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Université de Bordeaux, LaBRI

anca@labri.fr

Gabriele Puppis
CNRS, LaBRI

gabriele.puppis@labri.fr

Abstract—Functional transductions realized by two-way trans-
ducers (equivalently, by streaming transducers and by MSO
transductions) are the natural and standard notion of “regular”
mappings from words to words. It was shown recently (LICS’13)
that it is decidable if such a transduction can be implemented
by some one-way transducer, but the given algorithm has non-
elementary complexity. We provide an algorithm of different
flavor solving the above question, that has double exponential
space complexity. We further apply our technique to decide
whether the transduction realized by a two-way transducer can
be implemented by a sweeping transducer, with either known or
unknown number of passes.

I. INTRODUCTION

Since the early times of computer science, transducers have
been identified as a fundamental notion of computation, where
one is interested how objects can be transformed into each
other. Numerous fields of computer science are ultimately
concerned with transformations, ranging from databases to
image processing, and an important issue is to perform trans-
formations with low costs, whenever possible.

The most basic form of transformers are devices that process
an input and produce outputs during the processing, using
finite memory. Such devices are called finite-state transducers.
Word-to-word finite-state transducers were considered in very
early work in formal language theory [1, 2, 3], and it was
soon clear that they are much more challenging than finite-
state word acceptors - the classical finite-state automata. One
essential difference between transducers and automata over
words is that the capability to process the input in both
directions strictly increases the expressive power in the case of
transducers, whereas this does not for automata [4, 5]. In other
words, two-way word transducers are strictly more expressive
than one-way word transducers.

We consider in this paper functional transducers, that com-
pute functions from words to words. Two-way word transduc-
ers capture very nicely the notion of regularity in this setting.
Regular word functions, i.e. functions computed by functional
two-way transducers, inherit many of the characterizations and
algorithmic properties of the robust class of regular languages.
Engelfriet and Hoogeboom [6] showed that monadic second-
order definable graph transductions, restricted to words, are
equivalent to two-way transducers — this justifies the notation
“regular” word functions, in the spirit of classical results
in automata theory and logic by Büchi, Elgot, Rabin and
others. Recently, Alur and Cerný [7] proposed an enhanced
version of one-way transducers called streaming transducers,
and showed that they are equivalent to the two previous

models. A streaming transducer processes the input word from
left to right, and stores (partial) output words in finitely many,
write-only registers.

Two-way transducers raise challenging questions about re-
source requirements. One crucial resource is the number of
times the transducer needs to re-process the input word. In
particular, the case where the input can be processed in a single
pass, from left to right, is very attractive as it corresponds
to the setting of streaming, where the (possibly very large)
inputs do not need to be stored in order to be processed.
Recently, it was shown in [8] that it is decidable whether
the transduction defined by a functional two-way transducer
can be implemented by a one-way transducer. However, the
decision procedure of [8] has non-elementary complexity, and
it is very natural to ask whether one can do better. We gave
in [9, 10] an exponential space algorithm in the special case
of sweeping transducers: head reversals are only allowed at the
extremities of the input. However, sweeping transducers are
known to be strictly less expressive than two-way transducers.

In this paper we provide an algorithm of elementary com-
plexity for deciding whether the transduction defined by a
functional two-way transducer can be implemented by a one-
way transducer: the decision algorithm has double exponential
space complexity, and an equivalent one-way transducer (if
it exists), can be constructed with triple exponential size.
The known lower bound [9] is double exponential size. Our
techniques can be further adapted to characterize definabil-
ity of transductions by other models of transducers, e.g. to
characterize sweeping transducers within the class of two-way
transducers.

Related work. Besides the papers mentioned above, there
are several recent results around the expressivity and the
resources of two-way transducers, or equivalently, streaming
transducers. First-order definable transductions were shown to
be equivalent to transductions defined by aperiodic streaming
transducers [11] and to aperiodic two-way transducers [12]. An
effective characterization of aperiodicity for one-way transduc-
ers was obtained in [13].

In [10, 14] the minimization of the number of registers of
deterministic streaming transducers, resp., passes of functional
sweeping transducers, was shown to be decidable. An alge-
braic characterization of (not necessarily functional) two-way
transducers over unary alphabets was provided in [15]. It was
shown that in this case sweeping transducers have the same
expressivity. The expressivity of non-deterministic input-unary
or output-unary two-way transducers was investigated in [16].
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Overview. Section II introduces basic notations for two-way
transducers, and Section III states the main result. Section IV
is devoted to the effect of pumping runs on outputs, and
Section V introduces the main tool for our characterization.
Section VI handles the construction of an equivalent one-way
transducer. Finally, Section VII describes a procedure to decide
whether a functional transducer is equivalent to a sweeping
transducer.

II. PRELIMINARIES

Two-way automata and transducers. We start with some
basic notations and definitions for two-way automata (resp.,
transducers). We assume that every input word u “ a1 ¨ ¨ ¨ an
has two special delimiting symbols a1 “ $ and an “ % that
do not occur elsewhere: ai R t$,%u for all i “ 2, . . . , n´ 1.

A two-way automaton A “ xQ,Σ,$,%, δ, q0, F y has a
finite state set Q, input alphabet Σ, transition relation δ Ď
QˆpΣYt$,%uqˆQˆtleft, rightu, initial state q0 P Q, and
set of final states F Ď Q. By convention, left transitions on $
are not allowed. A configuration of A has the form u q v, with
uv P t$u¨Σ˚ ¨t%u and q P Q. A configuration u q v represents
the situation where the current state of A is q and its head reads
the first symbol of v (on input uv). If pq, a, q1, rightq P δ, then
there is a transition from any configuration of the form u q av
to the configuration ua q1 v, which we denote u q av a,right

ÝÝÝÑ

ua q1 v. Similarly, if pq, a, q1, leftq P δ, then there is a transition
from any configuration of the form ub q av to the configuration
u q1 bav, denoted as ub q av a,left

ÝÝÝÑ u q1 bav. A run on w is a
sequence of transitions. It is successful if it starts in the initial
configuration q0 w and ends in a configuration w q with q P F
— note that this latter configuration does not allow additional
transitions. The language of A is the set of input words that
admit a successful run of A.

The definition of two-way transducers is similar to that of
two-way automata, with the only difference that now there is
an additional output alphabet Γ and the transition relation is
a finite subset of Qˆ pΣY t$,%uq ˆ Γ˚ ˆQˆ tleft, rightu,
which associates an output over Γ with each transition of the
underlying two-way automaton. Formally, given a two-way
transducer T “ xQ,Σ,$,%,Γ, δ, q0, F y, we have a transition
of the form ub q av a,d|w

ÝÝÝÑ u1 q1 v1, outputting w, whenever
pq, a, w, q1, dq P δ and either u1 “ uba, v1 “ v or u1 “ u,
v1 “ bav, depending on whether d “ right or d “ left. The
output associated with a run ρ “ u1 q1 v1

a1,d1|w1
ÝÝÝÑ . . . an,dn|wn

ÝÝÝÑ

un`1 qn`1 vn`1 of T is the word outpρq “ w1 ¨ ¨ ¨wn. A
transducer T defines a relation consisting of all pairs pu,wq
such that w “ outpρq, for some successful run ρ on u.

The domain of T , denoted dompT q, is the set of input
words that have a successful run. For transducers T , T 1, we
write T 1 Ď T to mean that dompT 1q Ď dompT q and the
transductions computed by T , T 1 coincide on dompT 1q.

We say that T is functional if for each input u, at most
one output w can be produced by any possible successful run
on u. Finally, we say that T is one-way if it does not have
transition rules of the form pq, a, w, q1, leftq.

q0 q1 q2

q3q4

q5 q6 q7 q8

a1, right a2, right

a3, left

a2, left

a1, right

a2, right a3, right a4, right

a1 a2 a3 a4Input word:

Positions:

Run:

0 1 2 3 4

p0, 0q p1, 0q p2, 0q

p2, 1qp1, 1q

p1, 2q p2, 2q p3, 0q p4, 0q

Fig. 1. Graphical presentation of a run by means of crossing sequences.

Crossing sequences. The first basic notion is that of crossing
sequence. We follow the convenient presentation from [17],
which appeals to a graphical representation of runs of a two-
way transducer where each configuration is seen as point
(location) in a two-dimensional space. Let u “ a1 ¨ ¨ ¨ an be
an input word (recall that a1 “ $ and an “ %) and let ρ be
a run of a two-way automaton (or transducer) T on u. The
positions of ρ are the numbers from 0 to n, corresponding
to “cuts” between two consecutive letters of the input. For
example, position 0 is just before the first letter a1, position
n is just after the last letter an, and any other position x,
with 1 ď x ă n, is between the letters ax and ax`1. We say
that a transition u q v a,d

ÝÝÝÑ u1 q1 v1 of ρ crosses position x if
either d “ right and |u| “ x, or d “ left and |u1| “ x. A
location of ρ is any pair px, yq for which there are at least
y` 1 transitions in ρ crossing position x; the component y of
a location is called level. Each location is associated a state.
Formally, we say that q is the state at location ` “ px, yq in
ρ, and we denote this by writing ρp`q “ q, if the py ` 1q-
th transition that crosses x ends up in state q. The crossing
sequence at position x of ρ is the tuple ρ|x “ pq0, . . . , qhq,
where the qy’s are all the states at locations of the form px, yq,
for y “ 0, . . . , h.

As suggested by Fig. 1, any run can be represented as an
annotated path between locations. For example, if a location
px, yq is reached by a rightward transition, then the head of
the automaton has read the symbol ax; if it is reached by a
leftward transition, then the head has read the symbol ax`1.
Note that in a successful run ρ every crossing sequence has odd
length and every rightward (resp. leftward) transition reaches a
location with even (resp. odd) level. We can identify four types
of transitions between locations, depending on the parities of
the levels (the reader may refer again to Fig. 1):

px, 2yq px`1, 2y1q

px, 2y`1q px`1, 2y1`1q

px, 2yq

px, 2y`1q

px, 2y`1q

px, 2y`2q

ax`1, right

ax`1, left

ax`1, left

ax, right

Hereafter, we will identify runs with the corresponding anno-
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tated paths between locations. It is also convenient to define
a total order � on the locations of a run ρ by letting `1 � `2
if `2 is reachable from `1 by following the path described by
ρ — the order � on locations is called run order. Given two
locations `1 � `2 of a run ρ, we write ρr`1, `2s for the factor
of the run that starts in `1 and ends in `2. Note that the latter is
also a run and hence the notation out

`

ρr`1, `2s
˘

is permitted.
Two runs ρ1, ρ2 can be concatenated, provided that ρ1 ends in
location px, yq, ρ2 starts in location px, y1q, such that y1 “ y
pmod 2q and px, yq, px, y1q are labelled by the same state.
We denote by ρ1ρ2 the run resulting from concatenating ρ1
with ρ2. Clearly, we have ρr`1, `2s ρr`2, `3s “ ρr`1, `3s for all
locations `1 � `2 � `3.

Normalization. Without loss of generality, we will assume
that successful runs of functional transducers are normalized,
meaning that they never visit two locations with the same
position, the same state, and both either at even or at odd
level. Indeed, if this were not the case, say if a successful run
ρ visited two locations `1 “ px, yq and `2 “ px, y1q such that
ρp`1q “ ρp`2q and y, y1 are both even or both odd, then the
output produced by ρ between `1 and `2 should be empty, as
otherwise by repeating the factor ρr`1, `2s of ρ we could obtain
successful runs that produces different outputs on the same
input, thus contradicting the assumption that the transducer is
functional. Now that we know that the output of ρ produced
between `1 and `2 is empty, we could drop the factor ρr`1, `2s,
thus obtaining a successful run with the same output. It is easy
to see that, in every normalized successful run, the crossing
sequences have length at most 2|Q| ´ 1.

We define hmax “ 2|Q| ´ 1. Moreover, by cmax we denote
the capacity of the transducer, which is the maximal length of
the output of a transition.

III. TWO-WAY TRANSDUCERS VS ONE-WAY TRANSDUCERS

In this section we state our main result, which is the
existence of an elementary algorithm for checking whether a
two-way transducer is equivalent to some one-way transducer.
We call such transducers one-way definable. Before stating our
result, we give a few examples.

Example 1. We consider two-way transducers that accept any
input u from a given regular language R and output the word
uu. We will argue how, depending on R, these transducers
may or may not be one-way definable.
1) If R “ pa`bq˚ there is no equivalent one-way transducer,

as the output language is not regular. If R is finite,
then the transduction mapping u P R to uu can be
implemented by a one-way transducer that guesses u (this
requires as many states as the size of R), checks the input,
and outputs two copies of the guessed word.

2) A special case of transduction with finite domain is given
by Rn “ ta0 w0 ¨ ¨ ¨ a2n´1 w2n´1 : a0, . . . , a2n´1 P

ta, buu, where n P N and each wi is the binary encoding
of the counter i “ 0, . . . , 2n ´ 1. It is easy to see
(cf. Proposition 15 [9]) that the transduction mapping
u P Rn to uu can be implemented by a two-way

transducer with quadratically many states w.r.t. n, while
every equivalent one-way transducer has at least 22

n

states, since it needs to guess a word of length 2n.
3) Consider now the periodic language R “ pabcq˚. The

function that maps u P R to uu can be easily imple-
mented by a one-way transducer: it suffices to output two
letters (i.e., ab, ca, bc, in turn) for each input letter, while
checking that the input is in R.

Example 2. We consider a slightly more complicated
transduction that is defined on input words of the form
u1 # . . . # un, where each factor ui is over the alphabet
Σ “ ta, b, cu. The output of the transduction is of the form
w1 # . . . # wn, where each wi is either ui ui or just ui,
depending on whether or not ui P pabcq˚ and ui`1 has even
length, with un`1 “ ε.

The obvious way to implement the transduction is by means
of a two-way transducer that performs multiple passes on the
factors of the input: a first left-to-right pass is performed on
ui #ui`1 to produce the first copy of ui and to check whether
ui P pabcq

˚ and |ui`1| is even; if so, a second pass on ui is
performed to produce another copy of ui.

The transduction can also be implemented by a one-way
transducer: when entering a factor ui, the transducer guesses
whether or not ui P pabcq˚ and |ui`1| is even; depending on
this it outputs either pabc abcq

|ui|

3 or ui, and checks that the
guess is correct.

Our main result is:

Theorem 3. There is an algorithm that from a functional two-
way transducer T constructs in triple exponential time a one-
way transducer T 1 with the following properties:
‚ T 1 Ď T ,
‚ dompT q “ dompT 1q iff T is one-way definable.
Moreover, the second property above can be checked in double
exponential space w.r.t. |T |.

We remark that a similar characterization for a much more
restricted class of transducers (sweeping transducers) appeared
in [9]. The proof of Theorem 3, however, is more technical, as
it requires a better understanding of the structure of the runs
of two-way transducers and a non-trivial generalization of the
combinatorial arguments from [9].

The proof of the theorem spans along the next three sections.
In Section IV, we present the basic concepts for reasoning on
runs of two-way automata. This includes the definition of a
finite semigroup for describing the shapes of two-way runs,
as well as Ramsey-type arguments that are used to bound the
length of the outputs produced by pieces of runs without loops.
In Section V we provide the main combinatorial arguments for
characterizing one-way definability. The crucial notion will
be that of inversion, that captures behaviours of the two-
way transducer that are problematic for one-way definability.
Finally, in Section VI we exploit the combinatorial results
and the Ramsey-type arguments to derive the existence of
suitable decompositions of runs that lead to the construction
of equivalent one-way transducers.
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IV. UNTANGLING RUNS OF TWO-WAY TRANSDUCERS

This section is devoted to untangling the structure of runs of
two-way transducers. Whereas the classical transformation of
two-way automata into one-way automata based on crossing
sequences is rather simple, we will need a much deeper
understanding of runs of two-way transducers, because of the
additional outputs. In a nutshell, being one-way definable is
related to periodicities (with bounded periods) in the output,
and these periodicities are generated by loops in the run.
We will actually work with so called idempotent loops, that
generate periodicities in the output in a “nice” way. We will
derive the existence of idempotent loops with bounded outputs
using Ramsey-based arguments.

We fix throughout the paper a functional two-way transducer
T , an input word u, and a successful run ρ of T on u. We
assume that ρ is normalized, i.e., every state occurs at most
once in each crossing sequence of ρ at levels of a given parity.

