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Abstract The thermal evolution of distal domains along rifted margins is at present poorly constrained. In
this study, we show that a thermal pulse, most likely triggered by lithospheric thinning and asthenospheric
rise, is recorded at upper crustal levels and may also influence the diagenetic processes in the overlying
sediments, thus representing a critical aspect for the evaluation of hydrocarbon systems. The thermal history
of a distal sector of the Alpine Tethys rifted margin preserved in the Ligurian Alps (Case Tuberto-Calizzano
unit) is investigated with thermochronological methods and petrologic observations. The studied unit is
composed of a polymetamorphic basement and a sedimentary cover, providing a complete section through
the prerift, synrift, and postrift system. Zircon fission track analyses on basement rocks samples suggest that
temperatures exceeding ~240 ± 25°C were reached before ~150–160 Ma (Upper Jurassic) at few kilometer
depth. Neoformation of green biotite, stable at temperatures of ~350 to 450°C, was synkinematic with this
event. The tectonic setting of the studied unit suggests that the heating-cooling cycle took place during
the formation of the distal rifted margin and terminated during Late Jurassic (150–160 Ma). Major crustal and
lithospheric thinning likely promoted high geothermal gradients (~60–90°C/km) and triggered the
circulation of hot, deep-seated fluids along brittle faults, causing the observed thermal anomaly. Our results
suggest that rifting can generate thermal perturbations at relatively high temperatures (between ~240
and 450°C) at less than 3 km depth in the distal domains during major crustal thinning preceding breakup
and onset of seafloor spreading.

1. Introduction

The tectonic evolution of rift systems is characterized by markedly different dynamics occurring at proximal
and distal margins (e.g., Sutra et al., 2013; Tugend et al., 2014, cum ref.). The passage from unthinned to
thinned crustal domains marks a major change in timing and modality of the rift style across rifted margins
(see Mohn et al., 2012, cum ref). The process of rift localization leads to the quiescence of tectonically active
areas placed over thick continental crust in the proximal parts of the margins and to the activation of narrow
sectors in which the crust becomes severely thinned (i.e., future distal margins). During final rifting, the defor-
mation between lower and upper crust becomes “coupled” (see Sutra et al., 2013), generating new fluid
circulation patterns (Incerpi et al., 2017). The circulation of hydrothermal fluids is typically associated with
anomalous thermal gradients that lead to characteristic synrift heating/cooling cycles affecting the whole
crustal section in the distal margin (Beltrando et al., 2015; Seymour et al., 2016). Remnants of fossil rifted
margins, exposed inside orogenic belts, may provide an opportunity to directly investigate and evaluate
the character of synrift heating events in the case the synorogenic metamorphism never exceed the maxi-
mum temperatures reached during rifting.

In this study we use two thermochronometric systems, zircon fission tracks (ZFTs) and zircon (U-Th)/He (ZHe),
to investigate the synrift heating-cooling cycle at the distal rifted margin of the Alpine Tethys, which is one of
the world’s best fossil analogues for a magma-poor rifted margin (e.g., Decarlis et al., 2015; Haupert et al.,
2016; Manatschal, 2004; Manatschal & Bernoulli, 1999; Mohn et al., 2012). Here we report new data that
enable documentation of the thermal history of the Case Tuberto-Calizzano unit in the Ligurian Alps
(Figure 1), which belong to the distal European margin of the Alpine Tethys system (Decarlis et al., 2013,
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2015). This unit only experienced low-grade Alpine metamorphism (Desmons et al., 1999; Seno et al., 2005a);
thus, it offers a rare “window” into the thermal evolution of the ancient distal margin. The goal of this paper is
to decipher the local temperature conditions reached in the basement during the thermal pulse and the
time-window when it was active a few kilometers beneath synrift sediments.

2. Geological Setting
2.1. Alps Orogeny and Insights on Alpine Tethys Rift

The western and central sectors of the Alpine chain (Figure 1), which straddle the Italian, French, and Swiss
borders, preserve the most indicative remnants of the Alpine Tethys rifted margins that survived the subse-
quent orogenic overprint. The Mesozoic Alpine rifting became active in the Early Jurassic (Froitzheim &
Manatschal, 1996; Lemoine & Trümpy, 1987), leading to the separation of the European plate (north to
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Figure 1. (a) Location and (b) structural map of the Ligurian Alps, from Vanossi (1991), modified. The box indicates location
of the Case Tuberto-Calizzano unit, details in the related geological map of Figure 2. (c) Structural section through the
Ligurian Alps, illustrating the position of the study area in the nappe pile, modified from Bonini et al. (2010).

Tectonics 10.1002/2017TC004634

DECARLIS ET AL. DISTAL RIFTED MARGIN THERMAL ANOMALY 3210



north-west) from the Adria microplate (south to south-west; formerly part of Africa; Figure 2) and to the for-
mation of the Piedmont-Ligurian Ocean during Early Cretaceous (Handy et al., 2010, cum ref.). It followed the
onset of convergence/subduction in Late Cretaceous and the continental collision during Tertiary times (see
De Graciansky et al., 2011).

The tectono-sedimentary evolution of the Alpine Tethys margins has been discussed by several studies (e.g.,
Decarlis et al., 2015; Masini et al., 2013), suggesting that the Jurassic rifting was the result of polyphase tec-
tonics including the following: (i) stretching phase (Hettangian-Sinemurian) leading to the formation of
widely distributed half-graben structures over only slightly extended 25 to 30 km thick continental crust,
(ii) thinning phase (Pliensbachian-Toarcian) occurring only in a narrower area corresponding to the future dis-
tal margin, and (iii) hyperextension phase during which crustal and mantle rocks have been exhumed along
detachment fault(s) at the seafloor.

