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Abstract. The aim of the paper is twofold. The first aim is to present a mini tutorial on « pairwise 

Markov models » (PMMs) and “triplet Markov models” (TMMs) which extend the popular “hidden 

Markov models” (HMMs). The originality of these extensions is due to the fact that the hidden data does 

not need to be Markov. More precisely, for X hidden data and Y observed ones, the originality of PMMs is 

that X does not need to be Markov, and the originality of TMMs is that even (X, Y) does not need to be 

Markov. In spite of these lacks of Markovianity fast processing methods, similar to those applied in HMMs 

or their other extensions, remain workable. The second goal is to present an original switching model 

approximation allowing fast smoothing. The method we propose, called “double filtering based 

smoothing” (DFBS), uses a particular TMM in which the pair (X, R), where R models switches, is not 

Markov. It is based on two filters, and uses a class of models, known as conditionally Gaussian observed 

Markov switching models (CGOMSMs), where exact fast filtering is feasible. The original model is 

approximated by two CGOMSMs in order to process the past data and the future data in direct and reverse 

order, respectively. Then state estimates produced by these two models are fused to provide a smoothing 

estimate. The DFBS is insensitive to the dimensions of the hidden and observation space and appears as an 

alternative to the classic particle smoothing in the situations where the latter cannot be applied due to its 

high processing cost. 

Keywords. Conditionally Gaussian linear state-space model, smoothing, conditionally Gaussian observed Markov 

switching model, double filtering based smoothing, Markov switching systems. 

 

1. INTRODUCTION 

Hidden Markov models (HMMs) are widely used  in wide range of applications. For )...,,( 11 N
N YYY   

observed process and )...,,( 11 N
N XXX   hidden state process, in classic HMMs the distribution is given 

by Markov distribution of 
NX1  and distributions of 

NY1  conditional on 
NX1 . In spite of the fact that 

HMMs are among the simplest non i.i.d. models, they turn out to be very robust and can give excellent 

results in complex situations.  Hundreds of papers are published on the subject each year so we only 

mention a few general papers or books.  Hundreds of papers are published on the subject each year so that 
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we only cite some general papers or books [10, 13, 18, 31, 39, 50, 57]. HMMs have been extended in 

different directions leading to factorial models [22], hierarchical models [20], hidden bivariate Markov 

models [19], or still hidden semi-Markov models [9, 59, 60]. However, in all these extensions, hidden data 

- possibly containing additional latent data like in hidden semi-Markov models - remains Markov. This is 

not the case in “pairwise” and “triplet” Markov models (PMMs and TMMs, respectively). In PMMs one 

directly assumes that the pair ),( 11
NN YX  is Markov. Then 

NX1  
is not necessary Markov and assuming it 

Markov can even appear as useless constraint. Important is that in PMM 
NX1  

is always Markov 

conditionally on 
NY1 , which allows processing similar to those in HMMs. Introduced in [47] for discrete 

finite data the idea was applied to continuous hidden data in [49]. PMMs have been successfully applied in 

different situations [25, 35] and some theoretical considerations can be seen in [16, 36]. In TMMs one adds 

a third process 
NR1  and assumes the triplet ),,( 111

NNN YRX  Markov. Proposed in [46] for discrete finite 

),( 11
NN RX  TMMs have been in particular successfully applied to non-stationary unsupervised processing 

[24, 34, 52]. Besides, links with Dempster-Shafer theory of evidence allowed to propose Dempster-Shafer 

fusion in Markovian context [11]. The idea has then been applied to continuous hidden ),( 11
NN RX  [3, 15]. 

As ),( 11
NN YX  is not necessarily Markov in TMMs, they are more general than PMMs. For example, for 

Gaussian TMM ),,( 111
NNN YRX  there are cases in which Kalman filter is workable while ),( 11

NN YX  is 

not Markov [15]. Crux difference between general TMMs [15, 46] and other previous TMMs is that, as in 

PMMs, the hidden process ),( 11
NN RX is not necessarily Markov. The first part of this paper is devoted to a 

synthetic presentation of the PMMs and TMMs models. 

The second aim is to introduce a new fast smoothing in Markov switching systems modeled by 

particular TMMs. Let us consider a TMM ),,( 111
NNN YRX  with 

NX1 continuous and 
NR1 discrete finite. 

NR1 models stochastic switches and  such a model is thus a switching one. The classic models to deal with 

switching systems are “switching linear dynamical systems” (SLDSs [4, 5, 7, 8, 13, 14, 17, 28, 29, 30, 38, 

41, 43, 54, 56, 61, 62]). They are used in different fields, such as econometrics [29], finance [6], target 

tracking [7, 23, 58], speech recognition [40, 51], pattern recognition [44], among others. These systems are 

also known as jump Markov models (processes), switching conditional linear Gaussian state-space models, 

or still interacting multiple models. In SLDSs, the hidden variables take their values in a hybrid state space 

which includes continuous-valued and discrete-valued components. The idea is simple and seems natural: 

the hidden discrete switches are modeled by a Markov chain, and the hidden continuous states process is a 

classic Gaussian Markov chains conditionally on switches. In spite of the fact that a SDLS is a hidden 

Markov - since the hidden hybrid process ),( 11
NN RX is Markov - there is no exact fast Bayesian filtering 

or smoothing algorithm tractable in the general SLDS context [13, 18, 37, 53, 54], so that different 

approximate methods have been used instead. In particular, smoothing, which is workable in systems 

without switches [12], is particularly difficult to perform in SLDSs. Previous research on smoothed 

inference in SLDSs includes Kim and Nelson’s most popular method [30], simulation-based algorithms 

[17, 21, 44], smoothed inference by expectation correction [8], and various deterministic approximations 