For simplicity, we denote by ω the length of the input word
u. We will consider intervals of positions of the form I “
rx1, x2s, with 0 ď x1 ă x2 ď ω. The containment relation Ď
on intervals is defined by rx3, x4s Ď rx1, x2s if x1 ď x3 ă
x4 ď x2.

Factors, flows, and effects. A factor of a run ρ is a con-
tiguous subsequence of ρ. A factor intercepted by an interval

I “ rx1, x2s

0

1

2 0

13

4 2

3

4

α

β

γ

δ

ζ

Fig. 2. Intercepted factors.

I “ rx1, x2s is a maximal factor of
ρ that visits only positions x P I ,
and never uses a left transition from
position x1 or a right transition from
position x2.

Fig. 2 on the right gives an exam-
ple of an interval I that intercepts
the factors α, β, γ, δ, ζ. The numbers
that annotate the endpoints of the
factors represent their levels.

Every factor α intercepted by an interval I “ rx1, x2s is
of one of the four types below, depending on its first location
px, yq and its last location px1, y1q:

‚ α is an LL-factor if x “ x1 “ x1,
‚ α is an RR-factor if x “ x1 “ x2,
‚ α is an LR-factor if x “ x1 and x1 “ x2,
‚ α is an RL-factor if x “ x2 and x1 “ x1.

In Fig. 2 we see that α is an LL-factor, β, δ are LR-factors, ζ
is an RR-factor, and γ is an RL-factor.

Definition 4. Let ρ be a run and I “ rx1, x2s an interval of
ρ. Let hi be the length of the crossing sequence ρ|xi for both
i “ 1 and i “ 2.

The flow FI of I is a directed graph with set of nodes
t0, . . . ,maxph1, h2q ´ 1u and set of edges consisting of all
py, y1q such that there exists a factor of ρ intercepted by I
that starts at location pxi, yq and ends at location pxj , y1q,
for i, j P t1, 2u.

The effect EI of I is the triple pFI , c1, c2q, where ci “ ρ|xi
is the crossing sequence at xi.

For example, the interval I of Fig. 2 has the flow graph
0 ÞÑ 1 ÞÑ 3 ÞÑ 4 ÞÑ 2 ÞÑ 0. It is easy to see that every
node of a flow FI has at most one incoming and at most
one outgoing edge. More precisely, if y ă h1 is even, then
it has one outgoing edge (corresponding to an LR- or LL-
factor intercepted by I), and if it is odd it has one incoming
edge (corresponding to an RL- or LL-factor intercepted by I).
Similarly, if y ă h2 is even, then it has one incoming edge
(corresponding to an LR- or RR-factor), and if it is odd it has
one outgoing edge (corresponding to an RL- or RR-factor).

In the following we consider generic effects that are not
necessarily associated with intervals of specific runs. The
definition of such effects should be clear: these are triples
consisting of a graph (called flow) and two crossing sequences
of lengths h1, h2 ď hmax, with sets of nodes of the form
t0, . . . ,maxph1, h2q ´ 1u, that satisfy the in/out-degree prop-
erties stated above.

It is convenient to distinguish the edges in a flow based
on the parity of the source and target nodes. Formally, we
partition any flow F into the following subgraphs:
‚ FLR consists of all edges of F between pairs of even

nodes,
‚ FRL consists of all edges of F between pairs of odd nodes,
‚ FLL consists of all edges of F from an even node to an

odd node,
‚ FRR consists of all edges of F from an odd node to an

even node.
We denote by F (resp. E) the set of all flows (resp. effects)

augmented with a dummy element K. We equip both sets F
and E with a semigroup structure, where the corresponding
products ˝ and d are defined below (similar definitions
appear in [18]). We need this semigroup structure in order
to identify idempotent loops, that play a crucial role in our
characterization of one-way definability.

Definition 5. For two graphs G,G1, we denote by G ¨G1 the
graph with edges of the form py, y2q such that py, y1q is an
edge of G and py1, y2q is an edge of G1, for some node y1

that belongs to both G and G1. Similarly, we denote by G˚

the graph with edges py, y1q such that there exists a (possibly
empty) path in G from y to y1.

The product of two flows F, F 1 is the unique flow F ˝F 1 (if
it exists) such that:
‚ pF ˝ F 1qLR “ FLR ¨ pF

1
LL ¨ FRRq

˚ ¨ F 1LR,
‚ pF ˝ F 1qRL “ F 1RL ¨ pFRR ¨ F

1
LLq

˚ ¨ FRL,
‚ pF ˝ F 1qLL “ FLL Y FLR ¨ pF

1
LL ¨ FRRq

˚ ¨ F 1LL ¨ FRL,
‚ pF ˝ F 1qRR “ F 1RR Y F 1RL ¨ pFRR ¨ F

1
LLq

˚ ¨ FRR ¨ F
1
LR.

If no flow F ˝F 1 exists with the above properties, then we let
F ˝ F 1 “ K.

The product of two effects E “ pF, c1, c2q and E1 “
pF 1, c11, c

1
2q is either the effect E d E1 “ pF ˝ F 1, c1, c

1
2q or

the dummy element K, depending on whether F ˝F 1 ‰ K and
c2 “ c11.

For example, let F be the flow of interval I in Fig. 2. Then
pF ˝ F qLL “ tp0, 1q, p2, 3qu, pF ˝ F qRR “ tp1, 2q, p3, 4qu, and
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I

α

β

γ

δ

ζ

I copy of I

α

β
α

γ

δ
β

γ

ζ
δ

ζ

I 2 copies of I

α

β
α

γ

δ
β

α
γ

ζ
δ

β

γ

ζ
δ

ζ

Fig. 3. Pumping a loop in a run.

pF ˝ F qLR “ tp4, 0qu — one can quickly verify this with the
help of Fig. 3.

It is also easy to see that pF , ˝q and pE ,dq are finite semi-
groups, and that for every run ρ and every pair of consecutive
intervals I “ rx1, x2s and J “ rx2, x3s of ρ, FIYJ “ FI ˝FJ
and EIYJ “ EI d EJ . In particular, the function E that
associates each interval I of ρ with the corresponding effect
EI can be seen as a semigroup homomorphism.

Note that, in a normalized successful run, there are at most
|Q|hmax distinct crossing sequences and at most 4hmax distinct
flows, since there are at most hmax edges in a flow, and each
one has one of the 4 possible types LL, . . . ,RR. Hence there
are at most p2|Q|q2hmax distinct effects.
Loops and components. Loops of a two-way run are the
basic building blocks for characterizing one-way definability.
We will consider special types of loops, called idempotent
loops, when showing that outputs generated in non left-to-
right manner are essentially periodic.

Definition 6. A loop of ρ is an interval L “ rx1, x2s whose
endpoints have the same crossing sequences, i.e. ρ|x1 “ ρ|x2.
It is said to be idempotent if EL “ EL d EL and EL ‰ K.

For example, the interval I of Fig. 2 is a loop, if one assumes
that the crossing sequences at the borders of I are the same.
However, by comparing with Fig. 3, it is easy to see that I is
not idempotent. On the other hand, the loop consisting of 2
copies of I is idempotent.

Given a loop L “ rx1, x2s and a number m P N, we can
introduce m new copies of L and connect the intercepted
factors in the obvious way. Fig. 3 shows how to do this for
m “ 1 and m “ 2. The operation that we just described is
called pumping, and results in a new run of the transducer T
on the word

pumpm`1
L puq :“ ur0, x1s ¨

`

urx1`1, x2s
˘m`1

¨urx2`1, ns .

We denote by pumpm`1
L pρq the pumped1 run on pumpm`1

L puq.
The goal in this section is to describe the shape of the

pumped run pumpm`1
L pρq (and the produced output as well)

1Using similar constructions, one could remove a loop L from a run ρ,
resulting in the run pump0Lpρq. As we do not need this, the operation pumpL
will always be parametrized by a positive number m` 1.

L

α1

α2

α3

β1

β2

β3

γ1

L 2 copies of L

α1

α2
α1

α3
α2

α1

α3
α2

α3

β1

β2

β1

β3
β2

β1

β3
β2

β3

γ1 γ1 γ1

Fig. 4. Pumping an idempotent loop with three components.

when L is an idempotent loop. We will focus on idempotent
loops because pumping non-idempotent loops may induce per-
mutations of factors that are difficult to handle. For example,
if we consider again the non-idempotent loop I to the left of
Fig. 3, the factor of the run between β and γ (to the right of
I , highlighted in red) precedes the factor between γ and δ (to
the left of I , again in red), but this ordering is reversed when
a new copy of I is added.

When pumping a loop L, subsets of factors intercepted by
L are glued together to form longer factors intercepted by
the unioned copies of L. The concept of component that we
introduce below aims at identifying the groups of factors that
are glued together.

Definition 7. A component of a loop L is any strongly
connected component of its flow FL (note that this is also
a cycle, since every node in it has in/out-degree 1). Given
a component C, we denote by minpCq (resp. maxpCq) the
minimum (resp. maximum) node in C. We say that C is left-
to-right (resp. right-to-left) if minpCq is even (resp., odd).
An pL,Cq-factor is a factor of the run that is intercepted by
L and corresponds to an edge of C.

For example, the loop I of Fig. 3 contains a single component
C “ t0 ÞÑ 1 ÞÑ 3 ÞÑ 4 ÞÑ 2 ÞÑ 0u which is left-to-right.
Another example is given in Fig. 4, where the loop L has
three components C1, C2, C3 (ordered from bottom to top):
α1, α2, α3 are the pL,C1q-factors, β1, β2, β3 are the pL,C2q-
factors, and γ1 is the unique pL,C3q-factor.

We will usually list the pL,Cq-factors based on their order
of occurrence in the run.

The following lemma (proved in the appendix) describes
the precise shape and order of such factors when the loop L
is idempotent. It can be used to reason on the shape of runs
obtained by pumping idempotent loops.

Lemma 8. If C is a left-to-right (resp. right-to-left) component
of an idempotent loop L, then the pL,Cq-factors are in the
following order: k LL-factors (resp. RR-factors), followed by
one LR-factor (resp. RL-factor), followed by k RR-factors
(resp. LL-factors), for some k ě 0.

We also need to introduce the notions of anchor (Def. 9)
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and trace (Def. 10).

Definition 9. Let C be a component of an idempotent loop
L “ rx1, x2s. The anchor of C inside L, denoted2 anpCq, is ei-
ther the location

`

x1,maxpCq
˘

or the location
`

x2,maxpCq
˘

,
depending on whether C is left-to-right or right-to-left.

Intuitively, the anchor anpCq of a component C of L is the
source location of the unique LR- or RL-factor intercepted by
L that corresponds to an edge of C (recall Lemma 8).

Definition 10. Let C be a component of some idempotent loop
L and let pi0, i1q, pi1, i2q, . . . , pik´1, ikq, pik, ik`1q be a cycle
of C, where i0 “ ik`1 “ maxpCq. For every j “ 0, . . . , k, let
βj be the factor intercepted by L that corresponds to the edge
pij , ij`1q of C. The trace of C inside L is the run trpCq “
β0 β1 ¨ ¨ ¨ βk (note that this is not necessarily a factor of the
original run ρ).

Intuitively, the trace trpCq is obtained by concatenating the
pL,Cq-factors together, where the first factor is the (unique)
LR-/RL-factor that starts at the anchor anpCq and the remain-
ing ones are the LL-factors interleaved with the RR-factors.

For example, by referring again to the components
C1, C2, C3 of Fig. 4, we have the following traces: trpC1q “

α2 α1 α3, trpC2q “ β2 β1 β3, and trpC3q “ γ1.
As shown by the following proposition (proved in the

appendix), iterations of idempotent loops translate to iterations
of traces trpCq of components.

Proposition 11. Let L be an idempotent loop of ρ with
components C1, . . . , Ck, listed according to the order of their
anchors: anpC1q � ¨ ¨ ¨ � anpCkq. For all m P N, we have

pumpm`1
L pρq “ ρ0 trpC1q

m ρ1 ¨ ¨ ¨ ρk´1 trpCkq
m ρk

where
‚ ρ0 is the prefix of ρ that ends at anpC1q,
‚ ρi is the factor ρranpCiq, anpCi`1qs, for all 1 ď i ă k,
‚ ρk is the suffix of ρ that starts at anpCkq.

For example, referring to the left hand-side of Fig. 4, the
run ρ0 goes until the first location marked by a black dot. The
run ρ1 and ρ2, resp., are between the first and the second black
dot, and the second and third black dot. Finally, ρ3 is the suffix
starting at the last black dot. The pumped run pumpm`1

L pρq
for m “ 2 is depicted to the right of Fig. 4.

Ramsey-type arguments. We conclude the section by describ-
ing a technique that can be used for bounding the length of
the outputs produced by factors of the run ρ. This technique
is based on Ramsey-type arguments and relies on Simon’s
“factorization forest” theorem [19, 20], which we recall below.

Let X be a set of positions of ρ. A factorization forest
for X is an unranked tree, where the nodes are intervals I
with endpoints in X , labelled with the corresponding effect
EI , the ancestor relation is given by the containment order on

2In denoting the anchor — and similarly the trace — of a component C
inside a loop L, we omit the annotation specifying L, since this is often
understood from the context.

intervals, the leaves are the minimal intervals rx1, x2s, with
x2 successor of x1 in X , and for every internal node I with
children J1, . . . , Jk, we have:
‚ I “ J1 Y ¨ ¨ ¨ Y Jk,
‚ EI “ EJ1 d ¨ ¨ ¨ d EJk ,
‚ if k ą 2, then EI “ EJ1 “ ¨ ¨ ¨ “ EJk is an idempotent

of the semigroup pE ,dq.
We will make use of the following three constants de-

fined from the transducer T : the maximum number cmax

of letters output by a single transition, the maximal length
hmax “ 2|Q| ´ 1 of a crossing sequence, and the maximal
size emax “ p2|Q|q2hmax of the effect semigroup pE ,dq.
By B “ cmax ¨ hmax ¨ p2

3emax ` 4q we will denote the main
constant appearing in all subsequent sections.

Theorem 12 (Factorization forest theorem [19, 20]). For every
set X of positions of ρ, there is a factorization forest for X
of height at most 3emax.

It is easy to use the above theorem to show that every run
that produces an output longer than B contains an idempotent
loop with non-empty output. Below, we present a result in the
same spirit, but refined in a way that it can be used to find
anchors of components of loops inside specific intervals.

In order to state it formally, we need to consider sub-
sequences of ρ induced by sets of locations that are not
necessarily intervals. Recall that ρr`1, `2s denotes the fac-
tor of ρ delimited by two locations `1 � `2. Similarly,
given any set Z of (possibly non-consecutive) locations, we
denote by ρ | Z the subsequence of ρ induced by Z.

I “ rx1, x2s

`1

`2
A transition of ρ | Z is a transition
from some ` to `1, where both `, `1

belong to Z. The output outpρ | Zq
is the concatenation of the outputs
of the transitions of ρ | Z (in the
order given by ρ). An example of
subrun ρ | Z is represented by the
thick arrows in the figure to the
right, where Z “ r`1, `2sX pI ˆNq.

Theorem 13. Let I “ rx1, x2s be an interval of positions,
K “ r`1, `2s an interval of locations, and Z “ K X pI ˆNq.
If
ˇ

ˇoutpρ | Zq
ˇ

ˇ ą B, then there exist an idempotent loop L
and a component C of L such that
‚ x1 ă minpLq ă maxpLq ă x2 (in particular, L Ĺ I),
‚ `1 � anpCq � `2 (in particular, anpCq P K),
‚ outptrpCqq ‰ ε.

V. INVERSIONS AND PERIODS

As suggested by Examples 1 and 2, a typical phenomenon
that may prevent a transducer from being one-way definable
is that of an inversion. An inversion essentially corresponds
to a long output produced from right to left. The main result
in this section is Proposition 16, that shows that the output
produced between the locations delimiting an inversion must
be periodic, with bounded period.
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L2 L1

anpC1q

anpC2q

Fig. 5. An inversion with components intercepting the highlighted factors.

Definition 14. An inversion of ρ is a tuple pL1, C1, L2, C2q

such that

‚ Li is an idempotent loop, for both i “ 1, 2,
‚ Ci is a component of Li, for both i “ 1, 2,
‚ anpC1q � anpC2q,
‚ anpCiq “ pxi, yiq, for both i “ 1, 2, and x1 ě x2,
‚ both outptrpC1qq and outptrpC2qq are non-empty.

