
HAL Id: hal-01864488
https://hal.science/hal-01864488

Preprint submitted on 30 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non decomposable connectives of linear logic
Roberto Maieli

To cite this version:

Roberto Maieli. Non decomposable connectives of linear logic. 2018. �hal-01864488�

https://hal.science/hal-01864488
https://hal.archives-ouvertes.fr


Non decomposable connectives of linear logic

Roberto Maieli

Department of Mathematics and Physics, ”Roma Tre” University
Largo San Leonardo Murialdo 1, 00146 Rome, Italy

maieli@mat.uniroma3.it

Abstract

This paper studies the so-called generalized multiplicative connectives of
linear logic, focusing on the question of finding the “non-decomposable”
ones, i.e., those that may not be expressed as combinations of the default
binary connectives of multiplicative linear logic, ⊗ (tensor) and O (par). In
particular, we concentrate on generalized connectives of a surprisingly simple
form, called “entangled connectives”, and prove a characterization theorem
giving a criterion for identifying the undecomposable ones.
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1. Introduction

Generalized connectives for the pure (units free) multiplicative fragment
of linear logic (MLL, [6]) were introduced by Girard in his seminal paper [5] in
terms of permutations but most of the results known after then are essentially
due to Danos and Regnier [3] who replaced permutations by partitions of finite
sets. A generalized multiplicative connective may be defined by a pair of dual
sets of partitions of a same finite domain {1, 2, ...n}, dual in the sense that
they are pairwise orthogonal where orthogonality is defined by a topological
condition: the bipartite graph obtained by linking together classes of each
partition sharing an element is acyclic and connected (ACC). E.g., partition
{(1, 2), (3)} is not orthogonal to partition {(1, 2, 3, )} since the bipartite
graph G1 contains a cycle while the two sets of partitions, {{(1, 2), (3)}} and
{{(1, 3), (2)}, {(1), (2, 3)}}, are orthogonal since they are pairwise so (their
respective bipartite graphs, G ′2 and G ′′2 , are ACC) as illustrated below:

(1, 2) (3)

(1, 2, 3)

G1 :

(1, 2) (3)

(1, 3) (2)

G ′2 :

(1, 2) (3)

(1) (2, 3)

G ′′2 :

There are two ways to interpret logical connectives (formulas) of MLL
by means of pairs of orthogonal sets of partitions: one based on the sequent
calculus syntax and the other one based on the proof nets syntax, according
to the spirit of linear logic. In the sequential syntax, a partition describes a
sequent calculus rule for producing the generalized formula: the domain of the
partition is the set of principal sub-formulas occurrences of the given formula
and each class describes one premise of the rule; so, a multiplicative rule for an
n-ary connective F (A1, ..., An) is completely characterized by the organization
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of its principal sub-formulas (A1, ..., An); indeed, since multiplicatives rules
are unconditional about the context, any rule can be simply described by a
partition over its principal sub-formulas occurrences (their indexes), omitting
the contexts. E.g., the two orthogonal sets of partitions (or organizations sets),
OF = {{(1, 2), (3)}} and OF⊥ = {{(1, 3), (2)}, {(1), (2, 3)}}, are compact
representations of, respectively, the sequent generalized rule below (when
F (1, 2, 3) = (A1OA2)⊗ A3)

(1, 2) (3)
r(F )

F (1, 2, 3)
≡

(1, 2)
O

(1O2) (3)
⊗

F = (A1OA2)⊗ A3

and the next two sequent n-ary rules (when F⊥(1, 2, 3) = (A1 ⊗ A2)OA3):

(1, 3) (2)
r1(F

⊥)
F⊥(1, 2, 3)

≡
(1, 3) (2)

⊗
(1⊗ 2), 3

O
F⊥ = (A1 ⊗ A2)OA3

(1) (2, 3)
r2(F

⊥)
F⊥(1, 2, 3)

≡
(1) (2, 3)

⊗
(1⊗ 2), 3

O
F⊥ = (A1 ⊗ A2)OA3

In the graphical syntax, a partition describes the “effects” of a Danos-
Regnier switching over the frontier of the syntactical tree of a MLL formula. We
may associate to each switching of a formula tree F (A1, ..., An) a partition of
its top frontier A1, ..., An in to classes of connected components. The partitions
set of the border leaves of a formula tree F , induced by all switchings, is
called the pre-type of F (denoted PF ). E.g., the pre-types the two formula
trees below

1 2

3

O

⊗

3

O

21

⊗

F F⊥

are resp., the partitions set PF = {{(1, 3), (2)}, {(1), (2, 3)}} (pre-type of
F = (A1OA2)⊗A3) and the partitions set PF⊥ = {{(1, 2), (3)}} (pre-type of
F⊥ = (A1 ⊗ A2)OA3).

These two syntaxes describing usual MLL formulas (i.e., definable by
means of the basic binary connectives ⊗ and O) are shown to be dual. To be
precise, the organizations set of a MLL formula F (denoted OF ) is exactly the
dual of the pre-type of F that is, OF = P⊥F so, OF is a type (i.e. it is equal
to its bi-orthogonal, OF = O⊥⊥F ), thus every sequential n-ary connective of
MLL, OF and OF⊥ , is reflexive that is O⊥F = OF⊥ and O⊥

F⊥ = OF .
We can generalize this construction in a natural way. Given two partitions

sets we wonder whether they define a generalized multiplicative connective
according to the two dual syntaxes:
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• in the sequent calculus syntax it is sufficient to describe a connective1 as
a pair of orthogonal organizations sets OC ⊥ OC⊥ ; each organizations
set is a type describing all rules that allow to derive that connective;
orthogonality is enough to ensure cut elimination;

• in the proof nets syntax, since partitions are interpreted as switchings
associated to a connective and since switchings are in some sense dense
sub-sets2 we may define a connective as a pairs of partitions sets P and
Q s.t. P ⊥ Q and P⊥ ⊥ Q⊥: the first condition P ⊥ Q ensures (ACC)
correctness of proof structures while the second condition P⊥ ⊥ Q⊥

ensures the stability of correctness under cut reduction.

Then, given a pair of partitions sets, P and Q, as describing a connective
(in sequential or graphical syntax), we wonder whereas this connective is
definable by means of the basic binary connective of MLL (O and ⊗) in which
case it is called decomposable. Not all connectives are decomposable. To date
there only exists one instance of non (binary) decomposable connective firstly
discovered by Girard [5] in terms of permutations and later reformulated by
Danos-Regnier [3] as a pair of orthogonal sets of partitions, G4 and G⊥4 , over
the same domain {1, 2, 3, 4}:

G4 = {{(1, 2), (3, 4)}, {(2, 3), (4, 1)}} and G⊥4 = {{(1, 3), (2), (4)}, {(2, 4), (1), (3)}}.

Unfortunately, none (uniform) characterization of undecomposable connectives
is known up to now. Under this respect, this work represents a first step
forward: it defines a class of generalized connectives that are not decomposable,
neither in sequential nor in graphical syntax, the so-called undecomposable
entangled connectives. A pair of distinct partitions sets with same domain
and same weight (cardinality) is entangled when each partition contains
only binary or unary classes (Definition 21). Then a connective, P and Q,
is entangled whenever P or Q is an entangled pair. Entangled pairs have
interesting properties that are investigated throughout Section 4. The first
one (Theorem 32, one of the main results of the paper), being that every
entangled pair of partitions sets is a type. This result has several consequences:
decomposable entangled pairs (and so, decomposable connectives) have a very
simple characterization (the normal form of Theorem 36) which can be further

1Every connective is immediately given together with its dual.
2”Switchings should be seen as a dense subset of para-proofs“, page 41 of [7].
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used to prove that given an undecomposable entangled connective, P and Q,
where P is an entangled pair, then P cannot be embedded into a decomposable
type T ) P , s.t. T and Q become decomposable (see Corollary 40).

Although our notion of entanglement doesn’t solve the admittedly, difficult
general problem (“try to find an uniform characterization of the full class of
undecomposable connectives”), it is far from being and “ad hoc” condition.
Intuitively, an entangled type is naturally obtained as soon as we “superpose”
(i.e., we sum) the pre-types of two bipoles3 having the same “skeleton” (i.e., the
same abstract syntactical tree) up to cyclic permutation of their frontier (the
border leaves; see Remarks 41). This fact is a novelty since the union of types is
not in general a type while the intersection of types is always a type (Property 3
of Section 2). Indeed, entangled types are the smallest types (w.r.t. the
number of partitions), if we exclude the trivial singleton types. So, entangled
connectives can be considered, in some sense, “elementary connectives”, since
they are the “smallest” generalized multiplicative connectives (w.r.t. the
number of switchings or the number of sequential rules), if we exclude, of
course, the basic ones (O and ⊗). However, the class of undecomposable
entangled connectives is quite special and we already discovered examples of
undecomposable connectives falling outside of it like e.g. G9 below (we omit
the dual G⊥9 ):

G9 = { {(1, 2, 3), (4, 5, 6), (7, 8, 9)},
{(2, 3, 4), (5, 6, 7), (8, 9, 1)},
{(3, 4, 5), (6, 7, 8), (9, 1, 2)} }.

We are currently working on a more general characterization4 of the full class
of primitive non decomposable connectives i.e., those ones that cannot be
defined by means of other connectives, neither binary nor entangled.

More generally, non decomposable generalized connectives witness a deep
asymmetry between proof nets and sequent proofs since the former ones allow
us to express a kind of parallelism of proofs that the latter ones cannot do:
actually, there exist proof nets in η-expanded form, built on non decomposable
connectives, that have no correspondence with any sequential proof, if we

3Naively, a bipole B is a special MLL formula, introduced by Andreoli in [1], with only
two layers of connectives: a generalized O of generalized ⊗-sub-formulas. Bipoles have the
nice feature that their pre-types are already types.

4For this scope we consider partitions over cyclic permutations of linearly ordered
sequences 1 < 2 < ... < n; see Section 6.
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exclude the identity axioms ` G,G∗. This significant fact, lying at the core
of linear logic, was already remarked in [3]:

“We saw with some surprise that the realm of multiplicatives
became quite complex, even handled by a careful generalization.
Yet the generalization seems more natural in the non-sequential
framework [...]. Maybe we witness here the limits of sequential
presentations of logic”.

2. Partitions and orthogonality

Definition 1 (partitions and orthogonality). A partition of a finite set
X = {1, ..., n} (also called support) is a set of nonempty subsets of X, called
classes (or parts), such that every element i ∈ X is in exactly one of these
subsets (i.e., X is a disjoint union of the subsets).

If p and p∗ are two partitions of X = {1, ..., n}, then:

• the induced graph of incidence of p and p∗, denoted G(p, p∗), is the
bipartite (undirected) graph which has for vertices the classes of p and
p∗, two of them being linked iff they share an element i ∈ X;

• p and p∗ are orthogonal (denoted, p ⊥ p∗) iff the induced graph G(p, p∗)
is acyclic and connected (i.e., it is a topological tree; shortly, ACC).