[64]. The simulation-based methods intrinsically use Monte-Carlo integration in the state space and are 

asymptotically – when the number of particles used tends to infinity - optimal. Thus the accuracy of these 

approaches depends on the number of simulated particles and their great deal may be required to obtain an 
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efficient approximation. Conversely, if the number of simulated particles is insufficient for the state space 

dimension, these estimators would have high variance, while achieving an acceptable variance would mean 

for them a high processing cost. A common property of all these mentioned methods is that the hidden 

couple ),( 11
NN RX is Markov. Relaxing the Markovianity of ),( 11

NN RX  leads to models allowing fast 

exact optimal filtering. First models allowing this, called “Conditionally Markov switching hidden linear 

models” (CMSHLMs) have been proposed in [48]. Then particular Gaussian switching CMSHLMs called 

“conditionally Gaussian observed switching Markov models” (CGOMSMs) have been subsequently 

proposed and different experiments attested of their interest with respect to particle-based methods [1, 2, 

25, 26, 45, 63]. In particular, stationary CGOMSMs can be used to approximate any stationary Markov 

non-linear non-Gaussian system and then fast filtering and smoothing in approximating CGOMSMs are 

alternatives to particle methods [25, 26]. Another significant difference between CMSHLMs and classic 

SDLSs is that the pair formed by the discrete hidden variables and the observable ones ),( 11
NN YR  is 

Markov in CMSHLMs, while it is not Markov in SLDSs.  

After having recalled CMSHLMs, CGOMSMs, and related fast filtering in sections 3 and 4 we propose 

an original approximated fast smoothing valid in general “conditionally Gaussian pairwise Markov 

switching models” (CGPMSMs, [1, 2]) which simultaneously extends CGOMSMs and Gaussian SLDSs. 

Therefore a given CGPMSM can be approximated by a CGOMSM and then the fast smoothing performed 

in this approximating CGOMSM can be seen as an approximated solution of smoothing problem in 

CGPMSM. Such a method has been proposed and studied in [25], and parameter estimation method, 

resulting in unsupervised smoothing, has been recently proposed in [63]. However, smoothing in 

CGOMSMs suffers from the following dissymmetry. For )...,,( 11 N
N YYY   observed process, 

)...,,( 11 N
N RRR   hidden switches process, and )...,,( 11 N

N XXX   hidden state process, )...,,( 1 nn yyxp  

in approximating CGOMSM is close to the similar distribution in CGPMSM, and thus )...,,( 1 nyy  contains 

comparable information about nx  in both CGOMSM and CGPMSM. However, approximating true 

)...,,( Nnn yyxp  in CGPMSM with the same distribution in CGOMSM is less efficient. More precisely, 

),...,,,( 11 nnn ryryxp  depend on all )...,,( 1 nyy
 
while )...,,,(),...,,,( 1 NnnnnNNnnn rrryxpryryxp  , 

and thus only depends on ny . As )...,,( Nnnn yyrxp
 

)...,,()...,,...,,( 1
)...,,(

11

1

Nnnn
rr

NnNn rryxpyyrrp

Nn




, )...,,( Nnnn yyrxp
 

also depend on all 

)...,,( Nn yy  ; however, the dependence is obtained in somewhat indirect way and thus should be, a priori, 

less close to the true CGPMSM’s )...,,( Nnnn yyrxp .  

Then the idea of the new method proposed in this paper is to approximate a given CGPMSM by 

CGOMSMs varying with 1n , …, N . For given n  the proposed “ n -CGOMSM” approximation is the 

classic “left to right” CGOMSM for )...,,( 11 n
n YYY  , )...,,( 11 n

n RRR  , )...,,( 11 n
n XXX  , and a “right 

to left” CGOMSM obtained by inverting time for )...,,( Nn
N
n XXX  , )...,,( Nn

N
n RRR  , 

)...,,( Nn
N

n YYY  . Such a possibility will be showed to exist in particular “stationary in law” family of 

CGPMSMs, in which ),( nnn ryxp
 
are Gaussians - with parameters possibly varying with n – for each 

1n , …, N . Let us also mention another smoothing approximated algorithm based on two classic 
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approximating filters called “switching Kalman filters” (SKF) filters proposed in [27]. The basic idea 

consisting on two “direct” and “reverse” filters is similar; however, the filters are quite different from those 

used in this paper and the fusion of information, called “Bayesian assimilation”, they provide is quite 

different as well. In particular, Proposition 4.1 in section 4 is new. 

Let us stress on great generality of TMMs. CMSHLMs and CGOMSMs have been obtained by relaxing 

the classic “hierarchical” way of defying the switching system distributions. In SLDSs hidden data are 

assumed Markov and then one adds the distributions ),( 111
NNN xryp , which model the “noise” and which 

are almost systematically very simple. General TMMs do not make any difference among 
NX1 , 

NR1 , and 

NY1 . Therefore ),,( 111
NNN YRX  is Markov but each of the six sequences 

NX1 , 
NR1 , 

NY1 , ),( 11
NN RX , 

),( 11
NN YR , ),( 11

NN YX  can be Markov or not. CMSHLMs and SCGOMSMs are then particular TMMs in 

which ),( 11
NN YR  is Markov and ),( 11

NN RX  is not, while the converse is true in SLDSs.  

The organization of the paper is the following.  

General pairwise and triplet Markov models are recalled and discussed in section 2. Section 3 is devoted 

to fast filtering and smoothing in CMSHLMs and CGOMSMs. The new smoothing method is proposed in 

Section 4, and section 5 contains some experiments. Concluding remarks and perspectives are proposed in 

the last section 6.  

 

2. TRIPLET MARKOV MODELS 

 

2.1 Hidden Markov models 
 

Classic hidden Markov model (HMM) is a couple of stochastic sequences ),( 11
NN YX , with 

)...,,( 11 N
N XXX  , )...,,( 11 N

N YYY   , verifying hypotheses (H1), (H2), (H3) below: 

 

(H1) )...,,( 11 N
N XXX   is Markov; 

(H2) 1Y , …, NY  are independent conditionally on )...,,( 1 NXX  ; 

(H3) distribution of each nY  conditional on )...,,( 1 NXX  is equal to its distribution conditional on nY . 