During the final phase of hyperextension and exhumation, distal margins can be subdivided in upper plate
(hanging wall of the exhumation system) and lower plate (Haupert et al., 2016; Decarlis et al., 2017;
Figure 2). Stratigraphic and structural data reported by Lemoine et al. (1986), Decarlis et al. (2015), and
Haupert et al. (2016) showed that in the present-day Alps, the Provençal, Dauphinois, and Upper
Austroalpine units (Figure 2) represent remnants of the former proximal margins, whereas the internal
European units and Lower Austroalpine units are derived from the former distal margin. At present, there
is a general agreement that the internal European margin and the Austroalpine were the former upper
and lower plate margin, respectively. The evolution of the upper plate is defined by a strong uplift and ero-
sion on the Briançonnais margin, while the Prepiedmont (object of the present paper) and Piedmont
domains were drowned. The Ligurian, Penninic, and Lower Austroalpine units represent the exhumed
domain that was physically generated (exhumed) from Middle Jurassic onward.

Figure 2. (a) Paleogeographic reconstruction of the Alpine Tethys during Late Jurassic (see Decarlis et al., 2017).
(b) Simplified cross section across the Alpine Tethys illustrating the main Alpine paleogeographic structural domains and
rifting domains (from Decarlis et al., 2015) (detachment faults in green).
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2.2. Ligurian Alps

The Ligurian Alps are located at the southwestern end of the Western Alps arc, toward the transition with the
Northern Apennine (Decarlis et al., 2014; Maino et al., 2013; Vanossi, 1991). They consist of a Variscan base-
ment and of a Permian to Cenozoic sedimentary cover that were originally part of the paleo-European
margin, belonging to the Briançonnais-Prepiedmont domains (Figures 1d and 2b). The Briançonnais domain
was uplifted and eroded during rifting (Claudel & Dumont, 1999; Decarlis & Lualdi, 2008) as attested by a
major synrift sedimentary hiatus. Conversely, the Prepiedmont domain displays a continuous clastic synrift
sequence (Decarlis et al., 2015; Decarlis & Lualdi, 2011). From Late Cretaceous, as a consequence of the
convergence and subsequent collision between the European and Adria plates, these rocks were buried
and juxtaposed against remnants of exhumed subcontinental mantle, now exposed within the Voltri Massif
(e.g., Bonini et al., 2010; Capponi & Crispini, 2002). The Briançonnais and Prepiedmont units experienced dif-
ferent Alpine metamorphic overprints (from anchizone to blueschist facies depending on their original posi-
tion along the margin) (Desmons, Compagnoni et al., 1999; Desmons, Aprahamian et al., 1999; Messiga et al.,
1981; Seno et al., 2005a), and since the Oligocene they were exhumed to upper crustal levels (Maino,
Dallagiovanna, Dobson, et al., 2012; Seno et al., 2005a, 2005b).

The object of this study is the Case Tuberto-Calizzano unit that belongs to the Prepiedmont domain
(Figure 2). It was treated in literature as a separate stack formed by the Case Tuberto unit (Permian and
Mesozoic covers) (Dallagiovanna et al., 1984) and the Calizzano massif (basement unit) (Airoldi, 1937) until
local evidence for stratigraphic continuity was reported by Dallagiovanna (1988) and Cortesogno et al.
(1998). This unit is interpreted as the more external of the whole Prepiedmont domain on the basis of
both its position across the nappe pile and its stratigraphic content (Vanossi, 1991). In a general section
across the former rifted margin (Figure 2), its location would correspond to the boundary between the
uplifted Briançonnais domain and the submerged Prepiedmont domain.

2.3. Case Tuberto-Calizzano Unit: Stratigraphic Outline

The “Calizzano massif” rests on the highest structural levels within the Briançonnais nappe stack, bounded
downward by a SW dipping tectonic contact (Dallagiovanna et al., 1984) (Figures 1c and 3). The massif pre-
serves evidence of a protracted Palaeozoic evolution in the Gneiss-Amphibolite Complex (e.g., Gaggero
et al., 2004), wherein Middle-Late Cambrian bimodal effusive tholeiitic and transitional basalts and acidic
calc-alkaline volcanites associated with pelitic, psammitic, and arenitic sediments were intruded by Late
Cambrian-Early Ordovician granitoids (commonly labeled “Orthogneiss 1”), which underwent Early
Ordovician metamorphic reequilibration under eclogite (760°C, >1.7 GPa) to amphibolite (680°C,
>1.1 GPa) facies conditions (e.g., Cortesogno et al., 1993; Desmons et al., 1999; Gaggero et al., 2004).

The subsequent intrusion of large granitic bodies (“Orthogneiss 2”) and minor gabbros at ~470–460 Ma was
then followed by a Variscan medium to low-P amphibolite facies (~600–650°C, 0.4–0.6 GPa) schistogenous
event at ~330 Ma (Gaggero et al., 2004) and by a folding event with production of actinolite + chlorite,
greenschist-facies mineral assemblage (actinolite + chlorite) along axial planes of open folds (Gaggero et al.,
2004). In the study area and in similar basement units (Nucetto and Savona massifs), Lower Carboniferous-
Early Permian (327–274 Ma) 40Ar-39Ar and Rb/Sr ages (Barbieri et al., 2003; Del Moro et al., 1982) and local
occurrence of Permian lava flows resting directly on the lower Palaeozoic metamorphic basement
(Dallagiovanna et al., 2009; Maino, Dallagiovanna, Gaggero, et al., 2012) demonstrate that this folding event
was followed by exhumation to shallow crustal levels.