If P and Q are two sets of partitions, we say that P and Q are orthogonal
(denoted P ⊥ Q) if they are pointwise orthogonal i.e., ∀p ∈ P, ∀q ∈ Q, p ⊥ q.
P⊥ denotes the set of partitions orthogonal to all the elements of P .

Example 2. Given two partitions, p1 = {(1, 2)} and p∗1 = {(1), (2)}) then,
p1 ⊥ p∗1 since the induced graph G1(p1, p∗1) is a tree; conversely, partitions
p2 = {(1), (2, 3)}) and p∗2 = {(1, 2, 3)} are not orthogonal (p2 6⊥ p∗2) since
G2(p2, p∗2) contains a cycle as illustrated in Figure 1. Moreover, observe
that w.r.t the sets of partitions given below, P1, P2, Q1 and Q2, we only have
P1 ⊥ Q1 and P2 ⊥ Q2 while e.g. P1 6⊥ Q2 and P2 6⊥ Q1:

P1 = {{(1, 2), (3, 4)}}, Q1 = {{(1, 3), (2), (4)}, {(1, 4), (2), (3)}, {(2, 3), (1), (4)}, {(2, 4), (1), (3)}}
P2 = {{(2, 3), (4, 1)}}, Q2 = {{(2, 4), (3), (1)}, {(2, 1), (3), (4)}, {(3, 4), (2), (1)}, {(3, 1), (2), (4)}}.
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(1) (2)

(1, 2)

G1 :

p∗1 :

p1 : (1) (2, 3)

G2 :

p2 :

p∗2 : (1, 2, 3)

Figure 1: bipartite graphs of incidence induced by pairs of partitions

The degree of a class x is the cardinality of x; the weight of a partition
p is the cardinality of p. Given a set of partition P , we say that:

– P has weight w if every partition p ∈ P has weight w;
– the size of P is the cardinality of P ;
– the dimension of P is the cardinality of its domain X.
As notation, we use: variables X, Y, Z, ..., for finite sets {1, ...n}, variables

a, b, c, ..., for arbitrary elements of sets, variables p, q, r, ..., for partitions of a
set, variables x, y, z, ..., for classes of a partition and variables A,B, P,Q, ...,
for sets of partitions.

Next facts on partitions sets of (Property 3) can be found in the literature
on multiplicatives (see e.g. [9] for detailed proofs).

Property 3 (partitions and types). Let A, B and Ai be sets of partitions
over {1, ..., n}. Then the following facts hold:

1. A ⊥ B iff A ⊆ B⊥ iff B ⊆ A⊥;

2. A ⊆ B implies B⊥ ⊆ A⊥;

3. A ⊆ A⊥⊥;

4. A ⊥ B iff A⊥⊥ ⊥ B⊥⊥;

5. A⊥ = A⊥⊥⊥;

6. (A ⊥ B and A⊥ ⊥ B⊥) iff (A⊥ = B⊥⊥) iff (B⊥ = A⊥⊥);

7. In case A ⊥ B and A⊥ ⊥ B⊥:
(B⊥ = A and B = A⊥) iff (A⊥⊥ = A and B = B⊥⊥);

8. A = A⊥⊥ iff ∃B : A = B⊥; then, A is called type;

9. (
⋃

iAi)
⊥ =

⋂
iA
⊥
i ;

10. (
⋂

iAi)
⊥ ⊇

⋃
iA
⊥
i ;

11. if A is a singleton (i.e., A = {p} where p is a partition) then A is type;

12. if A ⊥ B, with A and B nonempty, then all partitions in A (resp., in
B) have the same weight.
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Let us prove case 6 of Property 3: assume (A ⊥ B) and (A⊥ ⊥ B⊥)
then, by case 1, (A⊥ ⊥ B⊥) ⇒ (A⊥ ⊆ B⊥⊥) and (A ⊥ B) ⇒ (A ⊆ B⊥)
which implies, by case 2, B⊥⊥ ⊆ A⊥; so B⊥⊥ = A⊥. Vice-versa assume
B⊥⊥ = A⊥ then, by case 1, (A⊥ ⊆ B⊥⊥) ⇒ (A⊥ ⊥ B⊥) and, by case 3,
(B⊥⊥ ⊆ A⊥)⇒ (B ⊆ A⊥) from which, by case 1, (A ⊥ B).

We draw attention to the fact that the intersection of types is always a
type (case 9) while the union of types is not always a type (case 10): instances
of these facts can be found in Example 5.

Case 11 follows by Lemma 4 of [9]. Finally, case 12 follows by the next
well known graph theoretical property (see e.g. [8], pages 250-251).

Property 4 (Euler-Poincaré invariance). Given a graph G = (V,E) then,
(|V | − |E|) = (|CC| − |Cy|) where |V |, |E|, |CC| and |Cy| denotes, resp., the
number of vertices, edges, connected components and primitive cycles of G.

Example 5. Assume two sets of partitions P1 and P2 over {a, b, c, d} as
below then, we can calculate their respective orthogonal types, by case 9 of
Property 3, as follows:

1. if P1 = {p1 : {(a, c), (b, d)}, p2 : {(a, d), (b, c)}} then,
P⊥1 = {p1}⊥ ∩ {p2}⊥ = {{(d, c), (a), (b)}, {(a, b), (d), (c)}};

2. if P2 = {p1 : {(a, d, c), (b)}, p2 : {(d, b, c), (a)}} then,
P⊥2 = {p1}⊥ ∩ {p2}⊥ = {{(b, a), (c), (d)}}.

Concerning case 10 of Property 3, we just observe here that although every
singleton {pi} is a type (with i = 1, 2, by case 11 of Property 3), only P1

is a type while P2 is not so, since P2 ( P⊥⊥2 = (P1 ∪ P2). We will show in
Section 4.1 that as soon as we restrict to consider pairs of singleton sets of
partitions, {p} and {q}, having same domain and weight and whose classes
have degree 1 ≤ d ≤ 2 then, their union {p} ∪ {q} is a(n entangled) type.

3. Generalized connectives

Partitions sets allow to express generalized multiplicative connectives
in a very abstract, uniform and compact way. A generalized (or n-ary)
multiplicative connective C(A1, ..., An) may be defined, as in [3], by a pair
of orthogonal sets of partitions, P ⊥ Q, over a same domain {1, ..., n} that
is the set of principal sub-formulas indexes of C. There are indeed two dual
ways to interpret (orthogonal pairs of) sets of partitions as defining logical
connectives: the sequential (Section 3.1) and the graphical one (Section 3.2).
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3.1. Sequent calculus syntax for generalized connectives

Following [3], we may define a connective by means of its sequential
rules which are conservative w.r.t. the atoms i.e, the premises of the rule
have exactly the same atoms as in the conclusion. Hence a multiplicative
rule for an n-ary (i.e., generalized) connective C(A1, ..., An) is completely
characterized by the organization of its principal sub-formulas occurrences
(A1, ..., An) as described in the l.h.s. picture of Figure 2. Since multiplicatives
rules are unconditional about the context, any rule can be simply described
by a partition over its principal sub-formulas indexes, omitting the contexts
Γ1, ...,Γp, as in the r.h.s. picture of Figure 2.

` Γ1, A1, ..., Ai1 ... ` Γp, Ap, ..., Aip
C` Γ1, ...,Γp, C(A1, ..., An)

(1, ..., i1) ... (p, ..., ip)
C

C(1, ..., n)

Figure 2: generalized sequential rule

Definition 6 (generalized rules as partitions). If R is an n-ary rule,
then the corresponding partition p is defined over {1, ..., n} as follows: i, j ∈
{1, ..., n} belong to a same class of p if formulas occurrences A1 and Aj belong
to the same premise of R. Conversely, given a partition p, we can check if a
rule R satisfies it. Renumber the principal formulas from left to right in the
conclusions, and ask if the induced partition is really p.

Definition 7 (sequential multiplicative generalized connectives). A
sequential multiplicative generalized connective C consists of two sets of
orthogonal partitions, OC ⊥ O∗C : a set OC of partitions representing the right
rules and a set O∗C of partitions representing the left rules handled by the dual
connective C∗. By duality, the set O∗C of left rules for C are exactly the set
of right rules for the dual connective C∗ (i.e., O∗C = OC∗).

E.g., the two orthogonal sets of partitions, {{(1), (2)}} and {{(1, 2)}},
correspond to the primitive (or basic) binary multiplicative connectives “O”
and “⊗” of MLL [6]:

` Γ, A1 ` ∆, B2 ⊗
` Γ,∆,⊗(A1, B2)

` Γ, A1, B2 O
` Γ,O(A1, B2)

Orthogonality ensures cut elimination; e.g., OD = {p : {(1, 2), (3)}} and
OD∗ = {p∗ : {(1, 2, 3)}} do not define a sequential connective since OD 6⊥ OD∗ ;
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we cannot actually reduce the cut between D(A1, A2, A3) and D∗(A⊥1 , A
⊥
2 , A

⊥
3 ),

introduced just above by rules p and p∗, by means of cuts between each couple
of dual sub-formulas5, Ai and A⊥i :

...
` Γ, A1, A2

...
` ∆, A3 p

` Γ,∆, D(A1, A2, A3)

...
` Σ, A⊥1 , A

⊥
2 , A

⊥
3 p∗

` Σ, D∗(A⊥1 , A
⊥
2 , A

⊥
3 )

π : cut` Γ,∆,Σ

6;

If we denote MLL+ the standard MLL sequent calculus of Figure 3 extended
with the sequential general multiplicative rules of Figure 2 then, MLL+ still
satisfies cut elimination6.

id
A,A⊥

Γ, A ∆, A⊥
cut

Γ,∆

Γ, A ∆, B ⊗
Γ,∆, A⊗B

Γ, A,B O
Γ, AOB

Figure 3: Standard MLL Sequent Calculus

3.1.1. Decomposable sequential connectives

Definition 8 (sequential decomposable connectives). A sequential con-
nective, OC and OC∗, is (binary) decomposable iff there exists an MLL for-
mula F (built by means of ⊗ and O) and assigned to C s.t. the two following
propositions hold:

1. if p ∈ OC (resp., q ∈ OC∗) then F (resp., F⊥) is provable in MLL, from
p (resp., from q), by only means of the binary rules, O and ⊗;

2. if p (resp., q) is a partition from which we can derive F in MLL (resp.,
F⊥) by only means of binary rules, then p ∈ OC (resp., q ∈ OC∗).

