
HAL Id: hal-01864517
https://hal.science/hal-01864517

Submitted on 30 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementation of NISC-based flexible architecture for
MIMO MMSE-IC turbo-equalization

Mostafa Rizk, Amer Baghdadi, Michel Jezequel, Yasser Mohanna, Youssef
Atat

To cite this version:
Mostafa Rizk, Amer Baghdadi, Michel Jezequel, Yasser Mohanna, Youssef Atat. Implementation of
NISC-based flexible architecture for MIMO MMSE-IC turbo-equalization. JNRDM 2014 : 17èmes
Journées Nationales du Réseau Doctoral en Micro-Nanoélectronique„ May 2014, Lille, France. �hal-
01864517�

https://hal.science/hal-01864517
https://hal.archives-ouvertes.fr

Implementation of NISC-based flexible architecture for MIMO

MMSE-IC turbo-equalization

Mostafa Rizk
†‡

, Amer Baghdadi
†
, Michel Jézéquel

†
, Yasser Mohanna

‡
, Youssef Atat

‡

†Telecom Bretagne; UMR 6285 CNRS Lab-STICC; Electronics Department; Brest, France
‡ Lebanese University; Faculty of Sciences; Hadath, Lebanon

E-mail : mostafa.rizk@telecom-bretagne.eu

Abstract

Many application-specific processor design approaches

are being proposed and investigated nowadays. All of

them aim to cope with the emerging flexibility

requirement combined with the best performance

efficiency. Application Specific Instruction-set

Processor (ASIP) design approach is among the most

explored, and thus in many application domains.

However, this concept implies a dynamic scheduling of

a set of instructions which generally lead to an

overhead related to instruction decoding. To reduce this

overhead, other approaches were proposed using static

scheduling of datapath control signals. This paper

presents a design of a custom architecture for a

Minimum Mean Square Error Interference Cancellation

(MMSE-IC) Linear Equalizer (LE) used in iterative

MIMO turbo receiver using NO Instruction Set

Computer (NISC) design approach. The proposed

processor has a datapath, memory, and a simple

controller with no instruction set or instruction decoder.

NISC compiler schedules statically all operations and

generates control values that must be driven to datapath

components at every clock cycle and loads them in the

memory. At runtime the controller only loads the

control words and applies them to the datapath.

1. Introduction

Advanced computer architectures for application-

specific processor target the accommodation of the

emerging flexibility requirement as well as attaining the

best performance efficiency. Such combination of

flexibility and the ever increasing performance

requirements demands design approach that provides

better ways of controlling and managing the hardware

resources. Low level design at Register Transfer Level

(RTL) can lead to efficient architectures but the

development time is very high for complex applications.

High Level Synthesis (HLS) increases productivity by

converting directly high level C language description

into an RTL Hardware Description Language (HDL).

The designer cannot correlate precisely the effect of

application modifications to final implementation quality

metrics such as area, power, clock frequency, routable

layout, etc. [1]. To improve the quality, the designer can

depend only on guess and try work. The result quality is

noticeably low compared to manual RTL. A suitable

approach to design custom processors is based on

Application Specific Instruction-set Processor (ASIP)

concept. It offers a compromise in terms of design

productivity and implementation quality. ASIP relies on

a few set of pre-defined custom instructions. An

instruction decoder should be designed to decode the

instructions that are then executed by the corresponding

hardware at runtime. The implementation of the

instruction decoder leads to a complex controller which

increases power and area consumption.

 Recently, the idea of a processor dedicated to an

application not using an instruction set has been

introduced under the name of No-Instruction-Set-

Computer (NISC). The main proposal of NISC approach

is that there exists no need to use an instruction set when

the hardware is programmed by its designers and not by

its users. NISC simplifies ASIP approach by removing

the complex task of finding and designing “most

profitable” custom instructions [1]. The elimination of

the instruction set increases the designer productivity and

shrinks the time-to-market. The hardware is simplified

due to the omitting of instruction decoder what reduces

the complexity and improves the performance. All major

tasks of typical processor controller (instruction

decoding, dependency analysis, instruction scheduling,

etc.) are done by the compiler statically [1] at

compilation time. The compiler, which is not restricted

by die size, chip resources or timing constrains,

generates the control words (CWs) that must be applied

to datapath components at runtime in every clock cycle

and loads them in a control memory. At run time, the

controller only loads the CWs and applies them to the

datapath.