The basement is locally overlain by Middle Permian pyroclastites and tuffs (Melogno porphyroids formation:
about 150 m), followed by the Upper Permian to Lower Triassic conglomerates and sandstones (Monte
Pianosa Formation and Ponte di Nava Quartzite: about 150 m), and by Middle Triassic to Lower Jurassic car-
bonate rocks (San Salvatore Dolostone and Rocca Prione Formation, M. Arena Dolostone, Veravo Limestone,
and Rocca Liverna Limestone, 250 m in thickness) (Vanossi, 1991). As reported by Dallagiovanna (1988), the
Upper Permian to Triassic p.p. succession may be locally replaced by some tens of meters of polymictic brec-
cias and conglomerates sampling the aforementioned lithologies (Monte Pennino Breccia) (Crozi, 1998).

The Triassic-Jurassic successions grade upward into a poorly dated sedimentary sequence, which is com-
monly ascribed to the Jurassic-Eocene (Scravaion schists) sedimentary cycle (Dallagiovanna & Seno, 1984;
Vanossi, 1991. Notably, this Mesozoic and Cenozoic sedimentary succession has been mainly inferred
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(Dallagiovanna et al., 1984) to be a composite section due to the lack of a continuous field transect in which
the different terrains are juxtaposed by indisputable stratigraphic boundaries. Its overall stratigraphic
setting has been mostly determined by comparison with adjacent units of the Briançonnais and
Prepiedmont domains. Thus, the total thickness of the Case Tuberto sedimentary cover (estimated
as about 600 m) (Vanossi, 1991) should be considered a rough estimate, due to a number of factors,
including (1) the above-described stratigraphic uncertainty; (2) the occurrence of Alpine low-T fabrics
related to solution-precipitation processes, which likely modified the original thickness; and (3) the
relatively low percentage of outcrop, preventing unambiguous assessment of the presence of second-
order Alpine faults.

2.4. Case Tuberto-Calizzano Unit: Alpine Deformation and Metamorphism

The Alpine deformation developed through several events (Bonini et al., 2010; Maino et al., 2013; Seno et al.,
2005a, 2005b), which are especially preserved in the sedimentary cover. The basement rocks record minor
evidence of Alpine deformation, mostly represented by fracturing and fracture cleavage. The Meso-
Cenozoic sedimentary succession shows two generation of folding and related cleavage (Dallagiovanna,
1988) (Figures 4a and 4b) associated with a widespread network of quartz veins. Basement rocks rarely
preserve evidence of an Alpine overprint, which is characterized by different paragenesis in the different
lithologies. Peak conditions are indicated by the followingmineral associations: chlorite + albite + pumpellyite
in the gneisses, chlorite + albite + epidote in the amphibolites, chlorite + phengite + pumpellyite + albite ± epi-
dote (locally also lawsonite and Na-amphibole) in the Permian metavolcanites, chlorite + pumpel-
lyite + albite ± mica + quartz in the Triassic quartzites, and sericite + chlorite in the Jurassic-Eocene pelites
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(Cortesogno, 1984; Cortesogno et al., 1998, 2002; Desmons, Compagnoni et al., 1999; Desmons, Aprahamian
et al., 1999; Messiga et al., 1981). These mineral assemblages suggest a wide range of P-T reequilibration
conditions changing from prehnite-pumpellyite-, greenschist- to blueschist-facies conditions (pressure
between 0.2 and 0.6 GPa and a temperature range between 250 and 400°C), in distinct lithologies and/or
in different structural positions. In fact, most of the relatively high P-T condition assemblages are described
in samples collected close to the main Alpine shear zone (e.g., Rio Nero and Case Volte). The highest
temperatures were attained along major tectonic contacts, probably due to the effect of shear heating
and/or fluid flow (Maino et al., 2015). However, the preservation of 40Ar-39Ar ages >274 Ma in white mica
in analogous basement units (Savona and Nucetto massifs) (Barbieri et al., 2003) and one zircon fission
track age of ~179 Ma (Vance, 1999) from the basement rocks suggests that the Alpine metamorphism
probably did not exceed their relative closure temperatures (~350°C and ~240 ± 25°C, respectively)
(Reiners & Brandon, 2006), thus questioning the effective temperature experienced by the Calizzano
basement during the Alpine evolution. Because of the scarce Alpine relicts and the general lack of obvious
relationships with the pre-Alpine associations and structures, it is not clear if these heterogeneous P-T
conditions represent (i) a single Alpine stage differently recorded by different rocks, (ii) several Alpine
stages; and (iii) several post-Variscan (i.e., not all Alpine) stages.

Ca Ca Chl

Ca

Qz

A B

C D

E F

Figure 4. (a and b) Scravaion schist in the Type location (see Figure 2), showing pervasive Alpine deformation and related
folded quartz veins network. (c and d) Quartz veins associated with widespread chlorite concentrations in the Orthogneiss I
at the top of case Tuberto Calizzano basement unit. ( e and f): Silicified breccia level lying on top of the orthogneiss
near Calizzano village. Orthogneiss clasts are hardly distinguishable due to the pervasive silicification. Anastomosing car-
bonate clasts are locally associated to chlorite concentrations (Figure 4f).