 

Equivalently, one can say that ),( 11
NN YX  is a HMM if and only if its distribution is written: 

 






N

n
nnnn

NN xypxxpxypxpyxp
2

111111 )()()()(),( .   (2.1.1) 

Then (H1) is equivalent to 

 






N

n
nn

N xxpxpxp
2

111 )()()( ,      (2.1.2) 
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 (H2) is equivalent to 

 




N

n

N
n

NN xypxyp
1

111 )()( ,      (2.1.3) 

 

and (H3) is equivalent to 

 

for 1n  , …, N  , )()( 1 nn
N

n xypxyp  .      (2.1.4) 

 

HMMs have huge and various applications, due to the fact that when 
NY1  is observed and 

NX1  is 

searched for, it can be estimated - in several particular models - by fast Bayesian methods. This is the case 

in at least two situations, especially dealt with in this paper: 

 

Case (i): 
NX1  is discrete finite and 

NY1  is either discrete finite or continuous (real or multidimensional); 

Case (ii): ),( 11
NN YX  is multidimensional Gaussian.  

 

The fast processing possibilities stem from the fact that 
NX1 is Markov conditionally on 

NY1 .  

HMM defined with (H1)-(H3), or equivalently with (2.1.1), will be called in the following HMM “with 

independent noise” (HMM-IN).  

 

Let as assume that we are either in Case (i) or in Case (ii).  The core point of developments in sub-section 

2.2 below is to note that none of hypotheses (H1)-(H3) is a necessary one to make possible Bayesian 

processing of interest. Indeed, one can see that HMM-IN considered as a couple 

)...,,(),( 1111 N
NNN ZZYXZ  , with  ),( nnn YXZ   for  1n , …, N , is a Markov process, with  

transitions )()(),,( 111 nnnnnnnn xypxxpyxyxp   . Then the same Bayesian processing are workable 

in models verifying Markovianity of )...,,( 11 N
N ZZZ   as the only condition.  In other words, once 

Markovianity of )...,,( 11 N
N ZZZ   has been admitted, hypotheses (H1)-(H3) appear as useless constraints. 

In particular, 
NX1 may be not Markov.  However, in such cases a non Markov 

NX1 becomes Markov after 

having been conditioned upon 
NY1 .  
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2.2 Pairwise Markov models 
 

Markov )...,,( 11 N
N ZZZ   is called “pairwise Markov model” (PMM).  

Thus relaxing one, or two, or even three, hypotheses among (H1)-(H3) and keeping Markovianity of 
NZ1  

we get different extensions of HMM-INs. Equivalently, considering a PMM 
NZ1  and adding some 

hypotheses among (H1)-(H3) we obtain different particular PMMs.  

Let 
NZ1  be a PMM. The general form of its distribution is 

 






N

n
nnnn

NN yxyxpyxpyxp
2

111111 ),,(),(),(      (2.2.1) 

),,(),(),( 11
2

1111 


 nnnn

N

n
nnn yxxypyxxpyxp . 

 

Let us specify three particular cases of PMMs, recently studied in [24]. 

 

(a) Adding (H1)-(H3) to obtain a HMM-IN is equivalent to assume that 

 

)(),( 111   nnnnn xxpyxxp ;      (2.2.2) 

 

and 

 

)(),,( 11 nnnnnn xypyxxyp  .      (2.2.3) 

 

(b) Adding just (H1) we obtain a HMM with “correlated noise” (HMM-CN). An example of an HMM-CN 

is obtained considering (2.2.1) and (2.2.2). However, let us notice that (2.2.2) is not a necessary 

condition for a PMM to be a HMM-CN in general. As we will see in the following, (2.2.3) will be 

equivalent to (H1) in particular stationary and reversible PMMs; 

  

(c) Adding just (H2) we obtain a PMM with “independent noise” (PMM-IN). An example of a PMM-IN 

is obtained considering (2.2.1) and  (2.2.3). However, (2.2.3) is not a necessary condition for a PMM 

to be a PMM-IN in general. We will see that a stationary and reversible PMM is a PMM-IN if and 

only if  ),(),,( 111   nnnnnnn xxypyxxyp . 

 

Remark 2.1 

 

One can notice that in PMMs both hidden and observed process play symmetrical roles. In particular, 

likely to the observed 
NY1 , the hidden 

NX1  is not Markov in general. This can appear as somewhat 

disturbing as the distribution of 
NX1  is not known explicitly in general. However, 

NX1  is Markov 

conditionally on 
NY1 , which allows same Bayesian processing as in classic HMM-INs. Besides, 
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symmetric roles of 
NX1  and 

NY1  can sometimes be justified in real situations. For example, if 
NX1  

is 

inflation rate and 
NY1  is interest rate, each of them can be seen as a noisy version of the other. Each of 

them can be considered as hidden and searched from the other, considered as observed.  

 

We said above that assuming a hypothesis among (H1)-(H3) can be seen as useless constraint. Let us show 

that in some situations assuming 
NX1  Markov is even quite detrimental. We have the following 

 

Proposition 2.1 

 

Let )...,,( 11 N
N ZZZ  , with  ),( nnn YXZ   for  1n , …, N , be a stationary reversible PMM (which 

means that ),,,( 11  nnnn xyyxp  is independent from  1n , …, 1N , and distributions  

),,( 11 nnnn yxxyp   are equal to distributions ),,( 11  nnnn yxxyp ). Then the following conditions are 

equivalent: 

(C1) 
NX1  is Markov;   

(C2) )(),( 22212 xypxxyp  (equivalent to )(),( 11211 xypxxyp  ; 

(C3) )()( 1 nn
N

n xypxyp 
 
for each 1n , …, N . 

 

The proof can be seen in [34]. We see that in Proposition 2.1 frame assuming 
NX1  Markov is equivalent to 

simplifying the noise distribution when, in general PMMs, )( 1
N

n xyp  depends on all 1x , …, Nx . Besides, 

in the same frame, we see that (H1) and (H3) are equivalent. Finally, let us notice that this result allows for 

easily constructing PMMs without markovianity of the hidden process. 

