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ERGODIC PROBLEMS FOR VISCOUS HAMILTON-JACOBI EQUATIONS

WITH INWARD DRIFT

EMMANUEL CHASSEIGNE∗ AND NAOYUKI ICHIHARA†

Abstract. In this paper we study the ergodic problem for viscous Hamilton-Jacobi equations with superlinear

Hamiltonian and inward drift. We investigate (i) existence and uniqueness of eigenfunctions associated with the

generalized principal eigenvalue of the ergodic problem, (ii) relationships with the corresponding stochastic control

problem of both finite and infinite time horizon, and (iii) the precise growth exponent of the generalized principal

eigenvalue with respect to a perturbation of the potential function.

Key words. Ergodic problem, viscous Hamilton-Jacobi equation, stochastic ergodic control, generalized prin-

cipal eigenvalue.
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1. Introduction. This paper is concerned with the ergodic problem for viscous Hamilton-

Jacobi equations of the form

λ− 1

2
∆ϕ(x) + b(x) ·Dϕ(x) +H(x,Dϕ(x))− V (x) = 0, x ∈ Rd, (EP)

where b : Rd → Rd, H : Rd × Rd → R, and V : Rd → R are given functions, Dϕ and ∆ϕ are,

respectively, the gradient and the Laplacian of ϕ : Rd → R, and “ · ” stands for the inner product

in Rd. Throughout the paper, any pair (λ, ϕ) ∈ R×C2(Rd) satisfying (EP) is called a solution of

(EP), and λ, ϕ are referred to as an eigenvalue of (EP) and an eigenfunction of (EP) associated

with λ, respectively.

The main results of this paper consist of three parts. In order to state them briefly, we assume

in this introductory section that

b(x) = (1 + |x|2)
δ−1
2 x, H(x, p) =

1

m
|p|m, V (x) = (1 + |x|2)−

η
2 , (1.1)

where δ ∈ (0, 1], m > 1, and η > 0 are given constants. More precise (and more general)

assumptions on (b,H, V ) will be stated in the next section. The crucial properties in (1.1) are:

(i) drift vector −b(x) is inward-pointing with the intensity of order |x|δ,
(ii) Hamiltonian H(x, p) is convex in p and diverges as |p| → ∞ with the order |p|m,

(iii) potential V (x) is positive and vanishes as |x| → ∞ with the order |x|−η.
In the first part of this paper, we discuss the existence and uniqueness of eigenfunctions ϕ of

(EP) associated with the generalized principal eigenvalue λmax defined by

λmax := sup{λ ∈ R | (λ, ϕ) ∈ R× C3(Rd) is a subsolution of (EP)}, (1.2)

where (λ, ϕ) is said to be a subsolution (resp. supersolution) of (EP) if the left-hand side of (EP)

is nonpositive (resp. nonnegative) for all x ∈ Rd. In Theorem 2.1 we prove that there exists a

unique eigenfunction ϕ∗ ∈ C2(Rd) of (EP) associated with λmax, up to an additive constant. The

solvability of (EP), especially, the uniqueness of eigenfunctions associated with the generalized

principal eigenvalue has been studied under a variety of conditions on (b,H, V ) (see, e.g. [3, 4, 10,

17, 18, 19, 20, 21, 22] and the references therein). Our result can be regarded as extensions of [4, 18]

and [17, 21, 22], the former of which deal with ergodic problems without drift (i.e., b(x) ≡ 0), while

the latter restrict their attention to quadratic Hamiltonians (i.e., m = 2). We mention that [10]
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2 ERGODIC PROBLEMS FOR VISCOUS HJ EQUATIONS

studies existence of eigenfunctions of (EP) under mild assumptions including (1.1) by a different

argument. However, uniqueness is not discussed there.

In the second part, we investigate some relationships between the solution (λmax, ϕ
∗) of (EP)

obtained in the first part and the corresponding stochastic optimal control problem of both finite

and infinite time horizon. More specifically, let ξ = (ξt)t≥0 be an Rd-valued control process

belonging to an admissible class A specified later. Let Xξ = (Xξ
t )t≥0 be the controlled process

governed by the stochastic differential equation

dXξ
t = −ξt dt− b(Xξ

t ) dt+ dWt, t ≥ 0, (1.3)

where W = (Wt)t≥0 stands for a d-dimensional standard Brownian motion defined on some prob-

ability space. We set

J(T, x; ξ) := Ex

[∫ T

0

( 1

m∗ |ξt|
m∗

+ V (Xξ
t )
)
dt

]
, T > 0, x ∈ Rd, (1.4)

where m∗ := m/(m− 1) and Ex denotes the expectation conditioned on Xξ
0 = x. Then we prove

in Theorem 2.2 that the value function of the long-run average Λ(x) := inf
ξ∈A

lim sup
T→∞

(1/T )J(T, x; ξ)

coincides with λmax for all x ∈ Rd, and that the value function of finite time horizon T defined by

u(T, x) := inf
ξ∈A

J(T, x; ξ) satisfies

u(T, · )− λmaxT −→ ϕ∗ + c as T → ∞ (1.5)

for some c ∈ R on any compact subset of Rd. Although convergence (1.5) is natural to expect,

its validity is not trivial at all since the value of the constant c in (1.5) cannot be determined by

ergodic problem (EP), only. The asymptotic behavior of the value function u(T, x) as time horizon

T tends to infinity has been investigated, from both PDE and stochastic control point of view, in

various settings (see, e.g. [2, 5, 6, 7, 8, 11, 12, 14, 16, 18, 21, 25, 28, 31, 32] and references therein).

The present paper can be compared with [18, 21], where either b = 0 or m = 2 is imposed. Note

that equality Λ(x) = λmax has been obtained in [10], but convergence (1.5) seems to be new.

The third part of this paper concerns certain asymptotic properties of the generalized principal

eigenvalue λmax with respect to a perturbation of V ; we introduce a real parameter β ≥ 0 and

consider (EP) with βV in place of V . Then we easily see that the function β → λmax(β) is

nondecreasing and concave. Such kind of qualitative properties of λmax(β) with respect to β have

been studied by [9, 19, 20] in connection with the so-called criticality theory for ergodic problem

(EP) (see also [3] for related results). In this paper, we investigate the asymptotic behavior of

λmax = λmax(β) as β → ∞. More precisely, we specify the growth exponent of λmax(β) as β → ∞
in terms of constants δ, m, and η appearing in (1.1). It is known in [20, Proposition 6.2] that, if

δ < 0 in (1.1), then λmax(β) = 0 for all β ≥ 0. It turns out in Theorem 2.3 that this is not the

case for δ ≥ 0. Indeed, one has λmax(β) = O(β
mδ

mδ+η(m−1) ) as β → ∞, which particularly leads to

the following asymptotic behavior:

lim
β→∞

λmax(β) =


+∞ (δ > 0)

λ̄ (δ = 0)

0 (δ < 0),

where λ̄ ∈ (0,∞) is some constant. To the best of our knowledge, such a classification of asymptotic

behaviors of λmax with the precision of its growth exponent has not been obtained in the literature.

From the stochastic control point of view, the previous result can be interpreted as follows.

From the second part, Theorem 2.2, we observe that λmax(β) is identical with the minimum value,

over all admissible controls ξ = (ξt), of the cost functional of long-run average

Jβ(x; ξ) := lim sup
T→∞

1

T
Ex

[∫ T

0

(L(ξt) + βV (Xξ
t )) dt

]
,
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where L(ξ) := (1/m∗)|ξ|m∗
with m∗ = m/(m − 1) for ξ ∈ Rd. Roughly speaking, when β is

sufficiently large, the optimal strategy for the controller is to avoid the region where V (x) is large.

In the case where δ > 0, the strength of the inward drift is such that the cost L becomes dominant

compared with the potential V . Indeed, the controller needs to compensate the drift in order to

avoid the regions where V is large, so that |ξ|, hence L(ξ) is large. This implies that the cost

increases as β increases, which is also reflected on the fact that the optimal trajectory becomes

positive recurrent (see Proposition 4.6). The growth order of λmax(β) as β → ∞ is, therefore,

determined by the balance between the intensity δ of the inward drift b, the growth exponent m∗

of the cost function L, and the decay rate η of the potential function V .

On the other hand, if δ = 0, then the cost incurred by L is relatively small compared to that by

βV , which allows the controller to avoid the peak of the potential βV (x) without paying too much

cost. As a consequence, λmax(β) remains bounded uniformly in β and converges to a finite value

as β → ∞. Let us also mention in this case that under some more assumptions we are even able

to prove that λmax(β) reaches a plateau, that is, there exists βc > 0 such that λmax(β) = λmax(βc)

for any β > βc (see Proposition 6.6).

The rest of this paper is organized as follows. In the next section, we state our standing

assumptions and main results precisely. Section 3 is concerned with preliminaries for later discus-

sions. In Sections 4 and 5, we prove Theorems 2.1 and 2.2, respectively. The proof of Theorem

2.3 is given in Section 6. Appendices A, B, and C are devoted, respectively, to a gradient es-

timate of solutions to elliptic equations, a moment estimate of controlled processes, and a PDE

characterization of value functions of finite time horizon.

2. Assumptions and Main results. For x = (x1, . . . , xd) and y = (y1, . . . , yd) in Rd, we

set x · y :=
∑d
i=1 xiyi and |x| := (x · x)1/2. We frequently use the notation ⟨x⟩ := (1 + |x|2)1/2

for x ∈ Rd. Given a d × d matrix A = (aij) ∈ Rd ⊗ Rd, we set |A| := (
∑d
i,j=1 a

2
ij)

1/2. Let

BR := {y ∈ Rd | |y| < R} and denote its closure and boundary by BR and ∂BR, respectively.

Given an integer k ≥ 0, we denote by Ck(Rd) the set of all functions u : Rd → R which,

together with all their partial derivatives Dαf of orders |α| ≤ k, are continuous on Rd, where

α = (α1, . . . , αd) denotes a multi-index and |α| := α1 + · · · + αd. We set C(Rd) := C0(Rd) and

C∞(Rd) :=
∩∞
k=0 C

k(Rd). We also use the notation Cpol(R
d) to denote the set of continuous

functions u : Rd → R that are polynomially growing as |x| → ∞, that is, |u(x)| ≤ C⟨x⟩q in Rd for

some C, q > 0.

We say that a sequence of functions {un} converges to u in Ck(Rd) as n → ∞ if, for any

compact subset K ⊂ Rd and any multi-index α with |α| ≤ k, max
x∈K

|Dαun(x) − Dαu(x)| → 0 as

n→ ∞. In particular, {un} converges to u in C(Rd) as n→ ∞ if and only if {un} converges to u

as n→ ∞ uniformly on any compact subset of Rd. A subset G ⊂ Ck(Rd) is said to be precompact

in Ck(Rd) if any sequence {un} ⊂ G contains a subsequence which converges in Ck(Rd) to a

function u ∈ Ck(Rd).

Throughout the paper, we assume that b = (b1, . . . , bd) and H satisfy the following (A1) and

(A2), respectively:

(A1) bi ∈ C2(Rd) for all 1 ≤ i ≤ d, and there exists a 0 ≤ δ ≤ 1 such that

sup
x∈Rd

|b(x)|
⟨x⟩δ

<∞, sup
x∈Rd

|Db(x)| <∞, lim inf
|x|→∞

b(x) · x
⟨x⟩1+δ

> 0,

where Db = (∂bi/∂xj) : R
d → Rd ⊗Rd.

(A2) There exist m > 1 and Σ = (Σij(x)) : Rd → Rd ⊗ Rd with Σij ∈ C2(Rd) for all i, j ∈
{1, . . . , d} such that

H(x, p) =
1

m
|ΣT(x)p|m, inf

x,ζ∈Rd,ζ ̸=0

|ΣT(x)ζ|
|ζ|

> 0, sup
x,ζ∈Rd,ζ ̸=0

|ΣT(x)ζ|
|ζ|

<∞,
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where ΣT (x) denotes the transposed matrix of Σ(x).

Note that, under condition (A2), one can easily see that

|DpH(x, p)| ≤ K|p|m−1, x, p ∈ Rd, (2.1)

for some K > 0, where DpH(x, p) denotes the gradient of H(x, p) with respect to p.

As to the assumption on V , we consider three types of conditions:

(A3a) V ∈ C2(Rd), sup
Rd

|V | <∞, and sup
Rd

|DV | <∞.

(A3b) V ∈ C2(Rd), sup
Rd

|DV | <∞, V ≥ 0 in Rd with V ̸≡ 0, and lim
|x|→∞

V (x) = 0.

(A3c) V ∈ C2(Rd), sup
Rd

|DV | <∞, and there exists an η > 0 such that

inf
x∈Rd

(V (x)⟨x⟩η) > 0, sup
x∈Rd

(V (x)⟨x⟩η) <∞.

Clearly, (A3c) implies (A3b), and (A3b) yields (A3a). Hereafter, δ, m, and η always stand for

the constants appearing in (A1), (A2), and (A3c), respectively. As a typical example of (b,H, V )

satisfying (A1), (A2), and (A3c), we have in mind functions given in (1.1).

We are in position to state our first main result. We set

Φ0 := {ϕ ∈ C3(Rd) | lim sup
|x|→∞

ϕ(x)

⟨x⟩1+
δ

m−1

<∞, lim inf
|x|→∞

ϕ(x)

⟨x⟩γ
≥ 0, ∀γ > 1− δ}, (2.2)

Φ1 := {ϕ ∈ C3(Rd) | lim sup
|x|→∞

ϕ(x)

⟨x⟩1−δ
< 0, lim inf

|x|→∞

ϕ(x)

⟨x⟩γ
≥ 0, ∀γ > 1− δ}. (2.3)

Note that Φ1 ⊂ Φ0. Roughly speaking, functions in Φ1 look like −c⟨x⟩1−δ(1+ o(1)) for some c > 0

as |x| → ∞. In particular, any function in Φ1 is bounded above in Rd. The class Φ0 contains

functions ϕ such that −C⟨x⟩1−δ ≤ ϕ(x) ≤ C⟨x⟩1+
δ

m−1 in Rd for some C > 0.