Fig. 5 gives an example of an inversion involving the loop
L1 with its first component and the loop L2 with its second
component (we highlighted the anchors and the factors corre-
sponding to these components).

Definition 15. A word w “ a1 ¨ ¨ ¨ an has period p if ai “ ai`p
for all pairs of positions i, i` p of w.

For example, w “ abc abc ab has period 3.
One-way definability of functional two-way transducers es-

sentially amounts to showing that the output produced by every
inversion has bounded period. The proposition below shows
a slightly stronger periodicity property, which refers to the
output produced inside the inversion extended on both sides
by the trace outputs. We will need this stronger property later,
when dealing with overlapping portions of the run delimited
by different inversions.

Proposition 16. If T is one-way definable, then for every
inversion pL1, C1, L2, C2q of a successful run ρ of T , the word

out
`

trpC1q
˘

out
`

ρranpC1q, anpC2qs
˘

out
`

trpC2q
˘

has period p that divides both |outptrpC1qq| and |outptrpC2qq|.
Moreover, p ď B.

The basic combinatorial argument for proving Proposi-
tion 16 is a classical result in word combinatorics called Fine
and Wilf’s theorem [21]. Essentially, the theorem says that,
whenever two periodic words w1, w2 share a sufficiently long
factor, then they have as period the greatest common divisor
of the two original periods. Below, we state a slightly stronger
variant of Fine-Wilf’s theorem, which contains an additional
claim showing how to align a common factor of the words
w1, w2 so as to form a third word w3 that contains a prefix
of w1 and a suffix of w2. The additional claim will be fully
exploited in the proof of Proposition 26.

Lemma 17 (Fine-Wilf’s theorem). If w1 “ w11 w w21 has
period p1, w2 “ w12 ww

2
2 has period p2, and the common

factor w has length at least p1 ` p2 ´ gcdpp1, p2q, then w1,
w2, and w3 “ w11 ww

2
2 have period gcdpp1, p2q.

Two further combinatorial results are heavily used in the
proof of Proposition 16. The first one is a result of Ko-
rtelainen [22], which was later improved and simplified by
Saarela [23]. It is related to word equations with iterated fac-
tors, like those that arise from considering outputs of pumped
versions of a run. To improve readability, we highlight the
important iterations of factors inside the considered equations.

Theorem 18 (Theorem 4.3 in [23]). Consider a word equation

v0 v
m
1 v2 ... vk´1 v

m
k vk`1 “ w0 w

m
1 w2 ... wk1´1 w

m
k1 wk1`1

where m is the unknown and vi, wj are words. Then the set
of solutions of the equation is either finite or N.

The second combinatorial result considers a word equation
with iterated factors parametrized by two unknowns m1,m2

that occur in opposite order in the left, respectively right hand-
side of the equation. This type of equation arises when we
compare the output associated with an inversion of T and the
output produced by an equivalent one-way transducer T 1.

Lemma 19. Consider a word equation of the form

v
pm1,m2q

0 vm1
1 v

pm1,m2q

2 vm2
3 v

pm1,m2q

4 “ w0w
m2
1 w2w

m1
3 w4

where m1,m2 are the unknowns, v1, v3 are non-empty words,
and vpm1,m2q

0 , v
pm1,m2q

2 , v
pm1,m2q

4 are words that may contain
factors of the form vm1 or vm2 , for a generic word v. If
the above equation holds for all m1,m2 P N, then the
words v1 vm1

1 v
pm1,m2q

2 vm2
3 v3 are periodic with period

gcdp|v1|, |v3|q, for all m1,m2 P N.

The last ingredient used in the proof of Proposition 16 is a
bound on the period of the output produced by an inversion.
For this, we introduce a suitable notion of minimality of loops
and loop components:

Definition 20. Consider pairs pL,Cq consisting of an idem-
potent loop L and a component C of L.
‚ On such pairs, we define the relation Ă by pL1, C 1q Ă

pL,Cq if L1 Ĺ L and at least one pL1, C 1q-factor is
contained in some pL,Cq-factor.

‚ A pair pL,Cq is output-minimal if for all pairs pL1, C 1q Ă
pL,Cq, we have outptrpC 1qq “ ε.

Note that the relation Ă is not a partial order in general (it
is however antisymmetric). Lemma 21 below shows that the
length of the output trace of C inside L is bounded whenever
pL,Cq is output-minimal.

Lemma 21. For every output-minimal pair pL,Cq,
|outptrpCqq| ď B.

Proof sketch. We use a Ramsey-type argument here: if
|outptrpCqq| ą B, then Theorem 13 can be applied to exhibit
an idempotent loop strictly inside L and a component C of it
with non-empty trace output. This would contradict the output-
minimality of pL,Cq.
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We remark that the above lemma cannot be used
directly to bound the period of the output produced
by an inversion. The reason is that we cannot assume
that inversions are built up from output-minimal pairs.

L2 L1

anpC1q

anpC2q

A counter-example is given in
the figure to the right, which
shows a run where the only
inversion pL1, C1, L2, C2q

contains pairs that are not
output-minimal: the factors
that produce long outputs are
those in red, but they occur
outside ρranpC1q, anpC2qs.

We are now ready to prove Proposition 16. Here we only
present the key ideas, and refer the reader to the appendix for
more details.

Proof sketch of Proposition 16. In the first half of the proof
we pump the two loops L1 and L2 so that we obtain also
loops in the assumed equivalent one-way transducer T 1. We
then consider the outputs of the pumped runs of T and T 1,
which contain iterated factors parametrized by two natural
numbers m1,m2. As those outputs must agree due to the
equivalence of T , T 1, we get an equation as in Lemma 19,
where the word v1 belongs to outptrpC1qq

` and the word
v3 belongs to outptrpC2qq

`. Lemma 19 shows that the word
described by the equation has period p dividing gcdp|v1|, |v3|q,
and Lemma 17 shows that p even divides |outptrpC1qq| and
|outptrpC2qq|. Finally, we use Theorem 18 to transfer the
periodicity property from the word of the equation to the
word w “ outptrpC1qq outpρranpC1q, anpC2qsq outptrpC2qq

produced by the original run of T . This is possible because
the word of the equation is obtained by iterating factors of w.
In particular, by reasoning separately on the parameters that
define those iterations, and by stating the periodicity property
as an equation in the form required by Theorem 18, one can
prove that the periodicity equation holds on all parameters,
and thus in particular on w.

In the second half of the proof we show that the period p is
bounded by B. This requires a refinement of the previous ar-
guments and involves pumping the run of T simultaneously on
three different loops. The idea is that by pumping we manage
to find inversions with some output-minimal pair pL0, C0q. In
this way we show that the period p also divides outptrpC0qq,
which is bounded by B according to Lemma 21.

VI. ONE-WAY DEFINABILITY

Proposition 16 is the main combinatorial argument for
characterizing two-way transducers that are one-way definable.
In this section we provide the remaining arguments. Roughly,
the idea is to decompose every successful run ρ into factors
that produce long outputs either in a left-to-right manner (“di-
agonals”), or based on an almost periodic pattern (“blocks”).

We say that a word w is almost periodic with bound p if
w “ w0 w1 w2 for some words w0, w2 of length at most p
and some word w1 of period at most p.

`1

`x

`2

Z
�
`x

Z
�

`x

`1

`2

Z�

Z�

Fig. 6. Outputs that need to be bounded in a diagonal and in a block.

We illustrate the following definition in Fig. 6.

Definition 22. Consider a factor ρr`1, `2s of the run, where
`1 “ px1, y1q, `2 “ px2, y2q, and x1 ď x2. We call ρr`1, `2s
‚ a diagonal if for all x P rx1, x2s, there is a location `x

at position x such that `1 � `x � `2 and the words
outpρ | Z

�
`x
q and outpρ | Z

�
`x
q have length at most B,

where Z �
`x
“ r`x, `2s X

`

r0, xsˆN
˘

and Z
�
`x
“ r`1, `xs X

`

rx, ωs ˆ N
˘

;
‚ a block if the word outpρr`1, `2sq is almost periodic with

bound B, and outpρ | Z�q and outpρ | Z�q have length
at most B, where Z� “ r`1, `2s X

`

r0, x1s ˆ N
˘

and
Z� “ r`1, `2s X

`

rx2, ωs ˆ N
˘

.

Intuitively, the output of a diagonal ρr`1, `2s can be simulated
while scanning the input interval rx1, x2s from left to right,
since the outputs of ρ | Z �

`x
and ρ | Z

�
`x

are bounded. A similar
argument applies to a block ρr`1, `2s, where in addition, one
exploits the fact that the output is almost periodic. Roughly,
the idea is that one can simulate the output of a block by
outputting symbols according to a periodic pattern, and in a
number that is determined from the transitions on urx1, x2s
and the guessed (bounded) outputs on Z� and Z�.

The general idea for turning a two-way transducer T into
an equivalent one-way transducer T 1 is to guess (and check)
a factorization of a successful run of T into factors that are
either diagonals or blocks, and properly arranged following
the order of positions.

Definition 23. A decomposition of ρ is a factorization
ś

i ρr`i, `i`1s of ρ into diagonals and blocks, where `i “
pxi, yiq and xi ă xi`1 for all i.

The one-way transducer T 1 whose existence is stated by
Theorem 3 simulates T precisely on those inputs u that
have some successful run admitting a decomposition. To
provide further intuition on the notion of decomposition, we
consider again the transduction of Example 2 and the two-
way transducer T that implements it in the most natural way.
Fig. 7 shows an example of a run of T on an input of the form
u1 # u2 # u3 # u4, where u2, u4 P pabcq˚, u1 u3 R pabcq˚,
and u3 has even length. The factors of the run that produce
long outputs are highlighted by the bold arrows. The first and
third factors of the decomposition, i.e. ρr`1, `2s and ρr`3, `4s,
are diagonals (represented by the blue hatched areas); the
second and fourth factors ρr`2, `3s and ρr`4, `5s are blocks
(represented by the red hatched areas).
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u1 # u2 # u3 # u4

`1

`2

`3

`4

`5

Fig. 7. A decomposition of a run of a two-way transducer.

Theorem 24. Let T be a functional two-way transducer. The
following are equivalent:
P1) T is one-way definable.
P2) For all inversions pL1, C1, L2, C2q of all successful runs

of T , the word

out
`

trpC1q
˘

out
`

ρranpC1q, anpC2qs
˘

out
`

trpC2q
˘

has period p ď B dividing |outptrpC1qq|, |outptrpC2qq|.
P3) Every successful run of T admits a decomposition.

The implication from P1 to P2 was already shown in
Proposition 16. The rest of this section is devoted to prove
the implications from P2 to P3 and from P3 to P1. The
issues related to the complexity of the characterization will
be discussed further below.
From periodicity to existence of decompositions (P2ÑP3).
As usual, we fix a successful run ρ of T . We will prove
a slightly stronger result than the implication from P2 to
P3, namely: if every inversion of ρ satisfies the periodicity
property stated in P2, then ρ admits a decomposition (note
that this is independent of whether other runs satisfy or not
P2). To identify the blocks of a possible decomposition of ρ
we consider a suitable equivalence relation between locations:

Definition 25. A location ` is covered by an inversion
pL1, C1, L2, C2q if anpC1q � ` � anpC2q. We define the
relation S by letting ` S `1 if `, `1 are covered by the
same inversion. We define the equivalence relation S˚ as the
reflexive and transitive closure of S.

Locations covered by the same inversion pL1, C1, L2, C2q

yield an interval w.r.t. the run ordering �. Thus every non-
singleton S˚-class can be seen as a union of such intervals,
say K1, . . . ,Km, that are two-by-two overlapping, namely,
Ki XKi`1 ‰ H for all i ă m. In particular, a non-singleton
S˚-class is an interval of locations witnessed by a series
of inversions pL2i, C2i, L2i`1, C2i`1q such that anpC2iq �

anpC2i`2q � anpC2i`1q � anpC2i`3q.
The next result exploits the shape of a non-singleton S˚-

class, the assumption that ρ satisfies the periodicity property
stated in P2, and Lemma 17, to show that the output produced
inside an S˚-class has bounded period.

Proposition 26. If ρ satisfies the periodicity property stated
in P2 and ` � `1 are two locations in the same S˚-class, then
out

`

ρr`, `1s
˘

has period at most B.

The S˚-classes considered so far cannot be directly used
as blocks for the desired decomposition of ρ, since the x-
coordinates of their endpoints might not be in the appropriate
order. The next definition takes care of this, by enlarging the
S˚-classes according to x-coordinates of anchors.

Definition 27. Let K “ r`, `1s be a non-singleton S˚-class,
let anpKq be the restriction of K to the locations that are
anchors of components of inversions, and let XanpKq “ tx :
Dy px, yq P anpKqu be the projection of anpKq on positions.
We define blockpKq “ r`1, `2s, where
‚ `1 is the latest location px, yq � ` such that x “

min
`

XanpKq

˘

,
‚ `2 is the earliest location px, yq � `1 such that x “

max
`

XanpKq

˘

(note that the location `1 exists since ` is the anchor of the first
component of an inversion, and `2 exists for similar reasons).

Lemma 28. If K “ r`, `1s is a non-singleton S˚-class, then
ρr`1, `2s is a block, where r`1, `2s “ blockpKq.

Proof sketch. The periodicity of outpρr`, `1sq is obtained by
applying Proposition 26. Then Theorem 13 is applied twice:
first to bound outpρr`1, `sq and outpρr`1, `2sq (hence proving
that outpρr`1, `2sq is almost periodic with bound B), and
second, to bound outpρ | Z�q and outpρ | Z�q, as introduced
in Definition 22.

The next lemma shows that blocks do not overlap along the
input axis:

Lemma 29. Suppose that K1 and K2 are two different non-
singleton S˚-classes such that ` � `1 for all ` P K1 and
`1 P K2. Let blockpK1q “ r`1, `2s and blockpK2q “ r`3, `4s,
with `2 “ px2, y2q and `3 “ px3, y3q. Then x2 ă x3.

Proof sketch. If x2 ě x3, one can exhibit an inversion
between a component of a loop in K1 and another one in
K2, and deduce that K1 “ K2.

For the sake of brevity, we call S˚-block any factor of the
form ρ | blockpKq that is obtained by applying Definition 27
to a non-singleton S˚-class K. The results obtained so far
imply that every location covered by an inversion is also
covered by an S˚-block (Lemma 28), and that the order of
occurrence of S˚-blocks is the same as the order of positions
(Lemma 29). So the S˚-blocks can be used as factors for
the decomposition of ρ we are looking for. Below, we show
that the remaining factors of ρ, which do not overlap the S˚-
blocks, are diagonals. This will complete the construction of
a decomposition of ρ.

Formally, we say that a factor ρr`1, `2s overlaps another
factor ρr`3, `4s if r`1, `2sXr`3, `4s ‰ H, `2 ‰ `3, and `1 ‰ `4.

Lemma 30. Let ρr`1, `2s be a factor of ρ that does not overlap
any S˚-block, with `1 “ px1, y1q, `2 “ px2, y2q, and x1 ă x2.
Then ρr`1, `2s is a diagonal.

Proof sketch. If ρr`1, `2s is not a diagonal, we can find a
location `1 � ` � `2 for which |outpρ | Z �

` q| ą B and
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|outpρ | Z
�
` q| ą B (recall Definition 22). By applying again

Theorem 13, we derive the existence of an inversion between
`1 and `2, and thus of an S˚-block overlapping ρr`1, `2s.

From decompositions to one-way definability (P3ÑP1).
Hereafter, we denote by U the language of words u P dompT q
such that all successful runs of T on u admit a decomposition.

So far, we know that if T is one-way definable (P1), then
U “ dompT q (P3). This reduces the one-way definability
problem for T to the containment problem dompT q Ď U .
We will see later how the latter problem can be decided in
double exponential space by further reducing it to checking
the emptiness of the intersection of the languages dompT q
and U A, where U A is the complement of U .

Below, we show how to construct a one-way transducer T 1
of triple exponential size such that

T 1 Ď T and dompT 1q Ě U.

In particular, the existence of such a transducer T 1 proves
the implication from P3 to P1 of Theorem 24. It also proves
the second item of Theorem 3, because when T is one-way
definable, U “ dompT q, and hence T and T 1 are equivalent.