 

Example 2.1 

 

Let us consider the case of stationary reversible PMM with  
NX1  discrete finite and 

NY1  continuous real. 

The PMM distribution is given by ),,(),(),,,( 2121212211 xxyypxxpyxyxp  . Let us assume the 

distributions ),,( 2121 xxyyp  Gaussian. If the mean or/and variance of Gaussian ),( 212 xxyp  depend on 

1x , we can state, by virtue of the Proposition, that 
NX1  is not Markov. Besides, the PMM transitions are  

 











1

),(),(

),,(),(
),,(

11

111
11

nx
nnnnn

nnnnnn
nnnn

xxypxxp

xxyypxxp
yxxyp ,   (2.2.4) 
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and thus they are not Gaussian. As a consequence, )( 11
NN xyp  are not Gaussian either. Finally, when 

1n , … , N , distributions )( 1
N

n xyp  are not Gaussian and depend on all 1x , … , Nx . As a 

consequence, )( nn xyp  are rich mixtures of non-Gaussian distributions. Of course, we find again classic 

HMM-IN transitions for )(),( 22212 xypxxyp   and )()(),,( 22112121 xypxypxxyyp   : 

)()(),,( 11111   nnnnnnnn xypxxpyxxyp . 

 

Example 2.2 

 

Let us consider the case of stationary reversible PMM with  
NX1  and 

NY1  continuous multidimensional, 

and ),( 11
NN YX  Gaussian. Its distribution is defined by Gaussian distribution of ),,,( 2211 YXYX , given by 

means    21 XEXEM X  ,    21 YEYEMY  , and variance-covariance matrix 

 



























































Y
TTT
X

TT
Y

T
X

YXYYYXY

YXXYXXX

YYXYYXY

YXXXYXX

BCD

BDA

CDB

DAB

2221212

2221212

2121111

2121111

,    (2.2.5) 

 

The second equality being due to 
21 XX  , 

21 YY  , 
1221 YXYX  , and 

2211 YXYX  . Then 

condition (C2) in Proposition 2.1, being equivalent to the independence of 1X  and 2Y  conditionally on 

2X , is written  

 

BAD X
1 ,      (2.2.6)

 

 

and thus 
NX1  is not Markov for BAD X

1 .  

For example, taking 
NX1  and 

NY1  real with means null and variances equal to one, we have 





















1

1

1

1

bcd

bda

cdb

dab

. Such a PMM is a PMM-IN iff 
2abc  , it is a HMM-CN iff abd  , and it is a classic 

HMM-IN iff 
2abc  and abd  . We see that PMM is defined with four parameters while HMM-IN is 

defined with only two parameters.  

 

Kalman filtering is workable in general Gaussian PMMs [49], and parameters can be estimated in 

homogeneous case with stochastic gradient [32] or Expectation-Maximization (EM) algorithm [42]. 
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2.3 Triplet Markov models 
 

Let 
NX1 , 

NY1 , and )...,,( 11 N
N ZZZ  , with ),( nnn YXZ   for  1n , …, N , be random sequences as 

above. As above, 
NX1 and 

NY1 are assumed to present some concrete phenomenon. Let )...,,( 11 N
N RRR   

be a third random sequence, which can have some concrete signification or not. Let us assume that 

)...,,( 11 N
N TTT  , with ),,( nnnn YRXT   for  1n , …, N , is Markov. Such a model will be called 

“triplet Markov model” (TMM).  

Setting ),( 111
NNN YST  , with ),( nnn RXS   for 1n , …, N , we see that ),( 111

NNN YST 
 
is a PMM. 

Thus ),( 111
NNN RXS   can be searched from NY1  in some situations, which gives both NX1 and 

NR1 . 

As there are no constraints in choosing 
NR1 , TMMs form an extremely wide family of models. This family 

is strictly richer than PMMs; indeed, ),( 111
NNN YXZ   is not necessarily Markov in general TMM. More 

precisely, no one of the six processes 
NX1 , 

NY1 , 
NR1 , ),( 11

NN YX , ),( 11
NN RX , ),( 11

NN YR  is necessarily 

Markov. Of course, 
NX1 is Markov conditionally on ),( 11

NN YR , 
NY1  is Markov conditionally on  

),( 11
NN RX , 

NR1  is Markov conditionally on ),( 11
NN YX , ),( 11

NN YX is Markov conditionally on 
NR1 , 

),( 11
NN RX is Markov conditionally on 

NY1 , and ),( 11
NN YR  is Markov conditionally on 

NX1 . These six 

conditional Markovianity provide different interpretations and different possibilities of processing of 

interest. To comment some of them let us return to Case (i) and Case (ii) of subsection 2.1. 

 

Case (i): 
NX1  is discrete finite and 

NY1  is either discrete finite or continuous (real or multidimensional). If 

NR1 is discrete finite the problem of searching 
NX1  is similar to the problem of searching 

NX1  in the 

PMMs case. Indeed, setting ),( 111
NNN RXS  , ),( 111

NNN YST   is a PMM and searching ),( 111
NNN RXS   

is workable. Such a TMM can be interpreted as a switching system, so that one can simultaneously find 

classes 
NN xX 11   and switches 

NN rR 11  .  

 

Case (ii): ),( 11
NN YX  is multidimensional Gaussian. If 

NR1 also is multidimensional Gaussian the problem 

of searching ),( 111
NNN RXS   in TMMs is similar to the problem of searching 

NX1  in the PMMs case. 

Indeed, likely to the previous case, ),( 111
NNN YST  is a multidimensional Gaussian PMM and searching 

),( 111
NNN RXS 

 
is workable, while ),( 11

NN YX  is not necessarily Markov. For example, Kalman 

Filtering (KF) is workable, and thus there exist models ),( 11
NN YX  which are not Markov and in which 

fast exact KF is feasible [3, 15]. 
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Thus we can say that when the third added process 
NR1 is of the same nature than 

NX1  (both discrete finite 

or both continuous Gaussian) the processing problem can be solved in a similar manner than in PMM 

),( 11
NN YX .  