Let λmax be the generalized principal eigenvalue of (EP) defined by (1.2). Note that λmax >

−∞ since (λ, ϕ) := (− supRd |V |, 0) is a subsolution of (EP) under (A1), (A2), and (A3a). Then

one has the following characterization of solutions to (EP).

Theorem 2.1. Assume (A1) with δ > 0, (A2), and (A3a). Then the following (a)-(c) hold.

(a) A solution (λ, ϕ) ∈ R× C2(Rd) of (EP) satisfies ϕ ∈ Φ0 if and only if λ = λmax.

(b) There exists a unique solution (λ∗, ϕ∗) ∈ R×C3(Rd) of (EP), up to an additive constant with

respect to ϕ∗, such that ϕ∗ ∈ Φ0. In particular, λ∗ = λmax, and ϕ
∗ is the unique eigenfunction of

(EP) associated with λmax, up to an additive constant.

(c) If we assume (A3b) instead of (A3a), then ϕ∗ ∈ Φ1.

In order to state our second result, we formulate the stochastic control problem associated

with (EP). We say that the 6-tuple

π = (Ω,F , (Ft)t≥0, P ; (Wt)t≥0; (ξt)t≥0)

is an admissible control if (Ω,F , P ) is a complete probability space, (Ft)t≥0 a family of sub-σ-

algebras satisfying N ⊂ Ft ⊂ Fs and Ft =
∩
u>t Fu for all 0 ≤ t ≤ s, where N is the collection

of all P -null sets, (Wt)t≥0 a d-dimensional (Ft)-Brownian motion, and ξ = (ξt)t≥0 an Rd-valued

(Ft)-progressively measurable process such that

E

[∫ T

0

|ξt|m
∗
dt

]
<∞ for all T > 0,

where m∗ := m/(m − 1). Let A denote the collection of all admissible controls π. As usual, we

use the conventional notation ξ ∈ A, instead of π ∈ A.
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Given an admissible control ξ ∈ A, we denote by Xξ = (Xξ
t )t≥0 the associated controlled

process governed by (1.3). It is known (e.g. [30, Section 1]) that, for any initial point x ∈ Rd,

there exists a unique solution of (1.3) which does not explode in finite time.

We next introduce the cost functional to be optimized which is slightly general than (1.4). Let

g : Rd → R be a given terminal cost belonging to the class Ψα with α = 1 + δ
m−1 , where

Ψα := {g ∈ Cpol(R
d) | lim inf

|x|→∞

g(x)

⟨x⟩α
≥ 0}, α ≥ 0. (2.4)

For T > 0, x ∈ Rd, and ξ ∈ A, we set

J(T, x; ξ) := Ex

[∫ T

0

(L(Xξ
t , ξt) + V (Xξ

t )) dt+ g(Xξ
T )

]
, (2.5)

where L : Rd ×Rd → R is the convex conjugate of H defined by

L(x, ξ) := sup
p∈Rd

(ξ · p−H(x, p)), x, ξ ∈ Rd. (2.6)

Note that, if we denote by Σ−1(x) the inverse matrix of Σ(x) appearing in (A2), then L(x, ξ) can

be explicitly written as

L(x, ξ) :=
1

m∗ |Σ
−1(x)ξ|m

∗
, x, ξ ∈ Rd. (2.7)

One can also verify from (2.6) that H(x, p)+L(x, ξ) ≥ ξ · p for all x, p, ξ ∈ Rd, and that H(x, p)+

L(x, ξ) = ξ · p if and only if ξ = DpH(x, p).

We finally define the value functions of finite time horizon T and of long-run average by

u(T, x) := inf
ξ∈A

J(T, x; ξ), Λ(x) := inf
ξ∈A

lim sup
T→∞

J(T, x; ξ)

T
, (2.8)

respectively. Then, our second result can be stated as follows.

Theorem 2.2. Assume (A1) with δ > 0, (A2), (A3b), and one of the following (i)-(ii):

(i) g ∈ Ψ1−δ;

(ii) g ∈ Ψm∗ and δ = 1 in (A1).

Then, Λ(x) = λmax for all x ∈ Rd. Moreover, there exists a constant c ∈ R such that

u(T, x)− λmaxT −→ ϕ∗(x) + c in C(Rd) as T → ∞, (2.9)

where ϕ∗ is the eigenfunction of (EP) associated with λmax, given in Theorem 2.1.

Now, we state our third result. Let us introduce the real parameter β ≥ 0 and consider ergodic

problem (EP) with βV instead of V , that is,

λ− 1

2
∆ϕ+ b(x) ·Dϕ+H(x,Dϕ)− βV = 0 in Rd. (EPβ)

Let λmax = λmax(β) denote the generalized principal eigenvalue of (EPβ) defined similarly as (1.2).

Then λmax(β) has the following properties.

Theorem 2.3. Assume (A1), (A2), and (A3c). Then λmax(0) = 0, and λmax(β) is strictly

positive, nondecreasing, and concave in β ∈ (0,∞). Moreover, there exists some ν > 0 such that

νβ
mδ

mδ+η(m−1) − ν−1 ≤ λmax(β) ≤ ν−1(1 + β
mδ

mδ+η(m−1) ), β ≥ 0.

In particular, as β → ∞, λmax(β) diverges to +∞ for δ > 0, while λmax(β) converges to a finite

value λ̄ ∈ (0,∞) for δ = 0.
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In view of Theorem 2.3, in the case where δ > 0, since β 7→ λmax(β) is concave and diverges

to ∞ as β → ∞, we deduce that λmax(β) is strictly increasing with respect to β. We will see in

Section 6 that this is not the case, in general, for δ = 0. Indeed, under some additional assumptions

on (b,H, V ), it happens that there exists a βc > 0 such that λmax(β) = λmax(βc) for all β ≥ βc.

This kind of “flattening” phenomena have been observed and discussed by [19, 20] in connection

with the criticality theory for ergodic problems. See [19, 20] for details.

We close this section with some remarks on the extension of Theorems 2.1 and 2.2 to the case

where δ = 0. In that case, it is also possible to obtain similar results under certain additional

assumptions. For instance, under the hypothesis of Theorem 2.3 with δ = 0, Theorems 2.1 and

2.2 still hold provided λmax(β) < λ̄ := sup{λmax(β
′) |β′ ≥ 0}. This is a direct consequence of [20,

Theorem 2.2] for Theorem 2.1 and of [20, Theorem 2.1] for the first half of Theorem 2.2, i.e., for

the validity of Λ(x) = λmax. For the second half of Theorem 2.2, one can apply the same argument

developed in Section 5 of this paper to establish the convergence (2.9). In any case, it is crucial to

assume the condition λmax(β) < λ̄, which is the key to the ergodicity of the optimal trajectory as

well as the uniqueness of eigenfunctions associated with the generalized principal eigenvalue (see

Section 4). As is mentioned, this condition is trivial if δ > 0 since λ̄ = ∞, whereas, if δ = 0, it

may occur that λmax(β) = λ̄ for some β, and that the optimal trajectory becomes transient (cf.

[19, 20]). We refer to [3] for related results in this direction.

3. Preliminaries. In this section, we always assume (A1) and (A2). For a given ϕ ∈ C2(Rd),

we define the second order partial differential operator Aϕ by

Aϕ :=
1

2
∆− b(x) ·D −DpH(x,Dϕ(x)) ·D,

where D = (∂/∂x1, · · · , ∂/∂xd) and ∆ :=
∑d
j=1 ∂

2/∂x2j . We consider the stochastic differential

equation {
dXt = −DpH(Xt, Dϕ(Xt)) dt− b(Xt) dt+ dWt, t ≥ 0,

X0 = x.
(3.1)

It is well known (see, for instance, [30, Theorem 11.1]) that, for any ϕ ∈ C2(Rd), there exists a

filtered probability space (Ω,F , (Ft)t≥0, P ) and an (Ft)-Brownian motion W = (Wt)t≥0 such that

(3.1) has a unique solution up to its explosion time τ∞ := lim
n→∞

τn, where τn := inf{t > 0 | |Xt| > n}
for n ≥ 1. In this paper, we shall call the solution of (3.1) the Aϕ-diffusion. The rest of this section

is devoted to recalling some fundamental results on Aϕ-diffusions that are well known in the

literature not only for Aϕ-diffusions but also for more general diffusion processes in Rd.

We begin with the following fact that will be used in later discussions.

Proposition 3.1. Let X = (Xt)t≥0 be the Aϕ-diffusion for some ϕ ∈ C2(Rd).

(a) Suppose that X is positive recurrent. Let µ = µ(dy) be its invariant probability measure on

Rd. Then, for any measurable f : Rd → R such that
∫
Rd |f(y)|µ(dy) <∞,

Ex[f(XT )] −→
∫
Rd

f(y)µ(dy) as T → ∞,

where the convergence is uniform, with respect to x, on any compact subset of Rd.

(b) Suppose that X is not positive recurrent. Then, for any f : Rd → R with compact support,

and for any x ∈ Rd,

Ex[f(XT )] −→ 0 as T → ∞.

Proof. Claim (a) has been proved in [21, Proposition 2.6]. For the proof of (b), see, for instance,

[24, Theorem 1.3.10].
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The recurrence and transience of Aϕ-diffusions can be verified by using the following proposi-

tion, which we call the Lyapunov method in this paper.

Proposition 3.2. Let X = (Xt)t≥0 be the Aϕ-diffusion for some ϕ ∈ C2(Rd).

(a) Suppose that there exist R > 0, u ∈ C2(Rd \BR), and K > 0 such that

lim
|x|→∞

u(x) = ∞, Aϕu ≤ Ku in Rd \BR.

Then X does not explode in finite time, i.e., Px(τ∞ = ∞) = 1 for all x ∈ Rd.

(b) Suppose that there exist R > 0, u ∈ C2(Rd \BR), and x0 ̸∈ BR such that

inf
Rd\BR

u > −∞, u(x0) < min
∂BR

u, Aϕu ≤ 0 in Rd \BR.

Then X is transient.

(c) Suppose that there exist R > 0 and u ∈ C2(Rd \BR) such that

lim
|x|→∞

u(x) = ∞, Aϕu ≤ 0 in Rd \BR.

Then X is recurrent.

(d) Suppose that X does not explode in finite time, and that there exist R > 0, u ∈ C2(Rd \BR),
and ε > 0 such that

inf
Rd\BR

u > −∞, Aϕu ≤ −ε in Rd \BR.

Then X is positive recurrent with an invariant probability measure µ = µ(dy) which has a positive

and continuous density in Rd. More generally, suppose that there exist some u ∈ C2(Rd), f ∈
C(Rd), K > 0, and R > 0 such that

inf
Rd

u > −∞, inf
Rd\BR

f > 0, Aϕu ≤ −f1Rd\BR
+K1BR

in Rd.

Then the invariant probability measure µ of X satisfies
∫
Rd f(y)µ(dy) <∞.

Proof. We refer to [30, Theorems 6.7.1, 6.1.1, 6.1.2] for the proofs of (a)-(c). The positive

recurrence of X stated in (d), as well as the existence of a positive continuous density of µ are

proved in [30, Theorem 6.1.3] and [30, Section 4.8], respectively (see, especially, Theorem 4.8.4 for

the latter). Here, we only check the integrability of f with respect to µ, which is also classical but

is not explicitly mentioned in [30].

We may assume without loss of generality that u ≥ 0 in Rd. Applying Ito’s formula to u(Xt),

we have

Ex[u(XT∧τn)]− u(x) = Ex

[∫ T∧τn

0

Aϕu(Xt) dt

]

≤ Ex

[∫ T∧τn

0

(−f(Xt)1Rd\BR
(Xt) +K1BR

(Xt)) dt

] (3.2)

for all x ∈ Rd, T > 0, and n ≥ 1, where τn := inf{t > 0 | |Xt| > n}. Since u and f are bounded

below in Rd and X does not explode in finite time, we see by letting n→ ∞ that

Ex

[∫ T

0

f(Xt)1Rd\BR
(Xt) dt

]
≤ u(x) +KT.

Dividing both sides by T and then sending T → ∞, we observe in view of the ergodic theorem for

the Aϕ-diffusion that∫
Rd\BR

f(y)µ(dy) ≤ lim inf
T→∞

1

T
Ex

[∫ T

0

f(Xt)1Rd\BR
(Xt) dt

]
≤ K,
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which implies the desired estimate. Hence, we have completed the proof of (d).

Remark 3.3. In view of (3.2) and Fatou’s lemma, we observe that

sup
n≥1

Ex[u(XT∧τn)] ≤ u(x) +KT, Ex[u(XT )] ≤ u(x) +KT

for all x ∈ Rd and T > 0. These estimates will be used in the proof of Proposition 4.6.

Hereafter, for the simplicity of notation, we set

F [ϕ](x) := −1

2
∆ϕ(x) + b(x) ·Dϕ(x) +H(x,Dϕ(x)), x ∈ Rd, ϕ ∈ C2(Rd).

The next proposition is the key to the construction of Lyapunov functions u appearing in

Proposition 3.2.

Proposition 3.4. Let D ⊂ Rd be a domain, and let ϕ, ψ ∈ C2(D).

(a) u := ϕ− ψ satisfies Aϕu ≤ F [ψ]− F [ϕ] in D.

(b) Suppose that m ≥ 2 in (A2). Then, for any ε > 0, there exists a κ > 0 such that u := eκ(ϕ−ψ)

satisfies

Aϕu ≤ κu(F [ψ]− F [ϕ] + ε) in D.

Moreover, if m = 2 in (A2), then the above inequality holds with ε = 0.