Tectonics 10.1002/2017TC004634

DECARLIS ET AL. DISTAL RIFTED MARGIN THERMAL ANOMALY 3214



3. Sample Description

Zircon fission track (ZFT) and (U-Th)/He (ZHe) analyses were carried out on seven samples collected from the
Calizzano-Case Tuberto unit with the aim of constraining the thermal path experienced by the basement
during the rifting and subsequent collisional stages. The samples correspond to Late Cambrian-Lower
Ordovician orthogneiss I (samples MB1403-06) and Middle Ordovician orthogneiss II (MB1402 and JT1014),
which experienced pre-Variscan and/or Variscan (Early Ordovician and Carboniferous, respectively) amphibo-
lite facies metamorphism (Cortesogno, 1984; Gaggero et al., 2004).
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3.1. Field Observations

In the sampling locations, the Variscan foliation in the orthogneisses is usually deformed and cut by
distinct generations of millimeter- to centimeter-thick quartz veins (Figure 4c). These veins generally cut
the deformed pre-Alpine foliation and comprise pure quartz or alternatively quartz with sharp chlorite bands
at the contact with the host rock (Figure 4d). In addition, in selected localities this mineralization also affects
the overlying sediments. Near Mereta and Calizzano villages (Figure 3), a breccia formed by orthogneisses
and minor carbonate clasts directly covers the basement (Figure 4e). The clasts, from centimeter to meter
in size, are characterized by sharp rounded edges. The breccia is so pervasively silicified that the boundary
with the orthogneiss clasts is completely masked (Figure 4e). These features suggest a marked interaction
with silicifying fluids circulating both inside the sampled basement rocks and in the overlying breccia.

3.2. Sample Petrography

We present analyses of three types of granites:

i. The first type (MB1405 sample) is a two-mica gneiss characterized by Variscan foliation defined by white
mica and brown biotite, both medium-grained and undeformed. An older generation of coarser-grained,
deformedwhite mica and brown biotite is wrapped around by themain foliation or defines a former folia-
tion (Figure 5c). Medium-grained granoblastic quartz and poorly sericitized plagioclase are the other
major rock-forming minerals. The textural and mineralogical features of this sample correspond to those
of the paragneisses of the Gneiss-Amphibolite Complex (e.g., Cortesogno, 1984; Gaggero et al., 2004).
Fine-grained static recrystallization of white mica (Figures 6a and 6b) and neoblastic growth of green bio-
tite flakes (Figures 6d–6g), locally on former brown biotite (Figure 6c), occur along microshear zones
crosscutting the main foliation (Figures 6a–6c and 6e). The green biotite has higher FeOtot contents
(20.37–22.14 wt %) and both lower TiO2 contents (1.13–1.75 wt %) and TiO2/MgO ratio (0.11–0.17) with
respect to the brown biotite (FeOtot = 18.52–20.56 wt %, TiO2 = 2.21–3.06 wt %, and TiO2/MgO = 0.23–
0.35; Figure 5h and Table 2). Chlorite partly replaces both green and brown biotites (Figures 6a–6c, 6f,
and 6g).

ii. The second type (MB1403, MB1404, and MB1406 samples) is represented by a two-mica augen-gneiss
(Figure 5d) in which granoblastic, poorly sericitized K-feldspar is in equilibrium with a Variscan foliation
defined by quartz ribbons and medium-grained white mica and biotite. An older generation of coarse-
grained white mica and biotite also occurs. The K-feldspar is characterized by a rim of plagioclase and
myrmekites (Figure 6e). These samples, which correspond to the Orthogneiss I of previous authors
(e.g., Gaggero et al., 2004), do not show evidence for a late, greenschist-facies mineral assemblage.

iii. The third type (JT1014 and MB1402) is represented by a coarser-grained biotitic augen-gneiss (Figure 5f)
in which only one generation of Variscan biotite, defining the main foliation, is present. The K-feldspar
porphyroclasts, poorly sericitized, show magmatic inclusions of lobate quartz and subhedral biotite. In
the studied samples, the local growth of white mica + chlorite partly replaces the former brown biotite.
The lack of polyphase deformation and the relict magmatic microstructures indicate that these samples
correspond to the Orthogneiss II of previous authors (e.g., Gaggero et al., 2004).

4. Methods
4.1. Biotite Chemical Composition

Compositions of brown and green biotite in sample MB1405 were obtained with a JEOL JSM IT300LV (high
vacuum-low vacuum 10/650 Pa-0.3–30 kV) scanning electron microscopy equipped with an energy-
dispersive spectroscopy Oxford INCA Energy 200 with detector INCA X-act SDD thin window at the
Department of Earth Sciences, University of Torino. The operating conditions were as follows: 30 s counting
time and 15 kV accelerating voltage. The quantitative data (spot size = 2 μm) were acquired and processed
using the Microanalysis Suite Issue 12, INCA Suite version 4.01; natural mineral standards were used to cali-
brate the raw data; the ρφZ correction (Pouchou & Pichoir, 1988) was applied. Absolute error is 1σ for all
calculated oxides.