Example 9. The generalized connective (OY ,OY ∗) below is decomposable for
Y = (1O2)⊗ 3⊗ 4 and Y ∗ = (1⊗ 2)O3O4:

OY = {p : {(1, 2), (3), (4)}}

OY ∗ = {q1 : {(1, 3, 4), (2)}, q2 : {(2, 3, 4), (1)}, q3 : {(1, 3), (2, 4)}, q4 : {(1, 4), (2, 3)}}

` 1, 2 ` 3 ` 4 p
` Y (1, 2, 3, 4)

` 1, 3, 4 ` 2 q1` Y ∗(1, 2, 3, 4)

` 2, 3, 4 ` 1 q2` Y ∗(1, 2, 3, 4)

` 1, 3 ` 2, 4 q3` Y ∗(1, 2, 3, 4)

` 1, 4 ` 2, 3 q4` Y ∗(1, 2, 3, 4)

5This is known as the key-step of cut-reduction: “a key-step between two partitions
succeeds iff they are orthogonal” (see Lemma 1 of [3]).

6See Theorem 3 of [3].
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Remarks 10 (The packaging problem). “Partitions of a decomposable
connective X and X⊥ do not describe all proofs involving it, but only those
ones that are independent from the context” [3]. E.g., assume we want
to prove a sequent S with only two conclusions, D = (A1OB2) ⊗ C3 and
D∗ = (A⊥1 ⊗ B⊥2 )OC⊥3 then, either we introduce D (resp., D∗) only by its
sequential rules OD = {(1, 2), (3)} (resp., OD∗ = {{(1), (2, 3)}, {(1, 3), (2)}})
or we build S stepwise by exploiting the decomposition of D (resp., D∗).
Clearly the latter method is more powerful since there are proofs, like the one
below, that cannot be derived by the former one. Last rule for D (reps., for
D∗) cannot be binary (i.e., with two premises) because any attempt to derive
S would build a premise with the other conclusion D⊥ (resp., D) together
with only some (not all) of the principal formulas, A,B and C (resp., A⊥, B⊥,
C⊥): such sequents are never derivable from atomic logical axioms.

` A,A⊥ ` B,B⊥ ⊗
` A,B, (A⊥ ⊗B⊥)

O
` (AOB), (A⊥ ⊗B⊥) ` C,C⊥

⊗
` (AOB)⊗ C, (A⊥ ⊗B⊥), C⊥

O
` (AOB)⊗ C, (A⊥ ⊗B⊥)OC⊥

≡

` A,A⊥ ` B,B⊥ ⊗
` A,B, (A⊥ ⊗B⊥) ` C,C⊥

D` (AOB)⊗ C, (A⊥ ⊗B⊥), C⊥
O

` (AOB)⊗ C, (A⊥ ⊗B⊥)OC⊥

In other words, all the binary rules yielding a decomposable connective X
(resp., X⊥) in the sequent calculus can be packed in an single rule iff these
rules can be permuted in order to appear consecutively (as a “package”).

3.2. Proof nets syntax for generalized connectives

Dually w.r.t. the sequential view, we may define a connective by means
of its internal behavior that is, by means of the the set of partitions induced
over its border by the set of switchings (i.e., internal tests) as in [3].

Definition 11 (graphical generalized connectives). A generalized mul-
tiplicative connective in graphical syntax consists of two sets of partitions, P
and Q, over the same domain {1, ..., n}, s.t. P ⊥ Q and P⊥ ⊥ Q⊥.

Dually to the sequential case, PO = {{(a), (b)}} and Q⊗ = {{(a, b)}}
denote the basic connectives “O” and “⊗”. In the following, unless differ-
ently declared, the expression “generalized connectives” means “generalized
connectives in the graphical setting” according to Definition 11.

11



3.2.1. Decomposable graphical connectives

Definition 12 (Danos-Regnier switchings, pre-types and types). Let
F be a MLL formula built by the binary multiplicative connectives O and ⊗
from its top border X (i.e. the literals of F ); given the parse (or syntactical)
tree of F , a Danos-Regnier-switching [3] of F is the graph obtained after the
mutilation of one of the two premises for each O node of F ; then the pre-type
of F , denoted by PF , is given by the set of partitions over X induced by all
DR-switchings of the parse tree of F . After the mutilation, the elements of
the border belonging to a same connected component, constitute a class of the
induced partition. We denote TF the type P⊥⊥F of F .

Definition 13 (decomposable connectives). A connective (P,Q), is MLL
binary decomposable (or definable) iff there exists a formula F , only built
with binary connectives of MLL, s.t. P is the pre-type of the parse tree of F
and Q is the pre-type of the tree of the dual formula F⊥.

In the following we say that a set of partitions P is decomposable if there
exists a formula F , s.t. P is the pre-type of F (i.e., P = PF ). Next Fact 14
on decomposable sets of partitions corresponds to Theorem 7 of [9].

Fact 14 (orthogonal of a decomposable set of partitions). If F is a
MLL formula then, P⊥F = TF⊥.

Remarks 15 (expressiveness of the graphical syntax). Connectives
defined according to Definition 11 are very expressive. Given a set of partitions
P there exists a connective (P,Q) for every Q s.t. Q⊥⊥ = P⊥, by case 6
of Property 3. E.g., given (the type) P = {p1 = {(1, 2), (3, 4), (5)}, p2 =
{(1, 3), (2, 4), (5)}}, there exist at least two graphical connectives, as follows:

1. (P, P⊥) where, by case 9 of Property 3, P⊥ = {p1}⊥ ∩ {p2}⊥ is the set
of flagged partitions below:

{p1}⊥:

(145) (3) (2) X
(135) (4) (2)
(235) (4) (1) X
(245) (3) (1)
(45) (13) (2)
(25) (13) (4)
(25) (14) (3) X
(35) (14) (2) X
(15) (23) (4) X
(15) (24) (3)
(45) (23) (1) X
(35) (24) (1)

{p2}⊥:

(145) (2) (3) X
(125) (4) (3)
(325) (4) (1) X
(345) (2) (1)
(45) (12) (3)
(35) (12) (4)
(35) (14) (2) X
(25) (14) (3) X
(15) (32) (4) X
(15) (34) (2)
(45) (32) (1) X
(25) (34) (1)

12



2. (P,R) with R = {{(1, 4, 5), (2), (3)}, {(3, 2, 5), (4), (1)}} ( P⊥ (s.t.
R⊥⊥ = P⊥).

3.2.2. Proof structures with generalized links

A generalized multiplicative proof structure is a graph which has for edges
formulas of MLL+ and for vertices links depicted on the l.h.s. of Figure 4
and defined as follows:

• an axiom link, is a vertex with only a pair of dual atomic conclusions
(incident edges), {{(a, a⊥)}};

• a cut link, is a vertex with only a pair of dual premises (incident edges),
{{(A,A⊥)}};

• a generalized link P , denoted λP , is a vertex with premises A1, ..., An≥2
and exactly one conclusion F (A1, ..., An) (also denoted by the special
symbol ]) where (P,Q) is a generalized connective with domain 1, .., n
and a bijection ϕ : i 7→ Ai; λP is immediately given together with its
dual link λQ. We assume there exactly is a generalized link for each
connective.

a a⊥

A⊥A

A1 Ai An

]

... ...

]

...xi

...

x1

...

xh... ...

Figure 4: axiom, cut, generalized links (on l.h.s.) and switching (on r.h.s.)

In a proof structure, each formula is conclusion of exactly one link and
premise of at most one link; in the special case of the conclusions of a proof
structure, i.e., formulas that are not premises of any link, we add an handling
vertex (in order to have a graph). Not all proof structures are correct that is,
correspond (sequentialize) to derivable sequent proofs. In order to characterize
those sequentializable among all proof structures we need an intrinsic (i.e.
non inductive) correctness criterion. First, we extend the usual notion of
DR-switching to generalized links. For the switch of a generalized link λP
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cut

A1 ... Ai ... An A⊥1 A⊥i... A⊥n...

] ]

β

π

C(A1, ..., An) C∗(A⊥1 , ..., A
⊥
n ) 7→

A1 ... Ai ... An A⊥1 A⊥i... A⊥n...

β

π′

cut

cut

cut

Figure 5: reduction step of a generalized cut link

(where P is a generalized connective), chose a partition p = {x1, ..., xh} ∈ P ,
then chose a class xi ∈ p, that is elect the upper edges belonging to this
class and adjacent to the corresponding vertex of λP , disconnect all other
upper edges, then for each remaining class of p \ {xi} connect together the
pending edges (disconnected before) to a new vertex as in the rightmost side
picture of Figure 4. Then, the correctness criterion for generalized proof
structures remains the same as the Danos-Regnier’s one for MLL proof nets:
a generalized proof structure π is correct (it is a generalized proof net) iff for
each choice of the generalized switches, the associated graph is acyclic and
connected. So, a generalized proof net is an MLL proof net when each link is
an axiom, a cut or a basic binary O and ⊗ link. We also compactly describe
a basic link by the set of its switches interpreted as partitions over the whole
border, i.e., the top border A,B together with the bottom border ] = (A⊗B)
or ] = (AOB): λO = {{(A, ])), (B)}, {(A), (B, ])}} and λ⊗ = {{(D, ], C)}}.

Remarks 16 (on cut reduction). The “computational meaning” of gen-
eralized connectives is assured by the fact that reducing in a proof net a cut
between (dual) generalized connectives, C and C∗, preserves the correctness
criterion [3]. This fact follows by Definition 11 of a graphical connective
where unlike the sequential syntax, requiring only orthogonality between sets of
partitions, P ⊥ Q, is not enough for getting the stability of correctness under
cut reduction: orthogonality must “pass to the contexts” P⊥ ⊥ Q⊥; thus, the
first condition P ⊥ Q ensures (ACC) correctness of proof structures while the
second condition P⊥ ⊥ Q⊥ ensures the stability of correctness under cut re-
duction. A pictorial view in given in Figure 5. E.g., the sequential generalized
connective PX = {{(1, 2), (3)}} and QX∗ = {{(1, 3), (2)}} is not a connective
in proof net syntax since, by Definition 11, P⊥X = {{(1, 3), (2)}, {(2, 3), (1)}}
is not orthogonal to Q⊥X∗ = {{(1, 2), (3)}, {(2, 3), (1)}}. This intuitively means

14



PX : {{(1, 2), (3)}}
] ]

QX∗ : {{(1, 3), (2)}}

cut

{(1), (3, 2)} ∈ Q⊥X∗{(1), (2, 3)} ∈ P⊥X

πX∗

π

πX

λ′X

λX

λ′X∗

λX∗

7→

{(1), (2, 3)} ∈ P⊥X {(1), (2, 3)} ∈ Q⊥X∗
cut

cut
cutπ′

(correct proof structure) (non-correct proof structure)

Figure 6: a cut reduction between “pseudo orthogonal” links

that if we admit the generalized links λX and λX∗ (corresponding, resp., to
connectives PX and QX∗) then, the proof net π of Figure 6 (obtained by cutting
πX , with conclusion ]X , against πX∗, with conclusion ]X∗) does not reduce to
a correct proof net: actually after the reduction of the cut link (X,X∗), the
reductum π′ will contain both a cycle and a pair of disconnected components.
For simplicity reasons, we assumed in Figure 6 that πX (resp., πX∗) is the
proof net built by gluing two orthogonal generalized links (modules) λ′X and
λX (resp. λ′X∗ and λX∗) through their common border {1, 2, 3}.