(c) Suppose that 1 < m < 2 in (A2). Then, for any K > 0, there exists a κ > 0 such that, for

any ϕ, ψ with |Dϕ|+ |Dψ| ≤ K in D, the function u := eκ(ϕ−ψ) satisfies

Aϕu ≤ κu(F [ψ]− F [ϕ]) in D.

Proof. We reproduce a sketch of the proof for the convenience of the reader (see [20, Proposition

3.10] for a complete proof). Claim (a) is a direct consequence of the convexity of p 7→ H(x, p).

Indeed, noting that H(x, q)−H(x, p) ≥ DpH(x, p) · (q − p), we see that u := ϕ− ψ satisfies

Aϕu = Aϕ−Aψ −DpH(x,Dϕ) · (Dϕ−Dψ)

≤ Aϕ−H(x,Dϕ)− (Aψ −H(x,Dψ)) = F [ψ]− F [ϕ] ,

where A := (1/2)∆− b(x) ·D. Hence, (a) is valid. We next prove (b). Fix any m ≥ 2 and ε > 0.

Then we observe from (A2) that

H(x, p+ q)−H(x, p)−DpH(x, p) · q ≥ κ

2
|q|2 − ε, x, p, q ∈ Rd, (3.3)

for some κ > 0 (see, e.g., [20, Proposition 3.7]). Using this inequality, we see by direct computations

similar to (a) that u := eκw with w := ϕ− ψ satisfies

Aϕu = κu(Aϕw +
κ

2
|Dw|2) ≤ κu(F [ψ]− F [ϕ]− κ

2
|Dw|2 + ε+

κ

2
|Dw|2)

= κu(F [ψ]− F [ϕ] + ε).

If m = 2 in (A2), then (3.3) holds with ε = 0. This leads to the inequality Aϕu ≤ κu(F [ψ]−F [ϕ])

in D. Hence, (b) is valid. We finally verify (c). Fix any 1 < m < 2 and K > 0. Then, we observe

that

H(x, p+ q)−H(x, p)−DpH(x, p) · q ≥ κ

2
|q|2, x ∈ Rd, |p|, |q| ≤ K, (3.4)

for some κ > 0 (see, e.g., [20, Proposition 3.7]). By the same argument as (b), we conclude that

u := eκw with w := ϕ− ψ satisfies

Aϕu = κu(Aϕw +
κ

2
|Dw|2) ≤ κu(F [ψ]− F [ϕ]).

Hence, we have completed the proof.
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4. Proof of Theorem 2.1. This section is devoted to the proof of Theorem 2.1. Unless

otherwise specified, we assume (A1) with δ > 0, (A2), and (A3a). Note that, for any solution

(λ, ϕ) ∈ R × C2(Rd) of (EP), ϕ is indeed of C3-class. This is a direct consequence of classical

Schauder type estimates for linear elliptic equations (e.g. [15, Theorem 6.17]). Hence, as far as

solutions (λ, ϕ) ∈ R × C2(Rd) of (EP) are concerned, we may assume without loss of generality

that ϕ ∈ C3(Rd).

We begin with an a priori gradient estimate for eigenfunctions ϕ of (EP) which plays a crucial

role throughout the paper.

Proposition 4.1. There exists a constant K > 0 such that, for any solution (λ, ϕ) ∈ R ×
C3(Rd) of (EP),

|Dϕ(x)| ≤ K(1 + |x|
δ

m−1 + (λ−)
1
m ), x ∈ Rd,

where r± := max{±r, 0} for r ∈ R. In particular,

sup
x∈Rd

|ϕ(x)|
⟨x⟩1+

δ
m−1

<∞.

Proof. Let (λ, ϕ) ∈ R × C3(Rd) be a solution of (EP). Then, in view of Theorem A.2 in

Appendix A, there exists a K > 0 depending only on m and d such that, for any r > 0,

sup
Br

|Dϕ| ≤ K{1 + sup
Br+1

(|b|
1

m−1 + |Db|
1

2(m−1) + (V − λ)
1
m
+ + |DV |

1
2m−1 )}.

From this estimate, together with (A1) and (A3a), we obtain the claim.

We next state an existence result for a solution of (EP).

Proposition 4.2. Let λmax be the generalized principal eigenvalue of (EP) defined by (1.2).

Then, for any λ ≤ λmax, there exists an eigenfunction ϕ ∈ C3(Rd) of (EP) associated with λ.

Proof. We only give a sketch of the proof since the proof of this proposition is standard (cf.

[9, 19, 20]). We first claim that, if (λ0, ϕ0) ∈ R × C3(Rd) is a subsolution of (EP) and ε > 0 is

arbitrary, then there exists an eigenfunction ϕ ∈ C3(Rd) of (EP) associated with λ0 − ε. This

implies that, for any λ < λmax, there exists an eigenfunction of (EP) associated with λ. In order

to show this claim, fix any R > 0 and consider the Dirichlet problem

λ0 − ε+ F [u]− V = 0 in BR, u = ϕ0 on ∂BR. (4.1)

Then, in view of Theorem A.1 in Appendix A, there exists a solution uR ∈ C3(BR) ∩ C(BR) of

(4.1). Furthermore, by Proposition 4.1, togerther with the standard regularity estimates (e.g. [27,

Theorem 4.6.1] and [15, Theorem 4.6]), one can see that, along a suitable diverging sequence {Rj},
the family {uRj

− uRj
(0)}j≥1 converges to a function ϕ in C2(RN ) as j → ∞, and that ϕ is of

C3-class and enjoys (EP) with λ = λ0 − ε. In order to construct an eigenfunction ϕ ∈ C3(Rd) of

(EP) associated with λmax, we choose any increasing sequence {λ(n)} such that λ(n) → λmax as

n→ ∞, and let {ϕ(n)} denote a sequence of associated eigenfunctions of (EP). Then, similarly as

above, one can see that, along a suitable subsequence, {ϕ(n) − ϕ(n)(0)} converges to a function ϕ

in C2(RN ) as n → ∞. In particular, ϕ satisfies (EP) with λ = λmax, and therefore ϕ ∈ C3(Rd).

Hence, we have completed the proof.

The above existence result does not give any useful information on the asymptotic behavior of

eigenfunctions ϕ as |x| → ∞. In what follows, we construct a special class of solution (λ∗, ϕ∗) to

(EP) such that ϕ∗ ∈ Φ0. To this end, we begin with the following abstract result.

Proposition 4.3. Suppose that there exists a triplet (ψ−1, ψ0, ψ1) of C3-functions which

satisfies the following (i)-(iii):

(i) ψ−1 ≤ ψ0 ≤ ψ1 in Rd, lim
|x|→∞

(ψ0 − ψ−1)(x) = ∞,
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(ii) lim sup
|x|→∞

(λmax + F [ψ−1]− V )(x) < 0, lim sup
|x|→∞

(λmax + F [ψ0]− V )(x) < 0,

(iii) inf
Rd

F [ψ1] > −∞.

Then, there exists a solution (λ∗, ϕ∗) of (EP) such that inf
Rd

(ϕ∗ − ψ0) > −∞, and the associated

Aϕ
∗
-diffusion is positive recurrent. Moreover, if ψ1 satisfies

(iii)′ lim inf
|x|→∞

(λ∗ + F [ψ1]− V )(x) > 0,

then inf
Rd

(ψ1 − ϕ∗) > −∞.

Proof. Fix any R > 0 and consider the following Dirichlet problem with discount factor α > 0:

αv + F [v]− V = αψ0 in BR, v = ψ0 on ∂BR. (4.2)

Since F [ψ0] ≤ K and F [ψ1] ≥ −K in Rd for some K > 0, we observe, by setting C := K +

supRd |V |, that ψ0 − α−1C and ψ1 + α−1C are, respectively, a subsolution and a supersolution

of (4.2). In particular, by virtue of Theorem A.1 in Appendix A, there exists a solution vα,R ∈
C3(BR)∩C(BR) of (4.2) such that ψ0−α−1C ≤ vα,R ≤ ψ1+α

−1C in BR. Noting that {vα,R}R>0

is precompact in C2(Rd) in view of classical regularity estimates for elliptic equations, one can

find a function vα ∈ C3(Rd) which satisfies ψ0 − α−1C ≤ vα ≤ ψ1 + α−1C in Rd and

αv + F [v]− V = αψ0 in Rd. (4.3)

Let {αn} be any positive decreasing sequence such that αn → 0 as n → ∞, and set λn :=

αnvαn
(0) and wn := vαn

− vαn
(0). Then, (λn, wn) satisfies

λn + αnwn + F [wn]− V = αnψ0 in Rd. (4.4)

Since αnψ0(0)−C ≤ λn ≤ αnψ1(0)+C in Rd, we see that {λn} is bounded in R. Furthermore, by

Theorem A.2 in Appendix A, we observe that supn≥1 supBR
|Dwn| < ∞ for all R > 0. This and

the standard Schauder estimates imply that {wn} is precompact in C2(Rd). Thus, there exists a

subsequence of {αn}, denoted again by {αn}, and a pair (λ∗, ϕ∗) ∈ R×C2(Rd) such that λn → λ∗

as n→ ∞ and wn → ϕ∗ in C2(Rd) as n→ ∞. Letting n→ ∞ in (4.4), we conclude that (λ∗, ϕ∗)

is a solution of (EP) and ϕ∗ ∈ C3(Rd).

Next, we verify that the above (λ∗, ϕ∗) is the desired solution. In view of assumption (ii), we

observe that there exist some ρ > 0 and R > 0 such that, for any x ∈ Rd \BR,

λmax + F [ψ−1](x)− V (x) ≤ −ρ, λmax + F [ψ0](x)− V (x) ≤ −ρ.

Since λn → λ∗ as n → ∞, we may assume without loss of generality that |λn − λ∗| < ρ for all

n ≥ 1. Then, noting that λ∗ ≤ λmax, we obtain

λn + F [ψi](x)− V (x) < 0, x ∈ Rd \BR, n ≥ 1, i = −1, 0.

We now set ψ−θ := (1− θ)ψ0 + θψ−1 for θ ∈ (0, 1), and

M := sup
BR

(sup
n≥1

|wn|+ |ψ−1|+ |ψ0|+ |ψ1|) <∞.

We show that ψ−θ −M ≤ wn in Rd for any θ ∈ (0, 1) and n ≥ 1. From the definition of M , it is

clear that ψ−θ −M ≤ wn in BR. One can also see that, as |x| → ∞,

wn − ψ−θ = wn − ψ0 + θ(ψ0 − ψ−1) = (vαn − ψ0)− vαn(0) + θ(ψ0 − ψ−1)

≥ − C

αn
− vαn(0) + θ(ψ0 − ψ−1) ≥ −ψ1(0)−

2C

αn
+ θ(ψ0 − ψ−1) → ∞.

In particular, for each n ≥ 1, there exists an Rn > R such that ψ−θ −M ≤ wn in Rd \BRn
.
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Set Dn := BRn
\BR. Then, since F [ψ−θ] ≤ (1− θ)F [ψ0] + θF [ψ−1] and ψ−θ ≤ ψ0 in Rd, we

see that, in Dn, the function ψ−θ −M satisfies

λn + αn(ψ−θ −M) + F [ψ−θ −M ]− V − αnψ0

≤ (1− θ)(λn + F [ψ0]− V ) + θ(λn + F [ψ−1]− V ) + αn(ψ−1 − ψ0)− αnM < 0.

Since wn is a solution to (4.4), one can apply the standard comparison principle in the bounded

domain Dn to conclude that ψ−θ−M ≤ wn in Dn. Thus, we obtain the inequality ψ−θ−M ≤ wn
in Rd. Letting θ → 0 and n→ ∞, we have ψ0 −M ≤ ϕ∗ in Rd.

Now, we prove that the Aϕ
∗
-diffusion is positive recurrent. Since λ∗ ≤ λmax by the definition

of λmax, we observe from (ii) that

λ∗ + F [ψ−1]− V ≤ −ρ in Rd \BR

for some ρ,R > 0. This estimate, together with Proposition 3.4 (a), implies that u := ϕ∗ − ψ−1

satisfies

Aϕ
∗
u ≤ F [ψ−1]− F [ϕ∗] ≤ −ρ in Rd \BR.

Since u(x) → ∞ as |x| → ∞, we conclude from Proposition 3.2 that the Aϕ
∗
-diffusion is positive

recurrent.

We finally show that inf
Rd

(ψ1 − ϕ∗) > −∞ if we assume (iii)′ in addition to (i) and (ii). By

choosing a smaller ρ > 0 and a larger R > 0 in the previous argument if necessary, one may assume

that λ∗ +F [ψ1]− V ≥ ρ in Rd \BR. Since λn > λ∗ − ρ and ψ1 ≥ ψ0, we see that ψ1 +M satisfies

λn + αn(ψ1 +M) + F [ψ1 +M ]− V > αnψ0 in Rd \BR. (4.5)

We claim here that (1 − θ)wn + θψ−1 ≤ ψ1 +M in Rd for all n ≥ 1 and θ ∈ (0, 1). It is obvious

from the definition of M that (1− θ)wn + θψ−1 ≤ ψ1 +M in BR. Furthermore, since

(1− θ)wn + θψ−1 − ψ1 ≤ (1− θ)(−ψ0(0) +
2C

αn
) + θ(ψ−1 − ψ1) → −∞

as |x| → ∞, there exists an R′
n > R such that (1 − θ)wn + θψ−1 ≤ ψ1 +M in Rd \ BR′

n
. In the

bounded region D′
n := BR′

n
\BR, one can verify that (1− θ)wn + θψ−1 satisfies

λn + αn((1− θ)wn + θψ−1) + F [(1− θ)wn + θψ−1]− V − αnψ0

≤ αnθ(ψ−1 − ψ0) + (1− θ)(λn + αnwn + F [wn]− V − αnψ0) + θ(λn + F [ψ−1]− V )

< 0 in Rd \BR.