 

In the following we deal with the case where 
NR1 and 

NX1  
are of different nature:  

NR1 is discrete finite 

and 
NX1 is multidimensional. More precisely, 

NR1 is discrete finite and ),( 11
NN YX is multidimensional 

Gaussian conditionally on 
NR1 . In such a switching Gaussian case fast exact processing – filtering or 

smoothing – are no longer possible in general. However, there exist a sub-family of these models in which 

they are, and thus once a given triplet model has been approximated by a model in the latter family one can 

propose an approximate fast processing, which is an exact one in an approximate model. As specified in 

Remark 2.2 below such sub-families are obtained relaxing the Markovianity of ),( 111
NNN RXS  . 

 

Remark 2.2 

   

Proposed in [46] in a general context, some particular TMMs have been known before. For example, 

hidden semi-Markov models can be seen as particular TMMs. As specified in Introduction, another 

example are SLDSs, where the third process 
NR1  models switches of the distribution of the couple 

),( 111
NNN YXZ  . However, apart from [46] and subsequently developed models, all classic models are of 

“hierarchical” kind: the hidden couple ),( 111
NNN RXS   is assumed Markov, and the Markovianity of 

NS1  

conditional on 
NY1 , needed for processing, is ensured by taking ),( 111

NNN xryp  simple enough. For 

example, according to Proposition 2.1, in stationary invertible case assuming ),( 111
NNN RXS   Markov is 

equivalent to assuming ),(),( 11 nnn
NN

n xrypxryp   for each  1n , …, N , which can appear as a quite 

strong hypothesis in some real applications. Similarly to what have been mentioned for PMMs, giving up 

the hierarchical way of defining the distribution ),,( 111
NNN yxrp , opens ways for considering more 

complex Markovian  noises ),( 111
NNN xryp . This also lead to propose CMSHLMs and CGOMSMs 

allowing fast exact filtering in spite of the presence of unknown switches [1, 2, 48].  

 

3. FAST EXACT FILTERING IN SWITCHING MODELS  

 

Let us consider three random sequences
NX1 ,

NR1  and 
NY1  as specified in introduction. The new fast 

smoothing we will specify in the next section is based on two fast filters: one of a left-right kind, and 

another of a right-left kind. It will be proposed in the next section in the frame of “stationary in law” 

models specified below. This section is devoted to recall the related filters and models in which they run. 

Let us consider the following “conditionally Markov switching hidden linear model” (CMSHLM), 

slightly more general that CMSHLM proposed in [48].  
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Definition 3.1 

 

The triplet ),,( 1111
NNNN YRXT   is called “conditionally Markov switching hidden linear model” 

(CMSHLM) if: 

),,( 1111
NNNN YRXT   is Markov;         (3.1.1) 

 

for 1n , … , 1N : 

 

),,(),,,( 1111 nnnnnnnnn yryrpyrxyrp    ( ),( 111
NNN YRQ   is then Markov);  (3.1.2) 

 

),,(),( 1
11

1
11

11 





  n
n
n

n
nnn

n
n

n
nnn UYRHXYRGX .    

 
(3.1.3) 

 

with 1U  , …, NU  some sequence of random variables.  

 

Then we have the following 

 

Proposition 3.1 

 

Let ),,( 1111
NNNN YRXT   be a CMSHLM. Let ),(],[ 11

1
11

1





  n
n

n
nn

n
n

n
nn YRMYRHE . Then 

 

(i) )( 1
11



n

n yrp  is given from ),,( 11 nnnn yryrp   and )( 1
n

n yrp  with (3.1.5), (3.1.6); 

 

(ii) ],[ 1
111



n

nn yrXE  is given from ),( 11
1




n
n

n
nn yrG ,  ),( 11

1



n
n

n
nn yrM , and ],[ 1

n
nn yrXE

 
with  

 

]),(],[),([),(],[ 11
11

11
1

1
11

1
111   












nr

n
n

n
nn

n
nn

n
n

n
nn

n
nn

n
nn yrMyrXEyrAyrrpyrXE ,  (3.14) 

 

with ),( 1
11



n

nn yrrp  computed from (3.1.5) 

 

Proof 

We wish to compute
 

],[ 1
111



n

nn yrXE  and ]( 1
11



n

n rxp  from
 

],[ 1
n

nn yrXE  and ]( 1
n

n rxp . 

As
 

),( 111
NNN YRQ   is Markov, )( 1

11



n

n yrp  and ),,( 1
11



n

nn yrrp
 
are computable from 
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)(
)(

),,(

)(

),,(
),( 1

11

11

11

1111
11

n
nn

n

nnnn

n
n

n
nnnn

nn yrp
yyp

yryrp

yyp

yyrrp
yrrp








  ;  (3.1.5) 

 









nr

n
nn

n
n yrrpyrp ),()( 1

11
1

11 .       (3.1.6) 

 

Besides, taking conditional expectation of (3.1.3) we have 
 ],[ 1

1
1

1
nn

nn yrXE  

),(],[),( 11
1

1
1

111
1





  n

n
n
nn

nn
nn

n
n

n
nn yrMyrXEyrA . As (3.1.2) implies 

],[],[ 1
1

1
1 n

nn
nn

nn yrXEyrXE  , we have 

 

),(],[),(],[ 11
11

11
1

1
1

1
1








  n

n
n
nn

n
nn

n
n

n
nn

nn
nn yrMyrXEyrAyrXE ,  (3.1.7) 

 

which leads to (3.1.4) using 










nr

nn
nn

n
nn

n
nn yrXEyrrpyrXE ],[),(],[ 1

1
1

1
1

11
1

111 , and ends the 

proof.  

