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Untwisting two-way transducers in elementary time

Functional transductions realized by two-way transducers (equivalently, by streaming transducers and by MSO transductions) are the natural and standard notion of "regular" mappings from words to words. It was shown recently (LICS'13) that it is decidable if such a transduction can be implemented by some one-way transducer, but the given algorithm has nonelementary complexity. We provide an algorithm of different flavor solving the above question, that has double exponential space complexity. We further apply our technique to decide whether the transduction realized by a two-way transducer can be implemented by a sweeping transducer, with either known or unknown number of passes.

I. INTRODUCTION

Since the early times of computer science, transducers have been identified as a fundamental notion of computation, where one is interested how objects can be transformed into each other. Numerous fields of computer science are ultimately concerned with transformations, ranging from databases to image processing, and an important issue is to perform transformations with low costs, whenever possible.

The most basic form of transformers are devices that process an input and produce outputs during the processing, using finite memory. Such devices are called finite-state transducers. Word-to-word finite-state transducers were considered in very early work in formal language theory [START_REF] Schützenberger | A remark on finite transducers[END_REF][START_REF] Aho | A general theory of translation[END_REF][START_REF] Eilenberg | Automata, Langages and Machines[END_REF], and it was soon clear that they are much more challenging than finitestate word acceptors -the classical finite-state automata. One essential difference between transducers and automata over words is that the capability to process the input in both directions strictly increases the expressive power in the case of transducers, whereas this does not for automata [START_REF] Rabin | Finite automata and their decision problems[END_REF][START_REF] Shepherdson | The reduction of two-way automata to one-way automata[END_REF]. In other words, two-way word transducers are strictly more expressive than one-way word transducers.

We consider in this paper functional transducers, that compute functions from words to words. Two-way word transducers capture very nicely the notion of regularity in this setting. Regular word functions, i.e. functions computed by functional two-way transducers, inherit many of the characterizations and algorithmic properties of the robust class of regular languages. Engelfriet and Hoogeboom [START_REF] Engelfriet | MSO definable string transductions and two-way finite-state transducers[END_REF] showed that monadic secondorder definable graph transductions, restricted to words, are equivalent to two-way transducers -this justifies the notation "regular" word functions, in the spirit of classical results in automata theory and logic by Büchi, Elgot, Rabin and others. Recently, Alur and Cerný [START_REF] Alur | Expressiveness of streaming string transducers[END_REF] proposed an enhanced version of one-way transducers called streaming transducers, and showed that they are equivalent to the two previous models. A streaming transducer processes the input word from left to right, and stores (partial) output words in finitely many, write-only registers.

Two-way transducers raise challenging questions about resource requirements. One crucial resource is the number of times the transducer needs to re-process the input word. In particular, the case where the input can be processed in a single pass, from left to right, is very attractive as it corresponds to the setting of streaming, where the (possibly very large) inputs do not need to be stored in order to be processed. Recently, it was shown in [START_REF] Filiot | From two-way to one-way finite state transducers[END_REF] that it is decidable whether the transduction defined by a functional two-way transducer can be implemented by a one-way transducer. However, the decision procedure of [START_REF] Filiot | From two-way to one-way finite state transducers[END_REF] has non-elementary complexity, and it is very natural to ask whether one can do better. We gave in [START_REF] Baschenis | One-way definability of sweeping transducer[END_REF][START_REF]Minimizing resources of sweeping and streaming string transducers[END_REF] an exponential space algorithm in the special case of sweeping transducers: head reversals are only allowed at the extremities of the input. However, sweeping transducers are known to be strictly less expressive than two-way transducers.

In this paper we provide an algorithm of elementary complexity for deciding whether the transduction defined by a functional two-way transducer can be implemented by a oneway transducer: the decision algorithm has double exponential space complexity, and an equivalent one-way transducer (if it exists), can be constructed with triple exponential size. The known lower bound [START_REF] Baschenis | One-way definability of sweeping transducer[END_REF] is double exponential size. Our techniques can be further adapted to characterize definability of transductions by other models of transducers, e.g. to characterize sweeping transducers within the class of two-way transducers.

Related work. Besides the papers mentioned above, there are several recent results around the expressivity and the resources of two-way transducers, or equivalently, streaming transducers. First-order definable transductions were shown to be equivalent to transductions defined by aperiodic streaming transducers [START_REF] Filiot | First-order definable string transformations[END_REF] and to aperiodic two-way transducers [START_REF] Carton | Aperiodic two-way transducers and FO-transductions[END_REF]. An effective characterization of aperiodicity for one-way transducers was obtained in [START_REF] Filiot | First-order defin-ability of rational transductions: An algebraic approach[END_REF].

In [START_REF]Minimizing resources of sweeping and streaming string transducers[END_REF][START_REF] Daviaud | A generalised twinning property for minimisation of cost register automata[END_REF] the minimization of the number of registers of deterministic streaming transducers, resp., passes of functional sweeping transducers, was shown to be decidable. An algebraic characterization of (not necessarily functional) two-way transducers over unary alphabets was provided in [START_REF] Choffrut | An algebraic characterization of unary two-way transducers[END_REF]. It was shown that in this case sweeping transducers have the same expressivity. The expressivity of non-deterministic input-unary or output-unary two-way transducers was investigated in [START_REF] Guillon | Sweeping weakens two-way transducers even with a unary output alphabet[END_REF].
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Overview. Section II introduces basic notations for two-way transducers, and Section III states the main result. Section IV is devoted to the effect of pumping runs on outputs, and Section V introduces the main tool for our characterization. Section VI handles the construction of an equivalent one-way transducer. Finally, Section VII describes a procedure to decide whether a functional transducer is equivalent to a sweeping transducer.

II. PRELIMINARIES

Two-way automata and transducers. We start with some basic notations and definitions for two-way automata (resp., transducers). We assume that every input word u " a 1 ¨¨¨a n has two special delimiting symbols a 1 " $ and a n " % that do not occur elsewhere: a i R t$, %u for all i " 2, . . . , n ´1.

A two-way automaton A " xQ, Σ, $, %, δ, q 0 , F y has a finite state set Q, input alphabet Σ, transition relation δ Ď Q ˆpΣ Y t$, %uq ˆQ ˆtleft, rightu, initial state q 0 P Q, and set of final states F Ď Q. By convention, left transitions on $ are not allowed. A configuration of A has the form u q v, with uv P t$u¨Σ ˚¨t%u and q P Q. A configuration u q v represents the situation where the current state of A is q and its head reads the first symbol of v (on input uv). If pq, a, q 1 , rightq P δ, then there is a transition from any configuration of the form u q av to the configuration ua q 1 v, which we denote u q av a,right Ý ÝÝÑ ua q 1 v. Similarly, if pq, a, q 1 , leftq P δ, then there is a transition from any configuration of the form ub q av to the configuration u q 1 bav, denoted as ub q av a,left Ý ÝÝÑ u q 1 bav. A run on w is a sequence of transitions. It is successful if it starts in the initial configuration q 0 w and ends in a configuration w q with q P F -note that this latter configuration does not allow additional transitions. The language of A is the set of input words that admit a successful run of A.

The definition of two-way transducers is similar to that of two-way automata, with the only difference that now there is an additional output alphabet Γ and the transition relation is a finite subset of Q ˆpΣ Y t$, %uq ˆΓ˚ˆQ ˆtleft, rightu, which associates an output over Γ with each transition of the underlying two-way automaton. Formally, given a two-way transducer T " xQ, Σ, $, %, Γ, δ, q 0 , F y, we have a transition of the form ub q av a,d|w Ý ÝÝÑ u 1 q 1 v 1 , outputting w, whenever pq, a, w, q 1 , dq P δ and either u 1 " uba, v 1 " v or u 1 " u, v 1 " bav, depending on whether d " right or d " left. The output associated with a run ρ " u 1 q 1 v 1 a1,d1|w1 Ý ÝÝÑ . . . an,dn|wn Ý ÝÝÑ u n`1 q n`1 v n`1 of T is the word outpρq " w 1 ¨¨¨w n . A transducer T defines a relation consisting of all pairs pu, wq such that w " outpρq, for some successful run ρ on u.

The domain of T , denoted dompT q, is the set of input words that have a successful run. For transducers T , T 1 , we write T 1 Ď T to mean that dompT 1 q Ď dompT q and the transductions computed by T , T 1 coincide on dompT 1 q.

We say that T is functional if for each input u, at most one output w can be produced by any possible successful run on u. Finally, we say that T is one-way if it does not have transition rules of the form pq, a, w, q 1 , leftq. Crossing sequences. The first basic notion is that of crossing sequence. We follow the convenient presentation from [START_REF] Hopcroft | Introduction to Automata Theory, Languages, and Computation[END_REF], which appeals to a graphical representation of runs of a twoway transducer where each configuration is seen as point (location) in a two-dimensional space. Let u " a 1 ¨¨¨a n be an input word (recall that a 1 " $ and a n " %) and let ρ be a run of a two-way automaton (or transducer) T on u. The positions of ρ are the numbers from 0 to n, corresponding to "cuts" between two consecutive letters of the input. For example, position 0 is just before the first letter a 1 , position n is just after the last letter a n , and any other position x, with 1 ď x ă n, is between the letters a x and a x`1 . We say that a transition u q v a,d Ý ÝÝÑ u 1 q 1 v 1 of ρ crosses position x if either d " right and |u| " x, or d " left and |u 1 | " x. A location of ρ is any pair px, yq for which there are at least y `1 transitions in ρ crossing position x; the component y of a location is called level. Each location is associated a state. Formally, we say that q is the state at location " px, yq in ρ, and we denote this by writing ρp q " q, if the py `1qth transition that crosses x ends up in state q. The crossing sequence at position x of ρ is the tuple ρ|x " pq 0 , . . . , q h q, where the q y 's are all the states at locations of the form px, yq, for y " 0, . . . , h.

As suggested by Fig. 1, any run can be represented as an annotated path between locations. For example, if a location px, yq is reached by a rightward transition, then the head of the automaton has read the symbol a x ; if it is reached by a leftward transition, then the head has read the symbol a x`1 . Note that in a successful run ρ every crossing sequence has odd length and every rightward (resp. leftward) transition reaches a location with even (resp. odd) level. We can identify four types of transitions between locations, depending on the parities of the levels (the reader may refer again to Fig. 1):

px, 2yq

px`1, 2y 1 q px, 2y`1q px`1, 2y Hereafter, we will identify runs with the corresponding anno-tated paths between locations. It is also convenient to define a total order ¢ on the locations of a run ρ by letting 1 ¢ 2 if 2 is reachable from 1 by following the path described by ρ -the order ¢ on locations is called run order. Given two locations 1 ¢ 2 of a run ρ, we write ρr 1 , 2 s for the factor of the run that starts in 1 and ends in 2 . Note that the latter is also a run and hence the notation out `ρr 1 , 2 s ˘is permitted. Two runs ρ 1 , ρ 2 can be concatenated, provided that ρ 1 ends in location px, yq, ρ 2 starts in location px, y 1 q, such that y 1 " y pmod 2q and px, yq, px, y 1 q are labelled by the same state. We denote by ρ 1 ρ 2 the run resulting from concatenating ρ 1 with ρ 2 . Clearly, we have ρr 1 , 2 s ρr 2 , 3 s " ρr 1 , 3 s for all locations 1 ¢ 2 ¢ 3 .

Normalization. Without loss of generality, we will assume that successful runs of functional transducers are normalized, meaning that they never visit two locations with the same position, the same state, and both either at even or at odd level. Indeed, if this were not the case, say if a successful run ρ visited two locations 1 " px, yq and 2 " px, y 1 q such that ρp 1 q " ρp 2 q and y, y 1 are both even or both odd, then the output produced by ρ between 1 and 2 should be empty, as otherwise by repeating the factor ρr 1 , 2 s of ρ we could obtain successful runs that produces different outputs on the same input, thus contradicting the assumption that the transducer is functional. Now that we know that the output of ρ produced between 1 and 2 is empty, we could drop the factor ρr 1 , 2 s, thus obtaining a successful run with the same output. It is easy to see that, in every normalized successful run, the crossing sequences have length at most 2|Q| ´1.

We define h max " 2|Q| ´1. Moreover, by c max we denote the capacity of the transducer, which is the maximal length of the output of a transition.

III. TWO-WAY TRANSDUCERS VS ONE-WAY TRANSDUCERS

In this section we state our main result, which is the existence of an elementary algorithm for checking whether a two-way transducer is equivalent to some one-way transducer. We call such transducers one-way definable. Before stating our result, we give a few examples.

Example 1. We consider two-way transducers that accept any input u from a given regular language R and output the word u u. We will argue how, depending on R, these transducers may or may not be one-way definable. 1) If R " pa`bq ˚there is no equivalent one-way transducer, as the output language is not regular. If R is finite, then the transduction mapping u P R to u u can be implemented by a one-way transducer that guesses u (this requires as many states as the size of R), checks the input, and outputs two copies of the guessed word. 2) A special case of transduction with finite domain is given by R n " ta 0 w 0 ¨¨¨a 2 n ´1 w 2 n ´1 : a 0 , . . . , a 2 n ´1 P ta, buu, where n P N and each w i is the binary encoding of the counter i " 0, . . . , 2 n ´1. It is easy to see (cf. Proposition 15 [START_REF] Baschenis | One-way definability of sweeping transducer[END_REF]) that the transduction mapping u P R n to u u can be implemented by a two-way transducer with quadratically many states w.r.t. n, while every equivalent one-way transducer has at least 2 2 n states, since it needs to guess a word of length 2 n . 3) Consider now the periodic language R " pabcq ˚. The function that maps u P R to u u can be easily implemented by a one-way transducer: it suffices to output two letters (i.e., ab, ca, bc, in turn) for each input letter, while checking that the input is in R.

Example 2. We consider a slightly more complicated transduction that is defined on input words of the form u 1 # . . . # u n , where each factor u i is over the alphabet Σ " ta, b, cu. The output of the transduction is of the form w 1 # . . . # w n , where each w i is either u i u i or just u i , depending on whether or not u i P pabcq ˚and u i`1 has even length, with u n`1 " ε.

The obvious way to implement the transduction is by means of a two-way transducer that performs multiple passes on the factors of the input: a first left-to-right pass is performed on u i # u i`1 to produce the first copy of u i and to check whether u i P pabcq ˚and |u i`1 | is even; if so, a second pass on u i is performed to produce another copy of u i .

The transduction can also be implemented by a one-way transducer: when entering a factor u i , the transducer guesses whether or not u i P pabcq ˚and |u i`1 | is even; depending on this it outputs either pabc abcq
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or u i , and checks that the guess is correct.

Our main result is:

Theorem 3. There is an algorithm that from a functional twoway transducer T constructs in triple exponential time a oneway transducer T 1 with the following properties: ' T 1 Ď T , ' dompT q " dompT 1 q iff T is one-way definable. Moreover, the second property above can be checked in double exponential space w.r.t. |T |.

We remark that a similar characterization for a much more restricted class of transducers (sweeping transducers) appeared in [START_REF] Baschenis | One-way definability of sweeping transducer[END_REF]. The proof of Theorem 3, however, is more technical, as it requires a better understanding of the structure of the runs of two-way transducers and a non-trivial generalization of the combinatorial arguments from [START_REF] Baschenis | One-way definability of sweeping transducer[END_REF].

The proof of the theorem spans along the next three sections. In Section IV, we present the basic concepts for reasoning on runs of two-way automata. This includes the definition of a finite semigroup for describing the shapes of two-way runs, as well as Ramsey-type arguments that are used to bound the length of the outputs produced by pieces of runs without loops. In Section V we provide the main combinatorial arguments for characterizing one-way definability. The crucial notion will be that of inversion, that captures behaviours of the twoway transducer that are problematic for one-way definability. Finally, in Section VI we exploit the combinatorial results and the Ramsey-type arguments to derive the existence of suitable decompositions of runs that lead to the construction of equivalent one-way transducers.