Thus, noting this and (4.5), one can apply the standard comparison principle in bounded domain

D′
n to conclude that (1− θ)wn+ θψ−1 ≤ ψ1+M in D′

n, and therefore (1− θ)wn+ θψ−1 ≤ ψ1+M

in Rd. Letting θ → 0 and n → ∞, we obtain ϕ∗ ≤ ψ1 +M in Rd. Hence, we have completed the

proof.

In order to apply the previous abstract result to our purpose, we take a triplet (ψ−1, ψ0, ψ1)

satisfying (i)-(iii) of Proposition 4.3 as follows.

Proposition 4.4. Fix any θ ∈ (0, 1) and γ ∈ [1− δ, 1 + δ
m−1 ] with γ ̸= 0, and set

ψ−1(x) := − ε

γ
⟨x⟩γ , ψ0(x) := −θε

γ
⟨x⟩γ , ψ1(x) := − ε′

1− δ
⟨x⟩1−δ, x ∈ Rd, (4.6)

for ε, ε′ > 0. Then the following (a) and (b) hold.

(a) There exists an ε0 > 0 such that, for any ε ∈ (0, ε0),

lim sup
|x|→∞

F [ψ−1](x)

⟨x⟩γ−1+δ
< 0, lim sup

|x|→∞

F [ψ0](x)

⟨x⟩γ−1+δ
< 0.
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(b) For any ρ > 0, there exists an ε1 > 0 such that F [ψ1](x) ≥ −ρ in Rd for all ε′ ∈ (0, ε1).

Proof. We set ψ(x) := γ−1⟨x⟩γ , and let ε > 0. Since Dψ(x) = ⟨x⟩γ−2
x and ∆ψ(x) =

d⟨x⟩γ−2
+ (γ − 2)⟨x⟩γ−4|x|2 in Rd, we see from (A1) and (A2) that

F [−εψ](x) = ε

2
{d⟨x⟩γ−2

+ (γ − 2)⟨x⟩γ−4|x|2} − ε(b(x) · x)⟨x⟩γ−2
+H(x,−ε⟨x⟩γ−2

x)

≤ ε

2
(d+ |γ − 2|+K)⟨x⟩γ−2 − εν⟨x⟩γ−1+δ

+
εm

ν
⟨x⟩(γ−1)m

in Rd for some ν,K > 0. Noting that γ − 1 + δ ≥ (γ − 1)m if and only if γ ≤ 1 + δ
m−1 , we have

F [−εψ](x) ≤ ε

2
(d+ |γ − 2|+K)⟨x⟩γ−2 − εν

(
1− εm−1

ν2

)
⟨x⟩γ−1+δ

.

We now set ε0 := ν
2

m−1 . Then, since γ − 1 + δ ≥ 0 and γ − 1 + δ > γ − 2, we conclude that, for

any ε ∈ (0, ε0), there exist some ρ,C > 0 such that

F [−εψ](x) ≤

{
C − ρ⟨x⟩γ−1+δ

if γ > 1− δ,

C⟨x⟩−(1+δ) − ρ if γ = 1− δ,
x ∈ Rd. (4.7)

The above estimate implies (a). In order to show (b), let ρ > 0 be arbitrary. Then, in view of the

first condition of (A1) and the nonnegativity of H, we see that

F [ψ1](x) ≥
ε′

2
{d⟨x⟩−1−δ − (1 + δ)⟨x⟩−3−δ|x|2} − ε′(b(x) · x)⟨x⟩−1−δ

≥ −ε′C⟨x⟩−1−δ − Cε′ ≥ −2Cε′, x ∈ Rd

for some C > 0 not depending on ε′. Choosing ε1 > 0 so small that 2Cε1 < ρ, we obtain (c).

Hence, we have completed the proof.

Using Propositions 4.3 and 4.4, we obtain the following existence theorem for (EP).

Proposition 4.5. There exists a solution (λ∗, ϕ∗) ∈ R×C3(Rd) of (EP) such that ϕ∗ ∈ Φ0.

Proof. Fix any γ ∈ (1− δ, 1 + δ
m−1 ], and let (ψ−1, ψ0, ψ1) be the triplet of C3-functions of the

form (4.6), where ε, ε′ > 0 are chosen so that Proposition 4.4 holds. Then, since γ − 1 + δ > 0,

we observe that (ψ−1, ψ0, ψ1) agrees with the conditions (i)-(iii) of Proposition 4.3. Thus, by

Proposition 4.3, there exists a solution (λ∗, ϕ∗) of (EP) such that infRd(ϕ∗ −ψ0) > −∞. This and

Proposition 4.1 yield that ϕ∗ ∈ Φ0. Hence, we have completed the proof.

Next proposition is substantial to our uniqueness result for (EP).

Proposition 4.6. Let (λ, ϕ) ∈ R × C3(Rd) be a solution of (EP) such that ϕ ∈ Φ0, and let

X = (Xt)t≥0 be the associated Aϕ-diffusion. Then, the following (a)-(c) hold.

(a) supn≥1 Ex[|XT∧τn |q] < ∞ and Ex[|XT |q] < ∞ for any q > 1, T > 0, and x ∈ Rd, where

τn := inf{t > 0 | |Xt| > n}.
(b) X is positive recurrent with an invariant probability measure µ such that∫

Rd

|y|qµ(dy) <∞ for any q > 1.

(c) Set ξt := DpH(Xt, Dϕ(Xt)) for t ≥ 0. Then ξ ∈ A.

Proof. Let γ = 1 + δ
m−1 and ψ−1, ψ0 ∈ C3(Rd) be as in (4.6), where ε > 0 is taken so that

Proposition 4.4 holds. Then, in view of (4.7) and the fact that γ − 1 + δ = m∗δ, there exist

C, ρ > 0 such that F [ψ−1] ≤ C − ρ⟨x⟩m
∗δ

in Rd. Furthermore, since ϕ ∈ Φ0, one can also see that

ϕ ≥ ψ0 − C ′ in Rd for some C ′ > 0.

Now, we set u := ϕ + C ′ − ψ−1. Then u(x) ≥ ψ0(x) − ψ−1(x) = (1 − θ)(ε/γ)⟨x⟩γ in Rd. In

particular, u(x) → ∞ as |x| → ∞. We can also see from Propositions 3.4 (a) and 4.1 that, for any
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q > 1,

Aϕuq = quq−1

(
Aϕu+

q − 1

2

|Du|2

u

)
≤ quq−1

(
F [ψ−1]− F [ϕ] +

q − 1

2

|Dϕ−Dψ−1|2

u

)
≤ quq−1

(
C − ρ⟨x⟩m

∗δ − λ+ V +
q − 1

2

γ(K⟨x⟩
δ

m−1 )2

(1− θ)ε⟨x⟩1+
δ

m−1

)

in Rd for some K > 0. Noting that 2δ
m−1 − (1 + δ

m−1 ) < m∗δ, we have

Aϕuq ≤ quq−1(K ′ − ρ

2
⟨x⟩m

∗δ
) in Rd

for some K ′ > 0. This implies that

Aϕuq ≤ −ρ′⟨x⟩(q−1)(1+ δ
m−1 )+m

∗δ
1Rd\BR

(x) +K ′′1BR
(x) in Rd,

for some ρ′,K ′′ > 0 and R > 0. Applying Proposition 3.2 (d) (see also Remark 3.3), we conclude

that sup
n≥1

Ex[|XT∧τn |q(1+
δ

m−1 )] < ∞ and Ex[|XT |q(1+
δ

m−1 )] < ∞, and that the Aϕ-diffusion is

positive recurrent with an invariant probability measure µ such that
∫
Rd |y|αµ(y) < ∞ with α =

(q − 1)(1 + δ
m−1 ). Since q can be arbitrarily large, we obtain the desired estimate.

In order to prove the last claim, we observe, in view of (2.1) and Proposition 4.1, that

|DpH(x,Dϕ(x))|m
∗
≤ C(|Dϕ(x)|m−1)m

∗
≤ C ′⟨x⟩m

∗δ
, x ∈ Rd

for some C,C ′ > 0. In particular,

Ex

[∫ T

0

|ξt|m
∗
dt

]
≤ Ex

[∫ T

0

C ′⟨Xt⟩m
∗δ
dt

]
≤ C ′ sup

0≤t≤T
Ex[⟨Xt⟩m

∗δ
] <∞

for all T > 0 and x ∈ Rd, which implies that ξ ∈ A. Hence, we have completed the proof.

Remark 4.7. If m ≥ 2 in (A2), we are able to obtain a better integrability of µ in Proposition

4.6. More precisely, one has
∫
Rd exp

(
θ|y|1+

δ
m−1

)
µ(dy) < ∞ for some θ > 0. To prove this, we

apply Proposition 3.4 (b) to see that

Aϕeκ(ϕ−ψ−1) ≤ κeκ(ϕ−ψ−1)(F [ψ−1]− F [ϕ] + 1) ≤ −ρκeκ(ϕ−ψ−1) in Rd \BR

for some ρ,R > 0. Since eκ(ϕ−ψ−1) ≥ eκ(1−θ)ε⟨x⟩
γ

with γ = 1 + δ
m−1 , we obtain the desired

integrability of µ in view of Proposition 3.2 (d).

We now prove the uniqueness of eigenfunctions to (EP) with λ = λmax.

Proposition 4.8. Let (λ, ϕ) be a solution of (EP) such that ϕ ∈ Φ0. Then, λ = λmax.

Moreover, if ϕmax ∈ C2(Rd) is any eigenfunction of (EP) associated with λmax, then ϕ− ϕmax is

constant in Rd.

Proof. We first show that λ = λmax. Let X = (Xt)t≥0 be the Aϕ-diffusion and set ξt :=

DpH(Xt, Dϕ(Xt)). Then, in view of Proposition 4.6, we see that ξ ∈ A. Furthermore, from

Lemma B.2 in Appendix B, we have

λmaxT + ϕmax(x)−Ex[ϕmax(XT )] ≤ Ex

[∫ T

0

{L(Xt, ξt) + V (Xt)}dt

]
,

= λT + ϕ(x)−Ex[ϕ(XT )]

for any T > 0 and x ∈ Rd. In particular, we obtain

(λmax − λ)T + (ϕmax − ϕ)(x) ≤ Ex[(ϕmax − ϕ)(XT )], T > 0, x ∈ Rd. (4.8)
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Since both ϕmax and ϕ are of polynomial growth, we see by virtue of Propositions 3.1 and 4.6 that

Ex[(ϕmax − ϕ)(XT )] −→
∫
Rd

(ϕmax − ϕ)(y)µ(dy) <∞ as T → ∞.

Thus, dividing both sides of (4.8) by T and letting T → ∞, we obtain λmax ≤ λ. Since λmax ≥ λ

is obvious from the definition of λmax, we conclude that λ = λmax.

We next show that ϕmax − ϕ is constant in Rd. Since λ = λmax, we see from (4.8) that

(ϕmax − ϕ)(x) ≤ Ex[(ϕmax − ϕ)(XT )], x ∈ Rd, T > 0.

Sending T → ∞ and then taking the supremum over all x ∈ Rd, we have

sup
Rd

(ϕmax − ϕ) ≤
∫
Rd

(ϕmax − ϕ)(y)µ(dy) <∞, x ∈ Rd.

From this estimate, together with the fact that suppµ = Rd (see, e.g, [30, Theorem 4.8.4]), we

conclude that ϕmax − ϕ is constant in Rd. Hence, we have completed the proof.

We finally show that ϕ∗ ∈ Φ1 if we replace (A3a) by (A3b).

Proposition 4.9. Assume (A1) with δ > 0, (A2), and (A3b), and let (λ∗, ϕ∗) ∈ R×C3(Rd)

be the solution of (EP) in Proposition 4.5. Then ϕ∗ ∈ Φ1.

Proof. We choose the triplet of C3-functions (ψ−1, ψ0, ψ1) as in the proof of Proposition 4.5. It

suffices to verify that ψ1 satisfies (iii)′ of Proposition 4.3. Since V (x) → 0 as |x| → ∞, we see from

Proposition 4.4 (b) that the validity of (iii)′ is reduced to verifying that λ∗ > 0. Let X = (Xt)t≥0

be the Aϕ
∗
-diffusion and set ξt := DpH(Xt, Dϕ

∗(Xt)). Since ξ ∈ A in view of Proposition 4.6, we

see from Lemma B.2 in Appendix B that, for any T > 0 and x ∈ Rd,

λ∗T + ϕ∗(x) = Ex

[∫ T

0

{L(Xt, ξt) + V (Xt)}dt+ ϕ∗(XT )

]
.

Dividing both sides by T and then letting T → ∞, we have

λ∗ ≥ lim
T→∞

1

T
Ex

[∫ T

0

V (Xt)dt+ ϕ∗(XT )

]
=

∫
Rd

V (y)µ(dy) > 0,

where we have used the fact that Ex[ϕ
∗(XT )] converges to a constant as T → ∞. Hence, we have

completed the proof.

The proof of Theorem 2.1 is now easy. Indeed, claims (a) and (b) are direct consequences of

Propositions 4.5 and 4.8. Claim (c) is nothing but Proposition 4.9.

5. Proof of Theorem 2.2. The goal of this section is to prove Theorem 2.2. In what follows,

we assume (A1) with δ > 0, (A2), and (A3b), together with g ∈ Ψ1+ δ
m−1

. Note that the value

function u(T, x) defined by (2.8) belongs to C1,2((0,∞)×Rd) ∩ C([0,∞)×Rd) and is a solution

to the Cauchy problem {
ut + F [u]− V = 0 in (0,∞)×Rd,

u(0, · ) = g in Rd,
(5.1)

where ut := ∂u/∂t. We prove this fact in Appendix C.

Let (λ∗, ϕ∗) be the solution of (EP) in Theorem 2.1, and set

w(T, x) := u(T, x)− λ∗T − ϕ∗(x), T ≥ 0, x ∈ Rd.