Intuitively, given an input u, the one-way transducer T 1
will guess a successful run ρ of T on u and a decomposition
of ρ, and then use the decomposition to simulate the output
produced by ρ. Note that T 1 accepts at least all the words of
U , possibly more. As a matter of fact, it would be difficult to
construct a transducer whose domain coincides with U , since
checking membership in U involves a universal quantification.
The proof of the following result is in the appendix.

Proposition 31. Given a functional two-way transducer T ,
one can construct in 3EXPTIME a one-way transducer T 1
such that T 1 Ď T and dompT 1q Ě U .

Deciding one-way definability. Recall that T is one-way
definable iff dompT q Ď U , so iff dompT q X U A “ H. The
lemma below exploits the characterization of Theorem 24 to
show that the language U A can be recognized by an NFA
UA of triple exponential size. The lemma actually shows that
the NFA recognizing U A can be constructed using double
exponential workspace.

Lemma 32. Given a functional two-way transducer T , one
can construct in 2EXPSPACE an NFA recognizing U A.

Proof. Consider an input word u. By Theorem 24 we know
that u P U A iff there exist a successful run ρ of T on u and
an inversion I “ pL1, C1, L2, C2q of ρ such that no positive
number p ď B is a period of the word

wρ,I “ out
`

trpC1q
˘

out
`

ρranpC1q, anpC2qs
˘

out
`

trpC2q
˘

.

The latter condition on wρ,I can be rephrased as follows:
there is a function f : t1, . . . ,Bu Ñ t1, . . . , |wρ,I |u such that
wρ,Irfppqs ‰ wρ,Irfppq` ps for all positive numbers p ď B.
Recall that B “ cmax¨hmax¨p2

3emax`4q, where hmax “ 2|Q|´1,
emax “ p2|Q|q

2hmax , and Q is the state space of the two-way
transducer T . This means that the run ρ, the inversion I,

and the function f described above can all be guessed within
double exponential space, namely, using a number of states
that is at most a triple exponential w.r.t. |T |. In particular, we
can construct in 2EXPSPACE an NFA recognizing U A.

As a consequence of the previous lemma and of Theo-
rem 24, we have that the emptiness of the language dompT qX
U A, and hence the one-way definability of T , can be decided
in 2EXPSPACE:

Corollary 33. The problem of deciding whether a functional
two-way transducer is one-way definable is in 2EXPSPACE.

VII. DEFINABILITY BY SWEEPING TRANSDUCERS

A two-way transducer is called sweeping if every successful
run of it performs reversals only at the extremities of the input
word, i.e. when reading the symbols $ or %. Similarly, we call
it k-pass sweeping if it is sweeping and every successful run
performs at most k ´ 1 reversals. Clearly, a 1-pass sweeping
transducer is the same as a one-way transducer.

In this section we are considering the following question:
given a functional two-way transducer, is it equivalent to some
k-pass sweeping transducer? We call such transducers k-pass
sweeping definable. If the parameter k is not given a priori,
then we denote them as sweeping definable transducers.

In [10] we built up on the characterization of one-way defin-
ability for (the restricted class of) sweeping transducers [9] in
order to determine the minimal number of passes required by
sweeping transductions. Essentially, the idea was to consider
a generalization of the notion of inversion, called k-inversion,
and proving that k-pass sweeping definability is equivalent to
asking that every k-inversion generates a periodic output.

We show that we can follow the same approach for
two-way transducers. More precisely, we first define a co-
inversion in a way similar to Definition 14, namely, as a tuple
pL1, C1, L2, C2q consisting of two idempotent loops L1, L2,
a component C1 of L1, and a component C2 of L2 such that
‚ anpC1q � anpC2q,
‚ outptrpC1qq, outptrpC2qq ‰ ε, and
‚ anpCiq “ pxi, yiq for i “ 1, 2, then x1 ď x2.
The only difference compared to inversions is the ordering of
the positions of the anchors, which is now reversed.

Alternating inversions and co-inversions leads to:

Definition 34. A k-inversion is a tuple I “ pI0, . . . , Ik´1q,
where Ii “ pLi, Ci, L

1
i, C

1
iq is either an inversion or a

co-inversion depending on whether i is even or odd, and
anpC 1iq � anpCi`1q for all i ă k ´ 1.
A k-inversion I is safe if for some 0 ď i ă k, the word

out
`

trpCiq
˘

out
`

ρranpCiq, anpC
1
iqs

˘

out
`

trpC 1iq
˘

has period p ď B dividing |outptrpCiqq| and |outptrpC 1iqq|.

Similar to the characterization of k-pass sweeping defin-
ability in [10], we show now the following characterization
for 2-way transducers, using Theorem 24 as a black-box:
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Theorem 35. Let T be a functional two-way transducer and
k ą 0. The following are equivalent:

1) T is k-pass sweeping definable.
2) All k-inversions of all successful runs of T are safe.
The problem of deciding whether the above conditions hold is
in 2EXPSPACE; more precisely, it can be decided in double
exponential space w.r.t. |T | and in polynomial space w.r.t. k.

Proof sketch. A proof of this result (modulo the necessary
changes in complexity due to the new characterization) can
be found in [10]. Here we present in an informal way the
main steps of the proof.

Proving the implication from 2) to 1) boils down to factorize
a successful run ρ of T into factors ρ1, . . . , ρk in such a
way that, for every odd (resp. even) index i, ρi contains only
inversions (resp. co-inversions) that are safe, namely, that yield
periodic outputs. We use the constructions presented in Section
VI to simulate the output of each factor ρi with a one-way
transducer, which scans the input either from left to right or
from right to left, depending on whether i is odd or even.

The implication from 1) to 2) amounts at showing that
every k-inversion is safe under the assumption that T is k-pass
sweeping definable. The proof builds upon the characterization
of one-way definability. More precisely, we consider a success-
ful run of T and the corresponding run of an equivalent k-pass
sweeping transducer T 1 that produces the same output. We
then pump those runs simultaneously on all loops L1, . . . , L2k

that form the k-inversion. By reasoning as in the proof of
Proposition 16, we derive a periodicity property that shows
that the k-inversion is safe.

Finally, the 2EXPSPACE complexity of the decision problem
follows from reducing k-pass sweeping definability to the
emptiness of the language dompT q X U A, where U is now the
language of words u P dompT q such that all k-inversions of
all successful runs on u are safe. As usual the latter problem is
solved by constructing an NFA that recognizes U A by guessing
a successful run ρ of T and an unsafe k-inversion of ρ.

A similar problem, called sweeping definability, concerns
the characterization of those transductions that are definable
by sweeping transducers, but this time without enforcing any
bound on the number of passes (or reversals). Of course the
latter problem is interesting only when the transductions are
presented by means of two-way transducers. Below we show
that the sweeping definability problem reduces to the k-pass
sweeping definability problem, when we set k large enough.

Theorem 36. A functional two-way transducer T is sweeping
definable iff it is k-pass sweeping definable, for k “ 2hmax ¨

p23emax ` 1q.

Proof sketch. The right-to-left implication is trivial. The proof
of the converse direction is in the appendix; here we only
provide a rough idea. Suppose that T is not k-pass sweeping
definable, for k “ 2hmax ¨ p2

3emax ` 1q. By Theorem 35, there
exists a successful run ρ of T and an unsafe k-inversion I of
ρ. One can exploit the fact that k is large enough to find

an idempotent loop L and an intercepted factor of it that
covers two consecutive (co-)inversions of I. Then, by pumping
the loop L, one can introduce arbitrarily long alternations
between inversions and co-inversions, thus showing that there
are successful runs with unsafe k1-inversions for all k1 ą 0. By
Theorem 35, this proves that T is not sweeping definable.

Corollary 37. The problem of deciding sweeping definability
of a functional two-way transducer is in 2EXPSPACE.

Another consequence is that it is decidable in 2EXPSPACE
whether a functional two-way transducer is equivalent to some
two-way transducer performing a bounded number of reversals
in every run. Indeed, in [10] we proved that a functional
transducer is k-pass sweeping definable iff it is pk´1q-reversal
definable.

Other classes of transducers are amenable to characteriza-
tions via similar techniques. For example, we may consider
an even more restricted variant of transducer, called rotating
transducer. This is a sweeping transducer that emits output
only when moving from left to right. Such a transducer is
called k-pass if it performs at most k passes from left to right.
To characterize those transductions that are definable by k-pass
rotating transducers it suffices to modify slightly the defini-
tion of k-inversion, by removing co-inversions. Formally, one
defines a rotating k-inversion as a tuple I “ pI0, . . . , Ik´1q,
where each Ii “ pLi, Ci, L1i, C 1iq is an inversion and anpC 1iq �
anpCi`1q for all i ă k ´ 1. The analogous of Theorems 35
and 36 would then carry over.

VIII. CONCLUSIONS

It was shown recently [8] that it is decidable whether a
given two-way transducer can be implemented by some one-
way transducer, however the complexity of the algorithm is
non-elementary.

The main contribution of our paper is a new algorithm
that solves the above question with elementary complex-
ity, precisely in 2EXPSPACE. The algorithm is based on
a characterization of those transductions, given as two-way
transducers, that can be realized by one-way transducers.
The flavor of our characterization is different from that of
[8]. The approach from [8] is based on a variant of Rabin
and Scott’s construction [4] of one-way automata, and on
local modifications of the two-way run. Our approach relies
instead on the global notion of inversions and on combinatorial
arguments, and is inspired by our previous result for sweeping
transducers [9]. The technical challenge in this paper compared
to [9] is however significant, and required several involved
proof ingredients, ranging from the type of loops we consider,
up to the decomposition of the runs.

Our characterization based on inversions yields not only an
elementary solution for the problem of one-way definability,
but also for definability by sweeping (resp. rotating) trans-
ducers, with either known or unknown number of passes. All
characterizations above are effective, and can be decided in
2EXPSPACE.
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Fig. 8. Some factors intercepted by L and the corresponding edges in the flow.

APPENDIX

Before proving Lemma 8, we show that in a loop, the levels of each component form an interval.

Lemma 38. Let C be a component of a loop L “ rx1, x2s, y´ “ minpCq, and y` “ maxpCq. The nodes of C are precisely
the levels in the interval ry´, y`s. Moreover, if C is left-to-right (resp. right-to-left), then y` is the smallest level ě y´ such
that between px1, y´q and px2, y`q (resp. px2, y´q and px1, y`q) there are equally many LL-factors and RR-factors intercepted
by L.

Proof. To ease the understanding the reader may refer to Fig. 8, that shows some factors intercepted by L and the corresponding
edges in the flow.

We begin the proof by partitioning the set of levels of the flow into suitable intervals as follows. We observe that every loop
L “ rx1, x2s intercepts equally many LL-factors and RR-factors. This is so because the crossing sequences at x1, x2 have the
same length h. We also observe that the sources of the factors intercepted by L are either of the form px1, yq, with y even,
or px2, yq, with y odd. For any location ` P tx1, x2u ˆ N that is the source of an intercepted factor, we define d` to be the
difference between the number of LL-factors and the number of RR-factors intercepted by L that end at a location strictly
before `. Intuitively, d` “ 0 when the prefix of the run up to location ` has visited equally many times the position x1 and
the position x2. For the sake of brevity, we let dy “ dpx1,yq for an even level y, and dy “ dpx2,yq for an odd level y. Note
that d0 “ 0. We also let dh`1 “ 0, by convention.

We now consider the numbers z’s, with 0 ď z ď h` 1, such that dz “ 0, that is: 0 “ z0 ă z1 ă ¨ ¨ ¨ ă zk “ h` 1. Using
a simple induction, we prove that for all i ď k, the parity of zi is the same as the parity of its index i. The base case i “ 0 is
trivial, since z0 “ 0. For the inductive case, suppose that zi is even (the case of zi odd is similar). We prove that zi`1 is odd
by a case distinction based on the type of factor intercepted by L that starts at level zi. If this factor is an LR-factor, then it
ends at the same level zi, and hence dzi`1 “ dzi “ 0, which implies that zi`1 “ zi ` 1 is odd. Otherwise, if the factor is an
LL-factor, then for all levels z strictly between zi and zi`1, we have dz ą 0, and since dzi`1 “ 0, the last factor before zi`1

must decrease dz , that is, must be an RR-factor. This implies that px2, zi`1q is the source of an intercepted factor, and thus
zi`1 is odd.

The levels 0 “ z0 ă z1 ă ¨ ¨ ¨ ă zk “ h ` 1 induce a partition of the set of nodes of the flow into intervals of the form
Zi “ rzi, zi`1 ´ 1s. To prove the lemma, it is suffices to show that the subgraph of the flow induced by each interval Zi is
connected. Indeed, because the union of the previous intervals covers all the nodes of the flow, and because each node has
one incoming and one outgoing edge, this will imply that the intervals coincide with the components of the flow.

Now, let us fix an interval of the partition, which we denote by Z to avoid clumsy notation. Hereafter, we will focus on the
edges of subgraph of the flow induced by Z (we call it subgraph of Z for short). We prove a few basic properties of these
edges. For the sake of brevity, we call LL-edges the edges of the subgraph of Z that correspond to the LL-factors intercepted
by L, and similarly for the RR-edges, LR-edges, and RL-edges.

We make a series of assumption to simplify our reasoning. First, we assume that the edges are ordered based on the
occurrences of the corresponding factors in the run. For instance, we may say the first, second, etc. LR-edge (of the subgraph
of Z) — from now on, we tacitly assume that the edges are inside the subgraph of Z. Second, we assume that the first edge
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of the subgraph of Z starts at an even node, namely, it is an LL-edge or an LR-edge (if this were not the case, one could apply
symmetric arguments to prove the lemma). From this it follows that the subgraph contains n LR-edges interleaved by n ´ 1
RL-edges, for some n ą 0. Third, we assume that minpZq “ 0, in order to avoid clumsy notations (otherwise, we need to add
minpZq to all the levels considered hereafter).

Now, we observe that, by definition of Z, there are equally many LL-edges and RR-edges: indeed, the difference between
the number of LL-edges and the number of RR-edges at the beginning and at the end of Z is the same, namely, dz “ 0 for
both z “ minpZq and z “ maxpZq. It is also easy to see that the LL-edges and the RR-edges are all of the form y Ñ y ` 1,
for some level y. We call these edges incremental edges.

For the other edges, we denote by Ý�y i (resp. �Ýy i) the source level of the i-th LR-edge (resp. the i-th RL-edge). Clearly, each
Ý�y i is even, and each �Ýy i is odd, and i ď j implies Ý�y i ă Ý�y j and �Ýy i ă �Ýy j . Consider the location px1,Ý�y iq, which is the source
of the i-th LR-edge (e.g. the edge in blue in the figure). The latest location at position x2 that precedes px1,Ý�y iq must be of
the form px2,

�Ýy i´1q, provided that i ą 1. This implies that, for all 1 ă i ď n, the i-th LR-edge is of the form Ý�y i Ñ �Ýy i´1` 1.
For i “ 1, we recall that minpZq “ 0 and observe that the first location at position x2 that occurs after the location px1, 0q is
px2, 0q, and thus the first LR-edge has a similar form: Ý�y 1 Ñ

�Ýy 0 ` 1, where �Ýy 0 “ ´1 by convention.
Using symmetric arguments, we see that the i-th RL-edge (e.g. the one in red in the figure) is of the form �Ýy i Ñ Ý�y i ` 1.

In particular, the last LR-edge starts at the level Ý�y n “ maxpZq.
Summing up, we have just seen that the edges of the subgraph of Z are of the following forms:

‚ y Ñ y ` 1 (incremental edges),
‚

Ý�y i Ñ �Ýy i´1 ` 1 (i-th LR-edge, for i “ 1, . . . , n),
‚

�Ýy i Ñ Ý�y i ` 1 (i-th RL-edge, for i “ 1, . . . , n´ 1).
In addition, we have Ý�y i ` 1 “ �Ýy i ` 2d�Ýy i

. Since dz ą 0 for all minpZq ă z ă maxpZq, this implies that Ý�y i ą �Ýy i.

The goal is to prove that the subgraph of Z is strongly connected, namely, it contains a cycle that visits all its nodes. As
a matter of fact, because components are also strongly connected subgraphs, and because every node in the flow has in-/out-
degree 1, this will imply that the considered subgraph coincides with a component C, thus implying that the nodes in C form
an interval. Towards this goal, we will prove a series of claims that aim at identifying suitable sets of nodes that are covered
by paths in the subgraph of Z. Formally, we say that a path covers a set Y if it visits all the nodes in Y , and possibly other
nodes. As usual, when we talk of edges or paths, we tacitly understand that they occur inside the subgraph of Z. On the other
hand, we do not need to assume Y Ď Z, since this would follow from the fact that Y is covered by a path inside Z. For
example, the right hand-side of Fig. 8 shows a path from Ý�y i to Ý�y i` 1 that covers the set Y “ tÝ�y i,Ý�y i` 1uY r�Ýy i´1` 1,�Ýy is.