IV. UNTANGLING RUNS OF TWO-WAY TRANSDUCERS

This section is devoted to untangling the structure of runs of two-way transducers. Whereas the classical transformation of two-way automata into one-way automata based on crossing sequences is rather simple, we will need a much deeper understanding of runs of two-way transducers, because of the additional outputs. In a nutshell, being one-way definable is related to periodicities (with bounded periods) in the output, and these periodicities are generated by loops in the run. We will actually work with so called idempotent loops, that generate periodicities in the output in a "nice" way. We will derive the existence of idempotent loops with bounded outputs using Ramsey-based arguments.

We fix throughout the paper a functional two-way transducer T , an input word u, and a successful run ρ of T on u. We assume that ρ is normalized, i.e., every state occurs at most once in each crossing sequence of ρ at levels of a given parity.

For simplicity, we denote by ω the length of the input word u. We will consider intervals of positions of the form

I " rx 1 , x 2 s, with 0 ď x 1 ă x 2 ď ω. The containment relation Ď on intervals is defined by rx 3 , x 4 s Ď rx 1 , x 2 s if x 1 ď x 3 ă x 4 ď x 2 .
Factors, flows, and effects. A factor of a run ρ is a contiguous subsequence of ρ. A factor intercepted by an interval I " rx 1 , x 2 s is a maximal factor of ρ that visits only positions x P I, and never uses a left transition from position x 1 or a right transition from position x 2 . Fig. 2 on the right gives an example of an interval I that intercepts the factors α, β, γ, δ, ζ. The numbers that annotate the endpoints of the factors represent their levels.

I " rx1, x2s
Every factor α intercepted by an interval I " rx 1 , x 2 s is of one of the four types below, depending on its first location px, yq and its last location px 1 , y 1 q:

' α is an LL-factor if x " x 1 " x 1 , ' α is an RR-factor if x " x 1 " x 2 , ' α is an LR-factor if x " x 1 and x 1 " x 2 , ' α is an RL-factor if x " x 2 and x 1 " x 1 .
In Fig. 2 we see that α is an LL-factor, β, δ are LR-factors, ζ is an RR-factor, and γ is an RL-factor. Definition 4. Let ρ be a run and I " rx 1 , x 2 s an interval of ρ. Let h i be the length of the crossing sequence ρ|x i for both i " 1 and i " 2.

The flow F I of I is a directed graph with set of nodes t0, . . . , maxph 1 , h 2 q ´1u and set of edges consisting of all py, y 1 q such that there exists a factor of ρ intercepted by I that starts at location px i , yq and ends at location px j , y 1 q, for i, j P t1, 2u.

The effect E I of I is the triple pF I , c 1 , c 2 q, where c i " ρ|x i is the crossing sequence at x i .

For example, the interval I of Fig. 2 has the flow graph

0 Þ Ñ 1 Þ Ñ 3 Þ Ñ 4 Þ Ñ 2 Þ Ñ 0.
It is easy to see that every node of a flow F I has at most one incoming and at most one outgoing edge. More precisely, if y ă h 1 is even, then it has one outgoing edge (corresponding to an LRor LLfactor intercepted by I), and if it is odd it has one incoming edge (corresponding to an RLor LL-factor intercepted by I). Similarly, if y ă h 2 is even, then it has one incoming edge (corresponding to an LRor RR-factor), and if it is odd it has one outgoing edge (corresponding to an RLor RR-factor).

In the following we consider generic effects that are not necessarily associated with intervals of specific runs. The definition of such effects should be clear: these are triples consisting of a graph (called flow) and two crossing sequences of lengths h 1 , h 2 ď h max , with sets of nodes of the form t0, . . . , maxph 1 , h 2 q ´1u, that satisfy the in/out-degree properties stated above.

It is convenient to distinguish the edges in a flow based on the parity of the source and target nodes. Formally, we partition any flow F into the following subgraphs: ' F LR consists of all edges of F between pairs of even nodes, ' F RL consists of all edges of F between pairs of odd nodes, ' F LL consists of all edges of F from an even node to an odd node, ' F RR consists of all edges of F from an odd node to an even node. We denote by F (resp. E) the set of all flows (resp. effects) augmented with a dummy element K. We equip both sets F and E with a semigroup structure, where the corresponding products ˝and d are defined below (similar definitions appear in [START_REF] Birget | Two-way automaton computations[END_REF]). We need this semigroup structure in order to identify idempotent loops, that play a crucial role in our characterization of one-way definability. Definition 5. For two graphs G, G 1 , we denote by G ¨G1 the graph with edges of the form py, y 2 q such that py, y 1 q is an edge of G and py 1 , y 2 q is an edge of G 1 , for some node y 1 that belongs to both G and G 1 . Similarly, we denote by G the graph with edges py, y 1 q such that there exists a (possibly empty) path in G from y to y 1 .

The product of two flows F, F 1 is the unique flow F ˝F 1 (if it exists) such that:

' pF ˝F 1 q LR " F LR ¨pF 1 LL ¨FRR q ˚¨F 1 LR , ' pF ˝F 1 q RL " F 1 RL ¨pF RR ¨F 1 LL q ˚¨F RL , ' pF ˝F 1 q LL " F LL Y F LR ¨pF 1 LL ¨FRR q ˚¨F 1 LL ¨FRL , ' pF ˝F 1 q RR " F 1 RR Y F 1 RL ¨pF RR ¨F 1 LL q ˚¨F RR ¨F 1 LR .
If no flow F ˝F 1 exists with the above properties, then we let F ˝F 1 " K.

The product of two effects E " pF, c 1 , c 2 q and E 1 " pF 1 , c 1 1 , c 1 2 q is either the effect E d E 1 " pF ˝F 1 , c 1 , c 1 2 q or the dummy element K, depending on whether F ˝F 1 ‰ K and c 2 " c 1 1 . For example, let F be the flow of interval I in Fig. 2. Then pF ˝F q LL " tp0, 1q, p2, 3qu, pF ˝F q RR " tp1, 2q, p3, 4qu, and pF ˝F q LR " tp4, 0qu -one can quickly verify this with the help of Fig. 3.

It is also easy to see that pF, ˝q and pE, dq are finite semigroups, and that for every run ρ and every pair of consecutive intervals I " rx 1 , x 2 s and J " rx 2 , x 3 s of ρ, F IYJ " F I ˝FJ and E IYJ " E I d E J . In particular, the function E that associates each interval I of ρ with the corresponding effect E I can be seen as a semigroup homomorphism.

Note that, in a normalized successful run, there are at most |Q| hmax distinct crossing sequences and at most 4 hmax distinct flows, since there are at most h max edges in a flow, and each one has one of the 4 possible types LL, . . . , RR. Hence there are at most p2|Q|q 2hmax distinct effects. Loops and components. Loops of a two-way run are the basic building blocks for characterizing one-way definability. We will consider special types of loops, called idempotent loops, when showing that outputs generated in non left-toright manner are essentially periodic. Definition 6. A loop of ρ is an interval L " rx 1 , x 2 s whose endpoints have the same crossing sequences, i.e. ρ|x 1 " ρ|x 2 . It is said to be idempotent if E L " E L d E L and E L ‰ K.

For example, the interval I of Fig. 2 is a loop, if one assumes that the crossing sequences at the borders of I are the same. However, by comparing with Fig. 3, it is easy to see that I is not idempotent. On the other hand, the loop consisting of 2 copies of I is idempotent.

Given a loop L " rx 1 , x 2 s and a number m P N, we can introduce m new copies of L and connect the intercepted factors in the obvious way. Fig. 3 shows how to do this for m " 1 and m " 2. The operation that we just described is called pumping, and results in a new run of the transducer T on the word

pump m`1 L puq :" ur0, x 1 s ¨`urx 1 `1, x 2 s ˘m`1 ¨urx 2 `1, ns .
We denote by pump m`1 L pρq the pumped 1 run on pump m`1 L puq. The goal in this section is to describe the shape of the pumped run pump m`1 L pρq (and the produced output as well) 1 Using similar constructions, one could remove a loop L from a run ρ, resulting in the run pump 0 L pρq. As we do not need this, the operation pump L will always be parametrized by a positive number m `1. when L is an idempotent loop. We will focus on idempotent loops because pumping non-idempotent loops may induce permutations of factors that are difficult to handle. For example, if we consider again the non-idempotent loop I to the left of Fig. 3, the factor of the run between β and γ (to the right of I, highlighted in red) precedes the factor between γ and δ (to the left of I, again in red), but this ordering is reversed when a new copy of I is added. When pumping a loop L, subsets of factors intercepted by L are glued together to form longer factors intercepted by the unioned copies of L. The concept of component that we introduce below aims at identifying the groups of factors that are glued together. Definition 7. A component of a loop L is any strongly connected component of its flow F L (note that this is also a cycle, since every node in it has in/out-degree 1). Given a component C, we denote by minpCq (resp. maxpCq) the minimum (resp. maximum) node in C. We say that C is leftto-right (resp. right-to-left) if minpCq is even (resp., odd). An pL, Cq-factor is a factor of the run that is intercepted by L and corresponds to an edge of C.

For example, the loop I of Fig. 3 

contains a single component C " t0 Þ Ñ 1 Þ Ñ 3 Þ Ñ 4 Þ Ñ 2 Þ Ñ 0u which is left-to-right.
Another example is given in Fig. 4, where the loop L has three components C 1 , C 2 , C 3 (ordered from bottom to top): α 1 , α 2 , α 3 are the pL, C 1 q-factors, β 1 , β 2 , β 3 are the pL, C 2 qfactors, and γ 1 is the unique pL, C 3 q-factor.

We will usually list the pL, Cq-factors based on their order of occurrence in the run.

The following lemma (proved in the appendix) describes the precise shape and order of such factors when the loop L is idempotent. It can be used to reason on the shape of runs obtained by pumping idempotent loops. Lemma 8. If C is a left-to-right (resp. right-to-left) component of an idempotent loop L, then the pL, Cq-factors are in the following order: k LL-factors (resp. RR-factors), followed by one LR-factor (resp. RL-factor), followed by k RR-factors (resp. LL-factors), for some k ě 0.

We also need to introduce the notions of anchor (Def. 9) and trace (Def. 10). Definition 9. Let C be a component of an idempotent loop L " rx 1 , x 2 s. The anchor of C inside L, denoted2 anpCq, is either the location `x1 , maxpCq ˘or the location `x2 , maxpCq ˘, depending on whether C is left-to-right or right-to-left.

Intuitively, the anchor anpCq of a component C of L is the source location of the unique LRor RL-factor intercepted by L that corresponds to an edge of C (recall Lemma 8).

Definition 10. Let C be a component of some idempotent loop L and let pi 0 , i 1 q, pi 1 , i 2 q, . . . , pi k´1 , i k q, pi k , i k`1 q be a cycle of C, where i 0 " i k`1 " maxpCq. For every j " 0, . . . , k, let β j be the factor intercepted by L that corresponds to the edge pi j , i j`1 q of C. The trace of C inside L is the run trpCq " β 0 β 1 ¨¨¨β k (note that this is not necessarily a factor of the original run ρ).

Intuitively, the trace trpCq is obtained by concatenating the pL, Cq-factors together, where the first factor is the (unique) LR-/RL-factor that starts at the anchor anpCq and the remaining ones are the LL-factors interleaved with the RR-factors.

For example, by referring again to the components C 1 , C 2 , C 3 of Fig. 4, we have the following traces: trpC 1 q " α 2 α 1 α 3 , trpC 2 q " β 2 β 1 β 3 , and trpC 3 q " γ 1 .

As shown by the following proposition (proved in the appendix), iterations of idempotent loops translate to iterations of traces trpCq of components.

Proposition 11. Let L be an idempotent loop of ρ with components C 1 , . . . , C k , listed according to the order of their anchors: anpC 1 q ¡ ¨¨¨¡ anpC k q. For all m P N, we have pump m`1 L pρq " ρ 0 trpC 1 q m ρ 1 ¨¨¨ρ k´1 trpC k q m ρ k where ' ρ 0 is the prefix of ρ that ends at anpC 1 q, ' ρ i is the factor ρranpC i q, anpC i`1 qs, for all 1 ď i ă k, ' ρ k is the suffix of ρ that starts at anpC k q.

For example, referring to the left hand-side of Fig. 4, the run ρ 0 goes until the first location marked by a black dot. The run ρ 1 and ρ 2 , resp., are between the first and the second black dot, and the second and third black dot. Finally, ρ 3 is the suffix starting at the last black dot. The pumped run pump m`1 L pρq for m " 2 is depicted to the right of Fig. 4. Ramsey-type arguments. We conclude the section by describing a technique that can be used for bounding the length of the outputs produced by factors of the run ρ. This technique is based on Ramsey-type arguments and relies on Simon's "factorization forest" theorem [START_REF] Simon | Factorization forests of finite height[END_REF][START_REF] Colcombet | Factorisation forests for infinite words[END_REF], which we recall below.

Let X be a set of positions of ρ. A factorization forest for X is an unranked tree, where the nodes are intervals I with endpoints in X, labelled with the corresponding effect E I , the ancestor relation is given by the containment order on intervals, the leaves are the minimal intervals rx 1 , x 2 s, with x 2 successor of x 1 in X, and for every internal node I with children J 1 , . . . , J k , we have:

' I " J 1 Y ¨¨¨Y J k , ' E I " E J1 d ¨¨¨d E J k , ' if k ą 2, then E I " E J1 " ¨¨¨" E J k is an idempotent of the semigroup pE, dq.
We will make use of the following three constants defined from the transducer T : the maximum number c max of letters output by a single transition, the maximal length h max " 2|Q| ´1 of a crossing sequence, and the maximal size e max " p2|Q|q 2hmax of the effect semigroup pE, dq. By B " c max ¨hmax ¨p2 3emax `4q we will denote the main constant appearing in all subsequent sections.

Theorem 12 (Factorization forest theorem [START_REF] Simon | Factorization forests of finite height[END_REF][START_REF] Colcombet | Factorisation forests for infinite words[END_REF]). For every set X of positions of ρ, there is a factorization forest for X of height at most 3e max .

It is easy to use the above theorem to show that every run that produces an output longer than B contains an idempotent loop with non-empty output. Below, we present a result in the same spirit, but refined in a way that it can be used to find anchors of components of loops inside specific intervals.

In order to state it formally, we need to consider subsequences of ρ induced by sets of locations that are not necessarily intervals. Recall that ρr 1 , 2 s denotes the factor of ρ delimited by two locations 1 ¢ 2 . Similarly, given any set Z of (possibly non-consecutive) locations, we denote by ρ | Z the subsequence of ρ induced by Z.

I " rx1, x2s 1 2
A transition of ρ | Z is a transition from some to 1 , where both , 1 belong to Z. The output outpρ | Zq is the concatenation of the outputs of the transitions of ρ | Z (in the order given by ρ). An example of subrun ρ | Z is represented by the thick arrows in the figure to the right, where Z " r 1 , 2 s X pI ˆNq. Theorem 13. Let I " rx 1 , x 2 s be an interval of positions, K " r 1 , 2 s an interval of locations, and Z " K X pI ˆNq.

If ˇˇoutpρ | Zq ˇˇą B, then there exist an idempotent loop L and a component C of L such that ' x 1 ă minpLq ă maxpLq ă x 2 (in particular, L Ĺ I), ' 1 ¡ anpCq ¡ 2 (in particular, anpCq P K), ' outptrpCqq ‰ ε.

V. INVERSIONS AND PERIODS

As suggested by Examples 1 and 2, a typical phenomenon that may prevent a transducer from being one-way definable is that of an inversion. An inversion essentially corresponds to a long output produced from right to left. The main result in this section is Proposition 16, that shows that the output produced between the locations delimiting an inversion must be periodic, with bounded period. 

Definition 14. An inversion of ρ is a tuple pL 1 , C 1 , L 2 , C 2 q such that ' L i is an idempotent loop, for both i " 1, 2, ' C i is a component of L i , for both i " 1, 2, ' anpC 1 q ¢ anpC 2 q,
' anpC i q " px i , y i q, for both i " 1, 2, and x 1 ě x 2 , ' both outptrpC 1 qq and outptrpC 2 qq are non-empty.

Fig. 5 gives an example of an inversion involving the loop L 1 with its first component and the loop L 2 with its second component (we highlighted the anchors and the factors corresponding to these components). Definition 15. A word w " a 1 ¨¨¨a n has period p if a i " a i`p for all pairs of positions i, i `p of w.

