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Abstract: We propose to use non-binary low density 
parity check (LDPC) codes for small packet 
transmissions in vehicle communications. Non-binary 
LDPC codes which are defined by a parity check matrix 
over non-binary Galois field GF(q) can achieve 
performance very close to the Shannon limit even if  
they are applied to small block length. By using 
computer simulations, we demonstrate that non-binary 
LDPC codes of short block length (896 bits) outperform 
that of binary LDPC codes and the performance can 
approach the Shannon limit of this block length by 
0.3dB (BPSK) and less than 1.0dB (8PSK, 16QAM) at 
block error rate = 10-4. 

 
Keywords: packet transmission, forward error correction 
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1. INTRODUCTION 

Vehicle communication systems adopt small and 
medium size packet transmission in order to optimize 
system capacity which is crucial for large fleets of fast 
moving terminals. These small and medium size packets 
are subject to numerous perturbations (noise, 
interference) and thus powerful FEC (Forward Error 
Correction) is required to guarantee reliable 
communication. This paper deals with non-binary 
LDPC codes which provide an efficient solution to this 
coding problem. 

 Low density parity check (LDPC) codes were 
proposed by Gallager in 1962 [1]. Since their 
rediscovery by MacKay et al. in 1996 [2], research 
activities in this field have flourished and LDPC codes 
are now considered as a candidate for post turbo codes 
which were proposed by Berrou et al. in 1993 [3]. 
LDPC codes can achieve performance very close to the 
Shannon limit especially when the block length is not 
smaller than 10,000 [2]. For codes of shorter block 
length, non-binary LDPC codes have been investigated 
and achieve better performance [4].  

 An LDPC code is a linear code defined by a sparse 
parity check matrix H. An LDPC code is called non-
binary if its parity check matrix is composed of the 
elements of a non-binary Galois field GF(q) (q>2), 
where q denotes the order of Galois field. We often call 
LDPC codes over GF(2) binary LDPC codes, in contrast 
with non-binary LDPC codes. LDPC codes can be 
decoded by the belief propagation algorithm on the 
Tanner graph associated with H. The belief propagation 
algorithm is a sub-optimum decoding algorithm and the 
sparseness of H enables us to decode LDPC codes 
efficiently by using this algorithm. Generally speaking, 
LDPC codes over the Galois field of higher order q can 
give better decoding performance. This is because non-
binary LDPC codes can avoid short cycles in the Tanner 
graph while, at the same time, keeping Hamming 
weights of codewords large.  

2. NON-BINARY LDPC CODES 

The block diagram of non-binary LDPC codes based 
transmissions is shown in Fig. 1. At the transmitter, the 
binary data of q2log  bits is combined to form an 
element of GF(q) and encoded by the LDPC encoder 
over GF(q) and then divided into binary data to be fed 
to the modulator. At the receiver, the received signals 
are demodulated to form binary probabilities of each 
received bit and combined to form the probabilities of 
each element of GF(q) to be fed to the LDPC decoder 
over GF(q). 

2.1. Decoding Algorithm 

 The decoding of non-binary LDPC codes is 
performed on the Tanner graph corresponding to its 
parity check matrix H which consists of M rows and N 
columns. Fig. 2 shows an example of the Tanner graph 
for non-binary LDPC codes which has N variable nodes, 
M check nodes and cr NWMW =  edges, where rW  and 

cW  are the average number of non-zero elements per 
row and per column of H respectively. Each edge is 



considered to have a non-binary element of GF(q). In 
Fig. 2, mnh  denotes non-zero elements in H. In belief 
propagation algorithm, decoding is performed by 
repeatedly exchanging probabilities between the two 
types of nodes [4]. The decoder stops and outputs the 
estimated information sequence after a fixed number of 
iterations or when all the parity checks are satisfied. The 
appendix can be referred to for more details about the 
decoding algorithm.  

2.2. Decoding Complexity 

The decoding complexity is the most significant 
problem for the application of non-binary LDPC codes 
to real systems. The direct implementation of non-
binary LDPC codes exponentially increases the 
decoding complexity. In this case, the number of 
operations for each iteration is proportional to cW

cb qWM , 
where cW  denotes the averaged weight of columns  (the 
averaged number of non-zero elements per column) 
and qMMb 2log=  denotes the number of rows of 
parity check  matrix H in binary representation. 

 A complexity reduction technique using Fast 
Fourier Transformation (FFT) has been proposed [5]. 
When FFT is applied to the decoding of non-binary 
LDPC codes, the number of operations for each 
iteration is proportional to qWM cb . Because the range 
of Wc is usually limited to 42 ≤≤ cW , the complexity is 
approximately proportional to the order of Galois field q 
for a given binary block length. This complexity can be 
acceptable for short block lengths. 

2.3. Construction of Parity check Matrices 

The decoding performance of the belief propagation 
algorithm converges to that of the optimum decoding   
such as the maximum likelihood decoding (MLD) 
algorithm when the Tanner graph has no cycle. A cycle 
means the route along the edges in the Tanner graph 
which starts from an arbitrary node and returns to the 
same node (a cycle of length 4 is highlighted in Fig. 2 
by bold lines). However, it has been empirically 
confirmed that good asymptotic performance can be 
achieved even if the Tanner graph has a small number 
of cycles longer than 4. In this paper, we constructed 
parity check matrices by a random method avoiding 
small length cycles as few as possible, which is similar 
to the progressive edge growth (PEG) method [6].  

The column weight distribution of parity check 
matrices is another important parameter for constructing 
good parity check matrices. It is well known that the 
optimized irregular weight distribution is generally 
better than the regular distribution [7]. It is not easy to 
find the optimum weight distribution especially for 
LDPC codes of small block length. In this paper, we use 
simple weight distributions which are not fully 
optimized. However, for non-binary LDPC codes over 

the Galois field of high order, the regular and small 
weight distribution gives nearly optimum decoding 
performance [8].   

