher and the two adjacent forks. After eating, philosopher Pi cleans
the forks one by one (cleanleft i then cleanright i). We consider that each eat i interaction has higher priority
than any cleanleftj or cleanrightj interaction.

This example has a particularly strong priority rule. Indeed, executing one “clean” interaction potentially
requires to check that all “eat” interactions are disabled. This check requires observing all components.
This example compares the above implementations under strong priority constraints.

As explained in Section 4.5, the construction of our distributed implementation is structured in 3 layers.
The second layer is parameterized by a partition of the interactions. For this example, the partition is built
as follows. There is one interaction protocol Ei for every eati interaction and one interaction protocol Ci for
every pair cleanright i−1, cleanleft i. Only the latter deals with low priority interactions that need to observe
additional atomic components.

5.1.1. Minimizing Observed Components

We first define the quantity that we minimize. In the distributed implementation, each atomic component
sends its state to interactions that are observing it. If interactions a and b, both observing a component Bi,
are handled by the same interaction protocol, the component Bi sends only one message to that interaction
protocol. In that case, we say that the atomic component is observed by the interaction protocol. We count
as an observation each couple (component, interaction protocol) such that the interaction protocol observes
the component, and the component is not involved in any interaction handled by the interaction protocol.

Minimizing the number of observations in a complete Restriction ρ′ is done independently for each
interaction protocol. Table 1 shows the results, that is the number of observations involving the interaction
protocol C0 in the solution obtained with the heuristic described in Subsection 3.4.1. Note that same number
of observations are needed for each other interaction protocol Ci. The total number of atomic components

20

in the composite component is indicated in column Size. The columns true, BI and LI provide the cost of
the solutions obtained when using respectively true, the boolean invariant and the linear invariant as over-
approximation of the global states. Using true as invariant does not allow actual optimization, therefore it
shows the number of observations in the initial Restriction ρ. The column optimal indicates the cost of an
optimal solution, that we know for this particular example.

Component Size true BI LI optimal
Philo3 6 3 3 1 1
Philo4 8 5 5 2 2
Philo5 10 7 7 3 3
Philo10 20 17 17 8 8
Philo20 40 37 37 18 18
Philo100 200 197 197 108 98

Table 1: Minimal number of observations for ensuring complete-
ness in the interaction protocol C0.

Component Size true BI LI
Philo3 6 9 9 0
Philo4 8 20 20 4
Philo5 10 35 35 6
Philo10 20 170 170 23

Table 2: Minimal number of observations for en-
suring baseness in the whole model.

Here, the linear invariant gives better results than the boolean invariant, which is not precise enough
to allow reducing observation comparatively to the true invariant. For N = 3, we provide the boolean and
linear invariants respectively in Figures 11 and 12. As an example, consider the linear constraint (15). It
ensures that interaction cleanleft0 and interaction eat1 cannot be enabled concurrently, otherwise, control
locations P0.eating and F1.free would be active and the sum in constraint (15) would be equal to 2. Thus,
the priority cleanleft0<π eat1 never forbids execution of cleanleft0. A related boolean constraint, that is
constraint (3) of boolean invariant guarantees that at least one of these locations is active. However, this
constraint is not strong enough to discard the case where two of them are active.

In general, the approximations of reachable states provided by boolean and linear invariants are not
comparable. Consider the global state P0.cleaning ∧F0.used ∧P1.cleaning ∧F1.used ∧P2.cleaning ∧F2.used .
This state satisfies all the constraints of the linear invariant, but does not satisfy the constraint 8 of the
boolean invariant.

∀i ∈ {0, 1, 2} (at(Fi.free) ∨ at(Fi.used)) (1)

∧ ∀i ∈ {0, 1, 2} (at(Pi.thinking) ∨ at(Pi.eating) ∨ at(Pi.cleaning)) (2)

∧ (at(P1.eating) ∨ at(P0.eating) ∨ at(P0.cleaning) ∨ at(F1.free)) (3)

∧ (at(P2.eating) ∨ at(P1.eating) ∨ at(P1.cleaning) ∨ at(F2.free)) (4)

∧ (at(P0.thinking) ∨ at(F0.used) ∨ at(P0.cleaning) ∨ at(P2.thinking)) (5)

∧ (at(P0.thinking) ∨ at(F1.used) ∨ at(P1.cleaning) ∨ at(P1.thinking)) (6)