For example, w " abc abc ab has period 3.

One-way definability of functional two-way transducers essentially amounts to showing that the output produced by every inversion has bounded period. The proposition below shows a slightly stronger periodicity property, which refers to the output produced inside the inversion extended on both sides by the trace outputs. We will need this stronger property later, when dealing with overlapping portions of the run delimited by different inversions.

Proposition 16. If T is one-way definable, then for every inversion pL 1 , C 1 , L 2 , C 2 q of a successful run ρ of T , the word out `trpC 1 q ˘out `ρranpC 1 q, anpC 2 qs ˘out `trpC 2 q has period p that divides both |outptrpC 1 qq| and |outptrpC 2 qq|. Moreover, p ď B.

The basic combinatorial argument for proving Proposition 16 is a classical result in word combinatorics called Fine and Wilf's theorem [START_REF] Fine | Uniqueness theorems for periodic functions[END_REF]. Essentially, the theorem says that, whenever two periodic words w 1 , w 2 share a sufficiently long factor, then they have as period the greatest common divisor of the two original periods. Below, we state a slightly stronger variant of Fine-Wilf's theorem, which contains an additional claim showing how to align a common factor of the words w 1 , w 2 so as to form a third word w 3 that contains a prefix of w 1 and a suffix of w 2 . The additional claim will be fully exploited in the proof of Proposition 26.

Lemma 17 (Fine-Wilf's theorem). If w 1 " w 1 1 w w 2 1 has period p 1 , w 2 " w 1
2 w w 2 2 has period p 2 , and the common factor w has length at least p 1 `p2 ´gcdpp 1 , p 2 q, then w 1 , w 2 , and w 3 " w 1 1 w w 2 2 have period gcdpp 1 , p 2 q. Two further combinatorial results are heavily used in the proof of Proposition 16. The first one is a result of Kortelainen [START_REF] Kortelainen | On the system of word equations x 0 u i 1 x 1 u i 2 x 2 . . . u x m " y 0 v i 1 1 2 . . . v y m (i " 0, 1, 2, . . . ) in a free monoid[END_REF], which was later improved and simplified by Saarela [START_REF] Saarela | Systems of word equations, polynomials and linear algebra: a new approach[END_REF]. It is related to word equations with iterated factors, like those that arise from considering outputs of pumped versions of a run. To improve readability, we highlight the important iterations of factors inside the considered equations.

Theorem 18 (Theorem 4.3 in [START_REF] Saarela | Systems of word equations, polynomials and linear algebra: a new approach[END_REF]). Consider a word equation

v 0 v m 1 v 2 ... v k´1 v m k v k`1 " w 0 w m 1 w 2 ... w k 1 ´1 w m k 1 w k 1 `1
where m is the unknown and v i , w j are words. Then the set of solutions of the equation is either finite or N.

The second combinatorial result considers a word equation with iterated factors parametrized by two unknowns m 1 , m 2 that occur in opposite order in the left, respectively right handside of the equation. This type of equation arises when we compare the output associated with an inversion of T and the output produced by an equivalent one-way transducer T 1 . 

Lemma 19. Consider a word equation of the form

v pm1,m2q 0 v m1 1 v pm1,m2q 2 v m2 3 v pm1,m2q 4 
" w 0 w m2 1 w 2 w m1

'

On such pairs, we define the relation Ă by pL 1 , C 1 q Ă pL, Cq if L 1 Ĺ L and at least one pL 1 , C 1 q-factor is contained in some pL, Cq-factor. ' A pair pL, Cq is output-minimal if for all pairs pL 1 , C 1 q Ă pL, Cq, we have outptrpC 1 qq " ε.

Note that the relation Ă is not a partial order in general (it is however antisymmetric). Lemma 21 below shows that the length of the output trace of C inside L is bounded whenever pL, Cq is output-minimal. Proof sketch. We use a Ramsey-type argument here: if |outptrpCqq| ą B, then Theorem 13 can be applied to exhibit an idempotent loop strictly inside L and a component C of it with non-empty trace output. This would contradict the outputminimality of pL, Cq.

We remark that the above lemma cannot be used directly to bound the period of the output produced by an inversion. The reason is that we cannot assume that inversions are built up from output-minimal pairs.

L2 L1

anpC1q anpC2q

A counter-example is given in the figure to the right, which shows a run where the only inversion pL 1 , C 1 , L 2 , C 2 q contains pairs that are not output-minimal: the factors that produce long outputs are those in red, but they occur outside ρranpC 1 q, anpC 2 qs.

We are now ready to prove Proposition 16. Here we only present the key ideas, and refer the reader to the appendix for more details.

Proof sketch of Proposition 16. In the first half of the proof we pump the two loops L 1 and L 2 so that we obtain also loops in the assumed equivalent one-way transducer T 1 . We then consider the outputs of the pumped runs of T and T 1 , which contain iterated factors parametrized by two natural numbers m 1 , m 2 . As those outputs must agree due to the equivalence of T , T 1 , we get an equation as in Lemma 19, where the word v 1 belongs to outptrpC 1 qq `and the word v 3 belongs to outptrpC 2 qq `. Lemma 19 shows that the word described by the equation has period p dividing gcdp|v 1 |, |v 3 |q, and Lemma 17 shows that p even divides |outptrpC 1 qq| and |outptrpC 2 qq|. Finally, we use Theorem 18 to transfer the periodicity property from the word of the equation to the word w " outptrpC 1 qq outpρranpC 1 q, anpC 2 qsq outptrpC 2 qq produced by the original run of T . This is possible because the word of the equation is obtained by iterating factors of w. In particular, by reasoning separately on the parameters that define those iterations, and by stating the periodicity property as an equation in the form required by Theorem 18, one can prove that the periodicity equation holds on all parameters, and thus in particular on w.

In the second half of the proof we show that the period p is bounded by B. This requires a refinement of the previous arguments and involves pumping the run of T simultaneously on three different loops. The idea is that by pumping we manage to find inversions with some output-minimal pair pL 0 , C 0 q. In this way we show that the period p also divides outptrpC 0 qq, which is bounded by B according to Lemma 21.

VI. ONE-WAY DEFINABILITY

Proposition 16 is the main combinatorial argument for characterizing two-way transducers that are one-way definable. In this section we provide the remaining arguments. Roughly, the idea is to decompose every successful run ρ into factors that produce long outputs either in a left-to-right manner ("diagonals"), or based on an almost periodic pattern ("blocks").

We say that a word w is almost periodic with bound p if w " w 0 w 1 w 2 for some words w 0 , w 2 of length at most p and some word w 1 of period at most p. We illustrate the following definition in Fig. 6.

Definition 22. Consider a factor ρr 1 , 2 s of the run, where 1 " px 1 , y 1 q, 2 " px 2 , y 2 q, and x 1 ď x 2 . We call ρr 1 , 2 s ' a diagonal if for all x P rx 1 , x 2 s, there is a location x at position x such that 1 ¢ x ¢ 2 and the words outpρ | Z

x q and outpρ | Z x q have length at most B, where Z

x " r x , 2 s X `r0, xsˆN ˘and Z x " r 1 , x s X `rx, ωs ˆN˘;

' a block if the word outpρr 1 , 2 sq is almost periodic with bound B, and outpρ | Z q and outpρ | Z q have length at most B, where

Z " r 1 , 2 s X `r0, x 1 s ˆN˘a nd Z " r 1 , 2 s X `rx 2 , ωs ˆN˘.
Intuitively, the output of a diagonal ρr 1 , 2 s can be simulated while scanning the input interval rx 1 , x 2 s from left to right, since the outputs of ρ | Z x and ρ | Z x are bounded. A similar argument applies to a block ρr 1 , 2 s, where in addition, one exploits the fact that the output is almost periodic. Roughly, the idea is that one can simulate the output of a block by outputting symbols according to a periodic pattern, and in a number that is determined from the transitions on urx 1 , x 2 s and the guessed (bounded) outputs on Z and Z .

The general idea for turning a two-way transducer T into an equivalent one-way transducer T 1 is to guess (and check) a factorization of a successful run of T into factors that are either diagonals or blocks, and properly arranged following the order of positions. Definition 23. A decomposition of ρ is a factorization ś i ρr i , i`1 s of ρ into diagonals and blocks, where i " px i , y i q and x i ă x i`1 for all i.

The one-way transducer T 1 whose existence is stated by Theorem 3 simulates T precisely on those inputs u that have some successful run admitting a decomposition. To provide further intuition on the notion of decomposition, we consider again the transduction of Example 2 and the twoway transducer T that implements it in the most natural way. Fig. 7 shows an example of a run of T on an input of the form Theorem 24. Let T be a functional two-way transducer. The following are equivalent: P1) T is one-way definable. P2) For all inversions pL 1 , C 1 , L 2 , C 2 q of all successful runs of T , the word out `trpC 1 q ˘out `ρranpC 1 q, anpC 2 qs ˘out `trpC 2 q has period p ď B dividing |outptrpC 1 qq|, |outptrpC 2 qq|. P3) Every successful run of T admits a decomposition.

u 1 # u 2 # u 3 # u 4 , where u 2 , u 4 P pabcq ˚, u 1 u 3 R pabcq
The implication from P1 to P2 was already shown in Proposition 16. The rest of this section is devoted to prove the implications from P2 to P3 and from P3 to P1. The issues related to the complexity of the characterization will be discussed further below.

From periodicity to existence of decompositions (P2ÑP3).

As usual, we fix a successful run ρ of T . We will prove a slightly stronger result than the implication from P2 to P3, namely: if every inversion of ρ satisfies the periodicity property stated in P2, then ρ admits a decomposition (note that this is independent of whether other runs satisfy or not P2). To identify the blocks of a possible decomposition of ρ we consider a suitable equivalence relation between locations:

Definition 25. A location is covered by an inversion pL 1 , C 1 , L 2 , C 2 q if anpC 1 q ¢ ¢ anpC 2 q.
We define the relation S by letting S 1 if , 1 are covered by the same inversion. We define the equivalence relation S ˚as the reflexive and transitive closure of S.

Locations covered by the same inversion pL 1 , C 1 , L 2 , C 2 q yield an interval w.r.t. the run ordering ¢. Thus every nonsingleton S ˚-class can be seen as a union of such intervals, say K 1 , . . . , K m , that are two-by-two overlapping, namely, K i X K i`1 ‰ H for all i ă m. In particular, a non-singleton S ˚-class is an interval of locations witnessed by a series of inversions pL 2i , C 2i , L 2i`1 , C 2i`1 q such that anpC 2i q ¢ anpC 2i`2 q ¢ anpC 2i`1 q ¢ anpC 2i`3 q.

The next result exploits the shape of a non-singleton S ˚class, the assumption that ρ satisfies the periodicity property stated in P2, and Lemma 17, to show that the output produced inside an S ˚-class has bounded period.

Proposition 26. If ρ satisfies the periodicity property stated in P2 and ¢ 1 are two locations in the same S ˚-class, then out `ρr , 1 s ˘has period at most B.

The S ˚-classes considered so far cannot be directly used as blocks for the desired decomposition of ρ, since the xcoordinates of their endpoints might not be in the appropriate order. The next definition takes care of this, by enlarging the S ˚-classes according to x-coordinates of anchors. Definition 27. Let K " r , 1 s be a non-singleton S ˚-class, let anpKq be the restriction of K to the locations that are anchors of components of inversions, and let X anpKq " tx : Dy px, yq P anpKqu be the projection of anpKq on positions. We define blockpKq " r 1 , 2 s, where ' 1 is the latest location px, yq ¢ such that x " min `XanpKq ˘, ' 2 is the earliest location px, yq ¤ 1 such that x " max `XanpKq (note that the location 1 exists since is the anchor of the first component of an inversion, and 2 exists for similar reasons). Lemma 28. If K " r , 1 s is a non-singleton S ˚-class, then ρr 1 , 2 s is a block, where r 1 , 2 s " blockpKq.

Proof sketch. The periodicity of outpρr , 1 sq is obtained by applying Proposition 26. Then Theorem 13 is applied twice: first to bound outpρr 1 , sq and outpρr 1 , 2 sq (hence proving that outpρr 1 , 2 sq is almost periodic with bound B), and second, to bound outpρ | Z q and outpρ | Z q, as introduced in Definition 22.

The next lemma shows that blocks do not overlap along the input axis: Lemma 29. Suppose that K 1 and K 2 are two different nonsingleton S ˚-classes such that ¡ 1 for all P K 1 and 1 P K 2 . Let blockpK 1 q " r 1 , 2 s and blockpK 2 q " r 3 , 4 s, with 2 " px 2 , y 2 q and 3 " px 3 , y 3 q. Then x 2 ă x 3 .

Proof sketch. If x 2 ě x 3 , one can exhibit an inversion between a component of a loop in K 1 and another one in K 2 , and deduce that K 1 " K 2 .

For the sake of brevity, we call S ˚-block any factor of the form ρ | blockpKq that is obtained by applying Definition 27 to a non-singleton S ˚-class K. The results obtained so far imply that every location covered by an inversion is also covered by an S ˚-block (Lemma 28), and that the order of occurrence of S ˚-blocks is the same as the order of positions (Lemma 29). So the S ˚-blocks can be used as factors for the decomposition of ρ we are looking for. Below, we show that the remaining factors of ρ, which do not overlap the S ˚blocks, are diagonals. This will complete the construction of a decomposition of ρ.

Formally, we say that a factor ρr 1 , 2 s overlaps another factor ρr 3 , 4 s if r 1 , 2 s X r 3 , 4 s ‰ H, 2 ‰ 3 , and 1 ‰ 4 .

Lemma 30. Let ρr 1 , 2 s be a factor of ρ that does not overlap any S ˚-block, with 1 " px 1 , y 1 q, 2 " px 2 , y 2 q, and x 1 ă x 2 . Then ρr 1 , 2 s is a diagonal. Proof sketch. If ρr 1 , 2 s is not a diagonal, we can find a location 1 ¢ ¢ 2 for which |outpρ | Z q| ą B and |outpρ | Z q| ą B (recall Definition 22). By applying again Theorem 13, we derive the existence of an inversion between 1 and 2 , and thus of an S ˚-block overlapping ρr 1 , 2 s.

From decompositions to one-way definability (P3ÑP1).

Hereafter, we denote by U the language of words u P dompT q such that all successful runs of T on u admit a decomposition.

So far, we know that if T is one-way definable (P1), then U " dompT q (P3). This reduces the one-way definability problem for T to the containment problem dompT q Ď U . We will see later how the latter problem can be decided in double exponential space by further reducing it to checking the emptiness of the intersection of the languages dompT q and U A , where U A is the complement of U .

Below, we show how to construct a one-way transducer T 1 of triple exponential size such that

T 1 Ď T and dompT 1 q Ě U.
In particular, the existence of such a transducer T 1 proves the implication from P3 to P1 of Theorem 24. It also proves the second item of Theorem 3, because when T is one-way definable, U " dompT q, and hence T and T 1 are equivalent. Intuitively, given an input u, the one-way transducer T 1 will guess a successful run ρ of T on u and a decomposition of ρ, and then use the decomposition to simulate the output produced by ρ. Note that T 1 accepts at least all the words of U , possibly more. As a matter of fact, it would be difficult to construct a transducer whose domain coincides with U , since checking membership in U involves a universal quantification. The proof of the following result is in the appendix.

Proposition 31. Given a functional two-way transducer T , one can construct in 3EXPTIME a one-way transducer T 1 such that T 1 Ď T and dompT 1 q Ě U .

Deciding one-way definability. Recall that T is one-way definable iff dompT q Ď U , so iff dompT q X U A " H. The lemma below exploits the characterization of Theorem 24 to show that the language U A can be recognized by an NFA U A of triple exponential size. The lemma actually shows that the NFA recognizing U A can be constructed using double exponential workspace.

Lemma 32. Given a functional two-way transducer T , one can construct in 2EXPSPACE an NFA recognizing U A .

Proof. Consider an input word u. By Theorem 24 we know that u P U A iff there exist a successful run ρ of T on u and an inversion I " pL 1 , C 1 , L 2 , C 2 q of ρ such that no positive number p ď B is a period of the word w ρ,I " out `trpC 1 q ˘out `ρranpC 1 q, anpC 2 qs ˘out `trpC 2 q ˘.