3.3. Sequentialization of decomposable connectives

The most natural way to compare the two syntaxes, sequential and
graphical, is through their sequentialzation, i.e. a way to set a precise
correspondence between sequential proofs and proof nets. Here we focus only
on the comparison w.r.t. decomposable connectives (we refer to Section 5 the
comparison w.r.t the undecomposable ones discussed in Section 3.4).

There is a strong link between sequential and parallel decomposable con-
nectives as exemplified by the basic cases O⊗ = {{(1, 2)}}⊥ = P⊥⊗ and OO =
{{(1), (2)}}⊥ = P⊥O . Actually, the two syntaxes are orthogonal views of a
same decomposable connective, as stated in Proposition 17 proved in [3].

Proposition 17 (Danos-Regnier sequentialization). Assume X is a
decomposable connective s.t. PX is its pre-type (in proof net syntax) and OX

is its set of right rules (the organizations set in the sequential syntax) then:
OX ⊆ P⊥X (de-sequentialization part) and P⊥X ⊆ OX (sequentialization part).

E.g., assume PX = {{(A,C), (B)}, {(B,C), (A)}} and OX = {{(A,B),
(C)}} with X = (AOB)⊗ C, then OX = P⊥X as illustrated in Figure 7.

Next fact immediately follows by Proposition 17 and case 8 of Property 3.

Fact 18 (organizations sets are types). The organizations set OF of a
decomposable formula F is a type.
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` A,A⊥ ` B,B⊥ ⊗
` A,B, (A⊥ ⊗B⊥) ` C,C⊥

X` (AOB)⊗ C, (A⊥ ⊗B⊥), C⊥
⇔

A B C A⊥ B⊥ C⊥

X :

O

⊗

⊗

Figure 7: an instance of sequentialization

Corollary 19 (reflexive connectives). A connective (P,Q) is reflexive
when P⊥ = Q and Q⊥ = P . All decomposable connectives are reflexive in the
sequential syntax.

Proof. 1) let X and X⊥ be a decomposable connective; 2) by Property 3,
(PX ⊥ PX⊥)⇔ (P⊥⊥X ⊥ P⊥⊥

X⊥ ); 3) by Proposition 17, (OX = P⊥X ) ∧ (OX⊥ =
P⊥
X⊥); 4) by 1, OX ⊥ OX⊥ then, by 2 and 3, O⊥X ⊥ O⊥X⊥ ; 5) by 4 and

Property 3 (case 7), it finally follows (OX = O⊥
X⊥) ∧ (OX⊥ = O⊥X) since by 3,

(OX = O⊥⊥X ) ∧ (OX⊥ = O⊥⊥
X⊥).

By reflexivity, it is enough to indicate only one of the two organizations
sets of a sequential connective, OC or OC∗ , while for a graphical connective
we have to indicate a pair of pre-types.

Example 20. We may now interpret the two pairs of orthogonal sets of par-
titions, (P1, Q1) and (P2, Q2) of Example 2, as two decomposable connectives,
according to the two dual points of view seen above: the sequential one as
in Figure 8 and the graphical one as in Figure 9 where the decomposable
graphical connectives are displayed as binary trees enclosed in dotted boxes:

P1 = {{(1, 2), (3, 4)}} and Q1 = {{(1, 3), (2), (4)}, {(1, 4), (2), (3)}, {(2, 3), (1), (4)}, {(2, 4), (1), (3)}}
P2 = {{(2, 3), (4, 1)}} and Q2 = {{(2, 4), (3), (1)}, {(2, 1), (3), (4)}, {(3, 4), (2), (1)}, {(3, 1), (2), (4)}}.

3.4. Undecomposable connectives

Not all generalized connectives are binary decomposable; e.g. the se-
quential connective OX = {{(1, 2), (3)}} and OX∗ = {{(1, 3), (2)}} seen in
Remark 16 is undecomposable w.r.t. the basic connectives O and ⊗ (it is
neither a connective in the graphical syntax, indeed). Anyway, if we complete
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(1, 2) (3, 4)
p1

(1O2)⊗ (3O4)

(1, 3) (2) (4)
q11(1⊗ 2)O(3⊗ 4)

(1, 4) (2) (3)
q21(1⊗ 2)O(3⊗ 4)

(2, 3) (1) (4)
q31(1⊗ 2)O(3⊗ 4)

(2, 4) (1) (3)
q41(1⊗ 2)O(3⊗ 4)

(2, 3) (4, 1)
p2

(2O3)⊗ (4O1)

(2, 4) (3) (1)
q12(2⊗ 3)O(4⊗ 1)

(2, 1) (3) (4)
q22(2⊗ 3)O(4⊗ 1)

(3, 4) (2) (1)
q32(2⊗ 3)O(4⊗ 1)

(3, 1) (2) (4)
q42(2⊗ 3)O(4⊗ 1)

Figure 8: generalized decomposable connectives in sequent calculus syntax

⊗

O O⊗ ⊗

O
F1 F⊥1

1 432 21 43

P1 Q1

bipole anti-bipole

⊗

O O

F2 F⊥2

⊗ ⊗

O

2 3 4 1 1432

P2 Q2

bipole anti-bipole

Figure 9: generalized decomposable connectives in proof net syntax

OX∗ , by adding the extra partition {(2, 3), (1)}, we get the decomposable
connective OD, OD∗ seen in Remark 10. Similarly, OZ = {{(1, 2), (3), (4)}}
and OZ∗ = {{(1, 3, 4), (2)}, {(2, 3, 4), (1)}}, is not a decomposable connec-
tives but, as soon as we complete OZ∗ by adding a couple of extra partitions,
{(1, 3), (2, 4)} and {(1, 4), (2, 3)}, we get the decomposable connective OY

and OY ∗ of Example 9.
A more serious example is the famous Girard’s connective (G4, G

⊥
4 ):

G4 = {{(1, 2), (3, 4)}, {(2, 3), (4, 1)}} G⊥4 = {{(1, 3), (2), (4)}, {(2, 4), (1), (3)}}

along with some other instances below (we omit their orthogonal)

G′6 = { {(1, 2), (3, 4), (5, 6)},
{(2, 3), (4, 5), (6, 1)} }

G′′6 = { {(1, 2, 3), (4, 5, 6)},
{(2, 3, 4), (5, 6, 1)},
{(3, 4, 5), (6, 1, 2)} }

G9 = { {(1, 2, 3), (4, 5, 6), (7, 8, 9)},
{(2, 3, 4), (5, 6, 7), (8, 9, 1)},
{(3, 4, 5), (6, 7, 8), (9, 1, 2)} }.

As we will see in Section 4.3, the pregnancy of Girard’s connectives is
given by the fact that, unlike the two previous ones, (X,X∗) and (Z,Z∗),
there is no chance to complete them in such a way they become decomposable
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connectives neither in the sequential nor in the graphical setting. That is
consequence of the fact that connectives like (G4, G

⊥
4 ) are described by pairs

of types. Moreover, sequents like ` G4, G
⊥
4 are not provable tout court in

MLL+ (if we exclude the trivial non atomic logical axioms) because of the
“packaging problem” seen in Remark 10. Each rule for G4 (resp., for G⊥4 )
is binary (resp., ternary) so any attempt to derive G4 (resp., G⊥4 ) would
build a premise (of sequent ` G4, G

⊥
4 ) with the other conclusion together

with only some (not all) of the principal formulas of the applied rule; so,
sequents like ` G4, G

⊥
4 are never logically provable from atomic logical axioms.

Finally, since G4 (resp., G⊥4 ) is not decomposable and since there is no chance
to embed it into a decomposable connective, sequent ` G4, G

⊥
4 is not even

stepwise derivable.
The study of a “minimal” class of undecomposable connectives will be the

subject of next sections.

4. Entangled connectives

In this section we introduce a special class of sets of partitions: entangled
pairs (Definition 21) which is then exploited to define the class of entangled
connectives (Definition 33). Entangled pairs have interesting properties that
are investigated throughout this Section 4. The first one (Theorem 32, one of
the main results of the paper), being that every entangled pair of partitions
sets is a type. This result has several consequences: decomposable entangled
pairs (and so, decomposable connectives) have a very simple characterization
(the normal form of Theorem 36), which can be further used to prove that
given an undecomposable entangled connective, P and Q, where P is an
entangled pair, P cannot be embedded into a decomposable type T ) P , s.t.
T and Q become decomposable (Corollary 40).

4.1. Entangled types

Definition 21 (entangled pairs of partitions). Let P be a pair of nonempty
distinct partitions, p1 and p2, on the same (finite) domain X = {1, ..., n}. P
is an entangled pair if it satisfies the following two conditions:

1. p1 and p2 have same weight;

2. each class belonging to p1 or p2 has degree 1 or 2.

Definition 22 (restriction of entangled pairs). Given a set of partitions
P on a finite domain X and given an element a ∈ X, the restriction of P
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by point a (also a-restriction of P ), denoted P (↓a), is the set of partitions
obtained after erasing a from each partition of P . A restriction of P by a is
conservative when P and P (↓a) have the same weight.

We say that a restriction of an entangled pair P by a point a is admissi-
ble when P (↓a) is in turn an entangled pair; hence, an entangled pair P is
restrictable if there exists an admissible restriction of P by a point.

We say that an entangled pair P is restrictable only in one point
(also P admits only one restriction by a single point) iff ∃a s.t. P (↓a)

is an entangled pair and ¬∃b 6= a s.t. P (↓b) is an entangled pair.
We can extend the notion of restriction to sets of points of the support,

i.e., P (↓Y ) where Y ⊆ X.

Example 23. Both P1 and P⊥1 of Example 5 are entangled pairs while neither
P2 nor P⊥2 is so. Sets P3, P4 and P ′4 below are not restrictable entangled
pairs; P5 and P6 below are both conservative restrictable entangled pairs: in
particular, P5 admits two restrictions, one by point c and another one by
point d, while P6 admits only one restriction, that one by single point a:

P3 = { {(a,b),(c)}, {(a,c),(b)} } P5 =

{
{{(a, c), (b), (d, e), (f)},
{(b, c), (a), (d, f), (e)}}

}

P4 = { {(a,b),(c),(d)}, {(c,d),(a),(b)} } P6 =

{
{(a, b), (c), (d, e), (f), (g)},
{(a, c), (b), (f, g), (d), (e)}

}

P ′4 =

{
{(a, b), (c, d), (e), (f), (g), (h)},
{(e, f), (g, h), (a), (b), (c), (d)}

}
.