∧ (at(P2.cleaning) ∨ at(F0.free) ∨ at(P2.eating) ∨ at(P0.eating)) (7)

∧ (at(F1.free) ∨ at(F2.free) ∨ at(F0.free) ∨ at(P1.eating) ∨ at(P2.eating) ∨ at(P0.eating)) (8)

∧ (at(F2.used) ∨ at(P2.cleaning) ∨ at(P1.thinking) ∨ at(P2.thinking)) (9)

∧ (at(F2.used) ∨ at(P2.cleaning) ∨ at(P1.thinking) ∨ at(F0.free) ∨ at(P0.eating)) (10)

∧ (at(F1.free) ∨ at(P1.eating) ∨ at(F0.used) ∨ at(P0.cleaning) ∨ at(P2.thinking)) (11)

∧ (at(P0.thinking) ∨ at(F2.free) ∨ at(F1.used) ∨ at(P2.eating) ∨ at(P1.cleaning)) (12)

Figure 11: Boolean invariant for the Dining Philosophers example with N = 3.

The results for computing basic solutions are presented in Table 2. The column Size contains the
total number of atomic components in the composite component. The columns true, BI and LI contains
respectively the cost of the solutions obtained when using respectively true, the boolean invariant and the
linear invariant. For Philo3, baseness is achieved when each engine observes only the components involved
in the interactions it handles (i.e. no additional observation is needed), therefore the cost is 0.

21

(at(P0.thinking) + at(P0.eating) + at(P0.cleaning) = 1) (13)

∧ ∀i ∈ {0, 1, 2}(at(Fi.free) + at(Fi.used) = 1) (14)

∧ (at(P1.eating) + at(P0.eating) + at(P0.cleaning) + at(F1.free) = 1) (15)

∧ (at(P1.thinking)− at(P0.eating)− at(P0.cleaning) + at(F1.used) + at(P1.cleaning) = 1) (16)

∧ (at(P2.eating)− at(P0.eating)− at(P0.cleaning) + at(F1.used) + at(P1.cleaning)− at(F2.used) = 0) (17)

∧ (at(P2.cleaning) + 2 ∗ at(P0.eating) + at(P0.cleaning)− at(F1.used)− at(P1.cleaning) + at(F2.used)− at(F0.used) = 0) (18)

∧ (at(P2.thinking)− at(P0.eating) + at(F0.used) = 1) (19)

Figure 12: Linear invariant for the Dining Philosophers example with N = 3.

5.1.2. Comparing Obtained Implementations

The goal of this subsection is to compare the different implementations that we obtained for the dining
philosophers example. First, we consider different levels of optimization for the Restriction operator:

• No optimization: the Restriction operator is the direct rewriting of priorities rules, we do not apply
any knowledge-based optimization (Transformation 2 in Figure 1).

• Basic: observation required by the Restriction operator is minimized while still ensuring baseness.

• Complete: observation required by the Restriction operator is minimized while still ensuring com-
pleteness.

As showed in the previous subsection, the Boolean invariant is not strong enough to reduce the number
of observed components comparatively to the non-optimized version. Therefore, the basic and complete
version of the Restriction operator have been computed using the linear invariant. For each optimization
level considered, we generate a multiparty-based (MB) and a Restriction-aware (RA) implementation. Once
we have built the distributed components, we use a code generator that generates a standalone C++ program
for each atomic component. These programs communicate by using Unix sockets.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

3 4 5 6 7 8 9

N
u
m

b
e
r

o
f
in

te
ra

c
ti
o
n
s
 d

u
ri
n
g
 6

0
s

Number of philosophers

No opt - MB
No opt - RA
Basic - MB
Basic - RA

Complete - MB
Complete - RA

Figure 13: Number of interactions executed in 60s for different implementations of the dining philosophers example. MB:
Multiparty-based. RA: Restriction-aware. More interaction = better performance.

The obtained code has been run on a UltraSparc T1 that allows parallel execution of 24 threads. For each
run, we count the number of interactions executed and messages exchanged in 60 seconds, not including the
initialization phase. For each instance we consider the average values obtained over 20 runs. The number
of interactions executed by each implementation is presented in Figure 13. The total number of messages
exchanged for the execution of each implementation is presented in Figure 14.