Then, convergence (2.9) is reduced to showing that the family {w(T, · )}T>0 converges to a constant

c ∈ R in C(Rd) as T → ∞.
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Proposition 5.1. Suppose that either (i) or (ii) in Theorem 2.2 holds. Then, the family

{w(T, · )}T>0 is uniformly bounded on any compact subset of Rd.

Proof. We first verify that {w(T, · )}T>0 is bounded above uniformly on any compact subset of

Rd. Let X = (Xt)t≥0 be the Aϕ
∗
-diffusion and set ξ∗t := DpH(Xt, Dϕ

∗(Xt)). Then, since ξ
∗ ∈ A,

we see from the definition of u(T, x) and Lemma B.2 in Appendix B that

u(T, x) ≤ Ex

[∫ T

0

(L(Xt, ξ
∗
t ) + V (Xt)) dt+ g(XT )

]
= λ∗T + ϕ∗(x) +Ex[(g − ϕ∗)(XT )]

for all T > 0 and x ∈ Rd. This implies that

w(T, x) = u(T, x)− λ∗T − ϕ∗(x) ≤ Ex[(g − ϕ∗)(XT )].

Since Ex[(g−ϕ∗)(XT )] converges to
∫
Rd(g−ϕ∗)(y)µ(dy) <∞ as T → ∞ uniformly on any compact

subset of Rd, we conclude that {w(T, · )}T>0 is bounded above uniformly on any compact subset

of Rd.

In order to see that {w(T, · )}T>0 is bounded below uniformly on any compact subset of Rd,

we first assume (i) in Theorem 2.2, namely, g ∈ Ψ1−δ. Then, since ϕ
∗ ∈ Φ1 by virtue of Theorem

2.1, we see that g ≥ ϕ∗ − C in Rd for some C > 0. This and Lemma B.2 imply that

u(T, x) ≥ inf
ξ∈A

Ex

[∫ T

0

(L(Xξ
t , ξt) + V (Xξ

t )) dt+ ϕ∗(Xξ
T )

]
− C = λ∗T + ϕ∗(x)− C

for all T > 0 and x ∈ Rd. Hence, w(T, · ) ≥ −C in Rd for any T > 0, and the claim is valid.

Suppose next that (ii) holds in Theorem 2.2, namely, g ∈ Ψm∗ and δ = 1 in (A1). Since

ϕ∗ ∈ Φ1, we may assume, by adding a constant to ϕ∗ if necessary, that ϕ∗ ≤ 0 in Rd. Furthermore,

by assumption (ii), for any ε > 0, there exists a Cε > 0 such that g(x) ≥ −ε⟨x⟩m
∗
−Cε in Rd. We

set ψ := −ε⟨x⟩m
∗
− Cε. Then, in view of (4.7) with γ = 1 + δ

m−1 = m∗, one can choose an ε such

that F [ψ] ≤ C − ρ⟨x⟩m
∗
in Rd for some ρ,C > 0. Hereafter, we fix such ε > 0.

Now, for given k,K > 0, we define the function v : [0,∞)×Rd → R by

v(t, x) := (1− e−kt)(ϕ∗(x)−K) + e−ktψ(x) + λ∗t, (t, x) ∈ [0,∞)×Rd.

We claim that v is a subsolution of the Cauchy problem (5.1) provided k is sufficiently small and

K is sufficiently large. Indeed, in view of the convexity of ϕ 7→ F [ϕ] and the fact that ϕ∗ ≤ 0 and

V ≥ 0 in Rd, we observe that

vt + F [v]− V ≤ ke−kt(ϕ∗ −K)− ke−ktψ + λ∗ + (1− e−kt)F [ϕ∗] + e−ktF [ψ]− V

= e−kt(kϕ∗ − kK − kψ + F [ψ]) + (1− e−kt)(V − λ∗) + λ∗ − V

≤ e−kt{(kCε − kK + C + λ∗) + (kε− ρ)⟨x⟩m
∗
}.

Choosing k > 0 so small that kε < ρ and K > 0 so large that kCε − kK + C + λ∗ < 0, we obtain

the subsolution property of v.

Since sup
0≤t≤T,x∈Rd

|v(t, x)|⟨x⟩−(1+ δ
m−1 ) < ∞ for all T > 0, one can apply Theorem C.1 (a) in

Appendix C to conclude that v ≤ u in [0,∞)×Rd. Thus, we have

w(T, x) ≥ v(T, x)− λ∗T − ϕ∗(x) ≥ e−kT (ψ − ϕ∗)(x)−K

for any T > 0 and x ∈ Rd. This yields that {w(T, · )}T>0 is bounded below on any compact subset

of Rd. Hence, we have completed the proof.
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Proposition 5.2. Suppose that either (i) or (ii) in Theorem 2.2 holds. Then, there exists

a constant c ∈ R such that, for any diverging sequence {Sj}, one has w(Sj , x) → c in C(Rd) as

j → ∞.

Proof. Since {w(T, · )}T>0 is equi-continuous on any compact subset of Rd by Theorem C.1 (c)

in Appendix C, we observe, together with Proposition 5.1, that there exists a diverging sequence

{Sj} such that {w(Sj , · )}j≥1 converges to a function in C(Rd). Hence, in order to verify the

claim, it suffices to prove that any converging sequence {w(Sj , · )}j≥1 in C(Rd) has the same limit

c ∈ R. We first note that w satisfies

wt −Aϕ
∗
w + H̃(x,Dw) = 0 in (0,∞)×Rd, w(0, · ) = g − ϕ∗ in Rd,

where wt := ∂w/∂t, and H̃(x, p) is defined by

H̃(x, p) := H(x,Dϕ∗(x) + p)−H(x,Dϕ∗(x))−DpH(x,Dϕ∗(x)) · p, x, p ∈ Rd.

Note that H̃ ≥ 0 in Rd ×Rd, which comes from the convexity of H(x, p) with respect to p. Let

X = (Xt)t≥0 be the Aϕ
∗
-diffusion and apply Ito’s formula to w(T + S − t,Xt). Then,

Ex[w(T + S − T ∧ τn, XT∧τn)]− w(T + S, x)

= Ex

[∫ T∧τn

0

(−wt(T + S − t,Xt) +Aϕ
∗
w(T + S − t,Xt)) dt

]
≥ 0,

where τn := inf{t > 0 | |Xt| > n}. Since sup
t∈[0,S+T ]

|w(t, x)| ≤ C⟨x⟩q in Rd for some C, q > 0 and

sup
n≥1

Ex[|XT∧τn |q] < ∞ by virtue of Proposition 4.6, we observe by sending n → ∞ in the above

estimate that

w(T + S, x) ≤ Ex[w(S,XT )], T, S > 0, x ∈ Rd. (5.2)

Now, let {Sj} be any diverging sequence such that {w(Sj , · )} converges in C(Rd) to a function

w∞ ∈ C(Rd) as j → ∞. Fix any S > 0, x ∈ Rd, and set Tj := Sj − S. Then, in view of (5.2), we

see that w(Sj , x) = w(Tj + S, x) ≤ Ex[w(S,XTj
)] for any j ≥ 1. Letting j → ∞, we have

w∞(x) = lim
j→∞

w(Sj , x) ≤ lim
j→∞

Ex[w(S,XTj
)] =

∫
Rd

w(S, y)µ(dy).

Put S = Sj in the above inequality and consider the limit as j → ∞. Then, since w(Sj , · ) converges
to w∞ locally uniformly in Rd and |w(T, x)| ≤ h(x) in [1,∞)×Rd for some h ∈ Cpol(R

d), we see

by the dominated convergence theorem that

w∞(x) ≤ lim
j→∞

∫
Rd

w(Sj , y)µ(dy) =

∫
Rd

w∞(y)µ(dy) <∞.

This yields that w∞(x) = supRd w∞ <∞ in Rd. Hence, w∞ is constant in Rd.

We next show that the limit of {w(Sj , · )} does not depend on the choice of {Sj}. Let {Sj}
and {Tj} be any diverging sequences such that {w(Sj , · )} and {w(Tj , · )} converge in C(Rd) to

some constants c1 and c2, respectively. Then, putting T = Tj − S in (5.2) and sending j → ∞, we

have

c2 = lim
j→∞

w(Tj , y) ≤ lim
j→∞

Ex[w(S,XTj
)] =

∫
Rd

w(S, y)µ(dy).

We then put S = Sj and let j → ∞ to obtain

c2 ≤ lim
j→∞

∫
Rd

w(Sj , y)µ(dy) = c1.
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Thus, c2 ≤ c1. Changing the role of {Sj} and {Tj}, we also have c1 ≤ c2. Hence, c1 = c2, and we

have completed the proof.

We close this section with the proof of Theorem 2.2.

Proof of Theorem 2.2. The latter claim, i.e. convergence (2.9) follows from Proposition 5.2.

It remains to verify that Λ(x) = λmax for all x ∈ Rd. Let u(T, x) be the value function in (2.8).

Then, we have

λ∗ = lim
T→∞

u(T, x)

T
≤ Λ(x) ≤ λ∗, x ∈ Rd.

Indeed, the first equality holds in view of Proposition 5.2. The inequality in the middle follows

from the very definitions of Λ(x) and u(T, x). To see the last inequality, let X = (Xt)t≥0 be the

Aϕ
∗
-diffusion and remind Lemma B.2 to see that

λ∗T + ϕ∗(x) = Ex

[∫ T

0

(L(Xt, ξ
∗
t ) + V (Xt))dt+ ϕ∗(XT )

]

for any T > 0 and x ∈ Rd, where ξ∗t := DpH(Xt, Dϕ
∗(Xt)). Dividing both sides by T and then

sending T → ∞, we have

λ∗ = lim sup
T→∞

1

T
Ex

[∫ T

0

(L(Xt, ξt) + V (Xt))dt+ g(XT ) + (ϕ∗ − g)(XT )

]
≥ Λ(x)

for all x ∈ Rd, where we have used the fact that Ex[(ϕ
∗ − g)(XT )] converges to a constant as

T → ∞. Hence, we obtain λ∗ = Λ(x).

6. Proof of Theorem 2.3. In this section we prove Theorem 2.3. In what follows, we assume

(A1), (A2), and (A3c). We denote by λmax(β) the generalized principal eigenvalue of the ergodic

problem (EPβ) given in Section 2. Note that λmax(0) = 0. Indeed, suppose first that δ > 0. Then,

since (λ, ϕ) := (0, 0) is a solution of (EPβ) with β = 0 such that ϕ ∈ Φ0, and therefore λmax = 0

by Theorem 2.1. Suppose next that δ = 0. Then, by virtue of [20, Proposition 5.11], we obtain

λmax(0) = 0.

We first remark the monotonicity and concavity of λmax(β) with respect to β that can be

deduced from the nonnegativity of V and the convexity of H(x, p) in p.

Proposition 6.1. Let 0 ≤ β0 ≤ β1. Then λmax(β0) ≤ λmax(β1) and (1 − θ)λmax(β0) +

θλmax(β1) ≤ λmax((1− θ)β0 + θβ1) for all θ ∈ [0, 1].

Proof. Since any subsolution (λ, ϕ) ∈ R × C3(Rd) of (EPβ) with β = β0 is a subsolution of

(EPβ) with β = β1, one has λ ≤ λmax(β1). Taking the supremum over all λ such that (λ, ϕ) is a

subsolution of (EPβ) with β = β0, we obtain λmax(β0) ≤ λmax(β1).

Next, let ϕ0, ϕ1 ∈ C3(Rd) be any subsolutions of (EPβ) with β = β0 and β = β1, respectively.

We set ϕθ := (1 − θ)ϕ0 + θϕ1 and λθ := (1 − θ)λmax(β0) + θλmax(β1). Then, by the convexity of

H(x, p) in p, one can verify that (λθ, ϕθ) is a subsolution of (EPβ) with β = (1− θ)β0 + θβ1. This

implies the concavity of λmax(β) with respect to β. Hence, we have completed the proof.

We next derive the upper bound of λmax(β).

Proposition 6.2. There exists a C > 0 such that λmax(β) ≤ C(1+β
mδ

mδ+η(m−1) ) for all β ≥ 0.

Proof. We may assume without loss of generality that β > 1. Let (λ, ϕ) ∈ R×C3(Rd) be any

subsolution of (EPβ), and fix any test function ζ ∈ C∞(Rd) such that ζ ≥ 0 in Rd, supp ζ ⊂ B1,

and
∫
Rd ζ(x)

m∗
dx = 1, where m∗ := m/(m− 1). Then, we have

λ+
1

2

∫
Rd

D(ζm
∗
) ·Dϕdx+

∫
Rd

ζm
∗
b ·Dϕdx+

∫
Rd

ζm
∗
H(x,Dϕ) dx ≤ β

∫
Rd

ζm
∗
V dx,

where we drop the variable x in the integrands. From (A2), there exists a ν > 0 such that∫
Rd

ζm
∗
H(x,Dϕ) dx ≥ ν

∫
Rd

ζm
∗
|Dϕ|m dx.
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Furthermore, we observe by Young’s inequality that

1

2

∫
Rd

D(ζm
∗
) ·Dϕdx =

m∗

2

∫
Rd

ζm
∗−1Dζ ·Dϕdx =

m∗

2

∫
Rd

(ζ
1

m−1Dϕ) ·Dζ dx

≥ −ν
2

∫
Rd

ζm
∗
|Dϕ|m dx− C

∫
Rd

|Dζ|m
∗
dx

for some C > 0 depending only onm and ν. In what follows, C denotes various constants depending

only on m and ν. Similarly as above, we also have∫
Rd

ζm
∗
b ·Dϕdx ≥ −ν

2

∫
Rd

ζm
∗
|Dϕ|m dx− C

∫
Rd

ζm
∗
|b|m

∗
dx.