In this paper, we explore and illustrate the benefits of

the NISC approach in design an application-specific

processor dedicated to MMSE MIMO equalization.

The rest of the paper is organized as follows. The

system model is presented in the next section. Section 3

gives a brief description of the adopted MMSE-IC LE

algorithm for turbo equalization. Section 4 explains the

used designed approach. Sections 5 and 6 present the

proposed architecture and the synthesis and simulation

results respectively. The last section concludes the paper.

mailto:mostafa.rizk@telecom-bretagne.eu

2. SYSTEM MODEL

2.1 Transmitter scheme

The Block diagram of the adopted MIMO system is

shown in figure 1. The source information bits are

encoded by a turbo encoder, which concatenates in

parallel two 8-state double binary recursive systematic

convolutional (RSC) encoders [2]. The output codeword

 , made up of the source data and parities, is then

punctured to reach a desired coding rate Rc. Bit

Interleaved Coded Modulation (BICM) [3] is used to

disperse the obtained coded binary data sequence to

assure that no single coded symbol is fully destroyed

while passing through a fading channel. Punctured and

interleaved bits are then gray-mapped to channel

symbols according to the chosen constellation. Spatial

multiplexing (SM) technique is then used to transmit the

symbols among transmit antennas.

2.2 Receiver scheme

On the Receiver side, different components are

linked together to achieve turbo processing by

exchanging soft information in between components

through both forward and feedback paths.. The MMSE-

IC linear equalizer benefits from the a priori information

from the feedback path and provides the estimated

symbol vector ̃ of the input vector . Utilizing the max-

log approximation method, the soft demapper produces

the probabilities ̃ on transmit sequence in the form of

log likelihood ratio (LLR), which after deinterleaving

and depuncturing become the input ̃ to the decoder. The

decoder uses Max-log-MAP decoding algorithm [4] and

outputs extrinsic information, which after puncturing and

interleaving along the feedback path serve as a priori

information to the demapper. The soft mapper then

provides the a priori information to the equalizer as

decoded symbol vector ̂.

Figure 1: Block diagram of adopted MIMO system

3. MMSE-IC LE ALGORITHM

MMSE-IC is a linear filter based technique used to

achieve equalization function. The algorithm is divided

into two tasks: (1) the computation of filter coefficients

and (2) the estimation of symbols.

The input vector of the MIMO turbo receiver shown

in Fig.2 is given by the following expression:

 (1)

where is vector of size of number of receiver antennas

(), is a vector of size of number of transmitter

antennas (), is the MIMO channel matrix of size

 , and is a vector of additive white Gaussian

noise (AWGN) of size . The equalizer treats each of

the symbols in vector as being distorted by the

channel noise and by the other symbols in due

to multiple antenna interference and tries to combat

both. At the first iteration, no a priori information is

provided by the soft mapper and ̂ is considered 0.

Equation 1 can be written in the following form:

 ∑ (2)

where – , hi and hj are the i
th

 and j
th

columns of matrix.

Using the Wiener filter

 ,the estimation of

is given by:

 ̃
 ̂ ̂ (3)

where , ̂ is the j
th

 element of vector ̂, hj

is the

j
th
 column of matrix and (.)

H
 is the Hermitian

operator.

 and are defined as follows:

 (4)

where
 ̂

 (5)

 ,

 and ̂
 are respectively the constellation

variance, noise variance, and the variance of the

decoded symbols ̂. is identity matrix of size .

 ̂

 (6)

where
 (7)

Equation 3 can be written as:

 ̃
 ̂ ̂ (8)

where (9)

is the j
th
 element of the bias vector .

4. NISC design approach

 NISC represents a design approach of efficient

custom processors by allowing the compiler to have low

level control of hardware resources. The elimination of

the instruction set increases the designer productivity and

shrinks the time-to-market. Also the hardware is

simplified due to the omitting of instruction decoder

what reduces complexity and power consumption. NISC

moves as much functionalities to the compiler. All major

tasks of typical processor controller (instruction

decoding, dependency analysis, instruction scheduling,

etc.) are done by the compiler statically at compilation

time [5]. The compiler generates the control words

(CWs) that must be applied to datapath components at

runtime in every clock cycle and loads them in the

control memory. At run time the controller only loads

the CWs and applies them to the datapath. NISC general

architecture design is shown in figure 2.