22

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

3 4 5 6 7 8 9

N
u
m

b
e
r

o
f
m

e
s
s
a
g
e
s
 d

u
ri
n
g
 6

0
s

Number of philosophers

No opt - MB
No opt - RA
Basic - MB
Basic - RA

Complete - MB
Complete - RA

Figure 14: Number of messages exchanged in 60s for different implementations of the dining philosophers example. MB:
Multiparty-based. RA: Restriction-aware. Less message = more efficient implementation.

First, remark that switching from a multiparty-based (gray) to a Restriction-aware (black) implemen-
tation improves performance, that is the number of interactions executed in 60 seconds. Furthermore, it
always reduces the number of messages exchanged. The improvement is very visible with the unoptimized
version (No opt). This can be explained as follows. Evaluating Restriction predicates requires to observe all
components for executing a cleanlefti or a cleanrighti interaction. In the multiparty-based implementation,
observed components must synchronize to execute some interaction cleanlefti or cleanrighti . Between two
“clean” executions, each component has to receive a notification and to send a new offer. This strongly
restricts the parallelism. In the observation-aware implementation, a component offer is still valid after
execution of an interaction observing that component. After a “clean” interaction, only components that
participated may need to send a new offer before another “clean” interaction can be executed. This explains
the speedup.

Second, when comparing multiparty-based (gray) implementations, one sees that the Restriction operator
ensuring completeness gives the best performance. The basic implementations exhibit poor performance
because restricting observation in that case also restricts parallelism. For the example with 9 philosophers,
multiparty-based implementation with optimized Restriction (Complete - MB) shows a significant gain in
performance compared to the non optimized version (No opt - MB). The performance gained by optimizing
the Restriction operator into a complete one is not visible anymore when switching to Restriction-aware
(black) implementation. However, the optimization remains interesting in that case since it reduces by up
to 10% the number of messages needed.

D1

loadunload

D2

loadunload

D3

loadunload

J1
load unload

data

read

R1
read

R2

J2
load unload

data

read

R3
read

R4

Figure 15: Jukebox component with 3 discs.

23

5.2. Jukebox

The second example is a jukebox depicted in Figure 15. It represents a system, where a set of readers
R1 . . . R4 access data located on 3 disks D1, D2, D3. Readers may need to access any disk. Access to disks
is managed by jukeboxes J1, J2 that can load any disk to make it available to the connected readers. The
interaction load i,k (respectively unload i,k) allows loading (respectively unloading) the disk Di in the jukebox
Jk. Each reader Rj is connected to a jukebox through the read j interaction. Once a jukebox has loaded a
disk, it can either take part in a “read” or “unload” interaction. Each jukebox repeatedly loads all N disks
in a random order.

If unload interactions are always chosen immediately after a disk is loaded, then readers may never be
able to read data. Therefore, we add the priority unloadi,k <π readj , for all i, j, k. This ensures that “read”
interactions will take place before corresponding disks are unloaded. Furthermore, we assume that readers
connected to J1 need more often disk 1 and that readers connected to J2 need more often disk 2. Therefore,
loading these disks in the corresponding jukeboxes is assigned higher priority: loadi,1<π load1,1 for i ∈ {2, 3}
and loadi,2<π load2,2 for i ∈ {1, 3}. Each interaction is handled by a dedicated interaction protocol.

The main difference with the dining philosopher examples is that here priority rules do not restrict
parallelism since they are expressed between structurally conflicting interactions. Here a priority rule is
used to express a scheduling policy that aims to improve the efficiency of the system, in terms of “read”
interactions. Removing this priority rule results in a system that does less “read” interactions.

5.2.1. Minimizing Observed Components

Results of the simulated annealing heuristic are presented in Table 3. Interaction protocols handling a
“read” interaction do not need to observe additional atomic components since there is no interaction with
higher priority. The boolean invariant allows removing some observed atomic components, in the basic
solution. As for PhiloN components, the linear invariant is stronger than the boolean invariant. Therefore,
attaining the same level of detection requires less observed atomic components.

Interaction true BI(basic) BI(complete) LI(basic) LI(complete)
unloadi,k 5 3(k = 1) or 5(k = 2) 5 2 2
loadi,k 1 0 1 0 1

Table 3: Minimal observation cost to ensure baseness or completeness.

