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Abstract 

Many application-specific processor design approaches 

are being proposed and investigated nowadays. All of 

them aim to cope with the emerging flexibility 

requirement combined with the best performance 

efficiency. Application Specific Instruction-set 

Processor (ASIP) design approach is among the most 

explored, and thus in many application domains. 

However, this concept implies a dynamic scheduling of 

a set of instructions which generally lead to an 

overhead related to instruction decoding. To reduce this 

overhead, other approaches were proposed using static 

scheduling of datapath control signals. This paper 

presents a design of a custom architecture for a 

Minimum Mean Square Error Interference Cancellation 

(MMSE-IC) Linear Equalizer (LE) used in iterative 

MIMO turbo receiver using NO Instruction Set 

Computer (NISC) design approach. The proposed 

processor has a datapath, memory, and a simple 

controller with no instruction set or instruction decoder. 

NISC compiler schedules statically all operations and 

generates control values that must be driven to datapath 

components at every clock cycle and loads them in the 

memory. At runtime the controller only loads the 

control words and applies them to the datapath. 

1. Introduction 

Advanced computer architectures for application-

specific processor target the accommodation of the 

emerging flexibility requirement as well as attaining the 

best performance efficiency. Such combination of 

flexibility and the ever increasing performance 

requirements demands design approach that provides 

better ways of controlling and managing the hardware 

resources. Low level design at Register Transfer Level 

(RTL) can lead to efficient architectures but the 

development time is very high for complex applications. 

High Level Synthesis (HLS) increases productivity by 

converting directly high level C language description 

into an RTL Hardware Description Language (HDL). 

The designer cannot correlate precisely the effect of 

application modifications to final implementation quality 

metrics such as area, power, clock frequency, routable 

layout, etc. [1]. To improve the quality, the designer can 

depend only on guess and try work. The result quality is 

noticeably low compared to manual RTL. A suitable 

approach to design custom processors is based on 

Application Specific Instruction-set Processor (ASIP) 

concept. It offers a compromise in terms of design 

productivity and implementation quality. ASIP relies on 

a few set of pre-defined custom instructions. An 

instruction decoder should be designed to decode the 

instructions that are then executed by the corresponding 

hardware at runtime. The implementation of the 

instruction decoder leads to a complex controller which 

increases power and area consumption. 

  Recently, the idea of a processor dedicated to an 

application not using an instruction set has been 

introduced under the name of No-Instruction-Set-

Computer (NISC). The main proposal of NISC approach 

is that there exists no need to use an instruction set when 

the hardware is programmed by its designers and not by 

its users. NISC simplifies ASIP approach by removing 

the complex task of finding and designing “most 

profitable” custom instructions [1]. The elimination of 

the instruction set increases the designer productivity and 

shrinks the time-to-market. The hardware is simplified 

due to the omitting of instruction decoder what reduces 

the complexity and improves the performance. All major 

tasks of typical processor controller (instruction 

decoding, dependency analysis, instruction scheduling, 

etc.) are done by the compiler statically [1] at 

compilation time. The compiler, which is not restricted 

by die size, chip resources or timing constrains, 

generates the control words (CWs) that must be applied 

to datapath components at runtime in every clock cycle 

and loads them in a control memory. At run time, the 

controller only loads the CWs and applies them to the 

datapath.  

In this paper, we explore and illustrate the benefits of 

the NISC approach in design an application-specific 

processor dedicated to MMSE MIMO equalization.  

The rest of the paper is organized as follows. The 

system model is presented in the next section. Section 3 

gives a brief description of the adopted MMSE-IC LE 

algorithm for turbo equalization.  Section 4 explains the 

used designed approach. Sections 5 and 6 present the 

proposed architecture and the synthesis and simulation 

results respectively. The last section concludes the paper. 
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2. SYSTEM MODEL 

2.1 Transmitter scheme 

The Block diagram of the adopted MIMO system is 

shown in figure 1. The source information bits   are 

encoded by a turbo encoder, which concatenates in 

parallel two 8-state double binary recursive systematic 

convolutional (RSC) encoders [2]. The output codeword 

 , made up of the source data and parities, is then 

punctured to reach a desired coding rate Rc. Bit 

Interleaved Coded Modulation (BICM) [3] is used to 

disperse the obtained coded binary data sequence to 

assure that no single coded symbol is fully destroyed 

while passing through a fading channel. Punctured and 

interleaved bits   are then gray-mapped to channel 

symbols according to the chosen constellation. Spatial 

multiplexing (SM) technique is then used to transmit the 

symbols among transmit antennas. 