 

The exact fast smoothing method we propose will be applicable in a subfamily of the following family of 

models: 

 

Definition 3.2 

The triplet ),,( 1111
NNNN YRXT   is called “stationary in law conditionally Gaussian pairwise Markov 

switching model” (SL-CGPMSM) if: 

),,( 1111
NNNN YRXT   is Markov;        (3.1.8) 

)(),,( 11 nnnnnn rrpyrxrp    for each 1n , …, 1N ;    (3.1.9) 

),,,,( 111  nnnnnn rryxyxp  are Gaussian for each 1n , …, 1N ;   (3.1.10) 

 

Let us remark that in SL-CGPMSM we also have, for 1n , …, 1N :  

 

),,(),,,( 1 nnnnnnn ryxprryxp  , ),(),,( 111111   nnnnnnn ryxprryxp .   (3.1.11) 

 

Indeed, the first equality in (3.1.11) comes directly from (3.1.9), and the second equality comes from the 

fact that if ),,( 111  nnnn rryxp  was depending on nr , the distribution ),( 111  nnn ryxp  would be a 

Gaussian mixture, which is not the case because of the first one. 
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Let us notice that “stationarity in law” does not imply stationarity: in SL-CGPMSM distributions of 

),,( nnnn YRXT   can vary with n . “Stationarity in law” means that the form of distributions of nT  does 

not vary: here ),( nnn ryxp  are Gaussain for any 1n , …, N .  

 

Let ),,( 1111
NNNN YRXT   be a SL-CGPMSM. To simplify writing, let us assume that means of all Gaussian 

distributions ),,,,( 111  nnnnnn rryxyxp  are null. Distribution of NT1  is then defined by the distribution 

of NR1  and the covariance matrices  

 

  









































 







11
11

1

1

2
11, )( n

n
n
n

T
n

T
n

T
n

T
n

n

n

n

n

nn rRYXYX

Y

X

Y

X

Er   

 (3.1.12) 











































































)()(

)()(

)()()()(

)()()()(

)()()()(

)()()()(

1
1

1

11
11

11
11

11

11

11

1

11111

11111

11

11

nZ
n
nZZ

n
nZZnZ

nYnXY
n
nYY

n
nXY

nYXnX
n
nYX

n
nXX

n
nYY

n
nXYnYnXY

n
nYX

n
nXXnYXnX

rr

rr

rrrr

rrrr

rrrr

rrrr

nnn

nnn

nnnnnnn

nnnnnnn

nnnnnnn

nnnnnnn

 

 

with 









n

n
n

Y

X
Z  for 1n  , …, N . According to (3.1.8)-(3.1.10) we can write for 1n , …, 1N :  

 




















































































1

1

14
1

13
1

12
1

11
1

14
1

13
1

12
1

11
1

1

1

)()(

)()(

)()(

)()(

n

n

n
nn

n
nn

n
nn

n
nn

n

n

n
nn

n
nn

n
nn

n
nn

n

n

V

U

rbrb

rbrb

Y

X

rara

rara

Y

X
,  (3.1.13) 

 

where 2U  , 2V …, NU , NV  are standard Gaussian white noise variable: means are null and variance-

covariance matrices are identity.  

Setting 


























)()(

)()(
)(

14
1

13
1

12
1

11
11

1 n
nn

n
nn

n
nn

n
nnn

nn
rara

rara
rA , 



























)()(

)()(
)(

14
1

13
1

12
1

11
11

1 n
nn

n
nn

n
nn

n
nnn

nn
rbrb

rbrb
rB , and 















1

1
1

n

n
n

V

U
W ,  

(3.1.13) will also be sometimes written in a concise form 

 

 
1

1
1

1
11 )()( 





  n

n
nnn

n
nnn WrBZrAZ .  (3.1.14) 

 



14 

 

)( 1
1




n
nn rA  and )( 1

1



n
nn rB  in (3.1.13), (3.1.14) are classically  obtained from (3.1.12) with 

 

)()()( 111
1 1 nZ

n
nZZ

n
nn rrrA

nnn


 


.    (3.1.15) 

 

)()()()()()( 111
1

1
1

1
1 111








 

 n
nZZnZ

n
nZZnZ

n
n

T
n

n
nn rrrrrBrB

nnnnnn
  (3.1.16) 

 

Let us notice that switching systems are usually presented in form (3.1.13), (3.1.14). We can equivalently 

define SL-CGPMSM using the following  

 

Definition 3.3 

 

The triplet ),,( 1111
NNNN YRXT   is called “stationary in law conditionally Gaussian pairwise Markov 

switching model” (SL-CGPMSM) if: 

),,( 1111
NNNN YRXT   is Markov;        (3.1.17) 

)(),,( 11 nnnnnn rrpyrxrp    for 1n , …, 1N ;     (3.1.18) 

Setting 









n

n
n

Y

X
Z , )...,,( 11 N

N ZZZ   verifies for 1n , …, 1N  

 

1
1

1
1

11 )()( 





  n
n
nnn

n
nnn WrBZrAZ , 

 

with 2W  , …, NW  standard Gaussian white noise variables and  )( 2
12 rA , )( 2

12 rB , …, )( 1
N
NN rA  , )( 1

N
NN rB   

such that for 1n , …, N  

 

 nn
n

n rZErZE 






1  and  n
T
nn

nT
nn rZZErZZE 







1    (3.1.19) 

 

Let us notice that (3.1.19) is equivalent to : for 1n , …, 1N , 

 

  )()()()( 1
1

1
1

1
1

1
1











  n

n
T
n

n
nn

n
n

T
nn

T
nn

n
nn rBrBrArZZErA    (3.1.20) 

 

does not depend on nr . 

 

Fast exact filtering is feasible in the following particular SL-CGPMSM. 
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Definition 3.4 

 

SL-CGPMSM
 

),,( 1111
NNNN YRXT   is called “stationary in law conditionally Gaussian observed Markov 

switching model” (SL-CGOMSM) if )( 1
1




n
nn rA  in (3.1.13), (3.1.14) is of the form 

 
























)(0

)()(
)(

14
1

12
1

11
11

1 n
nn

n
nn

n
nnn

nn
ra

rara
rA .    (3.1.21) 

 

Let us show that SL-CGOMSM is a CMSHLM (see Definition 3.1).  