Lemma 24 (orthogonality of non restrictable entangled pairs). If P
is a non restrictable entangled pair then, its orthogonal P⊥ is not empty.

Proof. Since P = {p1, p2} is an entangled pair, every element of the support,
a ∈ X, must occur in each pi either as singleton class (a) or in a pair class
(a, b) for some b ∈ X with a 6= b. Moreover, since P is not restrictable it
cannot be the case that the same point a occurs:

1. as singleton class (a) in both p1 and in p2, or

2. in a pair class in both p1 and p2 (that is, it cannot be the case that e.g.,
(a, b) ∈ p1 and (a, c) ∈ p2) except when P is in form (1) below, in which
case we have P⊥ = {{(a), (b, c)}} by calculation.

P =

{
p1 : {(a, b), (c)},
p2 : {(a, c), (b)}

}
; (1)
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In other words, if P is a non restrictable pair distinct from (1) then ∀a ∈ X
one of the following two cases holds:

(i) in case the singleton class (a) occurs in p1 (resp., occurs in p2) then a
must occur in a pair class (a, b) of p2 (resp., in a pair class (a, b) of p1);

(ii) in case a occurs in a pair class (a, b) of p1 (resp., of p2) then a must
occur as singleton class (a) in p2 (resp., in p1);

otherwise the erasing of point a in a non restrictable P would produce two
restricted sets, p

(↓a)
1 and p

(↓a)
2 , that result to be either equal (p

(↓a)
1 = p

(↓a)
2 ),

in case P is in form (1), or with distinct weights, w1 6= w2, contradicting
Definition 21. This means that P must appear as a generalization of P4 or
P ′4 of Example 23, that is, the domain X of P must have dimension 2n and
form {a1, ..., an} ] {b1, ..., bn}; in other words, X can can be thought as the
disjoint sum of two segments of points, S1 = {a1, ..., an} and S2 = {b1, ..., bn}:

• in the first one, S1 (resp., in the last one, S2), we find all points that
occur both inside pair classes in p1 and inside singleton classes in p2;

• in the second one (resp., in the first one) we find all points that occur
both inside singleton classes in p1 and inside pair classes in p2.

So P is in form (2) below (where n is an even integer):

P =

{
p1 : {(a1, a2), (a3, a4), ..., (an−1, an), (b1), ..., (bn)},
p2 : {(b1, b2), (b3, b4), ..., (bn−1, bn), (a1), ..., (an)}

}
(2)

that is, every ai (resp., bi) must occur together with an other point aj (resp.,
bj) in a class of p1 (resp., p2) moreover, ai and aj (resp., bi and bj) must
occur as singleton classes, (ai) and (aj) (resp., (bi) and (bj)), in p2 (resp., p1).
Observe that P has weight n/2 + n, by the way we build form (2).

We can now build a partition q = {y1, ..., ym} with weight m = n/2 + 1 as
follows (also displayed both on the top and on the bottom side of Figure 10):

• first elect a class, e.g. y1, containing all the elements of the domain s.t.
they do not form pairwise a class of pi; the degree of y1 will be n;

• then, chose each remaining class, yj with 2 ≤ j ≤ m, in such a way
that it consists of only two elements: one belonging to a class of pi with
two elements and the other one belonging to a class of pi with a single
element, as the top (resp., bottom) side picture of Figure 10; there are
n/2 such classes.
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By calculation partition q is orthogonal to each pi since by the Euler-Poincaré
law, |V | − |E| = 1 where V and E are resp., vertexes and edges of each
induced graph Gi(q, pi) with |V | = n/2 + n+ n/2 + 1 = 2n+ 1 and |E| = 2n
as depicted in Figure 10; therefore P⊥ 6= ∅.

p1 : {(a1, a2)...
{(b1, b2)p2 : ...

(ai−1, ai)

(bi−1, bi)

... (b2) ... (bi−1) (bi)(an−1, an) (b1) ... (bn−1)(bn)}

... (bn−1, bn) (a1) (a2) ... (ai−1) (ai) ... (an−1)(an)}

(a2, b2) ... (ai, bi) (an, bn)}...

(a2, b2) ... (ai, bi) ... (an, bn)}
yj ym

ymy1

y1

y2 yj

y2

q :

q : {(a1, ..., ai−1, ..., an−1, b1, ..., bi−1, ..., bn−1)

{(a1, ..., ai−1, ..., an−1, b1, ..., bi−1, ..., bn−1)

Figure 10: orthogonal of non restrictable entangled pair

Proposition 25 (restrictable entangled pairs). Let P = {p1, p2} be an
entangled pair that is restrictable by point a; assume the orthogonal of the
a-restriction of P , i.e., (P (↓a))⊥ = {q1, ..., qm}, is nonempty, then the set of
partitions P ] built according to the two cases below is orthogonal to P .

1. If a is singleton class in both p1 and p2, i.e., P is in form (3)

P =

{
{(a), x2, ..., xn},
{(a), y2, ..., yn}

}
(3)

then, P ] is built as follows: for each partition qi, 1 ≤ i ≤ m, insert point
a in a class xji of qi; repeat this insertion of point a for each class xji in
qi (each insertion produces a “pumped” partition also denoted qai ∈ P ]).

2. Otherwise, if a belongs to a class with two elements, both in p1 and p2,
i.e. P is in form (4) below

P =

{
{(a, b), x2, ..., xn},
{(a, c), y2, ..., yn}

}
(4)
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then, P ] is built as follows: insert (or “pump”) the singleton class (a) in
each partition qi ∈ P (↓a)⊥; so P ] is as in form (5) below (each insertion
produces a “pumped” partition also denoted qai ∈ P ]):

P ] = {q1 ∪ {(a)}, ..., qi ∪ {(a)}, ...qm ∪ {(a)}} (5)

Proof. By Euler-Poincaré Property 4, every pumped partition qai ∈ P ] is
orthogonal to every partition p ∈ P (the induced graph G(p, qai ) is ACC).

Fact 26 (entangled pair of dimension 3). If the dimension of an entangled
pair P is 3 (i.e. |X| = 3) then P is in form (1) and its weight is 2.

Proof. It follows by calculation: actually, in order to have an entangled pair,
P must have at least weight w ≥ 2 and in case weight w is exactly 2 then,
at least one class must have degree 2; thus, if |X| = 3 then P must be in
form (1).

Lemma 27 (orthogonality of entangled pairs). The orthogonal P⊥ of
an entangled pair P is not empty.

Proof. By induction on the dimension |X| of P .
The base of induction is when |X| = 3 then P must be in form (1), by

Fact 26, so its weight w is 2. Thus, P is non restrictable and so by Lemma 24
its orthogonal is not empty.

For the induction step |X| > 3 we split our reasoning in two main cases:

1. if P is restrictable by point a, it is in form (3) or (4), then the
orthogonal of the restriction P (↓a), let us say (P (↓a))⊥ = {q1, ..., qm}, is
not empty by hypothesis of induction, so by Proposition 25, P ] ⊆ P⊥;

2. otherwise, if P is not restrictable, then we conclude by Lemma 24.

Theorem 28 (non restrictable entangled types). If P is a non re-
strictable entangled pair (i.e., ¬∃a ∈ X s.t. P (↓a) is an entangled pair) then
P is a type.

Proof. If P = {p1, p2} is a non restrictable entangled pair then, by Lemma 24,
either P has form (1) or P has form (2). In case P has form (1) then it is
a type (simply by calculation). Otherwise, if P has the form (2) then, we
reason by absurdum, assuming that P is not a type; so, let p3 6= pi=1,2 be a
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partition belonging to P⊥⊥. We reason on the classes of p3. Observe that p3
cannot contain only singleton classes, otherwise p3 will have a weight (2n)
greater than the weight of p1 and p2, contradicting case 12 of Property 3 (by
Lemma 27, P⊥ is nonempty); thus p3 must contain at least a class with at
least two points. Moreover, since p3 differs from p1 and p2, it must satisfy at
least one of the following three cases:

1. p3 contains a class x with two points, ai and aj (resp., bi and bj) which
belong to two distinct classes of p1 (resp., p2);

2. p3 contains a class x with two points ai and bj s.t. ai ∈ {a1, ..., an} and
bj ∈ {b1, ..., bn};

3. p3 contains two classes x1 and x2 s.t. x1 belongs to p1 and x2 belongs
to p2 (resp., x1 belongs to p2 and x2 belongs to p1).

We show now that for each of these three cases we get a contradiction. Indeed,
since P has the form (2) then, for each p3 satisfying (at least) one of cases 1–3,
we can build a partition q = {y1, ..., ym} in P⊥, with weight m = n/2 + 1 like
e.g. partition q depicted on the top (resp., bottom) side of Figure 10 in the
proof of Lemma 24. We show that p3 6⊥ q.

1. Case 1 is not consistent (p3 6⊥ q) because we can chose q in such
a way that class y1 contains two points ai and aj (resp., bi and bj),
occurring resp., in two distinct classes of p1 (resp., p2), like e.g. class
(a1, ..., ai−1, ..., an−1, b1, ..., bi−1, ..., bn−1) of Figure 10.

2. Case 2 is not consistent (p3 6⊥ q) because we can chose q in such a
way that a class yj contains exactly two points, ai and bj, like e.g.,
class (a2, b2), (ai, bi), (an, bn) or (a1, .., ai−1, ..., an−1, b1, ..., bi−1, ..., bn−1)
in Figure 10.

3. Finally, case 3 is not consistent (p3 6⊥ q) because if we assume two
classes like e.g. (a1, a2) and (b1, b2) belonging to p3, then we can chose q
containing two classes like e.g. (a1, ..., ai−1, ..., an−1, b1, ..., bi−1, ..., bn−1)
and (a2, b2) in Figure 10 (thus, the graph of incidence G(p3, qi) will
contain a cycle).

Lemma 29 (restrictable entangled pairs). Let P = {p1, p2} be a re-
strictable entangled pair and let p3 6= pi=1,2 be a partition in the type P⊥⊥.