2.2 Receiver scheme 

On the Receiver side, different components are 

linked together to achieve turbo processing by 

exchanging soft information in between components 

through both forward and feedback paths.. The MMSE-

IC linear equalizer benefits from the a priori information 

from the feedback path and provides the estimated 

symbol vector  ̃ of the input vector  . Utilizing the max-

log approximation method, the soft demapper produces 

the probabilities  ̃ on transmit sequence in the form of 

log likelihood ratio (LLR), which after deinterleaving 

and depuncturing become the input  ̃ to the decoder. The 

decoder uses Max-log-MAP decoding algorithm [4] and 

outputs extrinsic information, which after puncturing and 

interleaving along the feedback path serve as a priori 

information to the demapper. The soft mapper then 

provides the a priori information to the equalizer as 

decoded symbol vector  ̂. 

 

Figure 1: Block diagram of adopted MIMO system 

 

3. MMSE-IC LE ALGORITHM 

MMSE-IC is a linear filter based technique used to 

achieve equalization function. The algorithm is divided 

into two tasks: (1) the computation of filter coefficients 

and (2) the estimation of symbols.  

The input vector of the MIMO turbo receiver shown 

in Fig.2 is given by the following expression: 

         (1) 

where   is vector of size of number of receiver antennas 

(  ),   is a vector of size of number of transmitter 

antennas (  ),   is the MIMO channel matrix of size 

     , and   is a vector of additive white Gaussian 

noise (AWGN) of size   . The equalizer treats each of 

the symbols in vector   as being distorted by the 

channel noise and by the other      symbols in   due 

to multiple antenna interference and tries to combat 

both. At the first iteration, no a priori information is 

provided by the soft mapper and  ̂ is considered 0. 

Equation 1 can be written in the following form: 

          ∑                      (2) 

where           –    , hi and hj are the i
th

 and j
th

 
columns of   matrix. 
 
Using the Wiener filter   

       
 ,the estimation of   

is given by: 

  ̃        
       ̂     ̂     (3) 

where           ,  ̂  is the j
th

 element of vector  ̂, hj 

is the 

j
th
 column of    matrix and (.)

H
 is the Hermitian 

operator. 

   and     are defined as follows: 

             (4) 

where       
    ̂

         
   (5) 

  
 ,   

   and   ̂
  are respectively the constellation 

variance, noise variance, and the variance of the 

decoded symbols  ̂.   is identity matrix of size      . 

     
  
 

    ̂
   

  (6) 

where        
    (7) 

Equation 3 can be written as: 

  ̃        
      ̂     ̂   (8) 

where            (9) 

is the j
th
  element of the bias vector  . 

 

4. NISC design approach 

 NISC represents a design approach of efficient 

custom processors by allowing the compiler to have low 

level control of hardware resources. The elimination of 

the instruction set increases the designer productivity and 

shrinks the time-to-market. Also the hardware is 

simplified due to the omitting of instruction decoder 

what reduces complexity and power consumption. NISC 

moves as much functionalities to the compiler. All major 

tasks of typical processor controller (instruction 

decoding, dependency analysis, instruction scheduling, 

etc.) are done by the compiler statically at compilation 

time [5]. The compiler generates the control words 

(CWs) that must be applied to datapath components at 

runtime in every clock cycle and loads them in the 

control memory. At run time the controller only loads 

the CWs and applies them to the datapath. NISC general 

architecture design is shown in figure 2. 



The architecture description language (ADL) of 

NISC that is called Generic Netlist Representation 

(GNR) captures the structural information of NISC 

architecture. This information is used in the 

implementation, datapath completion, validation, 

optimization, and compilation.  The datapath is captured 

in GNR [6] [7] that describes the components, ports, 

connections and aspects. A component can be a basic 

RTL component or a module, which is a hierarchical 

component that can have an internal netlist. Each 

component has different aspects that describe the 

behavior of the component for different tools in the 

approach toolset concerning compilation, synthesis, and 

simulation [8]. 

In some applications, the hardware must be 

controlled directly through specific instructions. Since 

NISC architectures have no predefined instruction-set, it 

does not have any assembly code to use specific 

resources with custom operations. To overcome this 

limitation, NISC uses pre-bound functions and variables 

that are mapped by the compiler to specific hardware 

resources [9]. During code generation, the compiler 

generates proper control bits to access their 

corresponding hardware resources. Pre-bound functions 

have no specific implementation and are treated similar 

to other operations. Therefore, they can be scheduled in 

parallel with other operations [9]. 

 

 
Figure 2: NISC general architecture design 

5. Architecture design for MMSE-IC LE 

The proposed architecture design for MMSE-IC LE 

supports the MIMO use in 2×2, 3×3, and 4×4 space-

time coding for block, quasi-static, and fast fading 

channel models.  