The latter condition on w ρ,I can be rephrased as follows: there is a function f : t1, . . . , Bu Ñ t1, . . . , |w ρ,I |u such that w ρ,I rf ppqs ‰ w ρ,I rf ppq `ps for all positive numbers p ď B.

Recall that B " c max ¨hmax ¨p2 3emax `4q, where h max " 2|Q|´1, e max " p2|Q|q 2hmax , and Q is the state space of the two-way transducer T . This means that the run ρ, the inversion I, and the function f described above can all be guessed within double exponential space, namely, using a number of states that is at most a triple exponential w.r.t. |T |. In particular, we can construct in 2EXPSPACE an NFA recognizing U A .

As a consequence of the previous lemma and of Theorem 24, we have that the emptiness of the language dompT qX U A , and hence the one-way definability of T , can be decided in 2EXPSPACE:

Corollary 33. The problem of deciding whether a functional two-way transducer is one-way definable is in 2EXPSPACE.

VII. DEFINABILITY BY SWEEPING TRANSDUCERS

A two-way transducer is called sweeping if every successful run of it performs reversals only at the extremities of the input word, i.e. when reading the symbols $ or %. Similarly, we call it k-pass sweeping if it is sweeping and every successful run performs at most k ´1 reversals. Clearly, a 1-pass sweeping transducer is the same as a one-way transducer.

In this section we are considering the following question: given a functional two-way transducer, is it equivalent to some k-pass sweeping transducer? We call such transducers k-pass sweeping definable. If the parameter k is not given a priori, then we denote them as sweeping definable transducers.

In [START_REF]Minimizing resources of sweeping and streaming string transducers[END_REF] we built up on the characterization of one-way definability for (the restricted class of) sweeping transducers [START_REF] Baschenis | One-way definability of sweeping transducer[END_REF] in order to determine the minimal number of passes required by sweeping transductions. Essentially, the idea was to consider a generalization of the notion of inversion, called k-inversion, and proving that k-pass sweeping definability is equivalent to asking that every k-inversion generates a periodic output.

We show that we can follow the same approach for two-way transducers. More precisely, we first define a coinversion in a way similar to Definition 14, namely, as a tuple pL 1 , C 1 , L 2 , C 2 q consisting of two idempotent loops L 1 , L 2 , a component C 1 of L 1 , and a component C 2 of L 2 such that ' anpC 1 q ¢ anpC 2 q, ' outptrpC 1 qq, outptrpC 2 qq ‰ ε, and ' anpC i q " px i , y i q for i " 1, 2, then x 1 ď x 2 .

The only difference compared to inversions is the ordering of the positions of the anchors, which is now reversed.

Alternating inversions and co-inversions leads to:

Definition 34. A k-inversion is a tuple I " pI 0 , . . . , I k´1 q, where I i " pL i , C i , L 1 i , C 1 i q is either an inversion or a co-inversion depending on whether i is even or odd, and anpC 1 i q ¢ anpC i`1 q for all i ă k ´1. A k-inversion I is safe if for some 0 ď i ă k, the word out `trpC i q ˘out `ρranpC i q, anpC 1 i qs ˘out `trpC 1 i q has period p ď B dividing |outptrpC i qq| and |outptrpC 1 i qq|. Similar to the characterization of k-pass sweeping definability in [START_REF]Minimizing resources of sweeping and streaming string transducers[END_REF], we show now the following characterization for 2-way transducers, using Theorem 24 as a black-box:

Theorem 35. Let T be a functional two-way transducer and k ą 0. The following are equivalent: 1) T is k-pass sweeping definable.

2) All k-inversions of all successful runs of T are safe. The problem of deciding whether the above conditions hold is in 2EXPSPACE; more precisely, it can be decided in double exponential space w.r.t. |T | and in polynomial space w.r.t. k. Proof sketch. A proof of this result (modulo the necessary changes in complexity due to the new characterization) can be found in [START_REF]Minimizing resources of sweeping and streaming string transducers[END_REF]. Here we present in an informal way the main steps of the proof.

Proving the implication from 2) to 1) boils down to factorize a successful run ρ of T into factors ρ 1 , . . . , ρ k in such a way that, for every odd (resp. even) index i, ρ i contains only inversions (resp. co-inversions) that are safe, namely, that yield periodic outputs. We use the constructions presented in Section VI to simulate the output of each factor ρ i with a one-way transducer, which scans the input either from left to right or from right to left, depending on whether i is odd or even.

The implication from 1) to 2) amounts at showing that every k-inversion is safe under the assumption that T is k-pass sweeping definable. The proof builds upon the characterization of one-way definability. More precisely, we consider a successful run of T and the corresponding run of an equivalent k-pass sweeping transducer T 1 that produces the same output. We then pump those runs simultaneously on all loops L 1 , . . . , L 2k that form the k-inversion. By reasoning as in the proof of Proposition 16, we derive a periodicity property that shows that the k-inversion is safe.

Finally, the 2EXPSPACE complexity of the decision problem follows from reducing k-pass sweeping definability to the emptiness of the language dompT q X U A , where U is now the language of words u P dompT q such that all k-inversions of all successful runs on u are safe. As usual the latter problem is solved by constructing an NFA that recognizes U A by guessing a successful run ρ of T and an unsafe k-inversion of ρ.

A similar problem, called sweeping definability, concerns the characterization of those transductions that are definable by sweeping transducers, but this time without enforcing any bound on the number of passes (or reversals). Of course the latter problem is interesting only when the transductions are presented by means of two-way transducers. Below we show that the sweeping definability problem reduces to the k-pass sweeping definability problem, when we set k large enough.

Theorem 36. A functional two-way transducer T is sweeping definable iff it is k-pass sweeping definable, for k " 2h max p2 3emax `1q.

Proof sketch. The right-to-left implication is trivial. The proof of the converse direction is in the appendix; here we only provide a rough idea. Suppose that T is not k-pass sweeping definable, for k " 2h max ¨p2 3emax `1q. By Theorem 35, there exists a successful run ρ of T and an unsafe k-inversion I of ρ. One can exploit the fact that k is large enough to find an idempotent loop L and an intercepted factor of it that covers two consecutive (co-)inversions of I. Then, by pumping the loop L, one can introduce arbitrarily long alternations between inversions and co-inversions, thus showing that there are successful runs with unsafe k 1 -inversions for all k 1 ą 0. By Theorem 35, this proves that T is not sweeping definable.

Corollary 37. The problem of deciding sweeping definability of a functional two-way transducer is in 2EXPSPACE.

Another consequence is that it is decidable in 2EXPSPACE whether a functional two-way transducer is equivalent to some two-way transducer performing a bounded number of reversals in every run. Indeed, in [START_REF]Minimizing resources of sweeping and streaming string transducers[END_REF] we proved that a functional transducer is k-pass sweeping definable iff it is pk´1q-reversal definable.

Other classes of transducers are amenable to characterizations via similar techniques. For example, we may consider an even more restricted variant of transducer, called rotating transducer. This is a sweeping transducer that emits output only when moving from left to right. Such a transducer is called k-pass if it performs at most k passes from left to right. To characterize those transductions that are definable by k-pass rotating transducers it suffices to modify slightly the definition of k-inversion, by removing co-inversions. Formally, one defines a rotating k-inversion as a tuple I " pI 0 , . . . , I k´1 q, where each I i " pL i , C i , L 1 i , C 1 i q is an inversion and anpC 1 i q ¡ anpC i`1 q for all i ă k ´1. The analogous of Theorems 35 and 36 would then carry over.

VIII. CONCLUSIONS

It was shown recently [START_REF] Filiot | From two-way to one-way finite state transducers[END_REF] that it is decidable whether a given two-way transducer can be implemented by some oneway transducer, however the complexity of the algorithm is non-elementary.

The main contribution of our paper is a new algorithm that solves the above question with elementary complexity, precisely in 2EXPSPACE. The algorithm is based on a characterization of those transductions, given as two-way transducers, that can be realized by one-way transducers. The flavor of our characterization is different from that of [START_REF] Filiot | From two-way to one-way finite state transducers[END_REF]. The approach from [START_REF] Filiot | From two-way to one-way finite state transducers[END_REF] is based on a variant of Rabin and Scott's construction [START_REF] Rabin | Finite automata and their decision problems[END_REF] of one-way automata, and on local modifications of the two-way run. Our approach relies instead on the global notion of inversions and on combinatorial arguments, and is inspired by our previous result for sweeping transducers [START_REF] Baschenis | One-way definability of sweeping transducer[END_REF]. The technical challenge in this paper compared to [START_REF] Baschenis | One-way definability of sweeping transducer[END_REF] is however significant, and required several involved proof ingredients, ranging from the type of loops we consider, up to the decomposition of the runs.

Our characterization based on inversions yields not only an elementary solution for the problem of one-way definability, but also for definability by sweeping (resp. rotating) transducers, with either known or unknown number of passes. All characterizations above are effective, and can be decided in 2EXPSPACE.

L . . . . . . Ý y i Ý y i´1 `1 Ý y i Ý y i `1 F L . . . . . . Ý y i´1 `1 Ý y i Ý y i Ý y i `1
Fig. 8. Some factors intercepted by L and the corresponding edges in the flow.

APPENDIX

Before proving Lemma 8, we show that in a loop, the levels of each component form an interval.

Lemma 38. Let C be a component of a loop L " rx 1 , x 2 s, y ´" minpCq, and y `" maxpCq. The nodes of C are precisely the levels in the interval ry ´, y `s. Moreover, if C is left-to-right (resp. right-to-left), then y `is the smallest level ě y ´such that between px 1 , y ´q and px 2 , y `q (resp. px 2 , y ´q and px 1 , y `q) there are equally many LL-factors and RR-factors intercepted by L.

Proof. To ease the understanding the reader may refer to Fig. 8, that shows some factors intercepted by L and the corresponding edges in the flow. We begin the proof by partitioning the set of levels of the flow into suitable intervals as follows. We observe that every loop L " rx 1 , x 2 s intercepts equally many LL-factors and RR-factors. This is so because the crossing sequences at x 1 , x 2 have the same length h. We also observe that the sources of the factors intercepted by L are either of the form px 1 , yq, with y even, or px 2 , yq, with y odd. For any location P tx 1 , x 2 u ˆN that is the source of an intercepted factor, we define d to be the difference between the number of LL-factors and the number of RR-factors intercepted by L that end at a location strictly before . Intuitively, d " 0 when the prefix of the run up to location has visited equally many times the position x 1 and the position x 2 . For the sake of brevity, we let d y " d px1,yq for an even level y, and d y " d px2,yq for an odd level y. Note that d 0 " 0. We also let d h`1 " 0, by convention.

We now consider the numbers z's, with 0 ď z ď h `1, such that d z " 0, that is: 0 " z 0 ă z 1 ă ¨¨¨ă z k " h `1. Using a simple induction, we prove that for all i ď k, the parity of z i is the same as the parity of its index i. The base case i " 0 is trivial, since z 0 " 0. For the inductive case, suppose that z i is even (the case of z i odd is similar). We prove that z i`1 is odd by a case distinction based on the type of factor intercepted by L that starts at level z i . If this factor is an LR-factor, then it ends at the same level z i , and hence d zi`1 " d zi " 0, which implies that z i`1 " z i `1 is odd. Otherwise, if the factor is an LL-factor, then for all levels z strictly between z i and z i`1 , we have d z ą 0, and since d zi`1 " 0, the last factor before z i`1 must decrease d z , that is, must be an RR-factor. This implies that px 2 , z i`1 q is the source of an intercepted factor, and thus z i`1 is odd.

The levels 0 " z 0 ă z 1 ă ¨¨¨ă z k " h `1 induce a partition of the set of nodes of the flow into intervals of the form Z i " rz i , z i`1 ´1s. To prove the lemma, it is suffices to show that the subgraph of the flow induced by each interval Z i is connected. Indeed, because the union of the previous intervals covers all the nodes of the flow, and because each node has one incoming and one outgoing edge, this will imply that the intervals coincide with the components of the flow. Now, let us fix an interval of the partition, which we denote by Z to avoid clumsy notation. Hereafter, we will focus on the edges of subgraph of the flow induced by Z (we call it subgraph of Z for short). We prove a few basic properties of these edges. For the sake of brevity, we call LL-edges the edges of the subgraph of Z that correspond to the LL-factors intercepted by L, and similarly for the RR-edges, LR-edges, and RL-edges.

We make a series of assumption to simplify our reasoning. First, we assume that the edges are ordered based on the occurrences of the corresponding factors in the run. For instance, we may say the first, second, etc. LR-edge (of the subgraph of Z) -from now on, we tacitly assume that the edges are inside the subgraph of Z. Second, we assume that the first edge of the subgraph of Z starts at an even node, namely, it is an LL-edge or an LR-edge (if this were not the case, one could apply symmetric arguments to prove the lemma). From this it follows that the subgraph contains n LR-edges interleaved by n ´1 RL-edges, for some n ą 0. Third, we assume that minpZq " 0, in order to avoid clumsy notations (otherwise, we need to add minpZq to all the levels considered hereafter). Now, we observe that, by definition of Z, there are equally many LL-edges and RR-edges: indeed, the difference between the number of LL-edges and the number of RR-edges at the beginning and at the end of Z is the same, namely, d z " 0 for both z " minpZq and z " maxpZq. It is also easy to see that the LL-edges and the RR-edges are all of the form y Ñ y `1, for some level y. We call these edges incremental edges.

For the other edges, we denote by Ý y i (resp. Ý y i ) the source level of the i-th LR-edge (resp. the i-th RL-edge). Clearly, each Ý y i is even, and each Ý y i is odd, and i ď j implies Ý y i ă Ý y j and Ý y i ă Ý y j . Consider the location px 1 , Ý y i q, which is the source of the i-th LR-edge (e.g. the edge in blue in the figure). The latest location at position x 2 that precedes px 1 , Ý y i q must be of the form px 2 , Ý y i´1 q, provided that i ą 1. This implies that, for all 1 ă i ď n, the i-th LR-edge is of the form Ý y i Ñ Ý y i´1 `1. For i " 1, we recall that minpZq " 0 and observe that the first location at position x 2 that occurs after the location px 1 , 0q is px 2 , 0q, and thus the first LR-edge has a similar form: Ý y 1 Ñ Ý y 0 `1, where Ý y 0 " ´1 by convention.

Using symmetric arguments, we see that the i-th RL-edge (e.g. the one in red in the figure) is of the form Ý y i Ñ Ý y i `1. In particular, the last LR-edge starts at the level Ý y n " maxpZq.

Summing up, we have just seen that the edges of the subgraph of Z are of the following forms:

' y Ñ y `1 (incremental edges), ' Ý y i Ñ Ý y i´1 `1 (i-th LR-edge, for i " 1, . . . , n), ' Ý y i Ñ Ý y i `1 (i-th RL-edge, for i " 1, . . . , n ´1 
). In addition, we have Ý y i `1 " Ý y i `2d Ý y i . Since d z ą 0 for all minpZq ă z ă maxpZq, this implies that Ý y i ą Ý y i .

The goal is to prove that the subgraph of Z is strongly connected, namely, it contains a cycle that visits all its nodes. As a matter of fact, because components are also strongly connected subgraphs, and because every node in the flow has in-/outdegree 1, this will imply that the considered subgraph coincides with a component C, thus implying that the nodes in C form an interval. Towards this goal, we will prove a series of claims that aim at identifying suitable sets of nodes that are covered by paths in the subgraph of Z. Formally, we say that a path covers a set Y if it visits all the nodes in Y , and possibly other nodes. As usual, when we talk of edges or paths, we tacitly understand that they occur inside the subgraph of Z. On the other hand, we do not need to assume Y Ď Z, since this would follow from the fact that Y is covered by a path inside Z. For example, the right hand-side of Fig. 8 shows a path from Ý y i to Ý y i `1 that covers the set Y " t Ý y i , Ý y i `1u Y r Ý y i´1 `1, Ý y i s.