4.2. Zircon Fission Track Dating

Zircon separates were mounted into Teflon pads, which were polished to expose internal surfaces. Two to
three mounts per sample were prepared according to the availability of zircons in order to adopt the
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Figure 6. Microphotographs in transmitted light of the selected thin sections illustrating the post-Variscan growth of
green biotite in the two-mica gneiss of the “gneiss amphibolite complex.” (a) Plain and (b) cross-polarized view showing
coarse-grained white mica (Wm) and brown biotite (Bt) defining the Variscan main foliation. (d) Both the partial recystal-
lization of white mica into fine-grained flakes (FWm) and the local neoformation of aggregates of fine-grained green
biotite (GBt) are recognizable. Chlorite (Chl), where present, is related to late fractures. (c) Plain-polarized view of a flake of
brown biotite (Bt) partly replaced by green biotite (GBt) and, at the rim, by chlorite (Chl). (e) Plain-polarized view of the
Variscan brown biotite (Bt) and of the younger green biotite flakes (GBt), partly replaced by chlorite (Chl), along (g) a
microshear zone (detail in the backscattered image). (f) Backscattered image of the green biotite flakes (GBt) partly
replaced by and aggregate of chlorite (Chl). (h) Compositions of both the brown and green biotite plotted in the TiO2/Mg
versus FeOtot diagram (Engel & Engel, 1960).
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multiple-etch technique of Naeser et al. (1987). The
mounts were etched in a eutectic melt of NaOH
and KOH at 228°C for either 7, 14, or 28 h. Mica lami-
nae were attached to the samples as external detec-
tors. The mounts were then irradiated at the
Radiation Center of Oregon State University, using
a nominal Neutron fluence of 1 × 1015 ncm�2.
Induced tracks were revealed by etching in 40%
HF at 21°C for 45 min. Fission tracks were analyzed
on all the countable grains from the 7 and 14 h
etches, while the long etch resulted in overetched
samples. The Fish Canyon tuff was used as a stan-
dard for the zeta calibration (Hurford & Green,
1983). The age distribution of the pooled ages of
all samples were decomposed into dominant age
peaks using the BinomFit program of Brandon
(2002), version 1.2.63 (2007).

4.3. Zircon (U-Th)/He Dating

Zircon crystals were selected on the basis of size,
morphology, and absence of inclusions. Crystals
with two pyramidal terminations and undamaged
surfaces were handpicked and their dimensions
were measured. From each sample, one crystal
was individually loaded into Pt-foil capsules. The
average crystal widths ranged from 39.4 to 71 μm.
Most of the selected grains have small radii because
larger crystals are mostly affected by intense fractur-
ing and/or presence of inclusions.

(U-Th)/He age determinations were performed at
the Scottish Universities Environmental Research
Centre. Complete helium extraction was achieved
by heating the Pt foils using an 808 nm diode laser
for 20 min at 1,100–1,300°C. 4He concentrations
were measured by peak height comparison to a cali-
brated standard using a Hiden HAL3F quadrupole
mass spectrometer, following the protocols of
Foeken et al. (2006). All samples were reheated
two or three times to ensure complete degassing.
U and Th determinations were made after extrac-
tion of the crystals from the Pt foil. The degassed zir-
cons were spiked with a known amount of 235U and
230Th and dissolved in a Parr™ bomb acid digestion
vessel. Ion exchange column chemistry was used
to remove the Pt and other matrix elements. U and
Th were measured on a VG PlasmaQuad-2 induc-
tively coupled plasma–mass spectrometry. The cal-
culated ages (“raw ages”) have been corrected to
account for He loss because of α-recoil (Ft; Farley
et al., 1996) following the method of Ketcham
et al. (2011). The uncertainty associated with the Ft
correction factor calculation is propagated into the
total uncertainty of the Ft-corrected (U-Th)/He ages.Ta
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An uncertainty of 11.9% (2σ) is assumed for individual age determination (Table 2), based on the age repro-
ducibility of the Fish Canyon Tuff ZHe age standard (Dobson et al., 2008). The 2σ age reproducibility of each
sample was also calculated. Apart from sample MB1406, all other samples have age reproducibility compar-
able to the zircon age standard. In order to constrain the time-temperature (t-T) history of selected samples,
inverse modeling of the ZHe ages was performed using HeFTy (Ketcham, 2005). We have exploited the
dependence of the He closure temperature (Tc) on grain size, cooling rate, and eU content (Reiners, 2005).

5. Results
5.1. Zircon Fission Track Data

Details of the sample ages and the age populations are reported in Table 1. All the count data and the radial
plots are provided in the supporting information. The age distribution and the central age of each sample are
plotted in Figure 7. Six samples provided enough zircons for fission track dating. Among these six samples,
the amount of countable zircons is highly variable, from 18 to 60 grains per sample. The resulting central ages
range from 138.1 to 168.6 Ma and average to 156.2 Ma with a standard deviation of 7%. The analytical error
(1σ) of the central ages vary between 6% (MB1406) and 9% (MB1402), and five out six samples overlap within
this error with the exception of sample MB1405, which is significantly younger than most samples
(147.5 ± 9.0 Ma; Figure 7) only if the 1σ error or the 68% confidential intervals are considered. Two samples
(MB1402 and MB1404) have a probability χ2 value lower than 5% that indicates larger than expected
Poissonian scatter in track count data. Thus, these two samples could consist of multiple age populations,
whereas all the other samples consist of single-age populations. An extra Poissonian age scatter is often
observed for zircon fission track age distribution even in samples that are expected to have a single-age
population (e.g., Fellin et al., 2006). Such scatter can be partly attributed to the wide range in U concentrations
typical of zircons, resulting in highly variable degree of radiation damage, which together with temperature
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Figure 7. Zircon fission track and (U-Th)/He ages: samples are ordered according to their location from N to S. The distribu-
tions of the zircon fission track ages are also shown as histogram and as population density function (PDF) curves. The
zircon fission track central ages overlap within the standard errors with the exception of samples MB1405, which is younger
only if the 1σ error is considered. Within the 2σ error of the central ages, there is no significant difference. The (U-Th)/He
ages show a large scatter that relates to incomplete age reset during the Alpine metamorphic overprint, to the large
range of the eU content (Figure 9a), and of the grain dimensions.
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controls the annealing of tracks. The number of countable grains in the two highly scattered samples is too
low (19 and 38 grains) to derive statistically their age components. Their central and pooled ages have a
difference of <1 Ma, which also indicate that multiple age populations cannot be resolved within these
two samples. Thus, although different age populations cannot be resolved within individual samples, they
could be resolved by pooling the grains together from all samples. The pooled grains amount to 196 and
their distribution is formed by three age components (Figure 8). The largest population, formed by 71% of
the grains, is centered at 156.2 Ma, which is exactly the same as the average of all the central ages of the
samples. The other two populations are centered at 128.7 and 214.9 Ma and are formed by 21% and 7% of
the grains, respectively. Thus, the average of the central ages of the samples and the main population of
the pooled ages all consistently indicate a major age component at ~150–160 Ma. The young population
at 128.7 Ma could relate to partial rejuvenation related to the Alpine overprint. The oldest population at
214.9 Ma could relate to zircons that are most resistant to annealing.