If some a-restriction of P is a type (i.e., P ↓a = {p(↓a)1 , p
(↓a)
2 } = (P (↓a))⊥⊥ for

some a ∈ X) then, the restriction p
(↓a)
3 belongs to P ↓a.
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Proof. Assume P admits a non conservative restriction by a point a ∈ X
that occurs as singleton class (a) both in p1 and in p2 i.e., P is in form (3), P =
{p1 = {(a), x2, ..., xn}, p2 = {(a), y2, ..., yn}}, and let p3 6= pi=1,2 be a partition
belonging to the type P⊥⊥. Point a must also occur in p3 as singleton class
(a), i.e. p3 = {(a), z2, ..., zn}, otherwise we can find a partition qai ∈ P ] ⊆ P⊥

(by Proposition 25 and Lemma 27) s.t. the induced graph G(p3, q
a
i ) contains a

cycle (where qai denotes a partition of {q1, ..., qm} = (P (↓a))⊥ in which point a

has been “pumped” as in case (1) of Proposition 25). This implies p
(↓a)
3 ⊥ qi,

∀qi ∈ (P (↓a))⊥, i.e., {p(↓a)3 } ⊥ (P (↓a))⊥, since, by Euler-Poincaré Property 4,

G(p
(↓a)
3 , qi) is ACC iff G(p3, q

a
i ) is ACC. Now, by assumption P (↓a) = (P (↓a))⊥⊥

so, {p(↓a)3 } ⊆ P (↓a), by case 1 of Property 3.
Otherwise, assume P admits only conservative restrictions by a point,

i.e., assume P is a-restrictable as in form (4), P = {p1 = {(a, b), x2, ..., xn},
p2 = {(a, c), y2, ..., yn}} for some a in X. Then, point a cannot occur in p3 as
singleton class (a), otherwise, as before, we can find a partition qai ∈ P ] ⊆ P⊥

(by Proposition 25 and Lemma 27) s.t. graph G(p3, q
a
i ) has a disconnected

component (where qai denotes a partition of {q1, ..., qm} = (P (↓a))⊥ in which
the singleton class (a) has been “pumped” as in case (2) of Proposition 25). So

p3 is in form {(a, d), z2, ..., zn} and this means that p
(↓a)
3 is orthogonal to every

qi ∈ (P (↓a))⊥, i.e. {p(↓a)3 } ⊥ (P (↓a))⊥ (reasoning on the ACC induced graphs
as before). Now, since by assumption P (↓a) is a type i.e., P (↓a) = (P (↓a))⊥⊥,

we conclude that {p(↓a)3 } ⊆ P (↓a), by case 1 of Property 3.

Proposition 30 (conservative single point restrictable pairs). Assume
P = {p1, p2} is a conservative single point restrictable entangled pair that is,
P is an entangled pair s.t. (see Definition 22):

1. it admits only one restriction by a single point a and

2. the restriction P (↓a) is conservative.

Then:

1. the support X of P is given by the disjoint sum of next three segments

S0 : {a, b, c} ] S1 : {a1, ..., an} ] S2 : {b1, ..., bn}

where S1 and S2 are defined as in the proof of Lemma 24, moreover

2. P is obtained by merging the entangled pair P1 = {p11, p12} of form (1)
together with the entangled pair P2 = {p21, p22} of form (2) that is,
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P = {p11 ] p21, p12 ] p22} is in form (6) below:

(a1, a2) ...

(b1, b2) ...

(ai−1, ai)

(bi−1, bi)

... (b2) ... (bi−1) (bi)(an−1, an) (b1) ... (bn−1)(bn)}

... (bn−1, bn) (a1) (a2) ... (ai−1) (ai) ... (an−1)(an)}
(c)

(b){(a, c)
{(a, b)p1 :

p2 :
P

{ }
(6)

where the restriction P (↓S0) is exactly that one in form (2).

Proof. Since the a-restriction is conservative a must occur both in one class
of p1 together with a point b and in one class of p2 together with a point c
of the support that is, (a, b) ∈ p1 and (a, c) ∈ p2 for some b, c ∈ X; moreover
since P is only restrictable by the single point a, we have that:

1. b 6= c and

2. b and c cannot occur together with other points of the support in some
class of p2 resp., p1 otherwise P would be restrictable also in these two
points, contradicting the assumption P is only restrictable by a.

This means that if (a, b) ∈ p1 and (a, c) ∈ p2 then (b) ∈ p2 and (c) ∈ p1. Now,
since P is restrictable, p1 and p2 cannot consist of only these two pairs of
classes that is, P cannot be reduced in form (1). Thus P must be in form (7)

P =

{
p1 = {(a, b), (c)} ]Q1

p2 = {(a, c), (b)} ]Q2

}
. (7)

where Q1 and Q2 are two sets of partitions over the support X \S0 with S0 =
{a, b, c}. Finally, since P is restrictable only by point a, Q1 and Q2 must be a
non restrictable pair in form (2) over S1 ]S2; therefore P is an entangled pair
in form (6) with support S0 : {a, b, c} ] S1 : {a1, ..., an} ] S2 : {b1, ..., bn}.

Lemma 31 (conservative single point restrictable entangled pairs).
Assume P = {p1, p2} is a entangled pair that admits only one conservative
restriction by point a, so P is in form (8) below with b 6= c:

P =

{
p1 : {x1 = (a, b), x2, ..., xn},
p2 : {y1 = (a, c), y2, ..., yn}

}
. (8)

Let p3 6= pi=1,2 be a partition in P⊥⊥ then, p3 must contain either class
x1 = (a, b) or class y1 = (a, c) of P in form (8).

Proof. Assume P admits only one conservative restriction by point a then,
by Proposition 30, P is as in form (6). Now, consider the next two partitions,
q1 and q2:
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q1 : {z1 = (a), z2 = (b, c)} ∈ P⊥1
q2 : {y1 = (a1, ..., ai−1, ..., an−1, b1, ..., bi−1, ..., bn−1), ..., ym = (an, bn)} ∈ P⊥2

where P⊥1 and P⊥2 are resp., the orthogonal of P1 in form (1) and P2 in
form (2), by Proposition 30, as displayed on top and bottom side of Figure 11.
Then build a partition q of the form q1q2(i, j), for some 1 ≤ i, j ≤ (2n+ 3),

(a1, a2) ...

(b1, b2) ...

(ai−1, ai)

(bi−1, bi)

... (b2) ... (bi−1) (bi)(an−1, an) (b1) ... (bn−1)(bn)}

... (bn−1, bn)}(a1) (a2) ... (ai−1) (ai) ... (an−1)(an)}
(c)

(b){(a, c)
{(a, b)p1 :

p2 :

{(a)

ym

ym

yj

(a2, b2)

y2

...

...(ai, bi) (an, bn)}

(an, bn)}(ai, bi) ...

P

{ }

y2y1z2 yjz1

y1z2z1

q2

q1

q1

q2

(a2, b2) ...(b, c)}

(b, c)}{(a)

{(a1...ai−1...an−1b1...bi−1...bn−1)

{(a1...ai−1...an−1b1...bi−1...bn−1)

Figure 11: a conservative single point restrictable entangled pair

where the notation means that we concatenate q1 and q2 by mixing classes
zh ∈ q1 and yk ∈ q2 containing, resp., points i and j. E.g., partition
q = {z1 ] y1, z2, y2, ..., ym}, displayed in the bottom side of Figure 12, is
obtained by concatenating q1 and q2 and mixing (by union) classes z1 and y1.
By Property 4, q ∈ P⊥, since each induced graph G(pi, q) for i = 1, 2 is ACC.

Now, assume by absurdum that a occurs in a class of p3 6= pi=1,2 of P⊥⊥

that is distinct from both classes (a, b) and (a, c) of (8). By Proposition 25
(case 2), a cannot occur in p3 as singleton class (a). So, assume a belongs to a
class (a, d, ...) with d 6= b and d 6= c. Then it is easy to find in P⊥ a partition
like q or q′, displayed resp., in the bottom and top sides of Figure 12, s.t. the
induced graph G(p3, q) resp., G(p3, q

′), contains a cycle. Case (a, b, c) ∈ p3 is
also excluded because of partitions like q or q′, containing class z2 = (b, c).

Theorem 32 (entangled types). Every entangled pair of partitions sets
P = {p1, p2}, with domain X = {1, ..., n}, is a type (P = P⊥⊥) thus, entan-
gled pairs are called entangled types.
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(a1, a2) ...

(b1, b2) ...

(ai−1, ai)

(bi−1, bi)

... (b2) ... (bi−1) (bi)(an−1, an) (b1) ... (bn−1)(bn)}

... (bn−1, bn) (a1) (a2) ... (ai−1) (ai) ... (an−1)(an)}
(c)

(b){(a, c)
{(a, b)p1 :

p2 :

(b, c)(a)

z2

(a)

y2

z1 ∪ y1

q′ :

q :

(a2, b2)

ym

ym

yj

(a2, b2)

y2

...

... ...(ai, bi) (an, bn)

(an, bn)(ai, bi) ...

z1 ∪ yj

(b, c)

y1

P

{ }
(a1...ai−1...an−1b1...bi−1...bn−1)

(a1...ai−1...an−1b1...bi−1...bn−1)

Figure 12: orthogonal of a conservative only single point restrictable entangled pair

Proof. By induction on the dimension of P , i.e. on the cardinality of its
domain X = {1, ..., n}.

The base of induction is when n = 3 (there is no entangled pair of
dimension 2) then, by Fact 26, P is in form (1), so it is not restrictable;
therefore it is a type, by Theorem 28.

For the induction step, assume P has dimension n > 3. If P is not
restrictable then, by Theorem 28, P is a type. Otherwise, when P is re-
strictable, we split our reasoning in two main cases, depending on whether P
admits or not a conservative restriction.

Case 1. Assume P admits a non conservative restriction by a point
a, then P has the form below

P = {p1 : {(a), x2, ..., xn}, p2 : {(a), y2, ..., yn}}.

Assume by absurdum p3 ∈ P⊥⊥ with p3 6= pi=1,2. By Proposition 25 (case 1),
a must also occur in p3 as singleton class, i.e. p3 = {(a), z2, ..., zn} (otherwise,
we get a cycle in the induced graph G(qai , p3) for some pumped qai ∈ P⊥). By
hypothesis of induction, P (↓a) is a type so, by Lemma 29, either p3 = p1 or
p3 = p2.

Case 2. Assume P admits only conservative restriction by a point
as e.g. that one by point a in form (9) below

P =

{
p1 : {x1 = (a, b), x2, ..., xn},
p2 : {y1 = (a, c), y2, ..., yn}

}
. (9)
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Assume by absurdum p3 ∈ P⊥⊥ with p3 6= pi=1,2. By Proposition 25 (case 2),
a cannot occur as singleton class (a) in p3 (otherwise, we get a disconnection
in the induced graph G(qai , p3) for some pumped qai ∈ P⊥), therefore the

restriction of p3 by a must be conservative (i.e., p
(↓a)
3 and p3 have the same

weight). Now, by hypothesis of induction, the restriction P (↓a) is a type thus,

by Lemma 29, either p
(↓a)
3 = p

(↓a)
1 or p

(↓a)
3 = p

(↓a)
2 ; so, a cannot occur in a

class of p3 containing more than three elements (including a). Then,
we split our reasoning in two sub-cases depending on whether b is or not equal
c in P of form (9).