5.2.2. Comparing Obtained Implementations

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

No opt. Basic
(BI)

Complete
(BI)

Basic
(LI)

Complete
(LI)

N
u
m

b
e
r

o
f
in

te
ra

c
ti
o
n
s
 d

u
ri
n
g
 6

0
s

Level of Optimization

Multiparty-based
Restriction-aware

Figure 16: Number of interactions executed in 60s for the juke-
box example. More interaction = better performance.

 0

 50000

 100000

 150000

 200000

 250000

 300000

No opt. Basic
(BI)

Complete
(BI)

Basic
(LI)

Complete
(LI)

N
u
m

b
e
r

o
f
m

e
s
s
a
g
e
s

d
u
ri
n
g
 6

0
s

Level of Optimization

Multiparty-based
Restriction-aware

Figure 17: Number of messages exchanged in 60s for the juke-
box example. Less message = more efficient implementation.

24

For this example, the Boolean invariant (BI) provides enough information to reduce the observation.
We consider the optimization levels: No optimization, Basic (I), and Complete (I), where I is either
the boolean invariant BI or the linear invariant LI. For each optimization level, we compare multiparty-
based and Restriction-aware implementations. The number of interactions executed during 60 seconds is
presented in Figure 16. Here the performance of the Restriction-aware implementation is not significantly
better than the performance of the multiparty-based implementation. The best results are obtained with
the basic optimization level using linear invariant. These results come from the fact that no parallelism is
allowed between low priority interactions since they are structurally conflicting. Therefore patterns enabling
parallelism as in Figure 8 do not arise. More precisely, the only gain in performance consists in time involving
actually sending and receiving messages, not in waiting unneeded offers.

Figure 17 shows that significantly fewer messages are exchanged with the Restriction-aware implementa-
tion. Intuitively, this difference corresponds to the notifications and subsequent offers to and from observed
components, that are not necessary with the Restriction-aware implementation. Interestingly, the imple-
mentation giving the best performance (Basic (LI) optimization with Restriction-aware implementation) is
also the one requiring the least number of messages.

6. Related Work

Conflict resolution for Multiparty Interactions. Distributed conflict resolution boils down to solving the
committee coordination problem [20], where a set of professors organize themselves in different committees.
A meeting requires the presence of all professors to take place and two committees that have a professor in
common cannot meet simultaneously. Different solutions have been provided, using managers [20, 3, 39, 41],
a circulating token [35], or a randomized algorithm without managers [32].

The solutions provided by Bagrodia [3] relies on counters to ensure mutual exclusion of conflicting
interactions, as explained in Section 4. The token ring and dining philosopher-based solutions allow the
designer to use an arbitrary partitions of the interaction for building the different managers. Our solution
differ as we separate the conflict resolution from the execution of the interactions.

The α-core protocol [41] build one manager (called coordinator) per interaction. Contrarily to Bagrodia’s
solution, this solution does not rely on counters. The principle of the protocol is that each coordinator
locks sequentially the components according to a global order. Each component can be locked by only one
coordinator. If the coordinator manages to lock all components of the interaction, it executes the interaction.
Otherwise, the coordinator frees all components locked so far. As there are no counters, every component
must explicitly withdraw all unsuccessful offers when executing an interaction. Furthermore, it must wait for
an acknowledgement of the withdrawal before resuming execution, which may incur an overhead compared
to a counter-based solution. In [11], knowledge is used to optimize the conflict resolution protocol α-core [41].

The solution by Kumar [35] implements an idea similar to the α-core protocol, without managers. Each
interaction is represented by a token. There is a global order on the components, and to execute an
interaction, the token must traverse (and lock) all the components according to the global order. If a token
arrives in a component that has already been locked by another token (i.e. a conflicting interaction), it waits
until the interaction either succeeds or fail. If the conflicting interaction fails, the token is propagated. If the
conflicting interaction succeeds, the token is stopped and all components it already traversed are unlocked.

The solution provided by Joung and Smolka in [32] mainly focus on ensuring fairness between interaction.
This algorithm relies on randomization: each component picks an interaction and send a message to all
participants. If one of the participants detects that at a given point all participants agree on the interaction,
the latter is executed. Otherwise, each component picks another interaction.

Other Frameworks for Process Coordination. Although we use multiparty interactions to describe com-
munication between processes, many solutions enhancing message-passing exist. The MPI framework [28]
provides collective operations such as MPI Barrier() that implements strong synchronization between a
set of processes. However, conflicting interactions are not handled, the programmer has to ensure that all
involved processes commit to the same synchronisation.