We have 

),,()(),,,(),,(),,,( 1
1111111


  n

nnnnnnnnnninnninnnnn ryxyprrpryrxypyrxrpyrxyrp . 

According to (3.1.13) and (3.1.21) *
1

14
11 )( 


  nn

n
nnn VYraY , with 1

14
11

13
1

*
1 )()( 





  n

n
nnn

n
nnn VrbUrbV

 independent from ),,( 111
nnn YRX , which implies ),(),,( 1

1
1

1





  n
nnn

n
nnnn ryypryxyp .  

Finally  

 

),()(),,(),,,( 1
111111


  n

nnnnnnnnnnnnnn ryyprrpyryrpyrxyrp ,   (3.1.22) 

 

This means that in SL-CGOMSM ),,,( 11 nnnnn yrxyrp   are of the form (3.1.2) with ),( 1
1




n
nnn ryyp  

Gaussian with mean n
n
nn yra )( 14

1


 and variance Tn
nn

n
nn

Tn
nn

n
nn rbrbrbrb )]()][([)]()][([ 14

1
14

1
13

1
13

1











  : 

 

))]()][([)]()][([,)((N),( 14
1

14
1

13
1

13
1

14
1

1
1

Tn
nn

n
nn

Tn
nn

n
nnn

n
nn

n
nnn rbrbrbrbyraryyp 
















   (3.1.23) 

 

Finally ),,( 11 nnnn yryrp   used in computation in fast filter in CMSHLM is given in SL-CGOMSM with 

(3.1.22) and (3.1.23). 

 

Let us verify (3.1.3) - also see Remark 3.1. According to (3.1.13) - with (3.1.21) - 

),,,( 1
11




n
nnnnn ryxyxp

 
is Gaussian with mean and variance 

 











 











n
n
nn

n
n
nnn

n
nn

yra

yraxra
M

)(

)()(
14

1

12
1

11
1 ;      (3.1.24) 

 
T

n
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n
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n
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n
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n
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n
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n
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n
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n
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n
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
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





























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


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













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

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)()(
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1
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1




,  (3.1.25) 
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and thus according to Gaussian conditioning rules ),,,( 1
11




n
nnnnn ryyxxp

 
is Gaussian with mean and 

variance 

 

  ))(()()()()(* 14
11

114
1

12
1

12
1

11
1 n

n
nnn

n
nn

n
nnn

n
nnn

n
nn yrayrryraxraM 













   ;  (3.1.26) 

 

  )()()()(* 13
1

114
1

12
1
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1











  n
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n
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n
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n
nn rrrr  .    (3.1.27) 

 

Then  

 

 
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1
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
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


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n
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n
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n
nnn

n
nnn

UrQYrr

YrarrraXraX




   (3.1.28) 

 

with  

 

*)()( 1
1

1
1 





n
n

T
n

n
nn rQrQ .      (3.1.29)  
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(3.1.32) 

 

Finally, fast exact filter in SL-CGOMSM is given by (3.1.5), (3.1.6), (3.14), with ),,( 11 nnnn yryrp   

given by (3.1.22)-(3.1.23), and 1nG , 1nH , and 1nM , given by (3.1.30)-(3.1.32).
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Remark 3.1 

 

Formulas (3.1.28)-(3.1.32) use matrices  )( 1
1




n
nn rA , )( 1

1



n
nn rB , and thus they are of interest when the 

model is defined with (3.1.13), (3.1.14). When it is defined with matrices (3.1.12) the filter can be obtained 

straightforwardly from these matrices, which would be possibly simpler to program. According to (3.1.12) 
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(3.1.35)

 

 

Remark 3.2 

 

Classic switching Gaussian model ),,( 1111
NNNN YRXT  , called “Conditionally Gaussian Linear State-

Space model” (CGLSSM), is defined as follows:  
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NR1  is Markov;          (3.1.36) 

111111 )()(   nnnnnnn UrDXrCX
       (3.1.37) 

1111111 )()(   nnnnnnn VrFXrEY
      (3.1.38) 

 

Reporting (3.1.28) into (3.1.29) we see that such a model verifies particular (3.1.13) equation: 
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Let us notice that CGLSSM cannot be a SL-CGPMSM, even in homogeneous – i.e. when CCn 1 ,
 

DDn 1 ,
 EEn 1 , and

 FFn 1  - case. Indeed, distributions ),( nnn ryxp  
are Gaussian mixtures with 

number of components increasing with n . This property is often put forth to state that fast exact filtering 

cannot be perform in CGLSSMs. 

 

Remark 3.3 

 

We believe that SL-CGPMSM is better suited to real situations than classic switching models - in which 

margins become richer and richer mixtures - because of the independence of the form of margins and 

transition from n . For example, suppose there are two observers of a phenomenon studied – as tracking 

some flying target – and both of them use CGLSSM. The first starts at 1n , and the second one starts at 

5n . The problem is that they will not use the same phenomenon probability distribution for 5n , while 

they would when using SL-CGPMSM.  

 

 

4. FAST APPROXIMATE SMOOTHING IN SWITCHING MODELS  

 

4.1 n -SL-CGOMSM approximations of a SL-CGPMSM  

 

Let ),,( 1111
NNNN YRXT   be a SL-CGPMSM, with distribution defined by )( 2

12,1 r  , … , )( 1,1
n
nnn r  , 

)( 1
1,


 n

nnn r  , … , )( 1,1
N
NNN r  . The problem we deal with is to compute 





 N

nn yrXE 1, , 




 N

nn yrXE 1
2 , , 

and )( 1
N

n yrp  for each 1n , …, N . The idea is to approximate the distribution ),,()( 1111
NNNN yrxptp 

by the following “ n -SL-CGOMSM” distribution. The distribution ),,()( 1111
nnnn yrxptp 

 
of 

)...,,( 11 n
n TTT   is classically replaced by the following SL-CGOMSM’s distribution 

),,(*)(* 1111
nnnn yrxptp  : matrices )( 2

12,1 r , .., )( 2
1,1 rnn  are modified by replacing in each 
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so that ),,(* 111
nnn yrxp  indeed is a CGOMSM distribution. 