The architecture description language (ADL) of

NISC that is called Generic Netlist Representation

(GNR) captures the structural information of NISC

architecture. This information is used in the

implementation, datapath completion, validation,

optimization, and compilation. The datapath is captured

in GNR [6] [7] that describes the components, ports,

connections and aspects. A component can be a basic

RTL component or a module, which is a hierarchical

component that can have an internal netlist. Each

component has different aspects that describe the

behavior of the component for different tools in the

approach toolset concerning compilation, synthesis, and

simulation [8].

In some applications, the hardware must be

controlled directly through specific instructions. Since

NISC architectures have no predefined instruction-set, it

does not have any assembly code to use specific

resources with custom operations. To overcome this

limitation, NISC uses pre-bound functions and variables

that are mapped by the compiler to specific hardware

resources [9]. During code generation, the compiler

generates proper control bits to access their

corresponding hardware resources. Pre-bound functions

have no specific implementation and are treated similar

to other operations. Therefore, they can be scheduled in

parallel with other operations [9].

Figure 2: NISC general architecture design

5. Architecture design for MMSE-IC LE

The proposed architecture design for MMSE-IC LE

supports the MIMO use in 2×2, 3×3, and 4×4 space-

time coding for block, quasi-static, and fast fading

channel models.

5.1 Architecture choices

The equalization process is divided into two non-

concurrent tasks: coefficient computation and symbol

estimation. Allocating separate resources for each task

will result in an inefficient architecture in case of quasi-

static and block-fading channel. Hardware resources

were shared between the two tasks to ensure efficiency

and flexibility related to time selectivity of the channel.

To meet flexibility requirements concerning the

transmission diversity, complex matrix operations were

broken down into real arithmetic ones. The hardware

resources were allocated to perform complex operations

using basic real arithmetic operators and efficiently

reused to accomplish all required computations [10].

5.2 Architecture resources

The proposed design, called EquaNISC, consists of

three main modules: (1) storage unit, (2) multiplexing

unit, and (3) computational unit in addition to a simple

control unit. Figure 3 shows EquaNISC block diagram

with its inputs and outputs blocks. The storage unit

contains three groups of 16-bit registers. Each pair of

registers is proposed to store a complex number, one

storing the real part and the other the imaginary part.

Each group can store one 4×4 complex matrix. The

three groups of registers save data loaded from memory

blocks or results of intermediate computations. The

multiplexing unit is composed of multiplexers that

construct a chain between different components of the

proposed architecture. It arranges all data transfers in

between storage unit, computational unit, input blocks,

and output blocks. The computational unit contains all

hardware resources that perform the required

computations. It is mainly composed of complex adders

and four instantiations of a combined complex adder,

subtractor and multiplier module called NISC_CCASM

[10] that can perform complex addition, subtraction,

negation and conjugation. The channel data memory

block saves the channel coefficient matrix H, the noise

variance
 , and the received symbol vector y. The

control memory block stores all the CWs generated by

the compiler. The

 LUT block is a look-up-table that

contains pre-computed positive inverse values used to

retrieve the inverse value of the address. At each

iteration, the soft mapper supplies EquaNISC with the

soft values of the decoded symbol vector ̂ and its

corresponding variance ̂
 . On the other hand

EquaNISC delivers the estimated symbol vector ̃ and

the corresponding bias vector g to the soft demmaper.

Note that in all algorithm steps, fixed point arithmetic is

used with carefully chosen precisions. All

computational values are in signed 2’s complement

representation [11].

Figure 3: Block diagram of the proposed architecture

6. Design flow and results

In our architecture, all basic components such as

multiplexers, adders, subtractors, registers, shift

registers, multipliers, converters, and memory blocks

were described by their HDL description (i.e. Verilog).

Hierarchical modules such as NISC_CCASM and

EquaNISC units described using netlist description

using GNR. Pre-bound functions were used to achieve

efficient utilization of resources and accurate execution

timing. Different computational operations that can be

executed in the same clock cycle were merged to the

same pre-bound function to maximize the exploitation

of hardware resources and time. Each pre-bound

function describes all required control values of all

resources used to perform the operation(s) in one clock

cycle. Logic synthesis has been conducted targeting a

Xilinx Virtex-7 XC7VX485T FPGA. The logic

utilization of the design is shown in Table 1.