25

In [26], German presents a framework providing multiparty interactions with priorities as primitives. The
processes are described using a notation similar to the CCS. Interactions are specified as composite action
labels made of conjunctions and negations of actions. For instance, the interaction reboot of the example
from Figure 2 could be encoded as the action label rb ∧ ¬req ∧ ¬ack , assuming that BIP ports are mapped
to simple actions. Encoding an interaction requires an additional process, that contains a single rule with
the corresponding action label. The idea is to provide a language suitable for specifying distributed systems,
with a high-level description that can be executed for rapid prototyping. This framework was used to model
and verify a telephone switching application. To our knowledge, there is no distributed implementation for
this framework, although it was apparently one of the goals in [26].

Reo [2] is a framework where components communicates using a basic set of dataflow connectors that are
combined to form a complex connector. At each round, each component enables a set of input and output
ports. In Reo, components are black boxes, only their interface is known at each state. A Reo connector
defines a set of allowed dataflow interactions for each configuration of the enabled ports. A round consists
of executing such an interaction, which transfers data. Furthermore, Reo basic connectors include FIFO1

connectors that can store one data item, allowing the composed connector to save some data between two
rounds. The FIFO connectors introduce a control state in the composed connector, which differs from BIP
where interactions have no memory. The Dreams framework [42, 43] provides a distributed implementation
for Reo. Each basic connector is implemented as an actor. A round synchronizes the actors through a
consensus algorithm, in order to choose the next interaction. In order to achieve a more decentralized
behavior, a GALS architecture is obtained by cutting the complex connector into synchronous regions. Two
regions can be separated only if their only connections consist of FIFO connectors.

I/O automata [36] were introduced to formally model distributed systems. In this framework, each
process is represented by an automaton whose transitions are labeled by actions, similarly to processes from
this chapter. Each interaction is represented through a common label that is used in several processes
to denote synchronization. I/O automata clearly distinguish between input (uncontrollable) actions and
output (controllable) actions. Given an interaction label, there is exactly one process for which this label is
an output action, in other processes it can appear only as an input action. Furthermore, from every state
of an automaton, all its input actions are required to be enabled. With these restrictions, an interaction is
completely controlled by the process for which it is an output action. In that sense, I/O automata interactions
are similar to Send/Receive interaction where the sender controls the execution and the receiver should not
block the sender. In particular, the fact that an interaction is enabled or not is local to the process that
controls the corresponding output action. In that sense, there is no conflict between interactions. However,
if two interactions a and b are scheduled simultaneously by two separate processes, the order should be
consistent among all common participants in a and b. The solution proposed in the first sketch of a
distributed implementation [24] is to require that each automaton reaches the same state for both orderings.
In a later solution [25, 45], this problem is solved by adding a handshake protocol.

In [23, 21], Synchronizers are used to filter incoming messages for a set of actors. A message is delivered
only if it matches an enabled pattern. Such patterns include atomic synchronization of a set of messages,
that requires all involved messages to be pending before granting their transmission. According to [21],
synchronizers are implemented through dispatchers located on the target actors, that is the actors for
which incoming messages are filtered. Upon reception of an incoming message, the dispatcher is responsible
for checking whether the message is allowed for transmission according to the synchronizers. In case of
atomic synchronization, this requires a protocol similar to the one for multiparty interactions. The actors
communicate through asynchronous message-passing, which makes it difficult to exploit the synchronization
of messages for verification purposes. This framework is mainly concerned with providing practical constructs
for programming with actors.

Behavioral programming [37] is another model for programming interactions between processes. In that
model, at each global state, each process provides three sets of actions: requested actions, watched actions
and blocked actions. A (centralized) scheduler selects an action that is requested by at least a process
and not blocked by any process. The selected action is executed by all processes that requested it and
all processes that watched it. The system reaches the next global state by executing the selected action.
This model differs from multiparty interactions as the set of participants in the common action is not fixed,

26

but depends on the state. Decentralizing the scheduler while preserving centralized semantics requires to
solve problems similar to Interaction and Restriction conflicts resolution. In particular, scheduling an action
based on a partial set of offers requires to ensure that this action will not be blocked by a subsequent offer.