Table 1 shows the parameters of all the parity check 
matrices that are used in the simulations whose results 
will be shown in the next section. In the table, “girth” 
denotes the minimum length of the cycles. The weight 
distribution gives the proportions of the number of 
columns of weight 2, 3 and 4. An example of a parity 
check matrix over GF(256) is shown in Fig. 6. 

3. SIMULATION RESULTS 

3.1. BPSK Case 

Fig. 3 shows the decoding performance of binary 
and non-binary LDPC codes in an AWGN channel and 
for a BPSK modulation. The vertical axis and horizontal 
axis denote block error rate (BLER) and signal to noise 
ratio per information bit (Eb/No) respectively. Six 
simulation results of rate 0.5 and 0.75 LDPC codes over 
GF(2), GF(16) and GF(256) are shown. For a fair 
comparison, all codes have the same binary block length 
of 896. The theoretical limits calculated by using the 
sphere packing bound [9] are also shown. As can be 
seen, the decoding performance improves mono-
tonically when the order of Galois field increases. For 
both code rates, the gap between the performance on 
GF(256) and the Shannon limit is approximately 0.3 dB 
at BLER = 10-4. Moreover, the binary LDPC codes over 
GF(2) with the rate of 0.75 seems to have an error floor 
whereas the non-binary LDPC over GF(256) does not 
have such a tendency. 

3.2. High Order Modulation Case 

For higher rate packet communications, it is useful 
to apply the higher order modulation such as 8PSK and 
16QAM. Fig. 4 (resp. Fig. 5) shows the decoding 
performance of binary and non-binary LDPC codes in 
AWGN channel and for an 8PSK (resp. 16QAM) 
modulation. Though the gaps between the performance 
on GF(256) and the Shannon limits are larger than that 
of BPSK, they are still less than 1.0 dB. The tendencies 
of error floor are almost the same as for the BPSK case. 
 

Table 1 The parameters of the parity check matrices 
Weight Distribution GF M N 
2 3 4 

girth 

2 448 896 0.33 0.33 0.33 8 
16 112 224 0.66 0.33 0 10 
256 56 112 1 0 0 10 
2 672 896 0.33 0.33 0.33 10 

16 168 224 0.66 0.33 0 12 
256 84 112 1 0 0 18 
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Fig. 1 Block diagram for non-binary LDPC codes based 

transmissions 
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Fig. 2 Tanner graph for non-binary LDPC codes 

 

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1 2 3 4 5
Eb/No [dB]

Bl
oc

k 
Er

ro
r R

at
e GF(2)

GF(16)
GF(256)

Theoretical limits

BPSK, AWGN
K b = 448 / 672
M b = 448 / 224
N b = 896
R = 0.5 / 0.75
Maximum iteration = 50

R=0.75R=0.5

 
Fig. 3 Decoding performance of binary and non-binary 

LDPC codes (BPSK modulation) 
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Fig. 4 Decoding performance of binary and non-binary 

LDPC codes (8PSK modulation) 
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Fig. 5 Decoding performance of binary and non-binary 

LDPC codes (16QAM modulation) 
 

4. CONCLUSION 

Non-binary LDPC codes can give very good 
performance for small block length whereas binary 
LDPC codes of small length do not perform very well. 
In addition, their complexity can be reduced to the 
admissible level by using complexity reduction 
techniques such as FFT decoding. Therefore, Non-
binary LDPC codes are very powerful and useful when 
they are applied to small and medium size packet 
transmissions in vehicle communications.  

APPENDIX 

Brief propagation algorithm for decoding of non-
binary LDPC codes 

 
The purpose of decoding is to calculate a posteriori 

probabilities (APP) over GF(q) for each symbol. Let a
nP  

be the APP for the n-th symbol cn to be equal to a (= 1, 
2, ..., q). By using Bayes rule, we have 
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where y  and nc  denote the received modulated signal 
vector and the n-th encoded symbol over GF(q), 
respectively (See Fig. 1). We define channel value a

nF  
as follows: 
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In equation (1), ( )acn =Pr  is an a priori probability 

which is calculated by multiplying messages from the 
check nodes connected to the variable node as follows: 
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where M(n) denotes the group of indices of the check 
nodes connected to the n-th variable node. a

mnQ  is the 
probability of cn = a from the m-th check node’s point 
of view. a

mnQ  is called Q-message from the m-th check 
node to the n-th variable node. Q-messages are 
calculated as follows: 
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where N(m) denotes the group of indices of variable 
nodes connected to the m-th check node and the 
summation is calculated for all symbol vectors c  that 
satisfy the m-th parity check, namely  0=chT

m , and 

whose n-th element cn is equal to a. a
mnR  is the 

probability of  cn = a fed to the m-th check node from 
the n-th variable node. a

mnR  is called R-message from 
the n-th variable node to the m-th check node. R-
messages can be calculated by using Q-messages and 
channel values as follows: 
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where mnα  is the normalization factor adjusted in such a 

way that 1
1

=∑
=

q

a

a
mnR . In the belief propagation algorithm, 

Q-messages and R-messages are calculated iteratively 
by equations (4) and (5) in order to improve the 
decoding performance. Finally, we substitute converged 
values of Q-messages to the following equation which is 
given by (1), (2) and (3) to calculate the APPs. 
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Fig. 6 An example of parity check matrix for non-binary LDPC code whose size is 9 x 18 (M = 9, N = 18). The column 

and row weights are regular (Wc=2, Wr=3) and the minimum cycle length is 6. 