The covered sets will be intervals of the form

Yi “ r
�Ýy i´1 ` 1,�Ýy is.

Note that the sets Yi are well-defined for all i “ 1, . . . , n´ 1, but not for i “ n since �Ýy n is not defined either (the subgraph
of Z contains only n´ 1 RL-edges).

Claim. For all i “ 1, . . . , n´ 1, there is a path from Ý�y i to Ý�y i ` 1 that covers Yi (for short, we call it an incremental path).

Proof. We prove the claim by induction on i. The base case i “ 1 is rather easy. Indeed, we recall the convention that
�Ýy 0` 1 “ minpZq “ 0. In particular, the node �Ýy 0` 1 is the target of the first LR-edge of the subgraph of Z. Before this edge,
according to the order induced by the run, we can only have LL-edges of the form y Ñ y ` 1, with y “ 0, 2, . . . ,Ý�y 1 ´ 2.
Similarly, after the LR-edge we have RR-edges of the form y Ñ y ` 1, with y “ 1, 3, . . . ,�Ýy 1 ´ 2. Those incremental edges
can be connected to form the path �Ýy i´1 ` 1 Ñ˚ �Ýy 1 that covers the interval r�Ýy 0 ` 1,�Ýy 1s . By prepending to this path the
LR-edge Ý�y 1 Ñ

�Ýy 0`1, and by appending the RL-edge �Ýy 1 Ñ
Ý�y 1`1, we get a path from Ý�y 1 to Ý�y 1`1 that covers the interval

r
�Ýy 0 ` 1,�Ýy 1s. The latter interval is precisely the set Y1.

For the inductive step, we fix 1 ă i ă n and we construct the desired path from Ý�y i to Ý�y i ` 1. The initial edge of this
path is defined to be the LR-edge Ý�y i Ñ �Ýy i´1 ` 1. Similarly, the final edge of the path will be the RL-edge �Ýy i Ñ Ý�y i ` 1,
which exists since i ă n. It remains to connect �Ýy i´1` 1 to �Ýy i. For this, we consider the edges that depart from nodes strictly
between �Ýy i´1 and �Ýy i.

Let y be an arbitrary node in r�Ýy i´1 ` 1,�Ýy i ´ 1s. Clearly, y cannot be of the form �Ýy j , for some j, because it is strictly
between �Ýy i´1 and �Ýy i. So y cannot be the source of an RL-edge. Moreover, recall that the LL-edges and the RR-edges are the
of the form y Ñ y` 1. As these incremental edges do not pose particular problems for the construction of the path, we focus
mainly on the LR-edges that depart from nodes inside r�Ýy i´1 ` 1,�Ýy i ´ 1s.

Let Ý�y j Ñ �Ýy j´1 ` 1 be such an LR-edge, for some j such that Ý�y j P r�Ýy i´1 ` 1,�Ýy i ´ 1s. If we had j ě i, then we would
have Ý�y j ě Ý�y i ą �Ýy i, but this would contradict the assumption that Ý�y j P r�Ýy i´1 ` 1,�Ýy i ´ 1s. So we know that j ă i. This
enables the use of the inductive hypothesis, which implies the existence of an incremental path from Ý�y j to Ý�y j ` 1 that covers
the interval Yj .

14



Finally, by connecting the above paths using the incremental edges, and by adding the initial and final edges Ý�y i Ñ �Ýy i´1`1
and �Ýy i Ñ Ý�y i ` 1, we obtain a path from Ý�y i to Ý�y i ` 1. It is easy to see that this path covers the interval Yi. ˝ (claim)

Next, we define
Y “ r

�Ýy n´1 ` 1,Ý�y ns Y
ď

1ďiăn

Yi.

We prove a claim similar to the previous one, but now aiming to cover Y with a cycle. Towards the end of the proof we
will argue that the set Y coincides with the full interval Z, thus showing that there is a component C whose set of notes is
precisely Z.

Claim. There is a cycle that covers Y .

Proof. It is convenient to construct our cycle starting from the last LR-edge, that is, Ý�y n Ñ �Ýy n´1` 1, since this will cover the
upper node Ý�y n “ maxpZq. From there we continue to add edges and incremental paths, following an approach similar to the
proof of the previous claim, until we reach the node Ý�y n again. More precisely, we consider the edges that depart from nodes
strictly between �Ýy n´1 and Ý�y n. As there are only n´1 RL-edges, we know that every node in the interval r�Ýy n´1`1,Ý�y n´1s
must be source of an LL-edge, an RR-edge, or an LR-edge. As usual, incremental edges do not pose particular problems for the
construction of the cycle, so we focus on the LR-edges. Let Ý�y i Ñ �Ýy i´1`1 be such an LR-edge, with Ý�y i P r�Ýy n´1`1,Ý�y n´1s.
Since i ă n, we know from the previous claim that there is a path from Ý�y i to Ý�y i ` 1 that covers Yi. We can thus build a
cycle π by connecting the above paths using the incremental edges and the LR-edge Ý�y n Ñ �Ýy n´1 ` 1.

By construction, the cycle π covers the interval r�Ýy n´1` 1,Ý�y ns, and for every i ă n, if π visits Ý�y i, then π covers Yi. So to
complete the proof — namely, to show that π covers the entire set Y — it suffices to prove that π visits each node Ý�y i, with
i ă n.

Suppose, by way of contradiction, that Ý�y i is the node with the highest index i ă n that is not visited by π. Recall that
Ý�y i ą �Ýy i. This shows that

Ý�y i P r�Ýy i ` 1,Ý�y ns “
ď

iďjăn´1

r
�Ýy j ` 1,�Ýy j`1s Y r

�Ýy n´1 ` 1,Ý�y ns.

As we already proved that π covers the interval r�Ýy n´1 ` 1,Ý�y ns, we know that Ý�y i P r�Ýy j ` 1,�Ýy j`1s for some j with
i ď j ă n´1. Now recall that Ý�y i is the highest node that is not visited by π. This means that Ý�y j`1 is visited by π. Moreover,
since j ` 1 ă n, we know that π uses the incremental path from Ý�y j`1 to Ý�y j`1 ` 1, which covers Yj`1 “ r

�Ýy j ` 1,�Ýy j`1s.
But this contradicts the fact that Ý�y i is not visited by π, since Ý�y i P r�Ýy j ` 1,�Ýy j`1s. ˝ (claim)

We know that the set Y is covered by a cycle of the subgraph of Z, and that Z is an interval whose endpoints are consecutive
levels z ă z1, with dz “ dz1 “ 0. For the homestretch, we prove that Y “ Z. This will imply that the nodes of the cycle are
precisely the nodes of the interval Z. Moreover, because the cycle must coincide with a component C of the flow (recall that
all the nodes have in-/out-degree 1), this will show that the nodes of C are precisely those of Z.

To prove Y “ Z it suffices to recall its definition as the union of the interval r�Ýy n´1 ` 1,Ý�y ns with the sets Yi, for all
i “ 1, . . . , n ´ 1. Clearly, we have that Y Ď Z. For the converse inclusion, we also recall that �Ýy 0 ` 1 “ 0 “ minpZq and
Ý�y n “ maxpZq. Consider an arbitrary level z P Z. Clearly, we have either z ď �Ýy i, for some 1 ď i ă n, or z ą �Ýy n. In the
former case, by choosing the smallest index i such that z ď �Ýy i, we get z P r�Ýy i´1 ` 1,�Ýy is, whence z P Yi Ď Y . In the latter
case, we immediately have z P Y , by construction.

Lemma 8. If C is a left-to-right (resp. right-to-left) component of an idempotent loop L, then the pL,Cq-factors are in
the following order: k LL-factors (resp. RR-factors), followed by one LR-factor (resp. RL-factor), followed by k RR-factors
(resp. LL-factors), for some k ě 0.

Proof. Suppose that C is a left-to-right component of L. We show by way of contradiction that C has only one LR-factor and
no RL-factor. By Lemma 38 this will yield to the claimed shape. Fig. 9 can be used as a reference example for the arguments
that follow.

We begin by listing the pL,Cq-factors. As usual, we order them based on their occurrences in the run ρ. Let γ be the first
pL,Cq-factor that is not an LL-factor, and let β1, . . . , βk be the pL,Cq-factors that precede γ (these are all LL-factors). Because
γ starts at an even level, it must be an LR-factor. Suppose that there is another pL,Cq-factor, say ζ, that comes after γ and it
is neither an RR-factor nor an LL-factor. Because ζ starts at an odd level, it must be an RL-factor. Further let δ1, . . . , δk1 be
the intercepted RR-factors that occur between γ and ζ. We claim that k1 ă k, namely, that the number of RR-factors between
γ and ζ is strictly less than the number of LL-factors before γ. Indeed, if this were not the case, then, by Lemma 38, the level
where ζ starts would not belong to the component C.
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L L1 ‰ L

”

L copy of L

Fig. 9. Pumping a loop L with a wrong shape and showing it is not idempotent.

Now, consider the pumped run ρ1 “ pump2Lpρq, obtained by adding a new copy of L. Let L1 be the loop of ρ1 obtained
from the union of L and its copy. Since L is idempotent, the components of L are isomorphic to the components of L1. In
particular, we can denote by C 1 the component of L1 that is isomorphic to C. Let us consider the pL1, C 1q-factors of ρ1. The
first k such factor are isomorphic to the k LL-factors β1, . . . , βk from ρ. However, the pk`1q-th element has a different shape:
it is isomorphic to γ β1 δ1 β2 . . . δk1 βk1`1 ζ, and in particular it is an LL-factor. This implies that the pk ` 1q-th edge of
C 1 is of the form py, y` 1q, while the pk` 1q-th edge of C is of the form py, y´ 2kq. This contradiction comes from having
assumed the existence of the RL-factor ζ, and is illustrated in Fig. 9.

The following lemma will be used to prove Theorem 13.

Lemma 39. If L1 “ rx1, x2s and L2 “ rx2, x3s are consecutive idempotent loops with the same effect and α, β are two factors
intercepted by L1, L2 that are adjacent in the run (namely, they share the endpoint at position x2), then α and β correspond
to edges of the same component of L1 (or, equally, L2).

Proof. Let C be the component of L1 and py, y1q the edge of C that corresponds to the factor α intercepted by L1. Similarly,
let C 1 be the component of L2 and py2, y3q the edge of C 1 that corresponds to the factor β intercepted by L2. Since α and
β share the endpoint at position x2, we know that y1 “ y2. This shows that C X C 1 ‰ H, and hence C “ C 1.

Proposition 11. Let L be an idempotent loop of ρ with components C1, . . . , Ck, listed according to the order of their anchors:
anpC1q � ¨ ¨ ¨ � anpCkq. For all m P N, we have

pumpm`1
L pρq “ ρ0 trpC1q

m ρ1 ¨ ¨ ¨ ρk´1 trpCkq
m ρk

where
‚ ρ0 is the prefix of ρ that ends at anpC1q,
‚ ρi is the factor of ρ between anpCiq and anpCi`1q, for all i “ 1, . . . , k ´ 1,
‚ ρk is the suffix of ρ that starts at anpCkq.

Proof. Along the proof we sometimes refer to Fig. 4 to ease the intuition of some definitions and arguments. Let L “ rx1, x2s
be an idempotent loop and, for all i “ 0, . . . ,m, let L1i “ rx1i, x

1
i`1s be the i-th copy of the loop L in the pumped run

ρ1 “ pumpm`1
L pρq, where x1i “ x1` i ¨ px2´x1q (the “0-th copy of L” is the loop L itself). Further let L1 “ L10Y¨ ¨ ¨YL

1
m “

rx10, x
1
m`1s, that is, L1 is the loop of ρ1 that spans across the m`1 occurrences of L. As L is idempotent, the loops L10, . . . , L

1
m

and L1 have all the same effect as L. In particular, the components of L10, . . . , L
1
m, and L1 are isomorphic to and in same order

as those of L. We denote these components by C1, . . . , Ck.
We let `j “ anpCjq be the anchor of each component Cj inside the loop L of ρ (these locations are marked by black dots in

the left hand-side of Fig. 4). Similarly, we let `1i,j (resp. `1j) be the anchor of Cj inside the loop L1i (resp. L1). From Definition
9, we have that either `1j “ `11,j or `1j “ `1m,j , depending on whether Cj is left-to-right or right-to-left (or, equally, on whether
j is odd or even).

Now, let us consider the factorization of the pumped run ρ1 induced by the locations `1i,j , for all i “ 0, . . . ,m and for
j “ 1, . . . , k (these locations are marked by black dots in the right hand-side of the figure). By construction, the prefix
of ρ1 that ends at location `10,1 coincides with the prefix of ρ that ends at `1, i.e. ρ0 in the statement of the proposition.
Similarly, the suffix of ρ1 that starts at location `1m,k is isomorphic to the suffix of ρ that starts at `k, i.e. ρk in the statement.
By construction, we also know that, for all odd (resp. even) indices j, the factor ρ1r`1m,j , `

1
m,j`1s (resp. ρ1r`0,j , `0,j`1s) is

isomorphic to ρr`j , `j`1s, i.e. the ρj of the statement.
The remaining factors of ρ1 are those delimited by the pairs of locations `1i,j and `1i`1,j , for all i “ 0, . . . ,m ´ 1 and all

j “ 1, . . . , k. Consider one such factor ρ1r`1i,j , `
1
i`1,js, and assume that the index j is odd (the case of an even j is similar).
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L1 “ rx, x1s L2 “ rx1, x2s

`

`2

Fig. 10. Two consecutive idempotent loops with the same effect.

This factor can be seen as a concatenation of factors intercepted by L that correspond to edges of Cj inside L1i. More precisely,
ρ1r`1i,j , `

1
i`1,js is obtained by concatenating the unique LR-factor of Cj — recall that by Lemma 8 there is exactly one such

factor — with an interleaving of the LL-factors and the RR-factors of Cj . As the components are the same for all L1i’s, this
corresponds precisely to the trace trpCjq (cf. Definition 10). Now that we know that ρ1r`1i,j , `

1
i`1,js is isomorphic to trpCjq,

we can conclude that ρ1r`10,j , `
1
m,js “ ρ1r`10,j , `

1
1,js . . . ρ

1r`1m´1,j , `
1
m,js is isomorphic to trpCjq

m.

Theorem 13. Let I “ rx1, x2s be an interval of positions, K “ r`1, `2s an interval of locations, and Z “ K X pI ˆ Nq. If
ˇ

ˇoutpρ | Zq
ˇ

ˇ ą B, then there exist an idempotent loop L and a component C of L such that

‚ x1 ă minpLq ă maxpLq ă x2 (in particular, L Ĺ I),
‚ `1 � anpCq � `2 (in particular, anpCq P K),
‚ outptrpCqq ‰ ε.

Proof. Let I , K, Z be as in the statement, and suppose that
ˇ

ˇoutpρ | Zq
ˇ

ˇ ą B. We define Z 1 “ Z z t`1, `2u z
`

tx1, x2uqˆN
˘

and we observe that there are at most 2hmax locations in Z that are missing from Z 1. This means that ρ | Z 1 contains all but
4hmax transitions of ρ | Z, and because each transition outputs at most cmax letters, we have

ˇ

ˇoutpρ | Z 1q
ˇ

ˇ ą B´4cmax ¨hmax “

cmax ¨ hmax ¨ 2
3emax .

For every level y, let Xy be the set of positions x such that px, yq is the source location of a transition of ρ | Z 1 that
produces non-empty output. For example, if we refer to Fig. 10, the vertical dashed lines represent the positions of Xy for
a particular level y; accordingly, the circles in the figure represent the locations of the form px, yq, for x P Xy . Since each
transition outputs at most cmax letters, we have

ř

y |Xy| ą hmax ¨ 2
3emax . Moreover, since there are at most hmax levels, there

is a level y (which we fix hereafter) such that |Xy| ą 23emax .

Claim. There are two consecutive loops L1 “ rx, x
1s and L2 “ rx

1, x2s such that EL1
“ EL2

“ EL1YL2
and with endpoints

x, x1, x2 P Xy .