 

Remark 4.1 

 

Let us notice that )(* 1
ntp  and )( 1

ntp  are close each to another in that: 

- )( 1
nrp  and )(* 1

nrp  are identical; 

- for 1k , …, 1n , )( 2
11, rkk   and )( 2

1
*

1, rkk   are defined with ten different covariance matrices: 

nine are the same and just one is different. In particular, margins )( ktp  and )(* ktp  are identical; 

- one can see that ),,( 21  kkkk yyyxp  and ),,(* 21  kkkk yyyxp  are identical for 3k , …, n . 

Due to that filtering data sampled with )( 1
ntp  using the fast filter specified in section 3 based on 

)(* 1
ntp  gives results fairly as good as optimal results obtained with particle filter based on the true 

distribution )( 1
ntp , which is significantly more time consuming. 

 

The distribution of )...,,( Nn
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n TTT   is replaced by the following SL-CGOMSM’s distribution. First, 

one inverts time: the distribution of )...,,( Nn
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and )...,,( **
1

*
nN

N
n TTT   , with NTT *

1  , 1
*
2  NTT , …, nnN TT 
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1  is a CGOMSM.  
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computations are independent each from another. 

 

We will show in the subsection that 
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which will solve the problem of fast smoothing. 
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4.2 Fast smoothing in n -SL-CGOMSMs  

 

Let us show the following 

 

Proposition 4.1 

 

Let ),,( 1111
NNNN YRXT   be a SL-CGPMSM. Then 
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Proof 

We will use the following property of Gaussian distributions: 

 

Lemma 4.1 

 

Let A , B , C  be Gaussian vectors such that B  and C  are independent. Then 
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which ends the proof of Lemma 4.1. 
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We have for the first term of the above sum: 
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After similar calculation for the second and the third term we obtain (4.2.1), which ends the proof. 

 

Therefore (4.2.1) is valid in general SL-CGPMSM, and thus it also is in n  - SL-CGOMSM, which gives 

(4.1.6).   
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The new smoothing Double Filtering Based Smoothing (DFBS) algorithm runs as follows. 
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4.3 Dependence graphs  

Let us illustrate different models and smoothing methods discussed above by some dependence graphs. 

Graphs of classic SLDSs, CGPMSMs, and CGOMSMs are presented in Figure 1. The aim is to show that 

once CGPMSMs are admitted as being reference models, approximating a given CGPMSM with a 

CGOMSM is more precise that approximating it with a SLDS. 
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1nr        nr         1nr                         1nr           nr         1nr                                                                                                

…..          

 

 

1nx        nx          1nx                        1nx        nx          1nx                                                                

  (a)         (b) 

Figure 1. Dependence graph of (a) classic switching linear dynamical system (SLDS), (b) CGPMSM (in 

which dotted red segments would be black ones) and CGOMSM (in which dotted red segments are 

removed). CGPMSMs and CGOMSMs only differ by existence, or not, of dotted red segment. 

 

Figure 2 represents distributions LR-SL-CGOMSM, RL-SL-CGOMSM, and n -SL-CGOMSM conditional 

on 
NR1 . It illustrates how n -SL-CGOMSM varies with n .  
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         …..         …..   
 

         …..         …..  
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(a) (b)          

 

     1y          2y      2ny      1ny       ny         1ny      2ny   1Ny      Ny                                                          

                                    …..              …..  

 

 

     1x          2x     2nx       1nx       nx        1nx       2nx    1Nx        Nx  
                         (c)  

Figure 2. Dependence graphs of distributions ),( 111
NNN ryxp : LR-SL-CGOMSM (a), RL-SL-CGOMSM 

(b), and n -SL-CGOMSM (c).  

 

 

Figure 3 illustrates arguments developed in Introduction: the new smoothing uses the information in a more 

complete manner than the previous one based on CGOMSMs.  
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Figure 3. Dependence of nX
 
on ),( 11

NN YR  in n -SL-CGOMSM (a), and in LR-CGOMSM (b). 
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Figure 4. Distributions of ),,( 2
2

2
2







n
n

n
nn YRX  are identical in SL-CGPMSM and n -SL-CGOMSM (a). 

Then ),( 2
2



n
nn yxp  also are identical, and )( 2

2



n
nn yxp  also are as well (b).  
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5. CONCLUSIONS AND PERSPECTIVES 

 

We proposed an original method of fast smoothing in switching Markovian systems, called “double 

filtering-based smoothing” (DFBS). Its originality is to consider, for each time  Nn ...,,1 , two 

approximating models: one on the left side of n , and another on his right side. In each of these models, 

called “conditionally Gaussian observed Markov switching models” (CGOMSMs), fast exact filtering is 

feasible in spite of switches [1, 2, 45]. The “left” CGOMSM is obtained directly, while the “right” 

CGOMSM is obtained by inverting time. The method is valid in general “conditionally Gaussian pairwise 

Markov switching models” (CGPMSMs), which extend, in particular, “switching linear dynamical 

systems” (SLDSs) currently used. It has been seen from previous experiments presented in [1, 2], that the 

efficiency of fast exact filter applied to the CGOMSM approximating a given CGPMSM was comparable 

to the efficiency of particle filter applied to the true CGPMSM, the latter being optimal (when taking 

enough particles). Therefore we may expect that the method is close to the optimal smoothing as well. 

As perspectives, let us mention extension to continuous time cases [55, 56]. Another wide perspective is 

to extend the Markov chain ),( 11
NN YR considered in n -SL-CGOMSMs introduced in the paper to triplet 

chains, as mentioned in subsection 2.3, case (i) (see also [10, 34]).  
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