The covered sets will be intervals of the form

Y i " r Ý y i´1 `1, Ý y i s.
Note that the sets Y i are well-defined for all i " 1, . . . , n ´1, but not for i " n since Ý y n is not defined either (the subgraph of Z contains only n ´1 RL-edges).

Claim. For all i " 1, . . . , n ´1, there is a path from Ý y i to Ý y i `1 that covers Y i (for short, we call it an incremental path).

Proof. We prove the claim by induction on i. The base case i " 1 is rather easy. Indeed, we recall the convention that Ý y 0 `1 " minpZq " 0. In particular, the node Ý y 0 `1 is the target of the first LR-edge of the subgraph of Z. Before this edge, according to the order induced by the run, we can only have LL-edges of the form y Ñ y `1, with y " 0, 2, . . . , Ý y 1 ´2.

Similarly, after the LR-edge we have RR-edges of the form y Ñ y `1, with y " 1, 3, . . . , Ý y 1 ´2. Those incremental edges can be connected to form the path Ý y i´1 `1 Ñ ˚ Ý y 1 that covers the interval r Ý y 0 `1, Ý y 1 s . By prepending to this path the LR-edge Ý y 1 Ñ Ý y 0 `1, and by appending the RL-edge Ý y 1 Ñ Ý y 1 `1, we get a path from Ý y 1 to Ý y 1 `1 that covers the interval r Ý y 0 `1, Ý y 1 s. The latter interval is precisely the set Y 1 .

For the inductive step, we fix 1 ă i ă n and we construct the desired path from Ý y i to Ý y i `1. The initial edge of this path is defined to be the LR-edge Ý y i Ñ Ý y i´1 `1. Similarly, the final edge of the path will be the RL-edge Ý y i Ñ Ý y i `1, which exists since i ă n. It remains to connect Ý y i´1 `1 to Ý y i . For this, we consider the edges that depart from nodes strictly between Ý y i´1 and Ý y i .

Let y be an arbitrary node in r Ý y i´1 `1, Ý y i ´1s. Clearly, y cannot be of the form Ý y j , for some j, because it is strictly between Ý y i´1 and Ý y i . So y cannot be the source of an RL-edge. Moreover, recall that the LL-edges and the RR-edges are the of the form y Ñ y `1. As these incremental edges do not pose particular problems for the construction of the path, we focus mainly on the LR-edges that depart from nodes inside r Ý y i´1 `1, Ý y i ´1s.

Let Ý y j Ñ Ý y j´1 `1 be such an LR-edge, for some j such that Ý y j P r Ý y i´1 `1, Ý y i ´1s. If we had j ě i, then we would have Ý y j ě Ý y i ą Ý y i , but this would contradict the assumption that Ý y j P r Ý y i´1 `1, Ý y i ´1s. So we know that j ă i. This enables the use of the inductive hypothesis, which implies the existence of an incremental path from Ý y j to Ý y j `1 that covers the interval Y j .

Finally, by connecting the above paths using the incremental edges, and by adding the initial and final edges Ý y i Ñ Ý y i´1 `1 and Ý y i Ñ Ý y i `1, we obtain a path from Ý y i to Ý y i `1. It is easy to see that this path covers the interval Y i .

˝(claim)

Next, we define Y " r Ý y n´1 `1, Ý y n s Y ď 1ďiăn Y i .
We prove a claim similar to the previous one, but now aiming to cover Y with a cycle. Towards the end of the proof we will argue that the set Y coincides with the full interval Z, thus showing that there is a component C whose set of notes is precisely Z.

Claim. There is a cycle that covers Y .

Proof. It is convenient to construct our cycle starting from the last LR-edge, that is, Ý y n Ñ Ý y n´1 `1, since this will cover the upper node Ý y n " maxpZq. From there we continue to add edges and incremental paths, following an approach similar to the proof of the previous claim, until we reach the node Ý y n again. More precisely, we consider the edges that depart from nodes strictly between Ý y n´1 and Ý y n . As there are only n ´1 RL-edges, we know that every node in the interval r Ý y n´1 `1, Ý y n ´1s must be source of an LL-edge, an RR-edge, or an LR-edge. As usual, incremental edges do not pose particular problems for the construction of the cycle, so we focus on the LR-edges. Let Ý y i Ñ Ý y i´1 `1 be such an LR-edge, with Ý y i P r Ý y n´1 `1, Ý y n ´1s.

Since i ă n, we know from the previous claim that there is a path from Ý y i to Ý y i `1 that covers Y i . We can thus build a cycle π by connecting the above paths using the incremental edges and the LR-edge Ý y n Ñ Ý y n´1 `1.

By construction, the cycle π covers the interval r Ý y n´1 `1, Ý y n s, and for every i ă n, if π visits Ý y i , then π covers Y i . So to complete the proof -namely, to show that π covers the entire set Y -it suffices to prove that π visits each node Ý y i , with i ă n.

Suppose, by way of contradiction, that Ý y i is the node with the highest index i ă n that is not visited by π. Recall that Ý y i ą Ý y i . This shows that

Ý y i P r Ý y i `1, Ý y n s " ď iďjăn´1 r Ý y j `1, Ý y j`1 s Y r Ý y n´1 `1, Ý y n s.
As we already proved that π covers the interval r Ý y n´1 `1, Ý y n s, we know that Ý y i P r Ý y j `1, Ý y j`1 s for some j with i ď j ă n ´1. Now recall that Ý y i is the highest node that is not visited by π. This means that Ý y j`1 is visited by π. Moreover, since j `1 ă n, we know that π uses the incremental path from Ý y j`1 to Ý y j`1 `1, which covers Y j`1 " r Ý y j `1, Ý y j`1 s. But this contradicts the fact that Ý y i is not visited by π, since Ý y i P r Ý y j `1, Ý y j`1 s.

˝(claim)

We know that the set Y is covered by a cycle of the subgraph of Z, and that Z is an interval whose endpoints are consecutive levels z ă z 1 , with d z " d z 1 " 0. For the homestretch, we prove that Y " Z. This will imply that the nodes of the cycle are precisely the nodes of the interval Z. Moreover, because the cycle must coincide with a component C of the flow (recall that all the nodes have in-/out-degree 1), this will show that the nodes of C are precisely those of Z.

To prove Y " Z it suffices to recall its definition as the union of the interval r Ý y n´1 `1, Ý y n s with the sets Y i , for all i " 1, . . . , n ´1. Clearly, we have that Y Ď Z. For the converse inclusion, we also recall that Ý y 0 `1 " 0 " minpZq and Ý y n " maxpZq. Consider an arbitrary level z P Z. Clearly, we have either z ď Ý y i , for some 1 ď i ă n, or z ą Ý y n . In the former case, by choosing the smallest index i such that z ď Ý y i , we get z P r Ý y i´1 `1, Ý y i s, whence z P Y i Ď Y . In the latter case, we immediately have z P Y , by construction. Lemma 8. If C is a left-to-right (resp. right-to-left) component of an idempotent loop L, then the pL, Cq-factors are in the following order: k LL-factors (resp. RR-factors), followed by one LR-factor (resp. RL-factor), followed by k RR-factors (resp. LL-factors), for some k ě 0.

Proof. Suppose that C is a left-to-right component of L. We show by way of contradiction that C has only one LR-factor and no RL-factor. By Lemma 38 this will yield to the claimed shape. Fig. 9 can be used as a reference example for the arguments that follow.

We begin by listing the pL, Cq-factors. As usual, we order them based on their occurrences in the run ρ. Let γ be the first pL, Cq-factor that is not an LL-factor, and let β 1 , . . . , β k be the pL, Cq-factors that precede γ (these are all LL-factors). Because γ starts at an even level, it must be an LR-factor. Suppose that there is another pL, Cq-factor, say ζ, that comes after γ and it is neither an RR-factor nor an LL-factor. Because ζ starts at an odd level, it must be an RL-factor. Further let δ 1 , . . . , δ k 1 be the intercepted RR-factors that occur between γ and ζ. We claim that k 1 ă k, namely, that the number of RR-factors between γ and ζ is strictly less than the number of LL-factors before γ. Indeed, if this were not the case, then, by Lemma 38, the level where ζ starts would not belong to the component C. Now, consider the pumped run ρ 1 " pump 2 L pρq, obtained by adding a new copy of L. Let L 1 be the loop of ρ 1 obtained from the union of L and its copy. Since L is idempotent, the components of L are isomorphic to the components of L 1 . In particular, we can denote by C 1 the component of L 1 that is isomorphic to C. Let us consider the pL 1 , C 1 q-factors of ρ 1 . The first k such factor are isomorphic to the k LL-factors β 1 , . . . , β k from ρ. However, the pk `1q-th element has a different shape:

it is isomorphic to γ β 1 δ 1 β 2 . . . δ k 1 β k 1 `1 ζ,
and in particular it is an LL-factor. This implies that the pk `1q-th edge of C 1 is of the form py, y `1q, while the pk `1q-th edge of C is of the form py, y ´2kq. This contradiction comes from having assumed the existence of the RL-factor ζ, and is illustrated in Fig. 9.

The following lemma will be used to prove Theorem 13.

Lemma 39. If L 1 " rx 1 , x 2 s and L 2 " rx 2 , x 3 s are consecutive idempotent loops with the same effect and α, β are two factors intercepted by L 1 , L 2 that are adjacent in the run (namely, they share the endpoint at position x 2 ), then α and β correspond to edges of the same component of L 1 (or, equally, L 2 ).

Proof. Let C be the component of L 1 and py, y 1 q the edge of C that corresponds to the factor α intercepted by L 1 . Similarly, let C 1 be the component of L 2 and py 2 , y 3 q the edge of C 1 that corresponds to the factor β intercepted by L 2 . Since α and β share the endpoint at position x 2 , we know that y 1 " y 2 . This shows that C X C 1 ‰ H, and hence C " C 1 . Proposition 11. Let L be an idempotent loop of ρ with components C 1 , . . . , C k , listed according to the order of their anchors: anpC 1 q ¡ ¨¨¨¡ anpC k q. For all m P N, we have pump m`1 L pρq " ρ 0 trpC 1 q m ρ 1 ¨¨¨ρ k´1 trpC k q m ρ k where ' ρ 0 is the prefix of ρ that ends at anpC 1 q, ' ρ i is the factor of ρ between anpC i q and anpC i`1 q, for all i " 1, . . . , k ´1, ' ρ k is the suffix of ρ that starts at anpC k q.

Proof. Along the proof we sometimes refer to Fig. 4 to ease the intuition of some definitions and arguments. Let L " rx 1 , x 2 s be an idempotent loop and, for all i " 0, . . . , m, let L 1 i " rx 1 i , x 1 i`1 s be the i-th copy of the loop L in the pumped run ρ 1 " pump m`1 L pρq, where x 1 i " x 1 `i ¨px 2 ´x1 q (the "0-th copy of L" is the loop L itself). Further let

L 1 " L 1 0 Y ¨¨¨Y L 1 m " rx 1 0 , x 1 m`1 s, that is, L 1 is the loop of ρ 1 that spans across the m`1 occurrences of L. As L is idempotent, the loops L 1 0 , . . . , L 1 m
and L 1 have all the same effect as L. In particular, the components of L 1 0 , . . . , L 1 m , and L 1 are isomorphic to and in same order as those of L. We denote these components by C 1 , . . . , C k .

We let j " anpC j q be the anchor of each component C j inside the loop L of ρ (these locations are marked by black dots in the left hand-side of Fig. 4). Similarly, we let 1 i,j (resp. 1 j ) be the anchor of C j inside the loop L 1 i (resp. L 1 ). From Definition 9, we have that either 1 j " 1 1,j or 1 j " 1 m,j , depending on whether C j is left-to-right or right-to-left (or, equally, on whether j is odd or even). Now, let us consider the factorization of the pumped run ρ 1 induced by the locations 1 i,j , for all i " 0, . . . , m and for j " 1, . . . , k (these locations are marked by black dots in the right hand-side of the figure). By construction, the prefix of ρ 1 that ends at location 1 0,1 coincides with the prefix of ρ that ends at 1 , i.e. ρ 0 in the statement of the proposition. Similarly, the suffix of ρ 1 that starts at location 1 m,k is isomorphic to the suffix of ρ that starts at k , i.e. ρ k in the statement. By construction, we also know that, for all odd (resp. even) indices j, the factor ρ 1 r 1 m,j , 1 m,j`1 s (resp. ρ 1 r 0,j , 0,j`1 s) is isomorphic to ρr j , j`1 s, i.e. the ρ j of the statement.

The remaining factors of ρ 1 are those delimited by the pairs of locations 1 i,j and 1 i`1,j , for all i " 0, . . . , m ´1 and all j " 1, . . . , k. Consider one such factor ρ 1 r 1 i,j , 1 i`1,j s, and assume that the index j is odd (the case of an even j is similar).

L 1 " rx, x 1 s L 2 " rx 1 , x 2 s 2 Fig. 10. Two consecutive idempotent loops with the same effect.

This factor can be seen as a concatenation of factors intercepted by L that correspond to edges of C j inside L 1 i . More precisely, ρ 1 r 1 i,j , 1 i`1,j s is obtained by concatenating the unique LR-factor of C j -recall that by Lemma 8 there is exactly one such factor -with an interleaving of the LL-factors and the RR-factors of C j . As the components are the same for all L 1 i 's, this corresponds precisely to the trace trpC j q (cf. Definition 10). Now that we know that ρ 1 r 1 i,j , 1 i`1,j s is isomorphic to trpC j q, we can conclude that ρ 1 r 1 0,j , 1 m,j s " ρ 1 r 1 0,j , 1 1,j s . . . ρ 1 r 1 m´1,j , 1 m,j s is isomorphic to trpC j q m . Theorem 13. Let I " rx 1 , x 2 s be an interval of positions, K " r 1 , 2 s an interval of locations, and Z " K X pI ˆNq. If ˇˇoutpρ | Zq ˇˇą B, then there exist an idempotent loop L and a component C of L such that

' x 1 ă minpLq ă maxpLq ă x 2 (in particular, L Ĺ I), ' 1 ¡ anpCq ¡ 2 (in particular, anpCq P K), ' outptrpCqq ‰ ε.
Proof. Let I, K, Z be as in the statement, and suppose that ˇˇoutpρ | Zq ˇˇą B. We define Z 1 " Z z t 1 , 2 u z `tx 1 , x 2 uq ˆNȃ nd we observe that there are at most 2h max locations in Z that are missing from Z 1 . This means that ρ | Z 1 contains all but 4h max transitions of ρ | Z, and because each transition outputs at most c max letters, we have ˇˇoutpρ | Z 1 q ˇˇą B ´4c max ¨hmax " c max ¨hmax ¨23emax . For every level y, let X y be the set of positions x such that px, yq is the source location of a transition of ρ | Z 1 that produces non-empty output. For example, if we refer to Fig. 10, the vertical dashed lines represent the positions of X y for a particular level y; accordingly, the circles in the figure represent the locations of the form px, yq, for x P X y . Since each transition outputs at most c max letters, we have ř y |X y | ą h max ¨23emax . Moreover, since there are at most h max levels, there is a level y (which we fix hereafter) such that |X y | ą 2 3emax .

Claim. There are two consecutive loops L 1 " rx, x 1 s and L 2 " rx 1 , x 2 s such that E L1 " E L2 " E L1YL2 and with endpoints x, x 1 , x 2 P X y .

Proof. By Theorem 12, there is a factorization forest for X of height at most 3e max . Since |X y | ą 2 3emax , we know that this factorization forest contains an internal node L 1 " rx 1 1 , x 1 k`1 s with k ą 2 children, say L 1 " rx 1 1 , x 1 2 s, . . . L k " rx 1 k , x 1 k`1 s. By definition of factorization forest, the effects E L 1 , E L1 , . . . , E L k are all equal and idempotent. Moreover, as ρ is a valid run, the dummy element K of the effect semigroup does not appear in the factorization forest. In particular, the effect E L 1 " E L1 " ¨¨¨" E L k is a triple of the form pF L 1 , c 1 , c 2 q, where c i " ρ|x i is the crossing sequence at x 1 i . Finally, since E L 1 is idempotent, we have that c 1 " c 2 and this is equal to the crossing sequences of ρ at the positions x 1 1 , . . . , x 1 k`1 . This shows that L 1 , L 2 are idempotent loops.