5.2. Zircon (U-Th)/He Data

Twelve ZHe age determinations performed on six samples (Table 2 and Figure 7) supplied five pairs of ages
with reproducibility within the individual uncertainty (2σ). Reproducing ages range from 78 ± 9.3 to
6.9 ± 0.8 Ma. Sample MB1406 shows two very different ages (10.3 and 52.8 Ma) indicating poor reproducibil-
ity. Samples MB1404 and MB1405 are between 28.3 ± 3.3 and 29.4 ± 3.5 Ma, accordingly with the Oligocene
Alpine ZHe ages reported from the other units of the Ligurian Alps (Maino, Dallagiovanna, Dobson et al.,
2012; Maino et al., 2015). Samples MB1403 and JT1014 show younger ages (between 6.9 ± 0.8 and
12.6 ± 1.5 Ma) close to the AFT data reported in the study area (Foeken et al., 2003). Only the sample
MB1402, collected close to the basement-cover boundary (Figure 2), has an old, pre-Alpine age of

Figure 8. Radial plot and probability-density (PD) plot showing best fit peaks from Binomfit (Brandon, 2002, version 1.2.63
(2007)) for the pooled ages of all samples (all grains). Y is the 2σ standard error of the central age of the pooled grains. At
least three age populations at 129, 156, and 215 Ma characterize the age distribution of the 196 zircons of the pooled
samples.
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78 ± 9.3 Ma. Noticeably, this sample has the largest mean crystal radii (61.5–71 μm), suggesting a positive cor-
relation between grain size and age. The considerably different ages from samples without relevant differ-
ences of elevation or structural position can be ascribed to many factors influencing the sensitivity of the
(U-Th)/He system, including radiation damage (Flowers et al., 2007; Guenthner et al., 2013), the accuracy of
the Ft correction (Reiners et al., 2011), U and Th zonation (Dobson et al., 2008), and the residence time of zir-
cons within the partial retention zone (150–220°C) (Guenthner et al., 2013; Reiners et al., 2004). These factors
can influence the results particularly for zircons that experienced a complex geological history as in our case.
In particular, a high radiation damage accumulation is suggested by the negative date-effective uranium (eU)
correlation (Guenthner et al., 2013) derived from the analyzed zircons (Figure 9a). Furthermore, the ZHe ages
show a strong positive correlation with the grain sizes (Figure 9b), where the largest crystals were not reset,
thus suggesting that the zircons experienced temperatures close to the lower boundary of the partial reten-
tion zone.

6. Discussion

ZFT single-grain ages from the Case Tuberto-Calizzano unit span a large age range from 340 to 83 Ma. These
ages fill the gap between the Rb/Sr and 40Ar/39Ar ages (327–274 Ma in the Briançonnais-Prepiedmont units;
Barbieri et al., 2003; Del Moro et al., 1982) and the ZHe ages (78–7 Ma; Maino, Dallagiovanna, Dobson, et al.,
2012; this study).

The large ZFT age range can be partly related simply to the Poissonian age scatter typical of fission track data,
but it could also reflect a long residence time of the studied rocks in the ZFT partial annealing zone that
would result in a wide annealing degree. The consistency among the central ages, and between those ages
and the age of the largest population (71%) of the pooled grains, indicates that cooling below the ZFT closure
temperature (~240°C; Brandon et al., 1998) likely occurred at around 150–160 Ma. The dependency between
closure temperature and cooling rate and the general shortage of constraints available on the thermal history
of the studied rocks make it difficult to derive the temperature at which closure of our ZFT ages occurred. In
fact, for cooling rates in the order of 10°C/km, the closure temperature is ~240°C (Reiners & Brandon, 2006),
but for slow cooling of 0.6°C/Myr, it is as low as 205°C (Bernet, 2009). Nevertheless, the timing of cooling as
constrained by our ZFT data indicates that the Jurassic rifting is a possible reason for the heating/cooling
cycle. The lower ZFT annealing zone overlaps with the upper ZHe retention zone at temperatures higher than
~180°C such that the temperatures required to attain incomplete reset of the ZHe ages may cause partial
rejuvenation of the most sensitive zircons and therefore may explain some of the youngest ZFT ages
observed in our samples.

Tertiary ages for the Alpine metamorphism are heterogeneously recorded by the ZHe ages, suggesting par-
tial to total resetting. While the ages between 29 and 7 Ma fit with the Alpine regional cooling ages (Foeken
et al., 2003; Maino, Dallagiovanna, Dobson, et al., 2012), the ages between 78 and 53 Ma are considerably
older. This wide variation is probably due to high radiation damage accumulation, as indicated by the nega-
tive date-effective uranium (eU) correlation and the positive grain size/age correlation (Figures 9a and 9b and
Table 2). The ZHe age thermal model corroborates that the Alpine tectono-metamorphic phases were
attained in a short interval at low-T condition (Figure 9c), not sufficient to completely reset the ZHe ages
(i.e., temperatures were around 180°C for a few Myr).