5.1 Architecture choices 

The equalization process is divided into two non-

concurrent tasks: coefficient computation and symbol 

estimation. Allocating separate resources for each task 

will result in an inefficient architecture in case of quasi-

static and block-fading channel. Hardware resources 

were shared between the two tasks to ensure efficiency 

and flexibility related to time selectivity of the channel. 

To meet flexibility requirements concerning the 

transmission diversity, complex matrix operations were 

broken down into real arithmetic ones. The hardware 

resources were allocated to perform complex operations 

using basic real arithmetic operators and efficiently 

reused to accomplish all required computations [10]. 

5.2 Architecture resources 

The proposed design, called EquaNISC, consists of 

three main modules: (1) storage unit, (2) multiplexing 

unit, and (3) computational unit in addition to a simple 

control unit. Figure 3 shows EquaNISC block diagram 

with its inputs and outputs blocks. The storage unit 

contains three groups of 16-bit registers. Each pair of 

registers is proposed to store a complex number, one 

storing the real part and the other the imaginary part. 

Each group can store one 4×4 complex matrix. The 

three groups of registers save data loaded from memory 

blocks or results of intermediate computations. The 

multiplexing unit is composed of multiplexers that 

construct a chain between different components of the 

proposed architecture. It arranges all data transfers in 

between storage unit, computational unit, input blocks, 

and output blocks. The computational unit contains all 

hardware resources that perform the required 

computations. It is mainly composed of complex adders 

and four instantiations of a combined complex adder, 

subtractor and multiplier module called NISC_CCASM 

[10] that can perform complex addition, subtraction, 

negation and conjugation. The channel data memory 

block saves the channel coefficient matrix H, the noise 

variance   
 , and the received symbol vector y. The 

control memory block stores all the CWs generated by 

the compiler. The 
 

 
 LUT block is a look-up-table that 

contains pre-computed positive inverse values used to 

retrieve the inverse value of the address. At each 

iteration, the soft mapper supplies EquaNISC with the 

soft values of the decoded symbol vector   ̂ and its 

corresponding variance   ̂
 . On the other hand 

EquaNISC delivers the estimated symbol vector  ̃ and 

the corresponding bias vector g to the soft demmaper. 

Note that in all algorithm steps, fixed point arithmetic is 

used with carefully chosen precisions. All 

computational values are in signed 2’s complement 

representation [11].  

 

 
Figure 3: Block diagram of the proposed architecture  

 

6. Design flow and results 

In our architecture, all basic components such as 

multiplexers, adders, subtractors, registers, shift 

registers, multipliers, converters, and memory blocks 

were described by their HDL description (i.e. Verilog). 

Hierarchical modules such as NISC_CCASM and 

EquaNISC units described using netlist description 

using GNR. Pre-bound functions were used to achieve 

efficient utilization of resources and accurate execution 



timing. Different computational operations that can be 

executed in the same clock cycle were merged to the 

same pre-bound function to maximize the exploitation 

of hardware resources and time. Each pre-bound 

function describes all required control values of all 

resources used to perform the operation(s) in one clock 

cycle. Logic synthesis has been conducted targeting a 

Xilinx Virtex-7 XC7VX485T FPGA. The logic 

utilization of the design is shown in Table 1.   

   

Table 1: FPGA Synthesis Results  
Xilinx Virtex-7 XC7VX485T 

Slice Registers 2,029 out of 607,200 (0%) 

Slice LUTs 5,942 out of 303,600 (1%) 

DSP48Es 12 out of 2800 (0%) 

Frequency 192 MHz 

 

To evaluate the influence of the adopted fixed-point 

arithmetic and the selected devised quantization the 

frame-error-rate performance for     MIMO SM with 

64-QAM was recorded. Figure 4 and figure 5 present the 

obtained frame-erroe rate (FER) curves compared to the 

reference floating point curves. The analysis of the 

results has shown a performance loss below 0.2 dB for 

64-QAM and below 0.1 dB for QPSK. 

 

 
Figure 4: Fig. 1.  Floating-point vs. Fixed point-turbo 

equalization  for 4×4 MIMO , 64-QAM , 192 source byte, 1/2 code 

rate, fast fading Rayleigh channel 

 

 

Figure 5: Fig. 1.  Floating point vs. Fixed point turbo equalization  

for 4×4 MIMO , QPSK ,192 source byte , 1/2 code rate, fast fading 

Rayleigh channel 

7. Conclusion 

In this paper, we presented a flexible application-

specific processor dedicated for MIMO MMSE-IC 

linear equalization. The design supports flexibility 

requirement concerning the channel selectivity and 

transmission diversity. The processor architecture has 

been designed using NISC approach. Hardware 

resources are shared and reused by different 

computations to provide maximum utilization for 

different system configurations. The computational 

operations are organized efficiently, and their 

corresponding control signals are mapped directly to the 

hardware resources.  
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