˝(claim)

Turning back to the proof of the theorem, we know that there are two consecutive idempotent loops L 1 " rx, x 1 s and L 2 " rx 1 , x 2 s with the same effect and with endpoints x, x 1 , x 2 P X y Ď I z tx 1 , x 2 u (see again Fig. 10).

Let " px, yq and 2 " px 2 , yq, and observe that both locations belong to Z 1 . In particular, and 2 are strictly between 1 and 2 . Suppose by symmetry that ¢ 2 . Further let C be the component of L 1 Y L 2 (or, equally, of L 1 or L 2 ) that contains the node y. Below, we focus on the factors of ρr , 2 s that are intercepted by L 1 Y L 2 : these are represented in Fig. 10 by the thick arrows. By Lemma 8 all these factors correspond to edges of the same component C, namely, they are pL 1 Y L 2 , Cq-factors.

Consider any factor α of ρr , 2 s intercepted by L 1 Y L 2 , and assume that α " β 1 ¨¨¨β k , where β 1 , . . . , β k are the factors intercepted by L 1 or L 2 . By Lemma 39, any two adjacent factors β i , β i`1 correspond to edges in the same component of L 1 and L 2 , respectively. Thus, by transitivity, all factors β 1 , . . . , β k correspond to edges in the same component, say C 1 . We claim that C 1 " C. Indeed, if β 1 is intercepted by L 1 , then C 1 " C because α and β 1 start from the same location and hence they correspond to edges of the flow that depart from the same node. The other case is where β 1 is intercepted by L 2 , for which a symmetric argument can be applied.

So far we have shown that every factor of ρr , 1 s intercepted by L 1 Y L 2 can be factorized into some pL 1 , Cq-factors and some pL 2 , Cq-factors. We conclude the proof with the following observations: ' By construction, both loops L 1 , L 2 are contained in the interval of positions I " rx 1 , x 2 s, and have endpoints different from x 1 , x 2 . ' Both anchors of C inside L 1 and L 2 belong to the interval of locations K z t 1 , 2 u. This holds because ρr , 1 s contains a factor α that is intercepted by L 1 Y L 2 and spans across all the positions from x to x 2 , namely, an LR-factor. This factor starts at the anchor of C inside L 1 and visits the anchor of C inside L 2 . Moreover, by construction, α is also a factor of the subsequence ρ | Z 1 . This shows that the anchors of C inside L 1 and L 2 belong to Z 1 , and in particular to K z t 1 , 2 u.

'

The first factor of ρr , 1 s that is intercepted by L 1 YL 2 starts at " px, yq, which by construction is the source location of some transition producing non-empty output. By the previous arguments, this factor is a concatenation of pL 1 , Cq-factors and pL 2 , Cq-factors. This implies that the trace of C inside L 1 or the trace of C inside L 2 produces non-empty output.

Proposition 16. If T is one-way definable, then for every inversion pL 1 , C 1 , L 2 , C 2 q of a successful run ρ of T , the word out `trpC 1 q ˘out `ρranpC 1 q, anpC 2 qs ˘out `trpC 2 q has period p that divides both |outptrpC 1 qq| and |outptrpC 2 qq|. Moreover, p ď B.

Proof of Proposition 16. The proof of the first claim of the proposition is similar to the proof of Proposition 7 in [START_REF] Baschenis | One-way definability of sweeping transducer[END_REF] for sweeping transducers. The main difficulty in the present proof is to get a bound on the period of the output of the inversion. Let pL 1 , C 1 , L 2 , C 2 q be an inversion of a successful run ρ on input u. Note that the two loops L 1 and L 2 might not be disjoint. In fact, two cases arise: either maxpL 2 q ă minpL 1 q (that is, L 1 and L 2 are disjoint and L 2 is strictly to the left of L 1 ), or minpL 1 q ď minpL 2 q ď maxpL 1 q ď maxpL 2 q (the fact that minpL 2 q ď maxpL 1 q follows from the fact that the anchor anpC 2 q is to the left of the anchor anpC 1 q). For the sake of simplicity, we only deal with the case where L 1 and L 2 are disjoint, as shown in Fig. 5 -the other case can be treated in a similar way by considering the rightmost copy of L 1 in the pumped run pump 3 L1 pρq, which is clearly disjoint from the leftmost copy of L 2 . We begin by pumping the run ρ, together with the underlying input u, on the loops L 1 and L 2 . Formally, for all numbers m 1 , m 2 P N, we define u pm1,m2q " pump m1`1 L1 ppump m2 L2 puqq ρ pm1,m2q " pump m1`1 L1 ppump m2 L2 pρqq.

We identify the positions that mark the endpoints of the occurrences of L 1 and L 2 in the pumped run ρ pm1,m2q . Formally, if L 1 " rx 1 , x 2 s and L 2 " rx 3 , x 4 s, then the sets of positions are defined as follows:

X pm1,m2q 2 
"
x 3 `i ¨px 4 ´x3 q : i " 0, . . . , m 2 `1( X pm1,m2q 1 "

x 1 `i ¨px 2 ´x1 q `m2 ¨px 4 ´x3 q : i " 0, . . . , m 1 `1( .

Let T 1 be a one-way transducer equivalent to T , and consider a successful run λ pm1,m2q of T 1 on the input u pm1,m2q . Since T 1 has finitely many states, we can find a large enough number m and two positions

x 1 1 ă x 1 2 both in X pm,mq 1 
, such that L 1

1 " rx 1 1 , x 1 2 s is a loop of λ pm,mq . Similarly, we can find two positions

x 1 3 ă x 1 4 both in X pm,mq 2 
, such that L 1 2 " rx 1 3 , x 1 4 s is a loop of λ pm,mq . Clearly, L 1 1 and L 1 2 are also loops of ρ pm,mq : indeed, L 1 1 (resp. L 1 2 ) consists of k 1 ď m (resp. k 2 ď m) copies of L 1 (resp. L 2 ) in ρ pm,mq . In particular, for all m 1 , m 2 P N we have:

pump m1`1 L 1 1 ppump m2`1 L 1 2 pu pm,mq qq " u pf pm1q,gpm2qq pump m1`1 L 1 1 ppump m2`1 L 1 2 pρ pm,mq qq " ρ pf pm1q,gpm2qq pump m1`1 L 1 1 ppump m2`1 L 1 2
pλ pm,mq qq " λ pf pm1q,gpm2qq . where f pm 1 q " k 1 ¨m1 `m, gpm 2 q " k 2 ¨m2 `m. Now we observe that the run λ pf pm1q,gpm2qq of T 1 produces the same output as the run ρ pf pm1q,gpm2qq of T -this holds thanks to the fact that the transducers are functional, otherwise it may happen that the pumped runs λ pf pm1q,gpm2qq and ρ pf pm1q,gpm2qq produce different outputs. Let us denote this output by w pf pm1q,gpm2qq . Below, we show two possible factorizations of w pf pm1q,gpm2qq based on the shapes of the pumped runs λ pf pm1q,gpm2qq and ρ pf pm1q,gpm2qq . For the first factorization, we recall that L 1 2 precedes L 1 1 , according to the ordering of positions, and that the run λ pf pm1q,gpm2qq is left-toright. We thus obtain w pf pm1q,gpm2qq " w 0 w m2

1 w 2 w m1 3 w 4 (1) 
pL 1 , C 1 q and pL 2 , C 2 q of the inversion are not output-minimal. Nonetheless, in the pumped run ρ p2,1q we do find inversions with output-minimal pairs. For example, as suggested by the right part of Fig. 11, we can consider the leftmost and rightmost occurrences of L 1 in ρ p2,1q , denoted as Ý L 1 and Ý L 1 , respectively. Let pL 0 , C 0 q be any output-minimal pair such that L 0 is an idempotent loop, outptrpC 0 qq ‰ ε, and either pL 0 , C 0 q " p Ý L 1 , C 1 q or pL 0 , C 0 q Ă p Ý L 1 , C 1 q -such a loop L 0 is suggestively represented in the figure by the red vertical stripe.

We claim that either pL 0 , C 0 , L 2 , C 2 q or p Ý L 1 , C 1 , L 0 , C 0 q is an inversion of the run ρ p2,1q , depending on whether the anchor of C 0 inside L 0 occurs before or after the anchor of C 2 inside L 2 . First, note that all the loops L 0 , L 2 , Ý L 1 are idempotent and non-overlapping; more precisely, we have maxpL 2 q ď minpL 0 q and maxpL 0 q ď minp Ý L 1 q. Moreover, the trace outputs for the pairs pL 0 , C 0 q, pL 2 , C 2 q, p Ý L 1 , C 1 q are non-empty. So it remains to distinguish the two cases based on the ordering of the anchors of C 0 , C 1 , C 2 inside the loops L 0 , Ý L 1 , L 2 , respectively. We denote those anchors by 0 , 1 , 2 . If 0 ¢ 2 , then pL 0 , C 0 , L 2 , C 2 q is clearly an inversion. Otherwise, because p Ý L 1 , C 1 , L 2 , C 2 q is an inversion, we know that 1 ¢ 2 ¢ 0 , and hence p Ý L 1 , C 1 , L 0 , C 0 q is an inversion. Now, we know that ρ p2,1q contains the inversion p Ý L 1 , C 1 , L 2 , C 2 q, but also an inversion with an output-minimal pair pL 0 , C 0 q, where L 0 is strictly between Ý L 1 and L 2 . For all m 0 , m 1 , m 2 , we define ρ pm0,m1,m2q as the run obtained from ρ p2,1q by pumping m 0 , m 1 , m 2 times the loops L 0 , Ý L 1 , L 2 , respectively. Since the output of the run ρ pm0,m1,m2q contains many repetitions of the trace output outptrpC 0 qq of C 0 inside L 0 , and since these repetitions occur as factors of the output produced inside the inversion p Ý L 1 , C 1 , L 2 , C 2 q, their period p 1 divides |outptrpC 0 qq|, |outptrpC 1 qq|, and |outptrpC 2 qq| (due to Lemma 17). By Theorem 18, we deduce that the word out `trpC 1 q ρranpC 1 q, anpC 2 qs trpC 2 q ˘has period p 1 as well. To conclude the proof, it suffices to recall Lemma 21, saying that the length of outptrpC 0 qq, and hence the period p 1 , is bounded by B. Proof. The idea of the proof is to let the parameters m 1 , m 2 of the equation grow independently, and exploit Fine and Wilf's theorem (Lemma 17) a certain number of times to establish periodicities in overlapping factors of the considered words.

We begin by fixing m 1 large enough so that the factor v m1 We remark that the periodicity shown so far holds for infinitely many m 1 and for all but finitely many m 2 , where the threshold for m 2 depends on m 1 : once m 1 is fixed, m 2 needs to be larger than f pm 1 q, for a suitable function f . In fact, using Theorem 18, we can show that the periodicity holds even when m 2 ranges over all natural numbers. To see this, we introduce the following shorthand: given a word w and a rational number r " n |w| , with n P N, we denote by w r the word w tru w 1 , where w 1 is the prefix of w of length |w| ¨pr ´truq. We then state the periodicity property for v

1 v pm1,m2q 2 v m2`1 3 as an equation of the form v 1 v pm1,m2q 2 v m2`1 3 " v gpm 2 q |v|
which, once m 1 is fixed, must hold for all but finitely many m 2 , for a suitable word v of the same length as v 3 , and for a suitable linear function g : N Ñ N. More precisely, gpm 2 q gives the length of the left hand-side of the equation. The above equation can be easily rewritten so as to highlight all the repetitions that depend on m 2 , including those that are hidden inside the term v pm1,m2q 2

. Note that we cannot apply Theorem 18 yet, since the repetitions in the right hand-side of the equation may be fractional. If this is the case, however, it means that the left hand-side of the equation contains a repetition of the form w m2 , for some word w whose length is not multiple of |v|. By Fine and Wilf's theorem (Lemma 17), we know that the period of the left hand-side is in fact smaller, i.e. gcdp|v 3 |, |w|q. We can then replace the right hand-side of the equation with an exact repetition of a word v 1 shorter than v. This enables the application of Theorem 18, which implies that the equation holds for all m 2 P N. In this way we have shown that the word v 1 v pm1,m2q 2 v m2`1 3 has period |v 3 | for all m 2 P N. We could also apply a symmetric reasoning, by fixing m 2 and by letting m 1 grow arbitrarily large. Doing so, we prove that for a large enough m 2 and for all but finitely many m 1 , the word v m1`1 1 v pm1,m2q 2 v 3 is periodic with period |v 1 |. As before, this can be strengthened to hold for all m 1 P N, independently of the choice of m 2 .

Let 2 " anpCq. By following the same line of reasoning as before, we recall that is the first location of the non-singleton class K. From this we derive the existence an inversion pL 1 , C 1 , L 2 , C 2 q such that " anpC 1 q. We claim that ¢ 2 . Indeed, if this were not the case, then, because 2 is strictly to the left of x 1 and is to the right of x 1 , there would exist a location 1 1 between 2 and that lies at position x 1 . But 1 ¡ 2 ¢ 1 1 ¢ would contradict the fact that 1 is the latest location before that lies at the position x 1 " minpX anpKq q. Now that we know that ¢ 2 and that 2 is to the left of x 1 , we observe that pL 1 , C 1 , L, Cq is also an inversion, and hence 2 P anpKq. Since 2 is strictly to the left of x 1 , we get a contradiction with the definition of x 1 as leftmost position of the locations of K that are anchors of components of inversions. We must conclude that |outpρ | Z q| ď B.

This completes the proof that ρ | blockpKq is a block.

Lemma 29. Suppose that K 1 and K 2 are two different non-singleton S ˚-classes such that ¡ 1 for all P K 1 and 1 P K 2 .

Let blockpK 1 q " r 1 , 2 s and blockpK 2 q " r 3 , 4 s, with 2 " px 2 , y 2 q and 3 " px 3 , y 3 q. Then x 2 ă x 3 .

Proof. Suppose by contradiction that K 1 and K 2 are as in the statement, but x 2 ě x 3 . By Definition 27, x 2 " maxpX anpK1q q and x 3 " minpX anpK2q q. This implies the existence of some inversions pL 1 , C 1 , L 2 , C 2 q and pL 3 , C 3 , L 4 , C 4 q such that anpC i q " px 2 , yq for some i P t1, 2u and anpC j q " px 3 , y 1 q for some j P t3, 4u. Moreover, since anpC i q ¢ anpC j q and x 2 ě x 3 , we know that pL i , C i , L j , C j q is also an inversion. But this means that K 1 " K 2 .

Lemma 30. Let ρr 1 , 2 s be a factor of ρ that does not overlap any S ˚-block, with 1 " px 1 , y 1 q, 2 " px 2 , y 2 q, and x 1 ă x 2 .

Then ρr 1 , 2 s is a diagonal.

Proof. Suppose by contradiction that there is some x P rx 1 , x 2 s such that, for all locations " px, yq between 1 and 2 , one of the following conditions holds:

1) |outpρ | Z q| ą B, where Z " r , 2 s X `r0, xs ˆN˘, 2) |outpρ | Z q| ą B, where Z " r 1 , s X `rx, ωs
ˆN˘. We claim first that for each condition above there is some level y at which it holds. Observe that for the highest location of the run at position x, the set Z is empty, since the outgoing transition at is rightward. So condition 1 is trivially violated at as above, hence condition 2 holds by the initial assumption. Symmetrically, condition 1 holds at the lowest location of the run at position x. Let us now compare, for each condition, the levels where it holds.

Clearly, the lower the level of the location , the easier it is to satisfy condition 1, and symmetrically for condition 2. So, let " px, yq (resp. 1 " px, y 1 q) be the highest (resp. lowest) location at position x that satisfies condition 1 (resp. condition 2). We claim that y ě y 1 . For this, we first observe that y ě y 1 ´1, since otherwise there would exist a location " px, y 2 q, with y ă y 2 ă y 1 , violating both conditions 1 and 2. Moreover, y must be odd, otherwise the transition departing from " px, yq would be rightward oriented and the location 2 " px, y `1q would still satisfy condition 1, contradicting the fact that " px, yq was chosen to be the highest location. For similar reasons, y 1 must also be odd, otherwise there would be a location 2 " px, y 1 ´1q that precedes 1 and satisfies condition 2. But since y ě y 1 ´1 and both y and y 1 are odd, we need to have y ě y 1 .