Gathering these estimates, we obtain

λ ≤ C

∫
Rd

|Dζ|m
∗
dx+ C

∫
Rd

ζm
∗
|b|m

∗
dx+ β

∫
Rd

ζm
∗
V dx.

Now, we set ζy(x) := ζ(x−y) for x, y ∈ Rd. Then, replacing the above ζ by ζy and using (A1)

and (A3), we have

λ ≤ C

(
1 +

∫
B1

ζ(x)m
∗
|b(x+ y)|m

∗
dx+ β

∫
B1

ζ(x)m
∗
V (x+ y) dx

)
≤ C(1 + ⟨y⟩m

∗δ
+ β⟨y⟩−η)

for any y ∈ Rd. We fix any θ > 0 and choose a y ∈ Rd such that ⟨y⟩ = βθ. Then, from the

above estimate, we have λ ≤ C(1 + βm
∗δθ + β1−ηθ). Choosing θ so that m∗δθ = 1 − ηθ, namely,

θ = (m∗δ+η)−1, we have λ ≤ C(1+β
m∗δ

m∗δ+η ) = C(1+β
mδ

mδ+η(m−1) ). Since λ < λmax(β) is arbitrary,

we obtain the desired estimate.

Now, we study the lower bound of λmax(β). The proof is divided whether δ > 0 or δ = 0. We

first consider the case where δ > 0.

Proposition 6.3. Suppose that δ > 0 in (A1). Then there exist ν, C > 0 such that λmax(β) ≥
νβ

mδ
mδ+η(m−1) − C for all β ≥ 0.

Proof. We set ψ := γ⟨x⟩γ with γ = 1 + δ
m−1 . Then, in view of (4.7) and recalling that

γ−1+δ = m∗δ, we have F [−εψ](x) ≤ C−ρ⟨x⟩m
∗δ

in Rd for some ε, C, ρ > 0. Since V (x) ≥ c⟨x⟩−η

in Rd for some c > 0, we obtain

F [−εψ]− βV ≤ C − ρ⟨x⟩m
∗δ − βc⟨x⟩−η in Rd.

We now set ⟨r⟩ := (1 + r2)1/2 and f(r) := ρ⟨r⟩m
∗δ

+ βc⟨r⟩−η for r ≥ 0. Then, by direct compu-

tations, we observe that f ′(r) = ⟨r⟩−η−2
r(ρm∗δ⟨r⟩m

∗δ+η − βcη) for r ≥ 0. This implies that, if

β > ρm∗δ/(cη) =: c1, then f(r) attains its minimum at r∗ > 0 such that ⟨r∗⟩ = (β/c1)
1

m∗δ+η , and

f(r∗) = νβ
m∗δ

m∗δ+η = νβ
mδ

mδ+η(m−1) for some constant ν > 0 not depending on β. Thus, we obtain

F [−εψ]− βV ≤ C − f(|x|) ≤ C − f(r∗) = C − νβ
mδ

mδ+η(m−1) in Rd

for any β > c1. In particular, (λ, ϕ) = (νβ
mδ

mδ+η(m−1) − C, εψ) is a subsolution of (EPβ). Thus, by

the definition of λmax(β), we conclude that λmax(β) ≥ νβ
mδ

mδ+η(m−1) − C. This inequality is valid

for any β ≥ 0 if we replace C by a larger one. Hence, we have completed the proof.

Remark 6.4. Similarly as in the proof of [20, Proposition 5.4], one can show that λmax(β) is

differentiable with respect to β for any β > 0 and

d

dβ
λmax(β) =

∫
Rd

V (y)µβ(dy) > 0,

where µβ stands for the invariant probability measure for the associated Aϕ
∗
-diffusion.
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We next prove the positivity of λmax(β) in the case where δ = 0.

Proposition 6.5. Suppose that δ = 0 in (A1). Then, λmax(β) > 0 for all β > 0.

Proof. Since λmax(0) = 0 and λmax(β) is concave in β, it suffices to verify that λmax(β) > 0 for

some β > 0. In order to prove this, we set ψ := ⟨x⟩. Then, similarly as in the proof of Proposition

4.4, we see that F [−εψ](x) ≤ C⟨x⟩−1 − ρ in Rd for some ε, C, ρ > 0, which implies that

F [−εψ]− βV ≤ −ρ− (βc⟨x⟩−η − C⟨x⟩−1
) in Rd (6.1)

for some c > 0. We now claim that that (ρ/2,−εψ) is a subsolution of (EPβ) if β is sufficiently

large. To this end, we set g(r) := βc⟨r⟩−η − C⟨r⟩−1
for r ≥ 0, where ⟨r⟩ := (1 + r2)1/2. Suppose

first that 0 < η ≤ 1. Then g ≥ 0 in [0,∞) for all β ≥ C/c. This and (6.1) imply that (ρ/2,−εψ) is
a subsolution of (EPβ) for any β ≥ C/c. Suppose next that η > 1. Then, by direct computations,

we see that g′(r) = ⟨r⟩−3
r(C − βcη⟨r⟩1−η) for r ≥ 0, and that g attains its minimum in [0,∞)

at r∗ such that ⟨r∗⟩ = (ηβc/C)
1

η−1 with minimum value g(r∗) = −(η − 1)c(C/ηc)
η

η−1 β− 1
η−1 . In

particular, we have

F [−εψ]− βV ≤ −ρ− g(|x|) ≤ −ρ+ νβ− 1
η−1 in Rd,

where ν := (η − 1)c(C/ηc)
η

η−1 . This implies that (ρ/2,−εψ) is a subsolution of (EPβ) if β ≥
(2ν/ρ)η−1. Thus, in any case, we conclude that (ρ/2,−εψ) is a subsolution of (EPβ) if β is

sufficiently large. From this fact, we see that there exists a β0 > 0 such that λmax(β0) ≥ ρ/2 > 0.

Hence, we have completed the proof.

The proof of Theorem 2.3 is now obvious from the above propositions.

In the rest of this section, we show that, contrary to the case where δ > 0 in (A1), the function

β 7→ λmax(β) may not be strictly increasing if δ = 0.

Proposition 6.6. Let (A1) with δ = 0, (A2), and (A3c) hold. Assume the following:

(B) b(x) = ρ
x

|x|
in Rd \ BR for some ρ,R > 0, H(x, p) =

1

m
|p|m in Rd ×Rd, and 0 < η ≤ 1 in

(A3c).

Then, there exists a βc > 0 such that λmax(β) = λmax(βc) for all β > βc.

Proof. We first prove that λmax(β) ≤ ρm
∗
/m∗ for any β > 0, where m∗ = m/(m− 1). Let ζ ∈

C∞(Rd) be such that ζ ≥ 0 in Rd, supp ζ ⊂ B1, and
∫
Rd ζ(x)

m∗
dx = 1. Let (λ, ϕ) ∈ R×C3(Rd)

be any subsolution of (EPβ). Then, we see that

λ+
1

2

∫
Rd

D(ζm
∗
) ·Dϕdx+

∫
Rd

ζm
∗
b ·Dϕdx+

1

m

∫
Rd

ζm
∗
|Dϕ|m dx ≤ β

∫
Rd

ζm
∗
V dx.

Fix any l > m. Then, by Young’s inequality, there exists some C(l) > 0 converging to 1/m∗ as

l → m such that

−
∫
Rd

ζm
∗
b ·Dϕdx ≤ C(l)

∫
Rd

ζm
∗
|b|m

∗
dx+

1

l

∫
Rd

ζm
∗
|Dϕ|m dx.

Setting ν := (1/m)− (1/l) > 0, we observe that there exists a C(ν) > 0 such that

−1

2

∫
Rd

D(ζm
∗
) ·Dϕdx = −m

∗

2

∫
Rd

ζm
∗−1Dζ ·Dϕdx

≤ C(ν)

∫
Rd

|Dζ|m
∗
dx+ ν

∫
Rd

ζm
∗
|Dϕ|m dx.

Gathering these estimates, we obtain

λ ≤ C(ν)

∫
Rd

|Dζ|m
∗
dx+ C(l)

∫
Rd

ζm
∗
|b|m

∗
dx+ β

∫
Rd

ζm
∗
V dx.
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Now, let ε > 0 be arbitrary and set ζε(x) := ε
d

m∗ ζ(εx). Note that
∫
Rd ζε(x)

m∗
dx = 1 and∫

Rd |Dζε(x)|m
∗
dx ≤ Cεm

∗
for some C > 0 not depending on ε. Plugging ζε into the above ζ and

using the fact that |b(x)| = ρ for all x ∈ Rd \BR, we see that, for any θ > 0,

λ ≤ C(ν)Cεm
∗
+

∫
Rd

(1Rd\BR
+ 1BR

)ζm
∗

ε |b|m
∗
dx+ β

∫
Rd

ζm
∗

ε (V − θ + θ) dx

≤ C(ν)Cεm
∗
+ C(l)ρm

∗
+ C(l) sup

BR

|b|m
∗
∫
BR

ζm
∗

ε dx+ β

∫
Rd

ζm
∗

ε (V − θ)+ dx+ βθ.

Since supp(V − θ)+ is compact and
∫
K
ζε(x)

m∗
dx =

∫
εK

ζ(y)m
∗
dy → 0 as ε→ 0 for any compact

subset K ⊂ Rd, we see by sending ε → 0 in the above inequality that λ ≤ C(l)ρm
∗
+ βθ. Letting

l → m and θ → 0, we obtain λ ≤ ρm
∗
/m∗. This yields that λmax(β) ≤ ρm

∗
/m∗.

We next prove that λmax(β) ≥ ρm
∗
/m∗ for any sufficiently large β. We choose a ψ ∈ C3(Rd)

such that ψ(x) = |x| in Rd \ BR. This is possible by setting ψ(x) := f(|x|) in BR with f(t) =

a1t
6 + a2t

4 + a3t
2 + a4 for 0 ≤ t ≤ 1 and adjusting the coefficients so that ψ ∈ C3(Rd). Since

Dψ(x) = |x|−1x and ∆ψ(x) = (d− 1)|x|−1 in Rd \BR, we observe that, for any x ∈ Rd \BR,

F [−εψ](x) = ε

2
(d− 1)|x|−1 − ρε+

εm

m
.

We now choose ε as the minimum point of the function ε 7→ εm/m − ρε, namely, we set ε :=

ρ
1

m−1 = ρm
∗−1. Then, εm/m− ρε = −ρm∗

/m∗. Furthermore, since 0 < η ≤ 1, we have

ρm
∗

m∗ + F [−εψ]− βV ≤
{ρm∗−1

2
(d− 1)− βc

}
|x|−1 in Rd \BR (6.2)

for some c > 0. The right-hand side of (6.2) is less than zero if β > β1 := ρm
∗−1(d− 1)/(2c). On

the other hand, since infBR
V > 0 by assumption, we see that ρm

∗
/m∗ + F [−εψ]− βV ≤ 0 in BR

provided

β > β2 :=
ρm

∗
/m∗ + supBR

F [−εψ]
infBR

V
.

In particular, −εψ is a subsolution of (EP) if β > βc := max{β1, β2}, which yields that λmax(β) ≥
ρm

∗
/m∗ for all β > βc. Hence, we have completed the proof.

Remark 6.7. We do not know if Proposition 6.6 is valid without (B). In the proof of Propo-

sition 6.6, we used the assumption that 0 < η ≤ 1 to derive (6.2), only. We conjecture that, under

(B) with η > 1 instead of 0 < η ≤ 1, the function β 7→ λmax(β) is strictly increasing in [0,∞).

Acknowledgment. NI is supported in part by JSPS KAKENHI Grant Number 15K04935.

EC is partially supported by ANR-16-CE40-0015-01 (ANR project on Mean Field Games).

Appendix A: Gradient estimate for (EP). Let Ω ⊂ Rd be a bounded domain with C3

boundary. We consider the elliptic equation

εϕ− 1

2
∆ϕ+ b(x) ·Dϕ+H(x,Dϕ)− f = 0 in Ω, (A.1)

where ε ≥ 0, and both b : Ω → Rd and f : Ω → R are of C1-class. Furthermore, we assume that

H : Ω×Rd → R satisfies the following:

(H) H ∈ C1(Ω×Rd;R), and there exist some m > 1, ν > 0 and M > 0 such that

H(x, p) ≥ ν|p|m −M, |DxH(x, p)| ≤M(1 + |p|m), |DpH(x, p)| ≤M(1 + |p|m−1)

for all x ∈ Ω and p ∈ Rd.

Theorem A.1. Let (H) hold, and let v, w ∈ C3(D)∩C(D) be, respectively, a subsolution and

a supersolution of (A.1) such that v ≤ w in D. Suppose either ε > 0 or v is a strict subsolution
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(i.e., strict inequality < holds) in D. Then, there exists a solution ϕ ∈ C3(D) ∩ C(D) of (A.1)

such that v ≤ ϕ ≤ w in D.

Proof. This theorem is a direct consequence of [27, Theorem 4.7.3] for 1 < m ≤ 2, and [26,

Théorème III-1] for m > 2.

Theorem A.2. Let (H) hold, and let Ω′ be a bounded domain in Rd with C3 boundary such

that Ω′ ⊂⊂ Ω. Then there exists a K > 0 depending only on d, m, ν, M , and dist(Ω′, ∂Ω) such

that, for any solution ϕ ∈ C3(Ω) of (A.1), the following estimate holds:

sup
Ω′

|Dϕ| ≤ K
[
1 + sup

Ω
{(εϕ)

1
m
− + |b|

1
m−1 + |Db|

1
2m−2 + f

1
m
+ + |Df |

1
2m−1 }

]
, (A.2)

where r± := max{±r, 0} for r ∈ R.