Proof. By Theorem 12, there is a factorization forest for X of height at most 3emax. Since |Xy| ą 23emax , we know that this
factorization forest contains an internal node L1 “ rx11, x

1
k`1s with k ą 2 children, say L1 “ rx

1
1, x

1
2s, . . .Lk “ rx1k, x

1
k`1s.

By definition of factorization forest, the effects EL1 , EL1
, . . . , ELk

are all equal and idempotent. Moreover, as ρ is a valid
run, the dummy element K of the effect semigroup does not appear in the factorization forest. In particular, the effect EL1 “
EL1 “ ¨ ¨ ¨ “ ELk

is a triple of the form pFL1 , c1, c2q, where ci “ ρ|xi is the crossing sequence at x1i. Finally, since EL1 is
idempotent, we have that c1 “ c2 and this is equal to the crossing sequences of ρ at the positions x11, . . . , x

1
k`1. This shows

that L1, L2 are idempotent loops. ˝ (claim)

Turning back to the proof of the theorem, we know that there are two consecutive idempotent loops L1 “ rx, x1s and
L2 “ rx

1, x2s with the same effect and with endpoints x, x1, x2 P Xy Ď I z tx1, x2u (see again Fig. 10).
Let ` “ px, yq and `2 “ px2, yq, and observe that both locations belong to Z 1. In particular, ` and `2 are strictly between

`1 and `2. Suppose by symmetry that ` � `2. Further let C be the component of L1 Y L2 (or, equally, of L1 or L2) that
contains the node y. Below, we focus on the factors of ρr`, `2s that are intercepted by L1 Y L2: these are represented in
Fig. 10 by the thick arrows. By Lemma 8 all these factors correspond to edges of the same component C, namely, they are
pL1 Y L2, Cq-factors.

Consider any factor α of ρr`, `2s intercepted by L1 Y L2, and assume that α “ β1 ¨ ¨ ¨βk, where β1, . . . , βk are the factors
intercepted by L1 or L2. By Lemma 39, any two adjacent factors βi, βi`1 correspond to edges in the same component of L1

and L2, respectively. Thus, by transitivity, all factors β1, . . . , βk correspond to edges in the same component, say C 1. We claim
that C 1 “ C. Indeed, if β1 is intercepted by L1, then C 1 “ C because α and β1 start from the same location and hence they
correspond to edges of the flow that depart from the same node. The other case is where β1 is intercepted by L2, for which
a symmetric argument can be applied.
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So far we have shown that every factor of ρr`, `1s intercepted by L1 Y L2 can be factorized into some pL1, Cq-factors and
some pL2, Cq-factors. We conclude the proof with the following observations:
‚ By construction, both loops L1, L2 are contained in the interval of positions I “ rx1, x2s, and have endpoints different

from x1, x2.
‚ Both anchors of C inside L1 and L2 belong to the interval of locations K z t`1, `2u. This holds because ρr`, `1s contains

a factor α that is intercepted by L1 Y L2 and spans across all the positions from x to x2, namely, an LR-factor. This
factor starts at the anchor of C inside L1 and visits the anchor of C inside L2. Moreover, by construction, α is also a
factor of the subsequence ρ | Z 1. This shows that the anchors of C inside L1 and L2 belong to Z 1, and in particular to
K z t`1, `2u.

‚ The first factor of ρr`, `1s that is intercepted by L1YL2 starts at ` “ px, yq, which by construction is the source location of
some transition producing non-empty output. By the previous arguments, this factor is a concatenation of pL1, Cq-factors
and pL2, Cq-factors. This implies that the trace of C inside L1 or the trace of C inside L2 produces non-empty output.

Proposition 16. If T is one-way definable, then for every inversion pL1, C1, L2, C2q of a successful run ρ of T , the word

out
`

trpC1q
˘

out
`

ρranpC1q, anpC2qs
˘

out
`

trpC2q
˘

has period p that divides both |outptrpC1qq| and |outptrpC2qq|. Moreover, p ď B.

Proof of Proposition 16. The proof of the first claim of the proposition is similar to the proof of Proposition 7 in [9] for
sweeping transducers. The main difficulty in the present proof is to get a bound on the period of the output of the inversion.

Let pL1, C1, L2, C2q be an inversion of a successful run ρ on input u. Note that the two loops L1 and L2 might not be
disjoint. In fact, two cases arise: either maxpL2q ă minpL1q (that is, L1 and L2 are disjoint and L2 is strictly to the left
of L1), or minpL1q ď minpL2q ď maxpL1q ď maxpL2q (the fact that minpL2q ď maxpL1q follows from the fact that the
anchor anpC2q is to the left of the anchor anpC1q). For the sake of simplicity, we only deal with the case where L1 and L2

are disjoint, as shown in Fig. 5 — the other case can be treated in a similar way by considering the rightmost copy of L1 in
the pumped run pump3L1

pρq, which is clearly disjoint from the leftmost copy of L2.
We begin by pumping the run ρ, together with the underlying input u, on the loops L1 and L2. Formally, for all numbers

m1,m2 P N, we define
upm1,m2q “ pumpm1`1

L1
ppumpm2

L2
puqq

ρpm1,m2q “ pumpm1`1
L1

ppumpm2

L2
pρqq.

We identify the positions that mark the endpoints of the occurrences of L1 and L2 in the pumped run ρpm1,m2q. Formally, if
L1 “ rx1, x2s and L2 “ rx3, x4s, then the sets of positions are defined as follows:

X
pm1,m2q

2 “
 

x3 ` i ¨ px4 ´ x3q : i “ 0, . . . ,m2 ` 1
(

X
pm1,m2q

1 “
 

x1 ` i ¨ px2 ´ x1q `m2 ¨ px4 ´ x3q : i “ 0, . . . ,m1 ` 1
(

.

Let T 1 be a one-way transducer equivalent to T , and consider a successful run λpm1,m2q of T 1 on the input upm1,m2q. Since
T 1 has finitely many states, we can find a large enough number m and two positions x11 ă x12 both in X

pm,mq
1 , such that

L11 “ rx
1
1, x

1
2s is a loop of λpm,mq. Similarly, we can find two positions x13 ă x14 both in Xpm,mq2 , such that L12 “ rx

1
3, x

1
4s is a

loop of λpm,mq. Clearly, L11 and L12 are also loops of ρpm,mq: indeed, L11 (resp. L12) consists of k1 ď m (resp. k2 ď m) copies
of L1 (resp. L2) in ρpm,mq. In particular, for all m1,m2 P N we have:

pumpm1`1
L11

ppumpm2`1
L12

pupm,mqqq “ upfpm1q,gpm2qq

pumpm1`1
L11

ppumpm2`1
L12

pρpm,mqqq “ ρpfpm1q,gpm2qq

pumpm1`1
L11

ppumpm2`1
L12

pλpm,mqqq “ λpfpm1q,gpm2qq.

where fpm1q “ k1 ¨m1 `m, gpm2q “ k2 ¨m2 `m.
Now we observe that the run λpfpm1q,gpm2qq of T 1 produces the same output as the run ρpfpm1q,gpm2qq of T — this

holds thanks to the fact that the transducers are functional, otherwise it may happen that the pumped runs λpfpm1q,gpm2qq

and ρpfpm1q,gpm2qq produce different outputs. Let us denote this output by wpfpm1q,gpm2qq. Below, we show two possible
factorizations of wpfpm1q,gpm2qq based on the shapes of the pumped runs λpfpm1q,gpm2qq and ρpfpm1q,gpm2qq. For the first
factorization, we recall that L12 precedes L11, according to the ordering of positions, and that the run λpfpm1q,gpm2qq is left-to-
right. We thus obtain

wpfpm1q,gpm2qq “ w0 wm2
1 w2 wm1

3 w4 (1)
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L2 L1

anpC1q

anpC2q

L2 two copies of L1

L0

Fig. 11. An inversion pL1, C1, L2, C2q whose pairs pLi, Ciq are not output-minimal. The red parts produce long outputs, and lie outside ρranpC1q, anpC2qs.

where
‚ w0 is the output produced by the prefix of λpm,mq up to the left border of L12,
‚ w1 is the output produced by the (unique) factor of λpm,mq intercepted by L12,
‚ w2 is the output produced by the factor of λpm,mq between the right border of L12 and the left border of L11,
‚ w3 is the output produced by the (unique) factor of λpm,mq intercepted by L11,
‚ w4 is the output produced by the suffix of λpm,mq after the right border of L11.

For the second factorization, we consider L11 and L12 as loops of ρpm,mq. We denote by `11 (resp. `12) the anchor of the
component C1 (resp. C2) of L11 (resp. L12). By assumption we have `11 � `12. Applying Proposition 11 we get:

wpfpm1q,gpm2qq “ v
pm1,m2q

0 vm1
1 v

pm1,m2q

2 vm2
3 v

pm1,m2q

4 (2)

where
‚ v

pm1,m2q

0 is the output produced by the prefix of ρpm,mq that ends at `11 (note that this word may depend on the parameters
m1,m2, since the loops L11 and L12 may be traversed several times before reaching the location `11),

‚ v1 “ outptrpC1qq (this word does not depend on m1,m2),
‚ v

pm1,m2q

2 is the output produced by the factor of ρpm,mq between `11 and `12,
‚ v3 “ outptrpC2qq,
‚ v

pm1,m2q

4 is the output produced by the suffix of ρpm,mq that starts at `12.
Putting together Eqs. (1) and (2), we get

v
pm1,m2q

0 vm1
1 v

pm1,m2q

2 vm2
3 v

pm1,m2q

4 “ w0 wm2
1 w2 wm1

3 w4. (3)

We recall that the words v1, v3 are non-empty, since they are outputs of traces of components that form an inversion. This allows
us to apply Lemma 19, which shows that the word v1 vm1

1 v
pm1,m2q

2 vm2
3 v3 has period gcdp|v1|, |v3|q, for all m1,m2 P N.

Note that the latter period still depends on T 1, since the words v1 and v3 were constructed from the loops L11 and L12, that
are both loops of the run λpm,mq of T 1. However, Proposition 11 tells us that the word v1 (resp. v3) is an iteration of the
output outptrpC1qq of the component C1 of L1 (resp. the output outptrpC2qq of the component C2 of L2). By Lemma 17, this
implies that the period of v1 vm1

1 v
pm1,m2q

2 vm2
3 v3 divides both |outptrpC1qq| and |outptrpC2qq|.

In a similar way, we recall from Proposition 11 that all the words v1 vm1
1 v

pm1,m2q

2 vm2
3 v3 are obtained by iterating

suitable factors inside outptrpC1qq outpρranpC1q, anpC2qsq outptrpC2qq: more precisely, by iterating n1 (resp. n2) times the
output traces of the components of L1 (resp. of L2), where n1 “ fpm1q (resp. n2 “ gpm2q). Since the periodicity property
holds for infinitely many n1 and, independently, for infinitely many n2, we know from Theorem 18 that it also holds for all
n1, n2 P N, and in particular, for n1 “ n2 “ 0. This allows us to conclude that the word

out
`

trpC1q
˘

out
`

ρranpC1q, anpC2qs
˘

out
`

trpC2q
˘

is periodic with period p that divides both |outptrpC1qq| and |outptrpC2qq|.

It remains to prove the second claim of the proposition, which bounds the period by the constant B. This requires a
refinement of the previous arguments that involves pumping the run ρ simultaneously on three different loops.

Recall that the period p for the word out
`

trpC1q
˘

out
`

ρranpC1q, anpC2qs
˘

out
`

trpC2q
˘

was obtained by considering a
run ρpm1,m2q where the loops L1 and L2 have been pumped m1 and m2 times, respectively. To bound the period, we need
to consider inversions that are formed by output-minimal pairs. As already explained, we cannot assume that the inversion
pL1, C1, L2, C2q contains an output-minimal pair. For example, the left part of Fig. 11 represents a situation where both pairs
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pL1, C1q and pL2, C2q of the inversion are not output-minimal. Nonetheless, in the pumped run ρp2,1q we do find inversions
with output-minimal pairs. For example, as suggested by the right part of Fig. 11, we can consider the leftmost and rightmost
occurrences of L1 in ρp2,1q, denoted as

�Ý
L1 and

Ý�
L1, respectively. Let pL0, C0q be any output-minimal pair such that L0 is an

idempotent loop, outptrpC0qq ‰ ε, and either pL0, C0q “ p
�Ý
L1, C1q or pL0, C0q Ă p

�Ý
L1, C1q — such a loop L0 is suggestively

represented in the figure by the red vertical stripe.
We claim that either pL0, C0, L2, C2q or p

Ý�
L1, C1, L0, C0q is an inversion of the run ρp2,1q, depending on whether the anchor

of C0 inside L0 occurs before or after the anchor of C2 inside L2. First, note that all the loops L0, L2,
Ý�
L1 are idempotent

and non-overlapping; more precisely, we have maxpL2q ď minpL0q and maxpL0q ď minp
Ý�
L1q. Moreover, the trace outputs

for the pairs pL0, C0q, pL2, C2q, p
Ý�
L1, C1q are non-empty. So it remains to distinguish the two cases based on the ordering of

the anchors of C0, C1, C2 inside the loops L0,
Ý�
L1, L2, respectively. We denote those anchors by `0, `1, `2. If `0 � `2, then

pL0, C0, L2, C2q is clearly an inversion. Otherwise, because p
Ý�
L1, C1, L2, C2q is an inversion, we know that `1 � `2 � `0, and

hence p
Ý�
L1, C1, L0, C0q is an inversion.

Now, we know that ρp2,1q contains the inversion p
Ý�
L1, C1, L2, C2q, but also an inversion with an output-minimal pair pL0, C0q,

where L0 is strictly between
Ý�
L1 and L2. For all m0,m1,m2, we define ρpm0,m1,m2q as the run obtained from ρp2,1q by pumping

m0,m1,m2 times the loops L0,
Ý�
L1, L2, respectively. Since the output of the run ρpm0,m1,m2q contains many repetitions of the

trace output outptrpC0qq of C0 inside L0, and since these repetitions occur as factors of the output produced inside the inversion
p
Ý�
L1, C1, L2, C2q, their period p1 divides |outptrpC0qq|, |outptrpC1qq|, and |outptrpC2qq| (due to Lemma 17). By Theorem 18,

we deduce that the word out
`

trpC1q ρranpC1q, anpC2qs trpC2q
˘

has period p1 as well. To conclude the proof, it suffices to
recall Lemma 21, saying that the length of outptrpC0qq, and hence the period p1, is bounded by B.

Lemma 19. Consider a word equation of the form

v
pm1,m2q

0 vm1
1 v

pm1,m2q

2 vm2
3 v

pm1,m2q

4 “ w0 w
m2
1 w2 w

m1
3 w4

where m1,m2 are the unknowns, v1, v3 are non-empty words, and vpm1,m2q

0 , v
pm1,m2q

2 , v
pm1,m2q

4 are words that may contain
some factors of the form vm1 or vm2 , for some v. If the above equation holds for all m1,m2 P N, then the words
v1 vm1

1 v
pm1,m2q

2 vm2
3 v3 are periodic with period gcdp|v1|, |v3|q, for all m1,m2 P N.

Proof. The idea of the proof is to let the parameters m1,m2 of the equation grow independently, and exploit Fine and Wilf’s
theorem (Lemma 17) a certain number of times to establish periodicities in overlapping factors of the considered words.

We begin by fixing m1 large enough so that the factor vm1
1 of the left hand-side of the equation is longer than |w0| ` |w1|

(this is possible because v1 is non-empty). Now, if we let m2 grow arbitrarily large, we see that the length of the periodic word
wm2

1 is almost equal to the length of the left hand-side term v
pm1,m2q

0 vm1
1 v

pm1,m2q

2 vm2
3 v

pm1,m2q

4 : indeed, the difference
in length is given by the constant |w0| ` |w2| `m1 ¨ |w3| ` |w4|. In particular, this implies that wm2

1 covers arbitrarily long
prefixes of v1 v

pm1,m2q

2 vm2`1
3 , which in its turn contains long repetitions of the word v3. Hence, by Lemma 17, the word

v1 v
pm1,m2q

2 vm2`1
3 has period |v3|.