Knowledge. The formalization of different kinds of knowledge and related logic, called epistemic logic, have
been intensively studied [22, 29, 30]. In rough sets theory [40], objects are defined through a set of attributes.
Intuitively, an attribute can be the shape, the color, the weight . . . of the object. Each object is fully
identified by the definition of its attributes. Given a subset of the objects, deciding whether a given object
is part of that subset is always achieved by observing all attributes. Restricting the set of attributes that are
observed creates a rough set, that approximates the subset. In that case indeed, there could be some objects
whose membership in the subset depends on an unobservable attribute. One of the question in this theory
is to find a minimal set of attributes whose observation is sufficient to distinguish any two objects [47].

In [44], Knowledge is applied to decentralized control of a plant. A plant is an automaton whose
interactions are labeled by actions, some of them being forbidden. Multiple decentralized controllers are in
charge of controlling the plant, through allowing or not a given subset of the actions. Each controller is
defined by the set of actions it can observe and the set of actions it can control (i.e. execute). Knowledge
is applied to allow each controller to infer which actions are legal from the current state and thus can be
executed. An extension to distributed knowledge is proposed, whenever the information available to only one
controller is not enough to decide. A criterion, called “Kripke observability” decides whether the extension
to distributed knowledge is enough to control the plant.

In [8, 4], the focus is on distributed controllers for executing Petri nets constrained by a given property.
An example of such a constraining property is a priority order. Processes are defined as sets of Petri nets
transitions. A transition can be common to several processes, in which case it describes a synchronization.
Each process can observe its neighborhood, that is the places that are adjacent to its transitions. In [4],
Knowledge is used to build a support table for each process. This table indicates, for each local config-
uration, which interaction can be safely executed. Knowledge based on the state of the neighborhood is
not always sufficient, two possible extensions are proposed. The first one consists in using knowledge with
perfect recall. The second one, also proposed in [27] consists in accumulating knowledge through additional
synchronizations between processes. This additional synchronization is handled by a multiparty interaction
protocol; α-core [41] is proposed. In [8], an optimization is proposed by considering only executions satis-
fying the constraining property in order to build the knowledge. This approach allows reducing the state
space and possibly increase the knowledge of each process.

7. Conclusion

We proposed different methods for generating a distributed implementation from a model described
using multiparty interactions with Restriction. The proposed model ensures enhanced expressiveness as the
enabling conditions of an interaction can be strengthened by state predicates of components non participating
in that interaction. It directly encompasses modeling of priorities which are essential for modeling scheduling
policies. We have proposed a transformation leading from a model with Restriction into an equivalent model
with interactions. The transformation consists in creating events making visible state-dependent conditions.

Components whose state is needed to evaluate the Restriction predicate associated to an interaction are
observed by this interaction. A synchronized up-to-date view of the observed components that satisfy the
predicate is needed to launch the execution of the interaction. We proposed methods, based on the work in
[12] to compute a new Restriction with a reduced number of observed components. The obtained Restriction
ensures either deadlock-freedom preservation or observational equivalence with the original model.

Expressing Restriction by interactions allows the application of existing distributed implementation
techniques, such as the one presented in [17]. We have proposed an optimization of the conflict resolution
algorithm from [3] that takes into account the fact that an observed component does not participate in the
observing interaction. Preliminary experiments compare the performance and communication volume of the
implementation obtained with various optimization levels. They show significant performance improvement
when using the optimized conflict resolution algorithm.

27

Future work includes further optimization of the conflict resolution protocol through Knowledge, as
in [11]. It also includes generating distributed model with timing constraints as in [1]. In particular, the
multi-threaded implementation in [46], where all timing constraints are handled by a single thread, could
be extended to a fully distributed implementation. Furthermore, Knowledge could be applied as well to
determine for instance whether an interaction protocol has to wait for a particular message.

References

[1] T. Abdellatif, J. Combaz, and J. Sifakis. Model-based implementation of real-time applications. In L. P. Carloni and
Tripakis S., editors, EMSOFT, pages 229–238. ACM, 2010.

[2] F. Arbab. Reo: a channel-based coordination model for component composition. Mathematical Structures in Computer
Science, 14:329–366, 5 2004.

[3] R. Bagrodia. Process synchronization: Design and performance evaluation of distributed algorithms. IEEE Transactions
on Software Engineering (TSE), 15(9):1053–1065, 1989.