Proof. Fix any solution ϕ ∈ C3(Ω) of (A.1) and set w := (1/2)|Dϕ|2. Then, we see that

Dw = (D2ϕ)(Dϕ) and

∆w = tr((D2ϕ)2) +D(∆ϕ) ·Dϕ, (A.3)

where Dϕ and D2ϕ denote the gradient vector and the Hessian matrix of ϕ, respectively. In view

of (A.1) and the Cauchy-Schwarz inequality, the first term of the right-hand side of (A.3) can be

estimated as

d(tr(D2ϕ)2) ≥ (tr(D2ϕ))2 = (∆ϕ)2 = 4(εϕ+ b ·Dϕ+H − f)2

= 4{H + (b ·Dϕ+ εϕ− f)+ − (b ·Dϕ+ εϕ− f)−}2

≥ 4{H2 + (b ·Dϕ+ εϕ− f)2− − 2H(b ·Dϕ+ εϕ− f)−}
≥ 2H2 − 4(b ·Dϕ+ εϕ− f)2− ≥ 2H2 − 4{(b ·Dϕ)− + (εϕ)− + f+}2

≥ 2H2 − 12((b ·Dϕ)2− + (εϕ)2− + f2+).

On the other hand, by using (A.1) and (H), one can estimate the second term of the right-hand

side of (A.3) as

D(∆ϕ) ·Dϕ = 2D(εϕ+ b ·Dϕ+H − f) ·Dϕ
= 2ε|Dϕ|2 + 2(Db)(Dϕ) · (Dϕ) + 2b · (D2ϕ)(Dϕ)

+ 2DxH ·Dϕ+ 2DpH · (D2ϕ)(Dϕ)− 2Df ·Dϕ
≥ 2(b+DpH) ·Dw − 2|Db||Dϕ|2 − 2M(1 + |Dϕ|m)|Dϕ| − 2|Df ||Dϕ|
≥ 2(|b|+M +M |Dϕ|m−1)|Dw| − 2|Db||Dϕ|2

− 2(M + |Df |)|Dϕ| − 2M |Dϕ|m+1,

where Db = (Dibj) : Ω → Rd ⊗Rd. Plugging these estimate into (A.3), we obtain

∆w ≥ (2/d)H2 − (12/d)((εϕ)2− + f2+)− {(12/d)|b|2 + 2|Db|}|Dϕ|2

− 2(M + |Df |)|Dϕ| − 2M |Dϕ|m+1 − 2(|b|+M +M |Dϕ|m−1)|Dw|.
(A.4)

Now, let ρ ∈ C2(Ω) be a cut-off function such that ρ ≡ 1 in Ω′, supp ρ ⊂ Ω, and 0 ≤ ρ ≤ 1

in Ω. Set η := ργ with γ = 4m/(m − 1), and z := ηw. Let x0 be a maximum point of z on Ω.

If z(x0) = 0, then there is nothing to prove. Hence, we assume that z(x0) > 0. Then, we see

that x0 ∈ Ω since z = 0 on ∂Ω. In particular, Dz = ηDw + wDη = 0 and ∆z ≤ 0 at x = x0.

Noting that Dw = −w(Dη/η) = −(1/2)|Dϕ|2(Dη/η) at x = x0, the value of ∆z at x = x0 can be

evaluated as

0 ≥ ∆z = η∆w + 2Dη ·Dw + w∆η = η∆w − |Dϕ|2 |Dη|
2

η
+

1

2
|Dϕ|2∆η

= η∆w − (η|Dϕ|2m)
1
m (η−

m+1
2m |Dη|)2 + 1

2
(η|Dϕ|2m)

1
m (η−

1
m∆η).
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Furthermore, since 0 ≤ η ≤ η
m+1
2m ≤ η

1
m ≤ η

1
2m ≤ 1 and 2η|Dw| = |Dϕ|2|Dη|, we see in view of

(A.4) and (H) that

η∆w ≥ 2

d
η(ν|Dϕ|m −M)2 − 12

d
η((εϕ)2− + f2+)− (

12

d
|b|2 + 2|Db|)(η|Dϕ|2m)

1
m

− 2(M + |Df |)(η|Dϕ|2m)
1

2m − 2M(η|Dϕ|2m)
m+1
2m

− (|b|+M +M |Dϕ|m−1)|Dϕ|2|Dη|.

Plugging this into the previous inequality and setting Z = η(x0)|Dϕ(x0)|2m, we obtain

0 ≥ 1

d
(ν2Z −M2)− 12

d
((εϕ)2− + f2+)− (

12

d
|b|2 + 2|Db|)Z 1

m − 2(M + |Df |)Z 1
2m

− 2MZ
m+1
2m − (|b|+M)(η−

1
m |Dη|)Z 1

m +M(η−
m+1
2m |Dη|)Z

m+1
2m

− (η−
m+1
2m |Dη|)2Z 1

m − (η−
1
m |∆η|)Z 1

m .

Now, we apply Young’s inequality to see that, for any L > 0 and ε > 0,

LZ
1

2m ≤ εZ + CεL
2m

2m−1 , LZ
1
m ≤ εZ + CεL

m
m−1 , LZ

m+1
2m ≤ εZ + CεL

2m
m−1 ,

where Cε > 0 is a constant depending only on ε and m. Then, we have

Z ≤ K{1 + (εϕ)2− + f2+ + (|b|2 + |Db|)
m

m−1 + |Df |
2m

2m−1

+ (1 + |b|
m

m−1 )(η−
1
m |Dη|)

m
m−1 + (η−

m+1
2m |Dη|)

2m
m−1 + (η−

1
m |∆η|)

m
m−1 }

≤ K{1 + (εϕ)2− + f2+ + |b|
2m

m−1 + |Db|
m

m−1 + |Df |
2m

2m−1

+ (η−
1
m |Dη|)

m
m−1 + (η−

1
m |Dη|)

2m
m−1 + (η−

m+1
2m |Dη|)

2m
m−1 + (η−

1
m |∆η|)

m
m−1 }

for some K > 0 depending only on d, ν, M , and m.

We now claim that η−
1
m |Dη|, η−m+1

2m |Dη|, and η−
1
m |∆η| are bounded on Ω by a constant

depending only on m and dist(Ω′, ∂Ω). Since η
m+1
2m < η

1
m , it suffices to prove that η−θ|Dη| and

η−θ|∆η|, with θ = m+1
2m , are bounded on Ω. By direct computations, one can easily see that η = ργ

satisfies

η−θ|Dη| = γργ−1−γθ|Dρ| = γρ|Dρ|,
η−θ|∆η| ≤ γ{ργ−1−γθ|∆ρ|+ (γ − 1)ργ−2−γθ|Dρ|2} = γ{ρ|∆ρ|+ (γ − 1)|Dρ|2},

where we have used the fact that γ = 4m/(m− 1) satisfies γ − 1− γθ = 1.

Hence, there exists some K > 0 depending only on d, ν, M , m, and dist(Ω′, ∂Ω) such that, at

x = x0,

Z = η|Dϕ|2m ≤ K(1 + (εϕ)2− + f2+ + |b|
2m

m−1 + |Db|
m

m−1 + |Df |
2m

2m−1 )

≤ K[1 + sup
Ω

{(εϕ)2− + f2+ + |b|
2m

m−1 + |Db|
m

m−1 + |Df |
2m

2m−1 }].

Since η ≡ 1 in Ω′, we see that

sup
x∈Ω′

|Dϕ(x)|2 = 2 sup
x∈Ω′

η(x)w(x) = 2 sup
x∈Ω′

z(x) ≤ 2max
x∈Ω

z(x) = 2z(x0)

= 2η(x0)w(x0) = η(x0)
m−1
m (η(x0)|Dϕ(x0)|2m)

1
m ≤ Z

1
m ,

which implies the desired estimate. Hence, we have completed the proof.
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Appendix B: Moment estimates for the solution of (1.3). We first recall a moment

estimate for the controlled process Xξ = (Xξ
t )t≥0 governed by (1.3). We notice that ⟨Xξ

t ⟩ =

(1 + |Xξ
t |2)1/2, which should not be confused with the quadratic variation of Xξ.

Lemma B.1. Let (A1) hold. Then there exists a C > 0 such that for any ξ ∈ A, x ∈ Rd, and

T > 0,

Ex

[
sup

0≤t≤T
⟨Xξ

t ⟩
1+ δ

m−1

]
≤ C

(
⟨x⟩1+

δ
m−1 + T +Ex

[∫ T

0

|ξt|m
∗
dt

])
.

Moreover, if ϕ ∈ C2(Rd) satisfies |Dϕ(x)| ≤ C⟨x⟩
δ

m−1 in Rd for some C > 0, then the stochastic

integral

∫ T

0

Dϕ(Xξ
t ) dWt is integrable with respect to Px for all x ∈ Rd.

Proof. For simplicity, we set γ := 1 + δ
m−1 . We apply Ito’s formula to γ−1⟨Xξ

t ⟩
γ
. Then, since

D(γ−1⟨x⟩γ) = ⟨x⟩γ−2
x and ∆(γ−1⟨x⟩γ) ≤ (|γ − 2|+ d)⟨x⟩γ−2

in Rd, we have

1

γ
⟨Xξ

T∧τn⟩
γ ≤ 1

γ
⟨x⟩γ + (|γ − 2|+ d)

∫ T∧τn

0

⟨Xξ
t ⟩
γ−2

dt−
∫ T∧τn

0

ξt · (⟨Xξ
t ⟩
γ−2

Xξ
t ) dt

−
∫ T∧τn

0

⟨Xξ
t ⟩
γ−2

(b(Xξ
t ) ·X

ξ
t ) dt+

∣∣∣∣∣
∫ T∧τn

0

⟨Xξ
t ⟩
γ−2

Xξ
t dWt

∣∣∣∣∣
for any n ≥ 1, where τn := inf{t > 0 | |Xξ

t | > n}. In view of (A1), there exist some ν,K > 0 such

that the fourth term of the right-hand side can be estimated as

−
∫ T∧τn

0

⟨Xξ
t ⟩
γ−2

(b(Xξ
t ) ·X

ξ
t ) dt ≤ −

∫ T∧τn

0

⟨Xξ
t ⟩
γ−2

(ν⟨Xξ
t ⟩

1+δ −K) dt

= −ν
∫ T∧τn

0

⟨Xξ
t ⟩
γ−1+δ

dt+K

∫ T∧τn

0

⟨Xξ
t ⟩
γ−2

dt.

Since γ − 2 < m∗δ, there exists some constant C > 0 depending only on d, δ, m, and the above ν,

K such that

(|γ − 2|+ d+K)

∫ T∧τn

0

⟨Xξ
t ⟩
γ−2

dt ≤ ν

2

∫ T∧τn

0

⟨Xξ
t ⟩
γ−1+δ

dt+ C(T ∧ τn).

In what follows, C > 0 denotes various constants depending only on d, δ, m, and the above ν, K.

Applying Young’s inequality, we also have

−
∫ T∧τn

0

ξt · (⟨Xξ
t ⟩
γ−2

Xξ
t ) dt ≤

∫ T∧τn

0

(C|ξt|m
∗
+
ν

4
|⟨Xξ

t ⟩
γ−2

Xξ
t |m) dt

≤ C

∫ T∧τn

0

|ξt|m
∗
dt+

ν

4

∫ T∧τn

0

⟨Xξ
t ⟩
m(γ−1)

dt.

Since γ − 1 + δ = m(γ − 1) = m∗δ, we conclude that

1

γ
Ex

[
sup

0≤t≤T
⟨Xξ

t∧τn⟩
γ
]
+
ν

4
Ex

[∫ T∧τn

0

⟨Xξ
t ⟩
m∗δ

dt

]

≤ 1

γ
⟨x⟩γ + CT + CEx

[∫ T∧τn

0

|ξt|m
∗
dt

]
+Ex

[
sup

0≤t≤T

∣∣∣∣∣
∫ T∧τn

0

⟨Xξ
t ⟩
γ−2

Xξ
t dWt

∣∣∣∣∣
]
.

We now use the Burkholder-Davis-Gundy inequality to obtain

Ex

[
sup

0≤t≤T

∣∣∣∣∣
∫ T∧τn

0

⟨Xξ
t ⟩
γ−2

Xξ
t dWt

∣∣∣∣∣
]
≤ CEx

(∫ T∧τn

0

⟨Xξ
t ⟩

2(γ−1)
dt

) 1
2

 .
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Making use of Young’s inequality twice, we see that, for any ε1, ε2 > 0, there exists a Cε > 0 such

that

Ex

(∫ T∧τn

0

⟨Xξ
t ⟩

2(γ−1)
dt

) 1
2

 ≤ Ex

( sup
0≤t≤T∧τn

⟨Xξ
t ⟩

γ−1
2

)(∫ T∧τn

0

⟨Xξ
t ⟩
γ−1

dt

) 1
2


≤ ε1Ex

[
sup

0≤t≤T∧τn
⟨Xξ

t ⟩
γ−1
]
+ ε2Ex

[∫ T∧τn

0

⟨Xξ
t ⟩
m(γ−1)

dt

]
+ CεEx[T ∧ τn].

Choosing ε1, ε2 sufficiently small, we finally obtain the estimate of the form

Ex

[
sup

0≤t≤T∧τn
⟨Xξ

t ⟩
γ
]
≤ C⟨x⟩γ + CT + CEx

[∫ T∧τn

0

|ξt|m
∗
dt

]
.

Letting n→ ∞ in the above inequality, we have the desired estimate.

In order to prove the latter claim, we observe by the Burkholder-Davis-Gundy inequality that

Ex

[∣∣∣∣∣
∫ T

0

Dϕ(Xξ
t ) dWt

∣∣∣∣∣
]
≤ CEx

(∫ T

0

|Dϕ(Xξ
t )|2 dt

) 1
2

 ≤ CTEx

[
sup

0≤t≤T
⟨Xξ

t ⟩
δ

m−1

]
.

Since δ
m−1 ≤ m∗δ ≤ 1 + δ

m−1 , we conclude from the previous estimate that the right-hand side is

finite. Hence, we have completed the proof.