We remark that the periodicity shown so far holds for infinitely many m1 and for all but finitely many m2, where the
threshold for m2 depends on m1: once m1 is fixed, m2 needs to be larger than fpm1q, for a suitable function f . In fact, using
Theorem 18, we can show that the periodicity holds even when m2 ranges over all natural numbers. To see this, we introduce
the following shorthand: given a word w and a rational number r “ n

|w| , with n P N, we denote by wr the word wtru w1,

where w1 is the prefix of w of length |w| ¨ pr ´ truq. We then state the periodicity property for v1 v
pm1,m2q

2 vm2`1
3 as an

equation of the form
v1 v

pm1,m2q

2 vm2`1
3 “ v

gpm2q
|v|

which, once m1 is fixed, must hold for all but finitely many m2, for a suitable word v of the same length as v3, and for a
suitable linear function g : N Ñ N. More precisely, gpm2q gives the length of the left hand-side of the equation. The above
equation can be easily rewritten so as to highlight all the repetitions that depend on m2, including those that are hidden inside
the term v

pm1,m2q

2 . Note that we cannot apply Theorem 18 yet, since the repetitions in the right hand-side of the equation may
be fractional. If this is the case, however, it means that the left hand-side of the equation contains a repetition of the form wm2 ,
for some word w whose length is not multiple of |v|. By Fine and Wilf’s theorem (Lemma 17), we know that the period of
the left hand-side is in fact smaller, i.e. gcdp|v3|, |w|q. We can then replace the right hand-side of the equation with an exact
repetition of a word v1 shorter than v. This enables the application of Theorem 18, which implies that the equation holds for
all m2 P N. In this way we have shown that the word v1 v

pm1,m2q

2 vm2`1
3 has period |v3| for all m2 P N.

We could also apply a symmetric reasoning, by fixing m2 and by letting m1 grow arbitrarily large. Doing so, we prove that
for a large enough m2 and for all but finitely many m1, the word vm1`1

1 v
pm1,m2q

2 v3 is periodic with period |v1|. As before,
this can be strengthened to hold for all m1 P N, independently of the choice of m2.
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Putting together the results proven so far, we get that for all but finitely many m1,m2,

loooooooooooooooomoooooooooooooooon

period |v1|

vm1
1 ¨

period |v3|
hkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkj

v1 ¨ v
pm1,m2q

2 ¨ v3 ¨ v
m2
3 .

Finally, we observe that the prefix vm1`1
1 ¨ v

pm1,m2q

2 ¨v3 and the suffix v1 ¨ v
pm1,m2q

2 ¨vm2`1
3 share a common factor of length

at least |v1| ` |v3|. By Lemma 17, we derive that vm1`1
1 ¨ v

pm1,m2q

2 ¨ vm2`1
3 has period gcdp|v1|, |v3|q. Finally, by exploiting

again Theorem 18, we generalize this periodicity property to all m1,m2 P N.

Lemma 21. For every output-minimal pair pL,Cq, |outptrpCqq| ď B.

Proof. Consider a pair pL,Cq consisting of an idempotent loop L “ rx1, x2s and a component C of L. We suppose that the
length of outptrpCqq exceeds B and we claim that pL,Cq is not output-minimal.

Recall that trpCq is a concatenation of pL,Cq-factors, say, trpCq “ β1 ¨ ¨ ¨βk. Let `1 (resp. `2) be the first (resp. last) location
that is visited by these factors. Further let K “ r`1, `2s and Z “ K X pLˆNq. By construction, the subrun ρ | Z can be seen as
a concatenation of the factors β1, . . . , βk, possibly in a different order than that of trpCq. This implies that |outpρ | Zq| ą B.

By Theorem 13, we know that there exist an idempotent loop L1 Ĺ L and a component C 1 of L1 such that anpC 1q P K and
outptrpC 1qq ‰ ε. In particular, the pL1, C 1q-factor that starts at the location anpC 1q is entirely contained in some pL,Cq-factor.
This implies that pL1, C 1q Ă pL,Cq, and thus pL,Cq is not output-minimal.

Proposition 26. If ρ satisfies the periodicity property stated in P2 and ` � `1 are two locations in the same S˚-class, then
out

`

ρr`, `1s
˘

has period at most B.

Proof. The claim for ` “ `1 holds trivially, so we assume that ` � `1. We know that `, `1 belong to the same non-singleton S˚-
class. By definition of S, the run ρ contains some inversions pL0, C0, L1, C1q, pL2, C2, L3, C3q, . . . , pL2k, C2k, L2k`1, C2k`1q

such that anpC0q � ` � `1 � anpC2k`1q and anpC2iq � anpC2i`2q � anpC2i`1q � anpC2i`3q for all i “ 0, . . . , k´1. Without
loss of generality we can assume that every inversion pL2i, C2i, L2i`1, C2i`1q is maximal in the following sense: there is no
other inversion pL,C,L1, C 1q ‰ pL2i, C2i, L2i`1, C2i`1q such that anpCq � anpC2iq � anpC2i`1q � anpC 1q.

We introduce the following shorthands for all i “ 0, . . . , 2k ` 1: `i “ anpCiq, vi “ outptrpCiqq, and pi “ |vi|. By Property
P2, we know that v2i outpρr`2i, `2i`1sq v2i`1 has period at most B that divides both p2i and p2i`1.

In order to show that out
`

ρr`, `1s
˘

has period at most B, it suffices to prove the following claim by induction on i:

Claim. For all i “ 0, . . . , k, the period of out
`

ρr`0, `2i`1s
˘

v2i`1 divides p2i`1 and is bounded by B.

Proof of claim. The base case i “ 0 follows from Property P2, since pL0, C0, L1, C1q is an inversion. For the inductive step,
we assume that the claim holds for i ă k and we prove it for i` 1. We factorize our word as follows:

out
`

ρr`0, `2i`3s
˘

v2i`3 “
loooooooooooooooooooooooomoooooooooooooooooooooooon

period p2i`1

out
`

ρr`0, `2i`2s
˘

periods p2i`2 and p2i`3
hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

out
`

ρr`2i`2, `2i`1s
˘

out
`

ρr`2i`1, `2i`3s
˘

v2i`3 .

By the inductive hypothesis, the output produced between `0 and `2i`1, even extended to the right with the trace output v2i`1,
has period that divides p2i`1. Moreover, because pL2i`2, C2i`2, L2i`3, C2i`3q is an inversion, the output produced between
the locations `2i`2 “ anpC2i`2q and `2i`3 “ anpC2i`3q, extended to the left with v2i`2 and to the right with v2i`3, has period
that divides both p2i`2 and p2i`3. This does not suffice yet to apply Fine-Wilf’s theorem so as to derive a suitable period of
out

`

ρr`0, `2i`3s
˘

v2i`3, since the common factor out
`

ρr`2i`2, `2i`1s
˘

might be too short. The key argument here is that the
interval r`2i`2, `2i`1s is covered by the inversion pL2i`2, C2i`2, L2i`1, C2i`1q, which is different from the previous ones.

For this, we have to prove that the anchors anpC2i`2q and anpC2i`1q are correctly ordered w.r.t. � and the ordering of
positions (recall Definition 14). First, we have anpC2i`2q � anpC2i`1q by assumption. Now we prove that anpC2i`1q is strictly
to the left of anpC2i`2q, according to the ordering of positions. By way of contradiction, suppose that this is not the case,
namely, anpC2i`1q “ px2i`1, y2i`1q, anpC2i`2q “ px2i`2, y2i`2q, and x2i`1 ą x2i`2. Because pL2i, C2i, L2i`1, C2i`1q and
pL2i`2, C2i`2, L2i`3, C2i`3q are inversions, we know that anpC2i`3q is to the left of anpC2i`2q and anpC2i`1q is to the left
of anpC2iq. This implies that anpC2i`3q is to the left of anpC2iq, and hence pL2i, C2i, L2i`3, C2i`3q is also an inversion. But
this would contradict the maximality of pL2i, C2i, L2i`1, C2i`1q, which was assumed at the beginning of the proof.

Now that we know that anpC2i`2q and anpC2i`1q are correctly ordered w.r.t. � and the ordering of positions, we recall that
the trace outputs v2i`1 and v2i`2 are non-empty. This implies that pL2i`2, C2i`2, L2i`1, C2i`1q is an inversion. Moreover, the
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latter inversion covers the interval of locations r`2i`2, `2i`1s. By Property P2, the word v2i`2 outpρr`2i`2, `2i`1sq v2i`1 has
period that divides both p2i`2 and p2i`1.

Summing up, we have:
1) w1 “ out

`

ρr`0, `2i`1s
˘

v2i`1 has period p2i`1,
2) w2 “ v2i`2 out

`

ρr`2i`2, `2i`1s
˘

v2i`1 has period p “ gcdpp2i`2, p2i`1q,
3) w3 “ v2i`2 out

`

ρr`2i`2, `2i`3s
˘

v2i`3 has period p1 “ gcdpp2i`2, p2i`3q.
We are now ready to exploit our slightly stronger variant of Fine-Wilf’s theorem, that is, Lemma 17.

Let w “ out
`

ρr`2i`2, `2i`1s
˘

v2i`1 be the common suffix of w1 and w2. From 1. and 2., we know that the latter words
have period p2i`1 and p “ gcdpp2i`2, p2i`1q, respectively. Moreover, since p divides |w2|´ |w| (“ |v2i`2|), w is also a prefix
of w2. For the same reason, we also know that |w| ě |v2i`1| “ p2i`1 “ p2i`1 ` p´ gcdpp2i`1, pq (the latter equality follows
from the fact that p divides p2i`1). Thus, by applying Lemma 17 to w1 “ w11 w and w2 “ ww22 , using w as common factor,
we obtain that
4) w4 “ w11 w w

2
2 “ out

`

ρr`0, `2i`2s
˘

v2i`2 out
`

ρr`2i`2, `2i`1s
˘

v2i`1 has period p.
Now, from 2. and 3., we know that the words w2 and w3 have periods p and p1, respectively, and contain v2i`2 as factor.
Moreover, the length of the factor v2i`2 is a multiple of both periods p and p1, and hence |v2i`2| ě p` p1 ´ gcdpp, p1q (this
is folklore, and follows from basic facts in number theory, such as q ¨ q1 ě q ` q1 ´ 1 for all q, q1 P N). From Lemma 17 we
derive that
5) w5 “ v2i`2 out

`

ρr`2i`2, `2i`3s
˘

v2i`3 has period p2 “ gcdpp2i`1, p2i`2, p2i`3q.
In a similar way, from 4. and 5., using again v2i`2 as common factor of w4 and w5, we derive
6) w6 “ out

`

ρr`0, `2i`2s
˘

v2i`2 out
`

ρr`2i`2, `2i`3s
˘

v2i`3 has period p2.
Finally, the periodicity is not affected when we remove factors of length multiple than the period. In particular, by removing
the factor v2i`2 from w6, we obtain the word out

`

ρr`0, `2i`3s
˘

v2i`3, whose period still divides p2i`3. This proves the claim
for the inductive step, and completes the proof of the proposition.

Lemma 28. If K “ r`, `1s is a non-singleton S˚-class, then ρr`1, `2s is a block, where r`1, `2s “ blockpKq.

Proof. Let K “ r`, `1s and blockpKq “ r`1, `2s, with `i “ pxi, yiq for both i “ 1, 2, and let anpKq and XanpKq be the sets
given in Definition 27.

We begin by observing that the factor ρr`1, `s between the first location of the block and the first location of the equivalence
class lies entirely to the right of position x1. Indeed, if this were not the case, there would exist another location `11 “ px1, y1`1q,
on the same position x1 as `1 but at a higher level, such that `1 � `11 � `. But this would contradict Definition 27. In a similar
way one verifies that the factor ρr`1, `2s lies to the left of x2.

Next, we prove that the output produced by the factor ρr`1, `2s is quasi-periodic. By Definition 27, we have `1 � ` � `1 � `2,
and by Proposition 26 we know that outpρr`, `1sq is periodic with period at most B. So it suffices to bound the length of the
words outpρr`1, `sq and outpρr`1, `2sq. We shall focus on the former word, as the arguments for the latter are similar. As usual,
the idea is to apply a Ramsey-type argument.

Suppose, by way of contradiction, that the length of |outpρr`1, `sq| ą B. We head towards finding a location `2 � ` that
is S˚-equivalent to `, thus contradicting the fact that ` is the first location of the equivalence class K. Recall that the factor
ρr`1, `s lies entirely to the right of the position x1 of `1, so |outpρr`1, `sq| ą B is equivalent to saying |outpρ | Zq| ą B,
where Z “ r`1, `s X

`

rx1, ωs ˆN
˘

. Theorem 13 implies the existence of an idempotent loop L and a component C such that
‚ minpLq ą x1,
‚ `1 � anpCq � `,
‚ outptrpCqq ‰ ε.
Let `2 “ anpCq. By construction, x1 is the leftmost position of all the locations of the class K “ r`, `1s that are also anchors
of components of inversions. Thus there exist an inversion pL1, C1, L2, C2q and a location `3 “ px1, y

3q P K such that
`3 “ anpCiq for some i P t1, 2u. Since `2 � ` � `3 and the position of `2 is to the right of x1, we know that pL,C,Li, Ciq
is also an inversion, and hence `2 S˚ `3 S˚ `. But since `2 ‰ `, we get a contradiction with the assumption that ` is the first
location of a S˚-class. In this way we have shown that |outpρr`1, `sq| ď B.

It remains to bound the lengths of the outputs produced by the subruns ρ | Z� and ρ | Z�, where Z� “ r`1, `2sX
`

r0, x1sˆN
˘

and Z� “ r`1, `2sX
`

rx2, ωsˆN
˘

. As usual, we consider only one of the two symmetric cases. Suppose, by way of contradiction,
that |outpρ | Z�q| ą B. By Theorem 13, there exist an idempotent loop L and a component C of L such that
‚ maxpLq ă x1,
‚ `1 � anpCq � `2,
‚ outptrpCqq ‰ ε.
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Let `2 “ anpCq. By following the same line of reasoning as before, we recall that ` is the first location of the non-singleton
class K. From this we derive the existence an inversion pL1, C1, L2, C2q such that ` “ anpC1q. We claim that ` � `2. Indeed,
if this were not the case, then, because `2 is strictly to the left of x1 and ` is to the right of x1, there would exist a location `11
between `2 and ` that lies at position x1. But `1 � `2 � `11 � ` would contradict the fact that `1 is the latest location before
` that lies at the position x1 “ minpXanpKqq. Now that we know that ` � `2 and that `2 is to the left of x1, we observe that
pL1, C1, L, Cq is also an inversion, and hence `2 P anpKq. Since `2 is strictly to the left of x1, we get a contradiction with the
definition of x1 as leftmost position of the locations of K that are anchors of components of inversions. We must conclude
that |outpρ | Z�q| ď B.

This completes the proof that ρ | blockpKq is a block.

Lemma 29. Suppose that K1 and K2 are two different non-singleton S˚-classes such that ` � `1 for all ` P K1 and `1 P K2.
Let blockpK1q “ r`1, `2s and blockpK2q “ r`3, `4s, with `2 “ px2, y2q and `3 “ px3, y3q. Then x2 ă x3.

Proof. Suppose by contradiction that K1 and K2 are as in the statement, but x2 ě x3. By Definition 27, x2 “ maxpXanpK1qq

and x3 “ minpXanpK2qq. This implies the existence of some inversions pL1, C1, L2, C2q and pL3, C3, L4, C4q such that
anpCiq “ px2, yq for some i P t1, 2u and anpCjq “ px3, y

1q for some j P t3, 4u. Moreover, since anpCiq � anpCjq and
x2 ě x3, we know that pLi, Ci, Lj , Cjq is also an inversion. But this means that K1 “ K2.

Lemma 30. Let ρr`1, `2s be a factor of ρ that does not overlap any S˚-block, with `1 “ px1, y1q, `2 “ px2, y2q, and x1 ă x2.
Then ρr`1, `2s is a diagonal.

Proof. Suppose by contradiction that there is some x P rx1, x2s such that, for all locations ` “ px, yq between `1 and `2, one
of the following conditions holds:
1) |outpρ | Z

�
` q| ą B, where Z �

` “ r`, `2s X
`

r0, xs ˆ N
˘

,
2) |outpρ | Z

�
` q| ą B, where Z

�
` “ r`1, `s X

`

rx, ωs ˆ N
˘

.
We claim first that for each condition above there is some level y at which it holds. Observe that for the highest location ` of
the run at position x, the set Z �

` is empty, since the outgoing transition at ` is rightward. So condition 1 is trivially violated at
` as above, hence condition 2 holds by the initial assumption. Symmetrically, condition 1 holds at the lowest location of the
run at position x. Let us now compare, for each condition, the levels where it holds.