Table 1: FPGA Synthesis Results
Xilinx Virtex-7 XC7VX485T

Slice Registers 2,029 out of 607,200 (0%)

Slice LUTs 5,942 out of 303,600 (1%)

DSP48Es 12 out of 2800 (0%)

Frequency 192 MHz

To evaluate the influence of the adopted fixed-point

arithmetic and the selected devised quantization the

frame-error-rate performance for MIMO SM with

64-QAM was recorded. Figure 4 and figure 5 present the

obtained frame-erroe rate (FER) curves compared to the

reference floating point curves. The analysis of the

results has shown a performance loss below 0.2 dB for

64-QAM and below 0.1 dB for QPSK.

Figure 4: Fig. 1. Floating-point vs. Fixed point-turbo

equalization for 4×4 MIMO , 64-QAM , 192 source byte, 1/2 code

rate, fast fading Rayleigh channel

Figure 5: Fig. 1. Floating point vs. Fixed point turbo equalization

for 4×4 MIMO , QPSK ,192 source byte , 1/2 code rate, fast fading

Rayleigh channel

7. Conclusion

In this paper, we presented a flexible application-

specific processor dedicated for MIMO MMSE-IC

linear equalization. The design supports flexibility

requirement concerning the channel selectivity and

transmission diversity. The processor architecture has

been designed using NISC approach. Hardware

resources are shared and reused by different

computations to provide maximum utilization for

different system configurations. The computational

operations are organized efficiently, and their

corresponding control signals are mapped directly to the

hardware resources.

References

[1] M. Reshadi, "No-Instruction-Set-Computer Technology

Modeling and Compilation," Thesis desiration 2007.

[2] C. Douillard, M. Jezequel, C. Berrou, J. Tousch, N. Pham, and

N. Brengarth, “The Turbo Code Standard for DVB-RCS,” in
Proc. of the International Symposium on Turbo Codes and

Related Topics (ISTC), 2000, pp. 535–538.

[3] G. Caire, G. Taricco, and E. Biglieri, “Bit-interleaved coded
modulation,” IEEE Trans. Inform. Theory, vol. 44, no. 3, pp.

927–946, May 1998.

[4] P. Robertson, P. Hoeher, and E. Villebrun, “Optimal and sub-
optimal maximum a posteriori algorithms suitable for turbo

decoding,” Eur. Trans. Telecommun. (ETT), vol. 8, no. 2, pp.

119–125, 1997.

[5] Mohammad Reshadi, “No-Instruction-Set-Computer

(NISC) Technology Modeling and Compilation”, PhD

dissertation, University of California, Irvine, 2007.

[6] B. Gorjiara, M. Reshadi, D. Gajski, "Generic

Architecture Description for Retargetable Compilation

and Synthesis of Application-Specific Pipelined IPs", in

Proc. International Conference on Computer Design,

ICCD, October 2006.

[7] B. Gorjiara, M. Reshadi, and D. Gajski, "GNR: A Formal

Language for Specification, Compilation, and Synthesis

of Custom Embedded Processors" in Processor

Description Languages: Applications and Methodologies,

Morgan Kaufmann, 2008.

[8] B. Gorjiara, M. Reshadi, P. Chandraiah, D. Gajski,

“Generic Netlist Representation for System and PE Level

Design Exploration”, in Proc. International Symposium

on Hardware/Software Codesign and System Synthesis,

CODES+ISSS, October 2006.

[9] M. Reshadi, D. Gajski, “Interrupt and Low-level

Programming Support for Expanding the Application

Domain of Statically-scheduled Horizontally-microcoded

Architectures in Embedded Systems”, in Proc. Design

Automation and Test in Europe, DATE’07, April 2007.

[10] M. Rizk, A. Baghdadi, M. Jezequel, Y. Mohanna,

Y. Atat, “Flexible and Efficient Architecture Design for

MIMO MMSE-IC Linear Turbo-Equalization”, in Proc.

IEEE Int. Conf. on Communications and Information

Technology, ICCIT, 2013.

[11] M. Rizk, A. Baghdadi, M. Jezequel, Y. Mohanna,

Y. Atat, “Quantization and fixed-point arithmetic for MIMO

MMSE-IC linear turbo-equalization”, in Proc. IEEE Int.

Conf. on Microelectronics Technology, ICM, 2013.