Lemma B.2. Let (A1), (A2), and (A3a) hold. Let (λ, ϕ) ∈ R × C3(Rd) be a subsolution of

(EP). Then, for any ξ ∈ A,

Ex

[∫ T

0

(L(Xξ
t , ξ) + V (Xξ

t )) dt

]
≥ λT + ϕ(x)−Ex[ϕ(X

ξ
T )], x ∈ Rd, T > 0.

Moreover, the above inequality holds with equality if (λ, ϕ) ∈ R×C3(Rd) is a solution of (EP) and

the control process ξ∗ = (ξ∗t )t≥0 defined by ξ∗t := DpH(Xt, Dϕ(Xt)), t ≥ 0, belongs to A, where

X = (Xt)t≥0 stands for the associated Aϕ-diffusion.

Proof. We apply Ito’s formula to ϕ(Xξ
t ). Then, since |Dϕ(x)| ≤ C⟨x⟩

δ
m−1 in Rd for some

C > 0 and H(x, p) + L(x, ξ) ≥ ξ · p for all x, p, ξ ∈ Rd, we see in view of the subsolution property

of (λ, ϕ) and Lemma B.1 that

Ex[ϕ(X
ξ
T )]− ϕ(x) = Ex

[∫ T

0

{1
2
∆ϕ(Xξ

t )− (b(Xξ
t ) + ξt) ·Dϕ(Xξ

t )
}
dt

]

≥ Ex

[∫ T

0

(λ+H(Xξ
t , Dϕ(X

ξ
t ))− V (Xξ

t )− ξt ·Dϕ(Xξ
t )) dt

]

≥ λT −Ex

[∫ T

0

(L(Xξ
t , ξt) + V (Xξ

t )) dt

]
,

which is the former claim. In order to prove the latter claim, suppose that (λ, ϕ) is a solution of

(EP) and set ξ∗t := DpH(Xt, Dϕ(Xt)). Then, the first inequality can be replaced by equality, and

the second inequality holds with equality in view of the equivalence H(x, p) + L(x, ξ) = ξ · p ⇔
ξ = DpH(x, p). Hence, we have completed the proof.

Appendix C: Comparison principle for (5.1). We characterize the value function u(T, x)

defined by (2.8) as the minimal solution, in a suitable class of functions, to the Cauchy problem

(5.1). More precisely, let Ψ̂ be the collection of functions u ∈ C1,2((0,∞)×Rd) ∩ C([0,∞)×Rd)

such that, for some q > 1,

sup
0≤t≤T,x∈Rd

u(t, x)

⟨x⟩q
<∞, inf

0≤t≤T
lim inf
|x|→∞

u(t, x)

⟨x⟩1+
δ

m−1

≥ 0, T > 0.
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Then, one has the following.

Theorem C.1. Let (A1), (A2), and (A3a) hold. Suppose that g ∈ Ψ1+ δ
m−1

. Then the

following (a)-(c) are valid:

(a) For any subsolution v ∈ C1,2((0,∞)×Rd) ∩ C([0,∞)×Rd) of (5.1) which satisfies

sup
0≤t≤T,x∈Rd

|v(t, x)|⟨x⟩−(1+ δ
m−1 ) <∞ for all T > 0,

v(T + S, x) ≤ inf
ξ∈A

Ex

[∫ T

0

(L(Xξ
t , ξt) + V (Xξ

t ))dt+ v(S,Xξ
T )

]
, T, S ≥ 0, x ∈ Rd.

(b) For any supersolution v ∈ Ψ̂ of (5.1),

v(T + S, x) ≥ inf
ξ∈A

Ex

[∫ T

0

(L(Xξ
t , ξt) + V (Xξ

t ))dt+ v(S,Xξ
T )

]
, T, S ≥ 0, x ∈ Rd.

(c) The value function u defined by (2.8) is the minimal solution of (5.1) in Ψ̂. Moreover, for any

R > 0, there exists a CR > 0 such that sup
t≥1,x∈BR

|Du(t, x)| ≤ CR.

Proof. We first show (a). Fix any T, S ≥ 0, x ∈ Rd, ξ ∈ A, and apply Ito’s formula

to v(T + S − t,Xξ
t ). Then, from the subsolution property of v, together with the inequality

H(x, p) + L(x, ξ) ≥ ξ · p for all x, p, ξ ∈ Rd, we see that

v(T + S, x) ≤ Ex

[∫ T∧τn

0

(L(Xξ
t , ξt) + V (Xξ

t ))dt+ v(T + S − T ∧ τn, Xξ
T∧τn)

]

for all n ≥ 1, where τn := inf{t > 0 | |Xξ
t | > n}. Since |v(t, x)| ≤ C⟨x⟩1+

δ
m−1 in [0, T + S]×Rd for

some C > 0, we see from Lemma B.1 that the family {v(T + S − T ∧ τn, Xξ
T∧τn)}n≥1 is uniformly

integrable. Noting this and the fact that L + V is bounded below in Rd × Rd, we conclude by

sending n→ ∞ in the above inequality that

v(T + S, x) ≤ Ex

[∫ T

0

(L(Xξ
t , ξt) + V (Xξ

t ))dt+ v(S,Xξ
T )

]
.

Since ξ ∈ A is arbitrary, we obtain the desired estimate.

We next prove (b). Let X = (Xt)t≥0 be the diffusion process governed by

dXt = −b(Xt)dt−DpH(Xt, Dv(T + S − t,Xt))dt+ dWt,

and set pt := Dv(T + S − t,Xt) and ξt := DpH(Xt, pt). We claim here that X does not explode

in finite time. To see this, we set ψ(x) := −ε⟨x⟩1+
δ

m−1 , where we choose ε > 0 so that F [ψ] ≤
C−ρ⟨x⟩m

∗δ
inRd for some C, ρ > 0 (see Proposition 4.4). We apply Ito’s formula to v(T+S−t,Xt).

Then, by using the supersolution property of v and the equality H(Xt, pt) +L(Xt, ξt) = ξt · pt, we
see that

v(T + S, x) ≥ Ex

[
v(T + S − T ∧ τn, XT∧τn) +

∫ T∧τn

0

(L(Xt, ξt) + V (Xt))dt

]
(C.1)

for all n ≥ 1, where τn := inf{t > 0 | |Xt| > n}. Furthermore, we apply Ito’s formula to ψ(Xt).

Then, observing that H(Xt, Dψ(Xt)) + L(Xt, ξt) ≥ ξt ·Dψ(Xt), we have

Ex[ψ(XT∧τn)]− ψ(x) = Ex

[∫ T∧τn

0

(
1

2
∆ψ(Xt)− b(Xt) ·Dψ(Xt)− ξt ·Dψ(Xt))dt

]

= Ex

[∫ T∧τn

0

(H(Xt, Dψ(Xt))− F [ψ](Xt)− ξt ·Dψ(Xt))dt

]
.
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Adding both sides of the above two inequalities, we obtain

(v − ψ)(T + S, x) ≥ Ex

[
(v − ψ)(T + S − T ∧ τn, XT∧τn) +

∫ T∧τn

0

f(Xt, ξ)dt

]
,

where we have set

f(x, ξ) := H(x,Dψ(x)) + L(x, ξ)− ξ ·Dψ(x) + V (x)− F [ψ](x)

for (x, ξ) ∈ Rd × Rd. Note that f is bounded below in Rd × Rd. Since v ∈ Ψ̂, we observe that

inf
0≤t≤T+S

(v − ψ)(t, x) → ∞ as |x| → ∞. In particular, v − ψ is bounded below in [0, T + S]×Rd.

Thus, letting n→ ∞ in the above inequality, we have

(v − ψ)(T + S, x) ≥ Ex

[
(v − ψ)(T + S − T ∧ τ∞, XT∧τ∞) +

∫ T∧τ∞

0

f(Xt, ξ)dt

]
,

where τ∞ := limn→∞ τn. This yields that Px(τ∞ < ∞) = 1 for any x ∈ Rd. Hence, X does not

explode in finite time. Noting that v − ψ and L+ V are bounded below and that {ψ(XT∧τn)}n≥1

is uniformly integrable, we conclude by sending n→ ∞ in (C.1) that

v(T + S, x) ≥ lim inf
n→∞

Ex[(v − ψ)(T + S − T ∧ τn, XT∧τn) + ψ(XT∧τn)]

+ lim
n→∞

Ex

[∫ T∧τn

0

(L(Xt, ξt) + V (Xt))dt

]

= Ex

[
v(S,XT ) +

∫ T

0

(L(Xt, ξt) + V (Xt))dt

]

≥ inf
ξ∈A

Ex

[
v(S,Xξ

T ) +

∫ T

0

(L(Xξ
t , ξt) + V (Xξ

t ))dt

]
.

We finally prove (c). Let ψ be as above. Since (g − ψ)(x) → ∞ as |x| → ∞, we may assume,

by adding a constant to g if necessary, that g ≥ ψ in Rd.

We first show that there exists a solution û ∈ C1,2((0,∞)×Rd)∩C([0,∞)×Rd) of (5.1) such

that û ≤ u. Let {g(1)n } and {g(2)n } be two sequences of bounded and nonnegative smooth functions

on Rd that are non-decreasing with resect to n, and g
(1)
n → g − ψ and g

(2)
n → −ψ in C(Rd) as

n→ ∞. For n ≥ 1, we set gn := g
(1)
n − g

(2)
n and define un : [0,∞)×Rd → R by

un(T, x) := inf
ξ∈A

Ex

[∫ T

0

(L(Xξ
t , ξt) + V (Xξ

t ))dt+ gn(X
ξ
T )

]
, T ≥ 0, x ∈ Rd.

Then, it is known (e.g., [13, Theorem IV.11.1, Remark IV.11.2]) that un ∈ C1,2((0,∞) × Rd) ∩
C([0,∞) × Rd) and un is a solution to (5.1) with initial function gn in place of g. Moreover,

similarly as in the proof of Theorem A.2 (see also [18, Theorem 3.2]), one can verify that, for any

R > 0 and δ > 0, there exists a K > 0 such that

sup
n≥1

sup
(t,x)∈[2δ,∞)×BR

|Dun(t, x)| ≤ K. (C.2)

This and the classical regularity estimate imply that {un} is precompact in C1,2((0,∞) × Rd).

Since {gn} converges to g in C(Rd) as n → ∞, we see that, along a suitable subsequence, {un}
converges to a function û ∈ C1,2((0,∞)×Rd) ∩ C([0,∞)×Rd), and û is a solution of (5.1).
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The inequality û ≤ u can be verified as follows. By the definitions of gn and un, we see that,

for any T ≥ 0, x ∈ Rd, and ξ ∈ A,

un(T, x) ≤ Ex

[∫ T

0

(L(Xξ
t , ξt) + V (Xξ

t ))dt+ gn(X
ξ
T )

]

= Ex

[∫ T

0

(L(Xξ
t , ξt) + V (Xξ

t ))dt+ g(1)n (Xξ
T )− g(2)n (Xξ

T )

]
.

Since 0 ≤ Ex[(−ψ)(Xξ
T )] < ∞ for all x ∈ A by Lemma B.1, we conclude by letting n → ∞ and

using the monotone convergence theorem in the above inequality that

û(T, x) ≤ Ex

[∫ T

0

(L(Xξ
t , ξt) + V (Xξ

t ))dt+ g(Xξ
T )

]
.

Taking the infimum over all ξ ∈ A, we obtain û ≤ u.

We next prove that û ∈ Ψ̂. We first check that inf [0,T ]×Rd(û(t, x)− ψ) > −∞ for any T > 0.

By the definition of gn, we see that gn = g
(1)
n − g

(2)
n ≥ −g(2)n ≥ ψ in Rd. Thus,

un(T, x) ≥ inf
ξ∈A

Ex

[∫ T

0

(L(Xξ
t , ξt) + V (Xξ

t ))dt+ ψ(Xξ
T )

]
, T ≥ 0, x ∈ Rd.

Similarly as in the proof of (b), we observe that, for any ξ ∈ A,

Ex[ψ(X
ξ
T )] ≥ ψ(x) +Ex

[∫ T

0

(−F [ψ](Xξ
t )− L(Xξ

t , ξ))dt

]
.

Plugging this into the previous inequality, we obtain

un(T, x)− ψ(x) ≥ inf
ξ∈A

Ex

[∫ T

0

(V (Xξ
t )− F [ψ](Xξ

t ))dt

]
≥ −CT

for some C > 0 not depending on n and (T, x). Letting n → ∞, we conclude that û − ψ ≥ −C
in Rd. We now show that there exists some q > 1 such that, for any T > 0, u(t, x) ≤ C⟨x⟩q in

[0, T ]×Rd for some C > 0. To see this, let X = (Xt)t≥0 be the A0-diffusion, namely, the solution

of (1.3) with ξt ≡ 0. Then, since L(x, 0) = 0, V ≤ C, and gn ≤ g ≤ C⟨x⟩q in Rd for some C > 0

and q > 1, we see that

un(T, x) ≤ Ex

[∫ T

0

(L(Xt, 0) + V (Xt))dt+ gn(XT )

]
≤ CT + CEx[⟨XT ⟩q].

Since Ex[⟨XT ⟩q] ≤ K(⟨x⟩q + 1) in Rd for some K > 0, we conclude by sending n → ∞ that

sup(t,x)∈[0,T ]×Rd(û(t, x)/⟨x⟩q) <∞ for all T > 0. Hence, û ∈ Ψ̂.

The rest of the proof is now easy. Indeed, since û is a solution of (5.1) which belongs to Ψ̂, we

have u ≤ û in view of (b). The opposite inequality û ≤ u has been proved. Hence, û = u, so that

u ∈ Ψ̂. The minimality of u is also obvious from (b). The gradient estimate comes directly from

(C.2). Hence, the proof of (c) is complete.
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