Case 2.1. If b = c then form (9) of P becomes that below:

P =

{
p1 : {x1 = (a, b), x2, ..., xn},
p2 : {y1 = (a, b), y2, ..., yn}

}
.

By Proposition 25 (case 2) a cannot occur as singleton class (a) in p3. So, in
case a does not also occur together with b in a class of p3 then, by Lemma 29, b
must occur alone as singleton class (b) in p3 (by hypothesis of induction, P (↓a)

is a type). Now, by Proposition 25 (case 2) there exists at least a partition qi
in P⊥ containing the singleton class (b), so G(p3, qi) contains a disconnected
component (contradicting p3 ∈ P⊥⊥). Otherwise, in case a occurs together
with b in a class of p3 then, we get a contradiction, since, by Lemma 29, either
p3 = p1 or p3 = p2 (by hypothesis of induction, P (↓a) is a type).

Case 2.2. In case b 6= c (w.r.t. P in form (9)), we distinguish two main
sub-cases, depending on whether a belongs to a class of p3 containing two or
three elements of the domain.

Case 2.2.1. Assume a occurs in a class of p3 containing only two
elements; hence p3 has the form below

p3 = {(a, d), z2, ..., zn};

then, d 6= b and d 6= c otherwise p3 will be equal to p1 or p2, by Lemma 29
(via the hypothesis of induction, P (↓a) is a type). This implies that P must
be restrictable by at least one more point than a otherwise, by Lemma 31,
we get either d = b or d = c. So, by Lemma 29, it does not matter whether
d is or not an admissible restriction for P , it must be either d = b or d = c,
contradicting the assumption p3 6= pi=1,2.

Case 2.2.2. Assume that a occurs in a class of p3 containing three
elements; hence p3 has the form (10) below

p3 = {(a, d, e), z2, ..., zn}. (10)
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By Lemma 31, P must be restrictable by at least one more point than a;
therefore, w.r.t. all possible admissible restrictions of P , there are only three
cases involving points d and e.

1. Neither d nor e is an admissible restriction of P . Assume P is
restrictable by a point f 6= a. By hypothesis of induction the restriction
P (↓f) is a type, so by Lemma 29, either p

(↓f)
3 = p

(↓f)
1 or p

(↓f)
3 = p

(↓f)
2 ,

that is absurdum, since p
(↓f)
3 (p3 has form (10)) contains a class (a, d, e).

2. Both d and e are admissible restrictions of P . This means that,
by Lemma 29 (via hypothesis of induction, P (↓a) is a type and p3
has form (10)) d = b and e = c (resp., d = c and e = b); then, by
playing with admissible restrictions, we get that p1 (resp., p2) will be
inconsistent since it will contain by assumption class (a, b) (resp., class
(a, c)) together with class (b, c), this latter occurring as consequence, by
Lemma 29, of the restriction of p3 by point a, i.e.:

either p1 = {(a, b), (b, c), x3..., xn} ∈ P
or p2 = {(a, c), (b, c), y3..., yn} ∈ P .

3. Only one between d and e is an admissible restriction of P .
Assume d is an admissible restriction of P (in addition to that one by
a). By reasoning on restrictions (since by Lemma 29, via hypothesis of

induction, the restriction of p3 in (10) by d is equal either to p
(↓d)
1 or

to p
(↓d)
2 ), it must be either e = b or e = c. Assume e = c then, p3 has

form (11) below
p3 = {(a, d, c), z2, ..., zn}. (11)

Since class (a, c) belongs to partition p2 and since P is not restrictable
by c (by hypothesis), then c must occur as singleton class (c) in p1; so,
form (9) of P will become like the one below:

P =

{
p1 : {(a, b), (c), x3, ..., xn},
p2 : {(a, c), y2, y3, ..., yn}

}
.

By Lemma 29, via hypothesis of induction, the restriction of p3 in
form (11) by a must be equal either to p

(↓a)
1 or to p

(↓a)
2 ; this means,

in particular, that class (d, c) of p
(↓a)
3 must also occur either in p1 or

in p2: that is inconsistent since, in both cases, c will simultaneously
occur in two classes both belonging either to p1 or to p2, that is either
p1 = {(a, b), (c), (d, c), x4..., xn} ∈ P or p2 = {(a, c), (d, c), y3..., yn} ∈ P .
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4.2. Entangled connectives
By Lemma 24, as soon as P is an entangled pair, then its orthogonal is

nonempty, so it makes sense to define the class of entangled connectives as
follows.

Definition 33 (entangled connectives). A generalized connective (P,Q),
in graphical or sequential syntax, is called entangled whenever P or Q is an
entangled pair of partitions sets.

Next Fact 34 is consequence of case 6 of Property 3 and Theorem 32.

Fact 34. If P is an entangled type then, (P,Q) is an entangled generalized
connective iff P = Q⊥.

The smallest (w.r.t. the dimension of the domain) entangled de-
composable connective is PX = {{(1, 3), (2)}, {(2, 3), (1)}} and QX∗ =
{{(1, 2), (3)}}, with X = (1O2)⊗ 3 and X∗ = (1⊗ 2)O3 in graphical syntax.

If P = {p1, p2} is an entangled pair over X = {1, ..., n} then, each singleton
{pi} can be interpreted as the pre-type of a special decomposable formula
with border {1, ..., n}, called bipole [1]. A bipole B is a MLL formula with
only two layers of connectives: a generalized O of (i−1)⊗i sub-formulas (with
1 < i ≤ n) that is, B = Ô(⊗̂1, ..., ⊗̂m) as in the l.h.s. picture of Figure 13.
Dually, B⊥ = ⊗̂(Ô1, ..., Ôn) is called anti-bipole, that is a MLL formula with
only two layers of connectives: a generalized ⊗ of (i − 1)Oi sub-formulas
(with 1 < i ≤ n) as in the r.h.s. picture of Figure 13. Every bipole satisfies
the property that its pre-type is a type (see Lemma 4 of [9]). To be precise,
observe that in case an entangled pair P is interpreted as the (pre-)type of a
bipole B then some ⊗-subtrees of B may be unary.

... ...

1 2 nn− 1
⊗ ⊗ ⊗

O

i− 1 i

... ...

1 2 nn− 1i− 1 i

⊗

O O O

Figure 13: a bipole skeleton on l.h.s. and an anti-bipole skeleton on r.h.s.

In the following we characterize, by means of Theorem 36 and Theorem 39,
the class of non binary decomposable entangled connectives. We then show that
these connectives can neither be approximated to decomposable connectives
(Corollary 40) nor sequentialized in the MLL+ sequent calculus (Section 5).
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4.3. Decomposable normal form of entangled connectives

Definition 35 (decomposable normal form). Let P = {p1, p2} be an
entangled pair of partitions then: P is decomposable iff it is the pre-type of
the parse tree of a multiplicative formula; moreover, P is in (decomposable)
normal form iff P is the pre-type of a formula tree F with literals indexes as
in the l.h.s picture of Figure 14 that is, P is obtained by a O between:

• the smallest decomposable entangled connective, {{(1, 3), (2)}, {(2, 3), (1)}},
enclosed by dashed line, and

• the possibly empty bipole with possibly unary classes, {{(4, 5), ...,(n− 1, n)}},
enclosed by dotted line;

hence P in the following normal form (12).

P :

{
p1 = {x1 : (1, 3), x2 : (2), x3 : (4, 5), ..., xm≥2 : (n− 1, n)},
p2 = {y1 : (2, 3), y2 : (1), y3 : (4, 5), ..., ym≥2 : (n− 1, n)}

}
. (12)

O

⊗

O

⊗ ⊗

1 2

3 4

...

n5
...
n− 1

F : bipole

O
t1 t2

t4

t3

⊗
F :

L1

L2

L′

Figure 14: normal form of decomposable entangled connectives

E.g., P = {{(a, b), (c, e), (d)}, {(a, b), (d, e), (c)}} is an entangled pair in
decomposable normal form since P = PF with F = (a⊗ b)O((cOd)⊗ e) while
the entangled pair Q = {{(a, c), (b), (d, e), (f)}, {(b, c), (a), (d, f), (e)}} is not
in normal form (it is not even decomposable). Observe that normal form is
defined up to commutativity of MLL.

Theorem 36 (decomposable normal form). An entangled pair of parti-
tions P = {p1, p2} is decomposable iff P is in normal form (12).

Proof. Assume P is a decomposable entangled pair of partitions, hence by
Definition 13, there exists a formula F s.t. pre-type PF of its syntactical
tree is P . Since P is entangled (its size is 2 and its weight is ≥ 2), the
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syntactical tree of F must contain at least a O-node otherwise (by reasoning
on switchings of F ) the pre-type of F consists of only one partition with a
single class (contradicting the assumption P is entangled); for similar reason
F cannot consist of only O-nodes otherwise the (pre-)type of F contains
exactly one partition (contradicting the assumption P is entangled). So, F
must contain at least a ⊗-node and a O-node. Now it must exist at least
a O-node L1 above a ⊗-node L2 in the tree otherwise F is a bipole and
therefore its (pre-)type would consists of a single partition, contradicting the
assumption P is entangled pair. So, assume F is as in the r.h.s. picture of
Figure 14, where t1, t2, t3 and t4 are sub-trees of the formula tree of F .

First observe that no other link can stay between L1 and L2, otherwise
such a link, let us say, L′ =O (resp., let us say L′ = ⊗) would increase the
size s of P (resp., the maximal degree 1 ≤ δ ≤ 2 allowed for each class of pi)
contradicting the assumption P is an entangled pair.

Then observe that every tree ti, for i = 1, 2, 3, must be reduced to single
points (i.e., each ti is a tree consisting of a single node), otherwise:

1. in case ti is a tree whose root is a ⊗-node, we get a class with degree > 2,
contradicting the assumption P is entangled pair;

2. in case ti is a tree whose root is a O-node, by reasoning on the switchings
of F (since there would be two O-nodes dominating a ⊗-node), we get
the size of P is > 2, contradicting the assumption P is entangled pair.

So, t1, t2 and 3 must be single-point trees; moreover t4 (if any) must be a
bipole like that one enclosed by dotted line in the l.h.s. of Fig. 14, otherwise
by computing of all possible switchings of F we get that its pre-type PF = P
is not an entangled pair, that is contradiction.

Thus, F must be as in the l.h.s. picture of Figure 14, with the pre-type
consisting of partitions p1 and p2 as in normal form (12).

Vice-versa, it is easy to calculate that an entangled pair in normal form (12)
is decomposable.