[4] A. Basu, S. Bensalem, D. Peled, and J. Sifakis. Priority scheduling of distributed systems based on model checking.
Formal Methods in System Design, 39(3):229–245, 2011.

[5] A. Basu, P. Bidinger, M. Bozga, and J. Sifakis. Distributed semantics and implementation for systems with interaction
and priority. In Formal Techniques for Networked and Distributed Systems (FORTE), pages 116–133, 2008.

[6] A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous real-time components in BIP. In Software Engineering and
Formal Methods (SEFM), pages 3–12, 2006.

[7] I. Ben-Hafaiedh, S. Graf, and S. Quinton. Building distributed controllers for systems with priorities. Journal of Logic
and Algebraic Programming, 80:194 – 218, 2011.

[8] S. Bensalem, M. Bozga, S. Graf, D. Peled, and S. Quinton. Methods for knowledge based controlling of distributed systems.
In Automated Technology for Verification and Analysis - 8th International Symposium, ATVA 2010, Proceedings, volume
6252, pages 52–66. Springer, September 2010.

[9] S. Bensalem, M. Bozga, A. Legay, Thanh-Hung Nguyen, J. Sifakis, and Rongjie Yan. Incremental component-based
construction and verification using invariants. In Formal Methods in Computer-Aided Design (FMCAD), pages 257 –256,
oct. 2010.

[10] S. Bensalem, M. Bozga, T.-H. Nguyen, and J. Sifakis. D-finder: A tool for compositional deadlock detection and verifica-
tion. In Computer Aided Verification, volume 5643 of LNCS, pages 614–619. 2009.

[11] S. Bensalem, M. Bozga, D. Peled, and J. Quilbeuf. Knowledge-based transactional behavior. In Haifa Verification
Conference 2012, 2012. to appear.

[12] S. Bensalem, M. Bozga, J. Quilbeuf, and J Sifakis. Knowledge-based distributed conflict resolution for multiparty inter-
actions and priorities. In FMOODS/FORTE, pages 118–134, 2012.

[13] S. Bensalem, M. Bozga, J. Quilbeuf, and J. Sifakis. Optimized distributed implementation of multiparty interactions with
observation. In Proceedings of the 2nd edition on Programming systems, languages and applications based on actors,
agents, and decentralized control abstractions, AGERE! ’12, pages 71–82, New York, NY, USA, 2012. ACM.

[14] S. Bensalem, M. Bozga, J. Sifakis, and T-H Nguyen. Compositional verification for component-based systems and appli-
cation. In ATVA, Berlin, Heidelberg, 2008.

[15] S. Bensalem, D. Peled, and J. Sifakis. Knowledge based scheduling of distributed systems. In Essays in Memory of Amir
Pnueli, pages 26–41, 2010.

[16] B. Bonakdarpour, M. Bozga, M. Jaber, J. Quilbeuf, and J. Sifakis. From high-level component-based models to distributed
implementations. In EMSOFT, pages 209–218, 2010.

[17] B. Bonakdarpour, M. Bozga, M. Jaber, J. Quilbeuf, and J. Sifakis. A framework for automated distributed implementation
of component-based models. Distributed Computing, 25(5):383–409, 2012.

[18] B. Bonakdarpour, M. Bozga, and J. Quilbeuf. Automated distributed implementation of component-based models with
priorities. In EMSOFT, pages 59–68, 2011.

[19] K. M. Chandy and J. Misra. The drinking philosophers problem. ACM Transactions on Programming Languages and
Systems (TOPLAS), 6(4):632–646, 1984.

[20] K. M. Chandy and J. Misra. Parallel program design: a foundation. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1988.

[21] P. Dinges and G. Agha. Scoped synchronization constraints for large scale actor systems. In Proceedings of the 14th
international conference on Coordination Models and Languages, COORDINATION’12, pages 89–103, Berlin, Heidelberg,
2012. Springer-Verlag.

[22] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge. MIT Press, 1995.
[23] S. Frølund and G. Agha. A language framework for multi-object coordination. In In Proceedings of ECOOP, pages

346–360. Springer Verlag, 1993.
[24] S. J. Garland and N. Lynch. Foundations of component-based systems. chapter Using I/O automata for developing

distributed systems, pages 285–312. Cambridge University Press, New York, NY, USA, 2000.
[25] C. Georgiou, N. Lynch, P. Mavrommatis, and J. A. Tauber. Automated implementation of complex distributed algorithms

specified in the ioa language. International Journal on Software Tools for Technology Transfer, 11(2):153–171, 2009.
[26] S. M. German. Programming in a general model of synchronization. In Rance Cleaveland, editor, CONCUR, volume 630

of Lecture Notes in Computer Science, pages 534–549. Springer, 1992.