From the previous arguments we know that in fact " px, yq satisfies both conditions 1 and 2. We can thus apply Theorem 13 to the sets Z and Z , deriving the existence of two idempotent loops L 1 , L 2 and two components

C 1 , C 2 of L 1 , L 2 , respectively, such that ' maxpL 2 q ă x ă minpL 1 q, ' 1 ¡ anpC 1 q ¡ ¡ anpC 2 q ¡ 2 , ' outptrpC 1 qq, outptrpC 2 qq ‰ ε.
In particular, since anpC 1 q is to the right of anpC 2 q w.r.t. the order of positions, we know that pL 1 , C 1 , L 2 , C 2 q is an inversion, and hence anpC 1 q S ˚anpC 2 q. But this contradicts the assumption that ρr 1 , 2 s does not overlap with any S ˚-block.

Proposition 31. Given a functional two-way transducer T , one can construct in 3EXPTIME a one-way transducer T 1 such that T 1 Ď T and dompT 1 q Ě U .

Proof. Given an input u, the transducer T 1 will guess (and check) a successful run ρ of T on u, together with a decomposition pρr i , i`1 sq i of ρ into blocks and diagonals. The decomposition will be used by T 1 to simulate the output of ρ left-to-right, thus proving that T 1 Ď T . Moreover, u P U implies the existence of a successful run that can be decomposed, thus proving that dompT 1 q Ě U . We now provide some details of the construction of T 1 .

Guessing the run ρ is standard (see, for instance, [START_REF] Shepherdson | The reduction of two-way automata to one-way automata[END_REF][START_REF] Hopcroft | Introduction to Automata Theory, Languages, and Computation[END_REF]): it amounts to guess the crossing sequences ρ|x for each position x of the input. Recall that this is a bounded amount of information for each x, since the run is normalized. As concerns the decomposition of ρ, it can be encoded by the endpoints i of its factors, that is, by annotating the position of each i as the level of i . In a similar way T 1 guesses the information of whether each factor ρr i , i`1 s is a diagonal or a block.

Thanks to the definition of decomposition (Def. 23), every two distinct factors span across non-overlapping intervals of positions. This means that each position x is covered by exactly one factor of the decomposition. We call this factor the active factor at position x. The mode of computation of the transducer will depend on the type of active factor: if the active factor is a diagonal (resp. a block), then we say that T 1 is in diagonal mode (resp. block mode). Below we describe the behaviour for these two modes of computation.

Diagonal mode. We recall the key condition satisfied by the diagonal ρr i , i`1 s that is active at position x (cf. Def. 22 and Figure 6): there exists a location x " px, y x q between i and i`1 such that the words outpρ | Z

x q and outpρ | Z x q have length at most B, where Z

x " r x , 2 s X `r0, xs ˆN˘a nd Z x " r 1 , x s X `rx, ωs ˆN˘. Besides the run ρ and the decomposition, the transducer T 1 will also guess the locations x " px, y x q, that is, will annotate each x with the corresponding y x . Without loss of generality, we can assume that the function that associates each position x with the guessed location x " px, y x q is monotone, namely, x ď x 1 implies x ¢ x 1 . While the transducer T 1 is in diagonal mode, the goal is to preserve the following invariant:

After reaching a position x covered by the active diagonal, T 1 must have produced the output of ρ up to location x . To preserve the above invariant when moving from x to the next position x `1, the transducer should output the word outpρr x , x`1 sq. This word consists of the following parts:

1) The words produced by the single transitions of ρr x , x`1 s with endpoints in tx, x `1u ˆN. Note that there are at most h max such words, each of them has length at most c max , and they can all be determined using the crossing sequences at x and x `1 and the information about the levels of x and x`1 . We can thus assume that this information is readily available to the transducer.

2) The words produced by the factors of ρr x , x`1 s that are intercepted by the interval r0, xs. Thanks to the definition of diagonal, we know that the total length of these words is at most B. These words cannot be determined from the information on ρ|x, ρ|x `1, x , and x`1 alone, so they need to be constructed while scanning the input. For this, it is important to store additional information.

More precisely, at each position x of the input, the transducer stores all the outputs produced by the factors of ρ that are intercepted by r0, xs and that occur after a location of the form x 1 , for any x 1 ě x that is covered by a diagonal. This clearly includes the previous words when x 1 " x, but also other words that might be used later for processing other diagonals. Moreover, by exploiting the properties of diagonals, one can prove that those words have length at most B, so they can be stored with triply exponentially many states. Using classical techniques, the stored information can be maintained while scanning the input u using the guessed crossing sequences of ρ.

3) The words produced by the factors of ρr x , x`1 s that are intercepted by the interval rx `1, ωs. These words must be guessed, since they depend on a portion of the input that has not been processed yet. Accordingly, the guesses need to be stored into memory, so that they can be checked later. Formally, the transducer stores, for each position x, the guessed words that correspond to the outputs produced by the factors of ρ intercepted by rx, ωs and occurring before a location of the form x 1 , for any x 1 ď x that is covered by a diagonal.

Block mode. Suppose that the active factor ρr i , i`1 s is a block. Let I " rx i , x i`1 s be the set of positions covered by this factor. Moreover, for each position x P I, let Z x " r i , i`1 s X `r0, xs ˆN˘a nd Z x " r i , i`1 s X `rx, ωs ˆN˘. We recall the key property of a block (cf. Definition 22 and Figure 6): the word outpρr ix , ix`1 sq is almost periodic with bound B, and the words outpρ | Z xi q and outpρ | Z xi`1 q have length at most B.

For the sake of simplicity, suppose that outpρr i , i`1 sq " w 1 w 2 , w 3 , where w 2 is periodic with period B and w 1 , w 2 have length at most B. Similarly, let w 0 " outpρ | Z xi q and w 4 " outpρ | Z xi`1 q. The invariant preserved by T 1 in block mode is the following:

After reaching a position x covered by the active block ρr i , i`1 s, T 1 must have produced the output of the prefix of ρ up to location i , followed by a prefix of outpρr i , i`1 sq " w 1 w 2 w 3 of the same length as outpρ | Z x q. The initialization of the invariant is done when reaching the left endpoint x i of the interval I. At this moment, it suffices that T 1 outputs a prefix of w 1 w 2 w 3 of the same length as w 0 " outpρ | Z xi q, thus bounded by B. Symmetrically, when reaching the right endpoint x i`1 of I, T 1 will have produced almost the entire word outpρr 1 , i sq w 1 w 2 w 3 , but without the suffix of length |w 4 | ď B. Thus, before moving to the next factor of the decomposition, the transducer will have to produce the remaining suffix, so as to complete the output of ρ up to location ix`1 .

It remains to describe how the above invariant can be maintained when moving from a position x to the next position x `1 inside I. For this, it is convenient to succinctly represent the word w 2 by its repeating pattern, say v, of length at most B. To determine the symbols that have to be output at each step, the transducer will maintain a pointer on either w 1 v or w 3 . The pointer is increased in a deterministic way, and precisely by the amount ˇˇoutpρ | Z x`1 q ˇˇ´ˇˇoutpρ | Z x q ˇˇ. The only exception endpoint to the right of x, and as they do not cover the position x, their left endpoint too. This shows that there are at most h max intervals in X 1 j z X 1 j`1 , so |X 1 j`1 | ě h max ¨`2 3emax `1 ´pj `1q ˘.

˝(claim)

Turning back to the proof of the theorem, we consider the left endpoints of the intervals in X , say Ý X " tminpXq : X P X u.

Since | Ý X| ą 2 3emax , we can use Theorem 12 to derive the existence of three distinct positions x ă x 1 ă x 2 P Ý X such that rx, x 1 s and rx 1 , x 2 s are consecutive idempotent loops of ρ with the same effect (see also the proof of Theorem 13 for a similar claim). We let L " rx, x 2 s be the union of those two loops, and we consider the intermediate position x 1 . We recall that x 1 is the left endpoint of an interval of X , which we denote by X i for simplicity. We also recall that X i is the set of positions visited by a factor of the run ρ that goes from the first anchor anpC i q of the inversion I i " pL i , C i , L 1 i , C 1 i q to the second anchor anpC 1 i`1 q of the co-inversion I i`1 " pL i`1 , C i`1 , L 1 i`1 , C 1 i`1 q. We claim that the inversion I i and the co-inversion I i`1 occur in the same factor intercepted by L. Indeed, the factor ρranpC i q, anpC 1 i`1 qs visits only positions inside the interval X i . Moreover, the endpoints of X i are strictly between the endpoints of L, namely, minpLq " x ă x 1 " minpX i q ď maxpX i q ă x 2 " maxpLq.

This shows that the inversion I i " pL i , C i , L 1 i , C 1 i q and the co-inversion I i`1 " pL i`1 , C i`1 , L 1 i`1 , C 1 i`1 q occur in the same factor intercepted by L, which we denote by α. Now, we can easily introduce new copies of the factor α, and hence new copies of the (co)-invesions I i and I i`1 , by pumping the idempotent loop L. Formally, for all m ą 0, we denote by I p1q i , . . . , I pmq i (resp. I p1q i`1 , . . . , I pmq i`1 ) the m copies of the inversion I i (resp. the m copies of the co-inversion I i`1 ) that appear in the pumped run pump m L pρq. For the sake of simplicity, we assume that those copies are listed according to their order of occurrence in the pumped run, namely,

I p1q i ¡ I p1q i`1 ¡ I p2q i ¡ I p2q i`1 ¡ . . . ¡ I pmq i ¡ I pmq i`1
(the order ¡ is extended from locations to (co-)inversions in the natural way).

Towards a conclusion, we observe that `Ip1q i , I L pρq of T . Moreover, this 2m-inversion is not safe, since it consists of (co-)inversions that do not generate periodic outputs -more formally, the period of the word outptrpC i qq outpρranpC i q, anpC 1 i qsq outptrpC 1 i qq (resp. outptrpC i`1 qq outpρranpC i`1 q, anpC 1 i`1 qsq outptrpC 1 i`1 qq) is larger than B or does not divide |outptrpC i qq| and |outptrpC 1 i qq| (resp. |outptrpC i`1 qq| and |outptrpC 1 i`1 qq|). By Theorem 35, this proves that T is not m-pass sweeping definable. Finally, since the above holds for all m ą 0, we conclude that T is not sweeping definable.
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 4133 where m 1 , m 2 are the unknowns, v 1 , v 3 are non-empty words, and v may contain factors of the form v m1 or v m2 , for a generic word v. If the above equation holds for all m 1 , m 2 P N, then the words v 1 v m1 are periodic with period gcdp|v 1 |, |v 3 |q, for all m 1 , m 2 P N.The last ingredient used in the proof of Proposition 16 is a bound on the period of the output produced by an inversion. For this, we introduce a suitable notion of minimality of loops and loop components: Definition 20. Consider pairs pL, Cq consisting of an idempotent loop L and a component C of L.

Lemma 21 .

 21 For every output-minimal pair pL, Cq, |outptrpCqq| ď B.

Fig. 6 .

 6 Fig.6. Outputs that need to be bounded in a diagonal and in a block.

˚, and u 3

 3 has even length. The factors of the run that produce long outputs are highlighted by the bold arrows. The first and third factors of the decomposition, i.e. ρr 1 , 2 s and ρr 3 , 4 s, are diagonals (represented by the blue hatched areas); the second and fourth factors ρr 2 , 3 s and ρr 4 , 5 s are blocks (represented by the red hatched areas).

Fig. 7 .

 7 Fig. 7. A decomposition of a run of a two-way transducer.

Fig. 9 .

 9 Fig.9. Pumping a loop L with a wrong shape and showing it is not idempotent.
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 1941341133 Consider a word equation of the form v , m 2 are the unknowns, v 1 , v 3 are non-empty words, and v may contain some factors of the form v m1 or v m2 , for some v. If the above equation holds for all m 1 , m 2 P N, then the words v 1 are periodic with period gcdp|v 1 |, |v 3 |q, for all m 1 , m 2 P N.
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 4321 of the left hand-side of the equation is longer than |w 0 | `|w 1 | (this is possible because v 1 is non-empty). Now, if we let m 2 grow arbitrarily large, we see that the length of the periodic word w m2 1 is almost equal to the length of the left hand-side term v indeed, the difference in length is given by the constant |w 0 | `|w 2 | `m1 ¨|w 3 | `|w 4 |. In particular, this implies that w m2 1 which in its turn contains long repetitions of the word v 3 . Hence, by Lemma 17, the word v 1 v pm1,m2q has period |v 3 |.

1

 1 ˘is a 2m-inversion of the successful run pump m

In denoting the anchor -and similarly the trace -of a component C inside a loop L, we omit the annotation specifying L, since this is often understood from the context.

two copies of L 1 L 0 Fig. 11. An inversion pL 1 , C 1 , L 2 , C 2 q whose pairs pL i , C i q are not output-minimal. The red parts produce long outputs, and lie outside ρranpC 1 q, anpC 2 qs.

where ' w 0 is the output produced by the prefix of λ pm,mq up to the left border of L 1 2 , ' w 1 is the output produced by the (unique) factor of λ pm,mq intercepted by L 1 2 , ' w 2 is the output produced by the factor of λ pm,mq between the right border of L 1 2 and the left border of L 1 1 , ' w 3 is the output produced by the (unique) factor of λ pm,mq intercepted by L 1 1 , ' w 4 is the output produced by the suffix of λ pm,mq after the right border of L 1 1 . For the second factorization, we consider L 1 1 and L 1 2 as loops of ρ pm,mq . We denote by 1 1 (resp. 1 2 ) the anchor of the component C 1 (resp. C 2 ) of L 1 1 (resp. L 1 2 ). By assumption we have 1 1 ¢ 1 2 . Applying Proposition 11 we get:

(

where

is the output produced by the prefix of ρ pm,mq that ends at 1 1 (note that this word may depend on the parameters m 1 , m 2 , since the loops L 1 1 and L 1 2 may be traversed several times before reaching the location 1 1 ), ' v 1 " outptrpC 1 qq (this word does not depend on m 1 , m 2 ),

is the output produced by the factor of ρ pm,mq between 1 1 and 1 2 ,

is the output produced by the suffix of ρ pm,mq that starts at 1 2 . Putting together Eqs. ( 1) and (2), we get

We recall that the words v 1 , v 3 are non-empty, since they are outputs of traces of components that form an inversion. This allows us to apply Lemma 19, which shows that the word

|q, for all m 1 , m 2 P N. Note that the latter period still depends on T 1 , since the words v 1 and v 3 were constructed from the loops L 1 1 and L 1 2 , that are both loops of the run λ pm,mq of T 1 . However, Proposition 11 tells us that the word v 1 (resp. v 3 ) is an iteration of the output outptrpC 1 qq of the component C 1 of L 1 (resp. the output outptrpC 2 qq of the component C 2 of L 2 ). By Lemma 17, this implies that the period of

In a similar way, we recall from Proposition 11 that all the words v 1 v m1 1 v pm1,m2q 2 v m2 3 v 3 are obtained by iterating suitable factors inside outptrpC 1 qq outpρranpC 1 q, anpC 2 qsq outptrpC 2 qq: more precisely, by iterating n 1 (resp. n 2 ) times the output traces of the components of L 1 (resp. of L 2 ), where n 1 " f pm 1 q (resp. n 2 " gpm 2 q). Since the periodicity property holds for infinitely many n 1 and, independently, for infinitely many n 2 , we know from Theorem 18 that it also holds for all n 1 , n 2 P N, and in particular, for n 1 " n 2 " 0. This allows us to conclude that the word out `trpC 1 q ˘out `ρranpC 1 q, anpC 2 qs ˘out `trpC 2 q ȋs periodic with period p that divides both |outptrpC 1 qq| and |outptrpC 2 qq|.

It remains to prove the second claim of the proposition, which bounds the period by the constant B. This requires a refinement of the previous arguments that involves pumping the run ρ simultaneously on three different loops.