However, mineral parageneses indicate Alpine metamorphism at T ~250–400°C. Such temperatures are
considerably higher than those required to completely reset both ZHe and ZFT ages. Therefore, an appar-
ent discrepancy exists between the constraints derived from the metamorphic assemblages and those
based on the degree of resetting of the thermochronometric ages. In order to reconcile the different lines
of evidence, we should consider—as first point—the distribution of the Alpine metamorphic record, which
is locally recorded mostly along shear zones; it does not pervade the rocks and it is characterized by highly
variable paragenesis in different lithologies and locations (Messiga et al., 1981). Most of the Calizzano and
Case Tuberto rocks show evidence of low-T (prehnite-pumpellyite facies) Alpine metamorphism and defor-
mation (fracturing and fracture cleavage). Indeed, the higher P-T parageneses (greenschist-to-blueschist
facies) have been found mostly along Alpine shear zones, suggesting the possible influence of local heat-
ing (and pressure increase) associated with focused deformation (e.g., Maino et al., 2015). This suggests
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that far from sites of high strain where higher P-T conditions were attained, the Alpine metamorphism
may have developed as a low-T thermal pulse.

A second possible explanation for the discrepancy betweenmetamorphic and thermochronometric record is
that part of the paragenesis previously ascribed to the Alpine stage was developed during a pre-Alpine (but
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Figure 9. (a) Negative date-eU correlation of the analyzed samples. Individual points in each data set represent single ages
(2 sigma error). (b) Positive date-grain size (Rs = 3*volume/surface) correlation. (c) ZHe thermochronometric inverse
modeling results of samples MB1402 and MB1404. Acceptable time-temperature paths (green area) and best fit solution
(black line) determined by Hefty program (Ketcham, 2005) using the initial constrains of the ZFT ages (this study) and
Jurassic-Eocene depositional age of the basement cover (Vanossi et al., 1986).
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post-Variscan) thermal event. In the study area, the Variscan cycle ends with a greenschist-facies folding
event developing actinolite + chlorite along axial planes (Gaggero et al., 2004). In lithologies with suitable
bulk composition, the growth of green biotite along microshear zones crosscutting Variscan microstructures,
and its partial replacement by Alpine chlorite along fractures (Figure 6), records a tectono-metamorphic
event that occurred between the Variscan and Alpine orogeneses. It is known that a systematic change in bio-
tite color from greenish-brown to reddish-brown/black occurs with increasing metamorphism and is due to
variations in chemical composition (Engel & Engel, 1960). In particular, the greenish color is produced by high
Fetot coupled with low TiO2/MgO ratio (Figure 5h) and it is indicative of low metamorphic grade (Engel &
Engel, 1960; Henry et al., 2005). In fact, in suitable lithologies, the formation of prograde green biotite at
low metamorphic grade can occur as a result of reactions involving K-feldspar and chlorite (Verschure
et al., 1980) and its presence can be taken as indicative of temperatures around 350–450°C
(Blanckenburg et al., 1989; Bozkurt et al., 2011; Del Moro et al., 1982; Jäger, 1967; Satır & Friedrichsen,
1986; Verschure et al., 1980). Thus, the green biotite indicates that the studied area experienced a post-
Variscan, pre-Alpine heating event at HT greenschist-facies conditions during the extensional regime. A
similar event is also recorded in phyllonites containing green biotite, formed along a Jurassic detachment
in the distal margin represented by the Canavese Zone (Western Alps; Ferrando et al., 2004).

We infer that in the study area, an anomalously high geothermal gradient coupled with a pervasive circula-
tion of hot fluids were responsible for the quartz mineralization (Figure 4) and for the growth of green biotite
in suitable lithologies (Figure 6).

Such conditions could be met in an extended rift system where heating/cooling cycles are typically coupled
with focused thinning, high geothermal gradients (~60–90°C/km; Hart et al., 2017; Liao et al., 2014; Vacherat
et al., 2014), and circulation of hot fluids. Moreover, these thermal conditions could explain the growth of the
less diagnostic assemblage chlorite ± white mica in other lithologies of the study area. Our ZFT ages support
this interpretation as they indicate that temperatures above ~200°C must have extensively affected the study
area before 150–160 Ma. Thus, we suggest that at least part of the Alpine greenschist facies mineral assem-
blage reported by the previous studies in the Calizzano basement rocks (Cortesogno et al., 1998; Messiga
et al., 1981) needs to be explained by invoking heating mechanisms other than the Alpine metamorphism
and may be linked, instead, to Tethys rifting. An accurate estimate of the Jurassic burial depth of the sampled
basement is difficult given the poor preservation of the synrift sedimentary record. Regardless, the sampled
basement was probably located at shallow depth during rifting as we estimate that our most superficial base-
ment samples were probably at less than 2–3 km below synrift sediments. Assuming a surface temperature
between 10 and 20°C and a geothermal gradient of 80°C/km, typical of hyperextended margins (Hart et al.,
2017; Vacherat et al., 2014), this depth corresponds to temperatures between ~170 and 260°C, which are
in the range of the ZFT partial annealing zone (~200–260°C; Reiners & Brandon, 2006). Furthermore, circulat-
ing fluids, possibly within crustal fault systems, may have affected heat transfer at such shallow crustal levels.
A similar mechanism was proposed by Beltrando et al. (2015) to explain the cooling ages of the distal margin
exposed in the Southalpine domain of the Alps.