Clearly, the lower the level of the location `, the easier it is to satisfy condition 1, and symmetrically for condition 2. So, let
` “ px, yq (resp. `1 “ px, y1q) be the highest (resp. lowest) location at position x that satisfies condition 1 (resp. condition 2).

We claim that y ě y1. For this, we first observe that y ě y1 ´ 1, since otherwise there would exist a location ` “ px, y2q,
with y ă y2 ă y1, violating both conditions 1 and 2. Moreover, y must be odd, otherwise the transition departing from
` “ px, yq would be rightward oriented and the location `2 “ px, y ` 1q would still satisfy condition 1, contradicting the fact
that ` “ px, yq was chosen to be the highest location. For similar reasons, y1 must also be odd, otherwise there would be a
location `2 “ px, y1 ´ 1q that precedes `1 and satisfies condition 2. But since y ě y1 ´ 1 and both y and y1 are odd, we need
to have y ě y1.

From the previous arguments we know that in fact ` “ px, yq satisfies both conditions 1 and 2. We can thus apply Theorem
13 to the sets Z

�
` and Z

�
` , deriving the existence of two idempotent loops L1, L2 and two components C1, C2 of L1, L2,

respectively, such that
‚ maxpL2q ă x ă minpL1q,
‚ `1 � anpC1q � ` � anpC2q � `2,
‚ outptrpC1qq, outptrpC2qq ‰ ε.
In particular, since anpC1q is to the right of anpC2q w.r.t. the order of positions, we know that pL1, C1, L2, C2q is an inversion,
and hence anpC1q S˚ anpC2q. But this contradicts the assumption that ρr`1, `2s does not overlap with any S˚-block.

Proposition 31. Given a functional two-way transducer T , one can construct in 3EXPTIME a one-way transducer T 1 such
that T 1 Ď T and dompT 1q Ě U .

Proof. Given an input u, the transducer T 1 will guess (and check) a successful run ρ of T on u, together with a decomposition
pρr`i, `i`1sqi of ρ into blocks and diagonals. The decomposition will be used by T 1 to simulate the output of ρ left-to-right,
thus proving that T 1 Ď T . Moreover, u P U implies the existence of a successful run that can be decomposed, thus proving
that dompT 1q Ě U . We now provide some details of the construction of T 1.

Guessing the run ρ is standard (see, for instance, [5, 17]): it amounts to guess the crossing sequences ρ|x for each position
x of the input. Recall that this is a bounded amount of information for each x, since the run is normalized. As concerns the
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decomposition of ρ, it can be encoded by the endpoints `i of its factors, that is, by annotating the position of each `i as the
level of `i. In a similar way T 1 guesses the information of whether each factor ρr`i, `i`1s is a diagonal or a block.

Thanks to the definition of decomposition (Def. 23), every two distinct factors span across non-overlapping intervals of
positions. This means that each position x is covered by exactly one factor of the decomposition. We call this factor the active
factor at position x. The mode of computation of the transducer will depend on the type of active factor: if the active factor
is a diagonal (resp. a block), then we say that T 1 is in diagonal mode (resp. block mode). Below we describe the behaviour
for these two modes of computation.

Diagonal mode. We recall the key condition satisfied by the diagonal ρr`i, `i`1s that is active at position x (cf. Def. 22 and
Figure 6): there exists a location `x “ px, yxq between `i and `i`1 such that the words outpρ | Z

�
`x
q and outpρ | Z

�
`x
q have

length at most B, where Z �
`x
“ r`x, `2s X

`

r0, xs ˆ N
˘

and Z
�
`x
“ r`1, `xs X

`

rx, ωs ˆ N
˘

.
Besides the run ρ and the decomposition, the transducer T 1 will also guess the locations `x “ px, yxq, that is, will annotate

each x with the corresponding yx. Without loss of generality, we can assume that the function that associates each position x
with the guessed location `x “ px, yxq is monotone, namely, x ď x1 implies `x � `x1 . While the transducer T 1 is in diagonal
mode, the goal is to preserve the following invariant:

After reaching a position x covered by the active diagonal, T 1 must have produced the output of ρ up to location `x.
To preserve the above invariant when moving from x to the next position x ` 1, the transducer should output the word
outpρr`x, `x`1sq. This word consists of the following parts:
1) The words produced by the single transitions of ρr`x, `x`1s with endpoints in tx, x` 1uˆN. Note that there are at most

hmax such words, each of them has length at most cmax, and they can all be determined using the crossing sequences at
x and x ` 1 and the information about the levels of `x and `x`1. We can thus assume that this information is readily
available to the transducer.

2) The words produced by the factors of ρr`x, `x`1s that are intercepted by the interval r0, xs. Thanks to the definition
of diagonal, we know that the total length of these words is at most B. These words cannot be determined from the
information on ρ|x, ρ|x` 1, `x, and `x`1 alone, so they need to be constructed while scanning the input. For this, it is
important to store additional information.
More precisely, at each position x of the input, the transducer stores all the outputs produced by the factors of ρ that
are intercepted by r0, xs and that occur after a location of the form `x1 , for any x1 ě x that is covered by a diagonal.
This clearly includes the previous words when x1 “ x, but also other words that might be used later for processing other
diagonals. Moreover, by exploiting the properties of diagonals, one can prove that those words have length at most B,
so they can be stored with triply exponentially many states. Using classical techniques, the stored information can be
maintained while scanning the input u using the guessed crossing sequences of ρ.

3) The words produced by the factors of ρr`x, `x`1s that are intercepted by the interval rx ` 1, ωs. These words must be
guessed, since they depend on a portion of the input that has not been processed yet. Accordingly, the guesses need to be
stored into memory, so that they can be checked later. Formally, the transducer stores, for each position x, the guessed
words that correspond to the outputs produced by the factors of ρ intercepted by rx, ωs and occurring before a location
of the form `x1 , for any x1 ď x that is covered by a diagonal.

Block mode. Suppose that the active factor ρr`i, `i`1s is a block. Let I “ rxi, xi`1s be the set of positions covered by this
factor. Moreover, for each position x P I , let Z�

x “ r`i, `i`1s X
`

r0, xs ˆN
˘

and Z�
x “ r`i, `i`1s X

`

rx, ωs ˆN
˘

. We recall
the key property of a block (cf. Definition 22 and Figure 6): the word outpρr`ix , `ix`1sq is almost periodic with bound B,
and the words outpρ | Z�

xi
q and outpρ | Z�

xi`1
q have length at most B.

For the sake of simplicity, suppose that outpρr`i, `i`1sq “ w1 w2, w3, where w2 is periodic with period B and w1, w2 have
length at most B. Similarly, let w0 “ outpρ | Z�

xi
q and w4 “ outpρ | Z�

xi`1
q. The invariant preserved by T 1 in block mode is

the following:
After reaching a position x covered by the active block ρr`i, `i`1s, T 1 must have produced the output of the prefix
of ρ up to location `i, followed by a prefix of outpρr`i, `i`1sq “ w1 w2 w3 of the same length as outpρ | Z�

x q.
The initialization of the invariant is done when reaching the left endpoint xi of the interval I . At this moment, it suffices that
T 1 outputs a prefix of w1 w2 w3 of the same length as w0 “ outpρ | Z�

xi
q, thus bounded by B. Symmetrically, when reaching

the right endpoint xi`1 of I , T 1 will have produced almost the entire word outpρr`1, `isqw1 w2 w3, but without the suffix
of length |w4| ď B. Thus, before moving to the next factor of the decomposition, the transducer will have to produce the
remaining suffix, so as to complete the output of ρ up to location `ix`1.

It remains to describe how the above invariant can be maintained when moving from a position x to the next position x` 1
inside I . For this, it is convenient to succinctly represent the word w2 by its repeating pattern, say v, of length at most B. To
determine the symbols that have to be output at each step, the transducer will maintain a pointer on either w1 v or w3. The
pointer is increased in a deterministic way, and precisely by the amount

ˇ

ˇoutpρ | Z�
x`1q

ˇ

ˇ´
ˇ

ˇoutpρ | Z�
x q

ˇ

ˇ. The only exception
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is when the pointer lies in w1 v, but its increase would go over w1 v: in this case the transducer has the choice to either
bring the pointer back to the beginning of v (representing a periodic output inside w2), or move it to w3. Of course, this is a
non-deterministic choice, but it can be validated when reaching the right endpoint of I . Concerning the number of symbols that
need to be emitted at each step, this can be determined from the crossing sequences at x and x` 1, and from the knowledge
of the lowest and highest levels of locations that are at position x and between `i and `i`1. We denote the latter levels by y´x
and y`x , respectively.

Overall, this shows how to maintain the invariant of the block mode, assuming that the levels y´x , y
`
x are known, as well

as the words w0, w1, v, w3, w4 of bounded length. Like the mapping x ÞÑ `x “ px, yxq used in diagonal mode, the mapping
x ÞÑ py´x , y

`
x q can be guessed and checked using the crossing sequences. Similarly, the words w1, v, w3 can be guessed just

before entering the active block, and can be checked along the process. As concerns the words w0, w4, these can be guessed
and checked in a way similar to the words that we used in diagonal mode. More precisely, for each position x of the input,
the transducer stores the following additional information:
1) the outputs produced by the factors of ρ that are intercepted by r0, xs and that occur after the beginning `j of a block,

where `j “ pxj , yjq and xj ě x;
2) the outputs produced by the factors of ρ that are intercepted by rx, ωs and that occur before the ending `j`1 of a block,

where `j`1 “ pxj`1, yj`1q and xj`1 ď x.
Thanks to the properties of blocks, the above words have length at most B and can be maintained while processing the input
and the crossing sequences. Finally, we observe that the words, together with the information given by the lowest and highest
levels y´x , y

`
x , for both x “ xi and x “ xi`1, are sufficient for determining the content of w0 and w4.

The above constructions give a one-way transducer T 1 of size triple exponential in T .

Theorem 36. A functional two-way transducer T is sweeping definable iff it is k-pass sweeping definable, for k “ 2hmax ¨

p23emax ` 1q.

Proof. Suppose that T is not k-pass sweeping definable for k “ 2hmax ¨ p2
3emax ` 1q. We aim at proving that T is not

m-pass sweeping definable for all m ą 0. By Theorem 35, we know that there exist a successful run ρ and a k-inversion
I “ pI0, . . . , Ik´1q of it, with Ii “ pLi, Ci, L1i, C 1iq, that is not safe. We consider the locations of ρ that are visited between
the beginning of an inversion Ii and the ending of the next co-inversion Ii`1. Formally, for all even indices i “ 0, 2, . . . , k´1,
we let

Ki “
“

anpCiq, anpC
1
i`1q

‰

.

We then project each Ki on the x-coordinates:

Xi “
 

x : D ` “ px, yq P Ki

(

.

Since Ki is an interval of locations and the transducer T can only move its head between consecutive positions, we know that
each Xi is an interval of positions. Hereafter, we often use the term “interval” to denote a set of the form Xi, for some even
index i P t0, 2, . . . , κ´ 1u.

Below we prove that there is a large enough set of pairwise non-overlapping intervals:

Claim. There is a set X “ tXiuiPI of cardinality n “ 23emax ` 1 such that X XX 1 “ H for all X ‰ X 1 P X .

Proof. In this proof, we consider an ordering on the intervals Xi different from the one induced by the indices i. This is given
by the lexicographic order on the endpoints, where the dominant element is the rightmost endpoint, namely, we let Xi ă Xj

if either maxpXiq ă maxpXjq, or maxpXiq “ maxpXjq and minpXiq ă minpXjq.
We construct the set X inductively, by following the lexicographic ordering. Formally, for all j “ 0, . . . , n, we construct:

‚ a set Xj of size j such that X XX 1 “ H for all X ‰ X 1 P Xj
‚ a set X 1j of size at least hmax ¨ p2

3emax ` 1´ jq such that, for all X P Xj and all X 1 P X 1j , maxpXq ă minpX 1q (namely,
all intervals of X 1j are strictly to the right of the intervals of Xj).

The base case j “ 0 of the induction is easy: we let X0 “ H and X 10 be the set of all intervals. It only suffices to observe
that X 10 has cardinality k

2 “ hmax ¨ p2
3emax ` 1q.

For the inductive step, suppose that j ă n “ 23emax`1 and that we constructed Xj and X 1j satisfying the inductive hypothesis.
We let X be the least element in X 1j according to the lexicographic order (note that X 1j ‰ H since j ă n). Accordingly, we
define Xj`1 “ XjYtXu and X 1j`1 as the subset of X 1j that contains the intervals strictly to the right of X . It remains to verify
that X 1j`1 has cardinality at least hmax ¨

`

23emax ` 1 ´ pj ` 1q
˘

. For this we recall that the run ρ is normalized. This implies
that there are at most hmax intervals in X 1j that cover the position x “ maxpXq. All other intervals of X 1j are necessarily to
the right of X: indeed, because X is minimal in the lexicographic ordering, we know that every interval of X 1j has the right
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endpoint to the right of x, and as they do not cover the position x, their left endpoint too. This shows that there are at most
hmax intervals in X 1j z X 1j`1, so |X 1j`1| ě hmax ¨

`

23emax ` 1´ pj ` 1q
˘

. ˝ (claim)

Turning back to the proof of the theorem, we consider the left endpoints of the intervals in X , say
�Ý
X “ tminpXq : X P X u.

Since |
�Ý
X| ą 23emax , we can use Theorem 12 to derive the existence of three distinct positions x ă x1 ă x2 P

�Ý
X such that

rx, x1s and rx1, x2s are consecutive idempotent loops of ρ with the same effect (see also the proof of Theorem 13 for a similar
claim). We let L “ rx, x2s be the union of those two loops, and we consider the intermediate position x1. We recall that x1

is the left endpoint of an interval of X , which we denote by Xi for simplicity. We also recall that Xi is the set of positions
visited by a factor of the run ρ that goes from the first anchor anpCiq of the inversion Ii “ pLi, Ci, L1i, C 1iq to the second
anchor anpC 1i`1q of the co-inversion Ii`1 “ pLi`1, Ci`1, L

1
i`1, C

1
i`1q.

We claim that the inversion Ii and the co-inversion Ii`1 occur in the same factor intercepted by L. Indeed, the factor
ρranpCiq, anpC

1
i`1qs visits only positions inside the interval Xi. Moreover, the endpoints of Xi are strictly between the

endpoints of L, namely,

minpLq “ x ă x1 “ minpXiq ď maxpXiq ă x2 “ maxpLq.

This shows that the inversion Ii “ pLi, Ci, L1i, C 1iq and the co-inversion Ii`1 “ pLi`1, Ci`1, L
1
i`1, C

1
i`1q occur in the same

factor intercepted by L, which we denote by α.
Now, we can easily introduce new copies of the factor α, and hence new copies of the (co)-invesions Ii and Ii`1, by

pumping the idempotent loop L. Formally, for all m ą 0, we denote by Ip1qi , . . . , Ipmqi (resp. Ip1qi`1, . . . , I
pmq
i`1 ) the m copies

of the inversion Ii (resp. the m copies of the co-inversion Ii`1) that appear in the pumped run pumpmL pρq. For the sake of
simplicity, we assume that those copies are listed according to their order of occurrence in the pumped run, namely,

Ip1qi � Ip1qi`1 � Ip2qi � Ip2qi`1 � . . . � Ipmqi � Ipmqi`1

(the order � is extended from locations to (co-)inversions in the natural way).
Towards a conclusion, we observe that

`

Ip1qi , Ip1qi`1, . . . , I
pmq
i , Ipmqi`1

˘

is a 2m-inversion of the successful run
pumpmL pρq of T . Moreover, this 2m-inversion is not safe, since it consists of (co-)inversions that do not gen-
erate periodic outputs — more formally, the period of the word outptrpCiqq outpρranpCiq, anpC

1
iqsq outptrpC 1iqq

(resp. outptrpCi`1qq outpρranpCi`1q, anpC
1
i`1qsq outptrpC

1
i`1qq) is larger than B or does not divide |outptrpCiqq| and

|outptrpC 1iqq| (resp. |outptrpCi`1qq| and |outptrpC 1i`1qq|). By Theorem 35, this proves that T is not m-pass sweeping definable.
Finally, since the above holds for all m ą 0, we conclude that T is not sweeping definable.
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