28

[27] S. Graf, D. Peled, and S. Quinton. Achieving distributed control through model checking. Form. Methods Syst. Des.,
40(2):263–281, April 2012.

[28] W. Gropp, E. Lusk, and R. Thakur. Using MPI-2: Advanced Features of the Message Passing Interface. MIT Press,
1999.

[29] J. Y. Halpern and R. Fagin. Modelling knowledge and action in distributed systems. Distributed Computing, 3(4):159–177,
1989.

[30] J. Y. Halpern and Y. Moses. Knowledge and common knowledge in a distributed environment. J. ACM, 37:549–587, July
1990.

[31] M. Herlihy and J. E. B. Moss. Transactional memory: architectural support for lock-free data structures. SIGARCH
Comput. Archit. News, 21(2):289–300, May 1993.

[32] Y.-J. Joung and S. A. Smolka. Strong interaction fairness via randomization. IEEE Trans. Parallel Distrib. Syst.,
9(2):137–149, 1998.

[33] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, 220(4598):671–680, 1983.
[34] F. Krückeberg and M. Jaxy. Mathematical methods for calculating invariants in petri nets. In Advances in Petri Nets

1987, volume 266 of LNCS, pages 104–131. Springer Berlin / Heidelberg, 1987.
[35] D. Kumar. An implementation of n-party synchronization using tokens. In ICDCS, pages 320–327, 1990.
[36] N. A. Lynch and M. R Tuttle. An introduction to input/output automata. 1988.
[37] A. Marron, G. Weiss, and G. Wiener. A decentralized approach for programming interactive applications with javascript

and blockly. In Proceedings of the 2nd edition on Programming systems, languages and applications based on actors,
agents, and decentralized control abstractions, AGERE! ’12, pages 59–70, New York, NY, USA, 2012. ACM.

[38] R. Milner. Communication and concurrency. Prentice Hall International (UK) Ltd., Hertfordshire, UK, 1995.
[39] J. Parrow and P. Sjödin. Multiway synchronizaton verified with coupled simulation. In International Conference on

Concurrency Theory (CONCUR), pages 518–533, 1992.
[40] Z. Pawlak and A. Skowron. Rudiments of rough sets. Information Sciences, 177(1):3 – 27, 2007.
[41] J. A. Pérez, R. Corchuelo, and M. Toro. An order-based algorithm for implementing multiparty synchronization. Con-

currency and Computation: Practice and Experience, 16(12):1173–1206, 2004.
[42] J. Proença. Synchronous Coordination of Distributed Components. PhD thesis, Leiden University, 2011.
[43] J. Proença, E. Clarke, D. de Vink, and F. Arbab. Dreams: a framework for distributed synchronous coordination. In

Proceedings of the 27th Annual ACM Symposium on Applied Computing, SAC ’12, pages 1510–1515, New York, NY,
USA, 2012. ACM.

[44] S.L. Ricker and K. Rudie. Know means no: Incorporating knowledge into discrete-event control systems. IEEE Trans.
on Automatic Control, 45(9):1656–1668, 2000.

[45] J. A. Tauber. Verifiable Compilation of I/O Automata without Global Synchronization. PhD thesis, Massachusetts
Institute of Technology, 2005.

[46] A. Triki, J. Combaz, S. Bensalem, and J. Sifakis. Model-based implementation of parallel real-time systems. In Vittorio
Cortellessa and Dániel Varró, editors, FASE, volume 7793 of Lecture Notes in Computer Science, pages 235–249. Springer,
2013.

[47] J. Zhou, D. Miao, Q. Feng, and L. Sun. Research on complete algorithms for minimal attribute reduction. In Peng
Wen, Yuefeng Li, Lech Polkowski, Yiyu Yao, Shusaku Tsumoto, and Guoyin Wang, editors, Rough Sets and Knowledge
Technology, volume 5589 of LNCS, pages 152–159. Springer Berlin / Heidelberg, 2009.

29