To decipher the significance of the above-described scenario in the Case Tuberto-Calizzano unit at the scale
of the European rifted margin, the paleo-structural location within an Alpine rift of this nappe must be con-
sidered (Figure 10). In the section proposed by Decarlis et al. (2015) across the European margin exposed in
Liguria, the Case Tuberto-Calizzano unit is located at the boundary between the Briançonnais and
Prepiedmont domains (see Decarlis et al., 2013; Vanossi, 1991). This domain was characterized by one of
the major fault systems that accommodated crustal thinning within the future distal margin (i.e., φ fault in
Figure 10). This fault system controlled the development of the distal margin juxtaposing the elevated and
uplifted Briançonnais block (Decarlis & Lualdi, 2008) against the delaminated and strongly subsiding
Prepiedmont domain (Decarlis & Lualdi, 2011) during the late Early Jurassic. During the Middle Jurassic, the
emerged sector of the distal margin drowned, as testified by the renewal of deposition atop (Decarlis
et al., 2013; Decarlis & Lualdi, 2008), and deformation migrated toward the future ocean along a detachment
system initiating active exhumation (ε fault in Figure 10).

In a rift model such as that shown in Figure 10, the Case Tuberto-Calizzano unit might have been passively
affected by a heating event induced by the combined action of crustal/lithospheric thinning and the activa-
tion of hydrothermal systems along brittle faults (φ-like). Fault systems might have played a first-order role in
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transporting heat toward the surface through remobilization of deep-seated fluid circulation during the final
stages of rifting (i.e., during the thinning phase: Pliensbachian-Toarcian). Subsequent tectonic quiescence of
the fault system during the Middle Jurassic, due to lithospheric onset of exhumation, led to the progressive
cooling of the distal margin that is recorded by the ZFT data. A similar timing for active hydrothermal fluid
systems associated with Jurassic rifting in the distal Alpine Tethys margin has been recently proposed by
Incerpi et al. (2017).

Thus, both the present study and the literature data suggest that relatively high temperatures (between ~200
and 400°C) might have been acquired during crustal/lithospheric thinning driven by fluid activity in the
upper crust at different locations along the Alpine Tethys distal margins (e.g., Beltrando et al., 2015; Incerpi
et al., 2017). Our study demonstrates that such conditions were able to generate metamorphic paragenesis
(greenschist facies) at very shallow crustal levels of <2–3 km. The temperature peak was reached during
the formation of the future distal margin and cooling initiated at the onset of exhumation and migration
of active tectonics further oceanward.

7. Conclusions

Thermochronometric analysis of basement rocks belonging to the Case Tuberto-Calizzano unit led to the
recognition of two distinct heating-cooling cycles that have been respectively attributed to the Alpine
Tethys rifting stage (ZFT ages of ~150–160 Ma) and to the Alpine orogenic deformation (ZHe ages of ~29.4
to 7 Ma). These data coupled with the local growth of green biotite (stable at about 350–450°C) in lithologies
with suitable bulk composition and evidence for abundant mineralization suggest that the temperatures
reached during the rifting stage exceeded those of the Alpine metamorphism in the study area. The incom-
plete reset of the ZHe ages and the nonreset of the ZFT ages during the Alpine metamorphism indicate that
the well-documented Alpine deformation had to occur under conditions from prehnite-pumpellyte to low-
temperature blueschists facies at temperatures lower than ~200°C. Thus, the Alpine metamorphic overprint
must have occurred during a short-lived low-temperature pulse. The lack of pervasive Alpine resetting of the

Figure 10. Supposed location of the sampling sites within Case Tuberto-Calizzano unit during the Alpine Tethys rifting, and
suggested tectonic evolution within the distal margin, modified from Decarlis et al. (2015). (a) Upper Sinemurian-
Pliensbachian stage: the distal margin was progressively thinned and became tectonically active. The Briançonnais domain
was uplifted under subaerial conditions, while Prepiedmont domain, separated by the φ fault system, remained in sub-
merged and progressively drowning marine environment. (b) Late Jurassic stage: after subcontinental mantle exhumation
at the seafloor through the ε detachment fault system (Ligurian-Penninic domains), Briançonnais subsided, and tectonics
ceases along the distal margin.
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ages allowed the preservation of an older heating-cooling event that occurred during Alpine Tethys rifting.
Considering the peculiar position of the study area in the former Jurassic rifted margin, heating may have
been caused by the combined effect of severe crustal/lithospheric thinning in the distal domain associated
with high geothermal gradients and hydrothermal circulation along brittle faults. This latter might have
focused hot deep-seated fluids toward shallow crustal levels, which are represented by the studied Case
Tuberto-Calizzano unit (samples located at less than 2–3 km depth during rifting), causing basement heating
during the thinning phase (Pliensbachian-Toarcian) with a similar mechanism to that suggested by Beltrando
et al. (2015). The following stages of rifting, i.e., the beginning of exhumation in the more distal parts of the
distal margin, resulted in a tectonic quiescence (probably since the Bajocian-Bathonian) and progressive
cooling of the basement that was recorded by the Middle Jurassic ZFT ages and completed during the
Late Jurassic. The rift-related heating, often difficult to recognize in mountain belts due to the orogenic
overprint, can be recognized in the Case Tuberto-Calizzano unit. Therefore, this latter unit can be considered
as an excellent “fossil analogue”within which future research may qualitatively and qualitatively estimate the
thermal evolution and heat transfer mechanisms occurring at distal magma-poor rifted margins during final
rifting and plate separation.
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