Recall that the period p for the word out `trpC 1 q ˘out `ρranpC 1 q, anpC 2 qs ˘out `trpC 2 q ˘was obtained by considering a run ρ pm1,m2q where the loops L 1 and L 2 have been pumped m 1 and m 2 times, respectively. To bound the period, we need to consider inversions that are formed by output-minimal pairs. As already explained, we cannot assume that the inversion pL 1 , C 1 , L 2 , C 2 q contains an output-minimal pair. For example, the left part of Fig. 11 represents a situation where both pairs Putting together the results proven so far, we get that for all but finitely many m 1 , m 2 ,

Finally, we observe that the prefix v m1`1 1 ¨vpm1,m2q Proof. Consider a pair pL, Cq consisting of an idempotent loop L " rx 1 , x 2 s and a component C of L. We suppose that the length of outptrpCqq exceeds B and we claim that pL, Cq is not output-minimal.

Recall that trpCq is a concatenation of pL, Cq-factors, say, trpCq " β 1 ¨¨¨β k . Let 1 (resp. 2 ) be the first (resp. last) location that is visited by these factors. Further let K " r 1 , 2 s and Z " K X pLˆNq. By construction, the subrun ρ | Z can be seen as a concatenation of the factors β 1 , . . . , β k , possibly in a different order than that of trpCq. This implies that |outpρ | Zq| ą B.

By Theorem 13, we know that there exist an idempotent loop L 1 Ĺ L and a component C 1 of L 1 such that anpC 1 q P K and outptrpC 1 qq ‰ ε. In particular, the pL 1 , C 1 q-factor that starts at the location anpC 1 q is entirely contained in some pL, Cq-factor. This implies that pL 1 , C 1 q Ă pL, Cq, and thus pL, Cq is not output-minimal.

Proposition 26. If ρ satisfies the periodicity property stated in P2 and ¢ 1 are two locations in the same S ˚-class, then out `ρr , 1 s ˘has period at most B.

Proof. The claim for " 1 holds trivially, so we assume that ¡ 1 . We know that , 1 belong to the same non-singleton S ˚class. By definition of S, the run ρ contains some inversions pL

such that anpC 0 q ¢ ¡ 1 ¢ anpC 2k`1 q and anpC 2i q ¢ anpC 2i`2 q ¢ anpC 2i`1 q ¢ anpC 2i`3 q for all i " 0, . . . , k ´1. Without loss of generality we can assume that every inversion

We introduce the following shorthands for all i " 0, . . . , 2k `1: i " anpC i q, v i " outptrpC i qq, and p i " |v i |. By Property P2, we know that v 2i outpρr 2i , 2i`1 sq v 2i`1 has period at most B that divides both p 2i and p 2i`1 .

In order to show that out `ρr , 1 s ˘has period at most B, it suffices to prove the following claim by induction on i:

Claim. For all i " 0, . . . , k, the period of out `ρr 0 , 2i`1 s ˘v2i`1 divides p 2i`1 and is bounded by B.

Proof of claim. The base case i " 0 follows from Property P2, since pL 0 , C 0 , L 1 , C 1 q is an inversion. For the inductive step, we assume that the claim holds for i ă k and we prove it for i `1. We factorize our word as follows:

out `ρr 0 , 2i`3 s ˘v2i`3 " loooooooooooooooooooooooomoooooooooooooooooooooooon period p2i`1 out `ρr 0 , 2i`2 s ˘periods p2i`2 and p2i`3

By the inductive hypothesis, the output produced between 0 and 2i`1 , even extended to the right with the trace output v 2i`1 , has period that divides p 2i`1 . Moreover, because pL 2i`2 , C 2i`2 , L 2i`3 , C 2i`3 q is an inversion, the output produced between the locations 2i`2 " anpC 2i`2 q and 2i`3 " anpC 2i`3 q, extended to the left with v 2i`2 and to the right with v 2i`3 , has period that divides both p 2i`2 and p 2i`3 . This does not suffice yet to apply Fine-Wilf's theorem so as to derive a suitable period of out `ρr 0 , 2i`3 s ˘v2i`3 , since the common factor out `ρr 2i`2 , 2i`1 s ˘might be too short. The key argument here is that the interval r 2i`2 , 2i`1 s is covered by the inversion pL 2i`2 , C 2i`2 , L 2i`1 , C 2i`1 q, which is different from the previous ones.

For this, we have to prove that the anchors anpC 2i`2 q and anpC 2i`1 q are correctly ordered w.r.t. ¢ and the ordering of positions (recall Definition 14). First, we have anpC 2i`2 q ¢ anpC 2i`1 q by assumption. Now we prove that anpC 2i`1 q is strictly to the left of anpC 2i`2 q, according to the ordering of positions. By way of contradiction, suppose that this is not the case, namely, anpC 2i`1 q " px 2i`1 , y 2i`1 q, anpC 2i`2 q " px 2i`2 , y 2i`2 q, and x 2i`1 ą x 2i`2 . Because pL 2i , C 2i , L 2i`1 , C 2i`1 q and pL 2i`2 , C 2i`2 , L 2i`3 , C 2i`3 q are inversions, we know that anpC 2i`3 q is to the left of anpC 2i`2 q and anpC 2i`1 q is to the left of anpC 2i q. This implies that anpC 2i`3 q is to the left of anpC 2i q, and hence pL 2i , C 2i , L 2i`3 , C 2i`3 q is also an inversion. But this would contradict the maximality of pL 2i , C 2i , L 2i`1 , C 2i`1 q, which was assumed at the beginning of the proof. Now that we know that anpC 2i`2 q and anpC 2i`1 q are correctly ordered w.r.t. ¢ and the ordering of positions, we recall that the trace outputs v 2i`1 and v 2i`2 are non-empty. This implies that pL 2i`2 , C 2i`2 , L 2i`1 , C 2i`1 q is an inversion. Moreover, the latter inversion covers the interval of locations r 2i`2 , 2i`1 s. By Property P2, the word v 2i`2 outpρr 2i`2 , 2i`1 sq v 2i`1 has period that divides both p 2i`2 and p 2i`1 .

Summing up, we have: 1) w 1 " out `ρr 0 , 2i`1 s ˘v2i`1 has period p 2i`1 , 2) w 2 " v 2i`2 out `ρr 2i`2 , 2i`1 s ˘v2i`1 has period p " gcdpp 2i`2 , p 2i`1 q, 3) w 3 " v 2i`2 out `ρr 2i`2 , 2i`3 s ˘v2i`3 has period p 1 " gcdpp 2i`2 , p 2i`3 q. We are now ready to exploit our slightly stronger variant of Fine-Wilf's theorem, that is, Lemma 17.

Let w " out `ρr 2i`2 , 2i`1 s ˘v2i`1 be the common suffix of w 1 and w 2 . From 1. and 2., we know that the latter words have period p 2i`1 and p " gcdpp 2i`2 , p 2i`1 q, respectively. Moreover, since p divides |w 2 | ´|w| (" |v 2i`2 |), w is also a prefix of w 2 . For the same reason, we also know that |w| ě |v 2i`1 | " p 2i`1 " p 2i`1 `p ´gcdpp 2i`1 , pq (the latter equality follows from the fact that p divides p 2i`1 ). Thus, by applying Lemma 17 to w 1 " w 1 1 w and w 2 " w w 2 2 , using w as common factor, we obtain that 4) w 4 " w 1 1 w w 2 2 " out `ρr 0 , 2i`2 s ˘v2i`2 out `ρr 2i`2 , 2i`1 s ˘v2i`1 has period p. Now, from 2. and 3., we know that the words w 2 and w 3 have periods p and p 1 , respectively, and contain v 2i`2 as factor. Moreover, the length of the factor v 2i`2 is a multiple of both periods p and p 1 , and hence |v 2i`2 | ě p `p1 ´gcdpp, p 1 q (this is folklore, and follows from basic facts in number theory, such as q ¨q1 ě q `q1 ´1 for all q, q 1 P N). From Lemma 17 we derive that 5) w 5 " v 2i`2 out `ρr 2i`2 , 2i`3 s ˘v2i`3 has period p 2 " gcdpp 2i`1 , p 2i`2 , p 2i`3 q. In a similar way, from 4. and 5., using again v 2i`2 as common factor of w 4 and w 5 , we derive 6) w 6 " out `ρr 0 , 2i`2 s ˘v2i`2 out `ρr 2i`2 , 2i`3 s ˘v2i`3 has period p 2 . Finally, the periodicity is not affected when we remove factors of length multiple than the period. In particular, by removing the factor v 2i`2 from w 6 , we obtain the word out `ρr 0 , 2i`3 s ˘v2i`3 , whose period still divides p 2i`3 . This proves the claim for the inductive step, and completes the proof of the proposition. Lemma 28. If K " r , 1 s is a non-singleton S ˚-class, then ρr 1 , 2 s is a block, where r 1 , 2 s " blockpKq.

Proof. Let K " r , 1 s and blockpKq " r 1 , 2 s, with i " px i , y i q for both i " 1, 2, and let anpKq and X anpKq be the sets given in Definition 27.

We begin by observing that the factor ρr 1 , s between the first location of the block and the first location of the equivalence class lies entirely to the right of position x 1 . Indeed, if this were not the case, there would exist another location 1 1 " px 1 , y 1 `1q, on the same position x 1 as 1 but at a higher level, such that 1 ¡ 1 1 ¢ . But this would contradict Definition 27. In a similar way one verifies that the factor ρr 1 , 2 s lies to the left of x 2 .

Next, we prove that the output produced by the factor ρr 1 , 2 s is quasi-periodic. By Definition 27, we have 1 ¢ ¡ 1 ¢ 2 , and by Proposition 26 we know that outpρr , 1 sq is periodic with period at most B. So it suffices to bound the length of the words outpρr 1 , sq and outpρr 1 , 2 sq. We shall focus on the former word, as the arguments for the latter are similar. As usual, the idea is to apply a Ramsey-type argument.

Suppose, by way of contradiction, that the length of |outpρr 1 , sq| ą B. We head towards finding a location 2 ¡ that is S ˚-equivalent to , thus contradicting the fact that is the first location of the equivalence class K. Recall that the factor ρr 1 , s lies entirely to the right of the position x 1 of 1 , so |outpρr 1 , sq| ą B is equivalent to saying |outpρ | Zq| ą B, where Z " r 1 , s X `rx 1 , ωs ˆN˘. Theorem 13 implies the existence of an idempotent loop L and a component C such that

anpCq. By construction, x 1 is the leftmost position of all the locations of the class K " r , 1 s that are also anchors of components of inversions. Thus there exist an inversion pL 1 , C 1 , L 2 , C 2 q and a location 3 " px 1 , y 3 q P K such that 3 " anpC i q for some i P t1, 2u. Since 2 ¡ ¢ 3 and the position of 2 is to the right of x 1 , we know that pL, C, L i , C i q is also an inversion, and hence 2 S ˚ 3 S ˚ . But since 2 ‰ , we get a contradiction with the assumption that is the first location of a S ˚-class. In this way we have shown that |outpρr 1 , sq| ď B.

It remains to bound the lengths of the outputs produced by the subruns ρ | Z and ρ | Z , where Z " r 1 , 2 sX `r0, x 1 sˆN ȃnd Z " r 1 , 2 sX `rx 2 , ωsˆN ˘. As usual, we consider only one of the two symmetric cases. Suppose, by way of contradiction, that |outpρ | Z q| ą B. By Theorem 13, there exist an idempotent loop L and a component C of L such that

is when the pointer lies in w 1 v, but its increase would go over w 1 v: in this case the transducer has the choice to either bring the pointer back to the beginning of v (representing a periodic output inside w 2 ), or move it to w 3 . Of course, this is a non-deterministic choice, but it can be validated when reaching the right endpoint of I. Concerning the number of symbols that need to be emitted at each step, this can be determined from the crossing sequences at x and x `1, and from the knowledge of the lowest and highest levels of locations that are at position x and between i and i`1 . We denote the latter levels by y x and y x , respectively.

Overall, this shows how to maintain the invariant of the block mode, assuming that the levels y x , y x are known, as well as the words w 0 , w 1 , v, w 3 , w 4 of bounded length. Like the mapping x Þ Ñ x " px, y x q used in diagonal mode, the mapping x Þ Ñ py x , y x q can be guessed and checked using the crossing sequences. Similarly, the words w 1 , v, w 3 can be guessed just before entering the active block, and can be checked along the process. As concerns the words w 0 , w 4 , these can be guessed and checked in a way similar to the words that we used in diagonal mode. More precisely, for each position x of the input, the transducer stores the following additional information: 1) the outputs produced by the factors of ρ that are intercepted by r0, xs and that occur after the beginning j of a block, where j " px j , y j q and x j ě x; 2) the outputs produced by the factors of ρ that are intercepted by rx, ωs and that occur before the ending j`1 of a block, where j`1 " px j`1 , y j`1 q and x j`1 ď x. Thanks to the properties of blocks, the above words have length at most B and can be maintained while processing the input and the crossing sequences. Finally, we observe that the words, together with the information given by the lowest and highest levels y x , y x , for both x " x i and x " x i`1 , are sufficient for determining the content of w 0 and w 4 .

The above constructions give a one-way transducer T 1 of size triple exponential in T .

Theorem 36. A functional two-way transducer T is sweeping definable iff it is k-pass sweeping definable, for k " 2h max p2 3emax `1q.

Proof. Suppose that T is not k-pass sweeping definable for k " 2h max ¨p2 3emax `1q. We aim at proving that T is not m-pass sweeping definable for all m ą 0. By Theorem 35, we know that there exist a successful run ρ and a k-inversion I " pI 0 , . . . , I k´1 q of it, with I i " pL i , C i , L 1 i , C 1 i q, that is not safe. We consider the locations of ρ that are visited between the beginning of an inversion I i and the ending of the next co-inversion I i`1 . Formally, for all even indices i " 0, 2, . . . , k ´1, we let K i " " anpC i q, anpC 1 i`1 q ‰ .

We then project each K i on the x-coordinates:

X i " x : D " px, yq P K i ( .

Since K i is an interval of locations and the transducer T can only move its head between consecutive positions, we know that each X i is an interval of positions. Hereafter, we often use the term "interval" to denote a set of the form X i , for some even index i P t0, 2, . . . , κ ´1u. Below we prove that there is a large enough set of pairwise non-overlapping intervals:

Claim. There is a set X " tX i u iPI of cardinality n " 2 3emax `1 such that X X X 1 " H for all X ‰ X 1 P X .

Proof. In this proof, we consider an ordering on the intervals X i different from the one induced by the indices i. This is given by the lexicographic order on the endpoints, where the dominant element is the rightmost endpoint, namely, we let X i ă X j if either maxpX i q ă maxpX j q, or maxpX i q " maxpX j q and minpX i q ă minpX j q.

We construct the set X inductively, by following the lexicographic ordering. Formally, for all j " 0, . . . , n, we construct: ' a set X j of size j such that X X X 1 " H for all X ‰ X 1 P X j ' a set X 1 j of size at least h max ¨p2 3emax `1 ´jq such that, for all X P X j and all X 1 P X 1 j , maxpXq ă minpX 1 q (namely, all intervals of X 1 j are strictly to the right of the intervals of X j ). The base case j " 0 of the induction is easy: we let X 0 " H and X 1 0 be the set of all intervals. It only suffices to observe that X 1 0 has cardinality k 2 " h max ¨p2 3emax `1q. For the inductive step, suppose that j ă n " 2 3emax `1 and that we constructed X j and X 1 j satisfying the inductive hypothesis. We let X be the least element in X 1 j according to the lexicographic order (note that X 1 j ‰ H since j ă n). Accordingly, we define X j`1 " X j Y tXu and X 1 j`1 as the subset of X 1 j that contains the intervals strictly to the right of X. It remains to verify that X 1 j`1 has cardinality at least h max ¨`2 3emax `1 ´pj `1q ˘. For this we recall that the run ρ is normalized. This implies that there are at most h max intervals in X 1 j that cover the position x " maxpXq. All other intervals of X 1 j are necessarily to the right of X: indeed, because X is minimal in the lexicographic ordering, we know that every interval of X 1 j has the right