Remarks 37 (normal form and semi-distributive law). Informally we
can say that an entangled pair P in decomposable normal form can be thought
as the set of the pre-types (types indeed) of the two bipoles (reductum), B1

and B2, that are obtained after one step of weak (or linear or semi-) dis-
tributive law [2] applied to the (redex) formula F (where P = PF ) whose
abstract skeleton tree is the one depicted on the l.h.s. of Figure 14. Actually,
following [9], we may define a rewrite relation “;wd” on MLL formulas trees
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generated by associativity and commutativity of ⊗ and O plus the weak or
semi-distributive law synthetically defined as follows:

F :

O
A B

C
⊗

;wd

{ ⊗
A C

O
B

F1: ∧

⊗
B C

O
A

F2:

}
(AOB)⊗ C ` (A⊗ C)OB ∧ (AOB)⊗ C ` (B ⊗ C)OA.

Then it is easy to calculate the equality P = PF = PB1 ∪ PB2 once F is
as in the l.h.s. of Figure 14 and F ;wd Bi, for i = 1, 2, as below:

O

⊗

O

⊗ ⊗

1 2

3 4

...

n5
...
n− 1

F : ;wd

{
O

⊗ ⊗

1

4

...

n5
...
n− 12

3

⊗
O

B1 : ∧
O

⊗ ⊗
4

...

n5
...
n− 1

3

⊗
O

2

1

B2 :

}
Observe that, via Theorem 38, stated below and proved in [9], we can

show that “if P is a decomposable entangled pair then, P is a type”.
Actually, if P is a decomposable entangled pair then, by Theorem 36, P is the
pre-type of the formula tree F in the l.h.s. of Figure 14 and so, by Theorem 38,
P is a type. In other words, if P is a decomposable set of partitions then, by
Theorem 38, both types P⊥⊥F and P⊥F (since, by Fact 14, P⊥F = TF⊥) can be
computed by the exhaustive ;∗

wd-rewriting of F and F⊥.

Theorem 38 (Maieli-Puite: type generation of a MLL formula tree).
If F is a MLL formula with pre-type PF then, its type TF can be generated by
the exhaustive ;wd-rewriting of F , as follows:

TF =
⋃
i

PFi
s.t., F ;∗

wd Fi

where each Fi is a bipole, with type PFi
, obtained by transitive closure of ;∗

wd

relation from F .

Proof. Given in [9].
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4.4. Undecomposable entangled connectives

By Theorem 36, an entangled connective, P and Q, is binary decomposable
iff P or Q is in normal form. We want now to make sure that if P (resp.,
Q) is a non decomposable entangled type, then neither Q (resp., P ) will be
decomposable (by Theorem 39), so P and Q is an undecomposable connective.

Theorem 39 (undecomposable entangled connectives). Let E and Q
be a generalized connective. If E is an entangled pair that is not binary
decomposable then, Q is neither decomposable.

Proof. Let (E,Q) be a generalized connective with E an undecomposable
entangled pair. Suppose, for the sake of absurdity, that Q is decomposable,
i.e. Q = PA for some formula A. By Fact 34 and by Fact 14, we have

E =(Fact 34) Q
⊥ = P⊥A =(Fact 14) TA⊥

that is, E is the bi-orthogonal of PA⊥ . Therefore, PA⊥ is included in E, by
case 3 of Property 3. Now, since E has only two elements, if PA⊥ were strictly
included in E, it would be either the empty set or a singleton set so, its bi-
orthogonal would not be E; therefore we have E = PA⊥ , a contradiction.

Next corollary is consequence of Fact 34 and Theorem 39.

Corollary 40 (completion). Let E and Q be an entangled connective with
E being a non (binary) decomposable entangled pair; then, E cannot be
completed in such a way to become decomposable (i.e., ¬∃D ) E s.t. D is
binary decomposable with D and Q being a connective).

Remarks 41 (entangled connectives and bipoles). Although our notion
of “entanglement” doesn’t solve the (admittedly, difficult) general problem (“try
to find a characterization of the full class of undecomposable connectives”), it
is far from being and “ad hoc” condition. It is rather a natural condition that
can be observed as soon as we “superpose” (sum) pairs of bipoles with the same
“skeleton” (i.e.,bipoles with the same abstract syntactical tree), like e.g. the
two ones, F1 and F2, enclosed by dotted lines in Figure 9 of Section 3.3. More
concretely, an entangled connective, P = {p1, p2} and P⊥, can be interpreted
as the union (resp., the intersection) of the types of two bipoles (resp., the
types of two anti-bipoles) which are equivalent up to cyclic permutations of
the literals indexes of the top border that is, bipoles (resp., anti-bipoles) s.t.:

1. they have the same syntactical tree skeleton;
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2. they have the same border up to cyclic permutation of literals indexes.

Formally, given two bipoles like F1 and F2 of Figure 9, with TF1 = {p1}
and TF2 = {p2}, then P = TF1 ∪ TF2 and P⊥ = TF⊥1 ∩ TF⊥2 is an entangled
connective that is undecomposable, by Definition 35 and Theorem 36. E.g.,
consider the Girard’s undecomposable connective G4 and G⊥4 which is an
entangled connective (by Definition 33): G4 (resp., G⊥4 ) results by the union
(resp., by the intersection) of the types of bipoles F1 = (1⊗ 2)O(3⊗ 4) and
F2 = (2⊗3)O(4⊗1)7 (resp., of the types of anti-bipoles F⊥1 and F⊥2 ) of Figure 9
i.e., G4 = TF1 ∪ TF2, (resp., G⊥4 = TF⊥1 ∩ TF⊥2 ). This fact (Theorem 32) is a
novelty since the union of types is not in general a type while the intersection
of types is always a type (Property 3). Indeed, entangled types are the smallest
types (w.r.t. the number of partitions), if we exclude the trivial singleton types
(every set consisting of a single partition is a type by case 11 of Property 3).
So, entangled connectives can be considered in some sense the “smallest”
generalized multiplicative connectives (w.r.t. the number of switchings or the
number of rules), if we exclude the basic ones, O and ⊗, and bipoles.

5. Sequentialization of undecomposable connectives

The natural correspondence (sequentialization) between sequential de-
composable connectives and graphical decomposable connectives is broken
by non decomposable connectives! There exist proof nets, containing non
decomposable links, without counterpart in the sequential calculus MLL+, if
we exclude the trivial correspondence with (non atomic) logical axioms. Let
G and G∗ be an entangled non decomposable connective. By Theorem 39,
neither G nor G∗ is binary decomposable. There is indeed no η-expanded
proof of ` G,G∗ since each rule for G, resp., G∗ has at least two premises
(see Section 3.4). Actually, sequents of non decomposable entangled formulas
` G,G∗, are not provable from atomic logical axioms in the extended MLL
sequent calculus: that is because each rule for G (resp., G∗) is at least binary
(it has at least two premises, by the entanglement) so any derivation of this
sequent would build a premise with the other conclusion G∗ (resp., G) together
with only some (not all) of the principal formulas of the applied rule. This

7Notice that the respective literals indexes of the top borders of F1 and F2 are cyclic
permutations of the linear sequence 1 < 2 < 3 < 4.
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situation is quite different with proof nets. Consider the proof structure π
with only two conclusions, G and G∗, as in Figure 15, built as follows:

1. take the two non decomposable links λG and λG∗ ;

2. label the elements of the top border X = {1, ..., n} of λG (resp., of λG∗)
by n occurrences of literals, a1, ..., an (resp., a⊥1 , ..., a

⊥
n );

3. put an axiom link for each matching pair of dual literals, ai and a⊥i .

Clearly π is an η-expanded proof net: each global switching induces an acyclic
and connected correction graph; nevertheless, π cannot be “sequentialized”
in MLL+, if we exclude the trivial (non atomic) axiom ` G,G∗. Actually,
any attempt of starting by sequentializing G (resp., G∗) will induce a single
connected proof structure πG∗ (resp., πG), with G∗ (resp., G) among its
conclusions, which is not correct: actually, there exist two switchings for πG∗
(resp., πG) with at least two disconnected components (consequence of the
entanglement conditions of Definition 21). Moreover, since neither G nor G∗

is binary definable (by Corollary 40, neither G nor G∗ can be be completed
to a decomposable connective), π is not even stepwise sequentializable. This

axiom links

a1 an a⊥1 a⊥na⊥iai... ... ......

π

G G∗

Figure 15: non sequentializable proof net with non decomposable conclusions G,G∗

fact witnesses an asymmetry between proof nets and sequent proofs since the
former ones allow us to express a kind of parallelism of proofs that the latter
ones cannot do.

6. Conclusions and future works

We gave the first characterization (via Theorems 32, 36 and 39) of a
class of multiplicative undecomposable connectives: namely, the entangled
connectives (Definition 33) that are not in (decomposable) normal form
(Definition 35).
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Anyway, there exist non decomposable connectives besides the entangled
ones. We are currently working on a more general characterization of the
full class of primitive non decomposable connectives (i.e., those ones non
definable by means of other connectives). Naively our idea is that a non
decomposable connective is rather defined by the set of partitions over the
cyclic permutations of the linearly ordered support 1 < ... < n; that’s the case
with e.g. G9 below (we omit its orthogonal G⊥9 for the sake of simplicity):

G9 = { {(1, 2, 3), (4, 5, 6), (7, 8, 9)},
{(2, 3, 4), (5, 6, 7), (8, 9, 1)},
{(3, 4, 5), (6, 7, 8), (9, 1, 2)} }.

Concerning larger (than MLL) fragments of linear logic, like e.g. MELL
or MALL, we don’t know at this moment about non definable connectives
for such fragments. Certainly, if we restrict to consider the pure additive
fragment (ALL) then, there does not exist any generalized connective that
cannot be decomposed by the basic additive ones, & and ⊕. There is no
“packaging problem” in ALL since contexts in which we derive generalized
formulas are simply duplicated. Roughly speaking, non decomposability
concerns rather the multiplicative partition of contexts than the additive
superposition (better, slicing) of contexts.

The fact that one can compute by means of cut elimination, using such
non decomposable connectives, is certainly a good starting point: nevertheless,
the study of their connection with concurrency (typically, the Pi-Calculus [10])
rather than the Curry-Howard correspondence should be further developed8.

Finally, it would be also useful to have a coherence semantics for such
non decomposable connectives. We could e.g. use the so-called experiment
method of Girard [5] for the analysis of proof structures built on such non
decomposable connectives. Examples of what can be done with these kind of
semantic techniques can be found in [11] and more recently in [4].

8Naively, since, by the Curry-Howard isomorphism, “proofs are supposed to correspond
to programs”, what should be the program [π] corresponding to the non decomposable
proof net π of G,G∗ (we met in Section 5)? if such a program does exist, is there
any correspondence between the non-sequentializability of π and the possibly concurrent
nature of such a program π∗? Have we a chance to write “a sequential version” of such a
“concurrent program” [π]?
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[11] Retoré, C.: A Semantic Characterisation of the Correctness of a Proof
Net. Math. Struct. in Comp. Sci., vol. 7(5), pp. 445-452, 1997.

38


