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A symmetry-based thermodynamical model of third-
order electro-elastic coupling is applied to zinc-blende 
semiconductors. Density Functional Theory (DFT) is 
used to calculate the complete set of linear and non-linear 
coefficients. The entanglement of non-linear piezoelec-
tricity, electrostriction and other non-linear phenomena, 
is studied in details at the same level of theory. Numeri-

cal results for InxGa(1-x)P/GaP [111] quantum wells show 
the predominance of the non-linear piezoelectricity con-
tribution. However, for a coupled non-linear model, the 
electrostriction has also to be taken into account. Finally, 
the non-linear elasticity gives a significant correction on 
the strain calculation. 

 
 

1 Introduction  
A complete model of third-order electro-elastic cou-

pling has recently been proposed [1-2]. It is an extension of 
a previous thermodynamical approach [3] (quoted as ATK 
model in this paper) which is combined systematically 
with symmetry analyses and DFT calculations to evaluate 
consistently the various linear and non-linear coefficients, 
especially in non-centrosymmetric materials. Symmetry 
properties of third-order elastic constants [4] and third-
order coupled constants [5] must be studied carefully. In 
this work, third-order coefficients are determined for zinc-
blende bulk compounds from finite difference studies of 
material’s polarization or stress tensor under various elec-
trical or strain conditions. Our previous study [1-2] and 
ATK model [3] show that coefficients defined for a specif-
ic thermodynamical potential should not be mixed with 
others for the interpretation of experimental results [6]. 
Non-linear piezoelectric and electrostrictive components 
are indeed entangled [1]. Non-linear elastic and piezoelec-
tric effects in semiconductors have attracted attention in 
the last few years because highly strained materials are 
used intentionally to grow lattice mismatched nanostruc-
tures like quantum wells or quantum dots [7-11]. We pro-
pose to extend our work on wurtzite nanostructures [1,2] 
and our preliminary work on zinc-blende nanostructures 
[7] to InGaP/GaP [111] quantum wells. 

 
 

   

2 Determination of non-linear coefficients us-
ing density functional theory  

The method of density-functional perturbation theory 
(DFPT) may be used to calculate various physical respons-
es. In fact the efficient use of the "2n+1" theorem [12], us-
ing only by-products of a first-order perturbation calcula-
tion, in principle gives the second and third-order deriva-
tives of the total energy, if the atomic-displacement varia-
bles are eliminated. 

Second-order derivatives may be used with an existing 
DFPT implementation [13] to calculate various physical 
response properties of insulating crystals, including elastic 
constants, linear piezoelectric tensors, linear dielectric sus-
ceptibility, as well as tensor properties related to internal 
atomic displacements like Born charges. Non-linear elec-
trical susceptibility, elasticity, piezoelectricity and electro-
striction, are related to third-order derivatives of the total 
energy [1-3]. However, most practical implementations of 
the DFPT are restricted to some quantities related to inter-
nal atomic displacements. Finite differences of polarization 
and stress tensor components were then calculated as a 
function of the electric field and strain tensor components 
[1,2,7]. DFT simulations are performed using a state of the 
art DFT implementation [13] within the local density ap-
proximation (LDA). Plane wave basis sets were used with 
a kinetic energy cutoff of 950 eV after convergence studies. 
The sets of k-points are generated following the procedure 
of Pack and Monkhorst and Pack [14] namely 10x10x10. 
The computation of all the non-linear electro-elastic coef-



 

 

ficients are presented in table 1 for the InP and GaP mate-
rials (Table 1).  

 
 
 

Table 1 Electro-elastic non-linear constants of InP and GaP zinc-
blende materials calculated using DFT-LDA simulations (ABIN-
IT code). The lattice parameter, the linear and non-linear elastic 
constants, the electrostrictive constants, the linear and non-linear 
dielectric constants and the linear and non-linear piezoelectric 
constants are listed from top to bottom. 

 InP GaP 

a[Å] 5.85 5.46 
c11[GPa] 98.2 135.9 
c12[GPa] 54.6 61.9 
c44[GPa] 44.6 67.1 
c111[GPa] 56.3 -284.9 
c112[GPa] -387.4 -492.1 
c123[GPa] 131.9 264.2 
c144[GPa] 61.4 48.0 
c155[GPa] -12.6 -47.0 
c456[GPa] 42.0 46.8 

L11 37.3 21.0 
L12 18.7 5.4 
L44 90.4 23.8 
e11 13.0 10.7 

e123[10-12m/V] -442.7 -229.1 
e14[C/m²] -0.0095 -0.1098 

B114[C/m²] -1.06 -0.83 
B124[C/m²] -3.82 -3.43 
B156[C/m²] -0.45 -0.92 

 
 
On figure 1, the linear piezoelectric coefficient e14 is 

plotted as a function of the Indium fraction in a InxGa(1-x)P 
alloy, assuming a Vegard’s law. This coefficient is very 
small for pure InP. It is then expected that the electro-
striction, and non-linear piezoelectric effects may play a 
significant role in InP highly strained nanostructures.  

 

 

 
Figure 1 Linear piezoelectric coefficient e14 [in C.m-2] 

versus Indium fraction x [in percentage] for the model 
InxGa(1-x)P compounds. 

 
3 Analytical study of electro-elastic in InxGa(1-

x)P/GaP [111] quantum wells  
The case of the InxGa(1-x)P alloy biaxially strained on a 

GaP [111] misoriented substrate is considered.  

The strain tensor is defined as: 

 

We can rewrite  and  as a function of  and  
such as: 

 

The stress tensor and the electric field is given by : 

 

 
Taking into account non-linear electro-elastic coupling, 

the strain tensor components and the polarization are equal 
to: 
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In order to use a stress-free surface condition for the 

[111] orientation, a transformation matrix  is used to 
obtain the tensor components in a suitable reference frame 
[15]: 

 

In this new reference frame (a prime is used), the stress 
tensor components are given by: 

 

 

The polarization is calculated from: 

 

When non-linear phenomena are neglected, simple 
well-known analytical expressions [16] are recovered from 
this model for the strain tensor components: 

 
 

 

 
  
4 Numerical results for InxGa(1-x)P/GaP [111] 

quantum wells  
 
On figure 2, the out of plane [111] strain of InxGa(1-x)P 

is presented as a function of the Indium fraction. The non-
linear corrections increase with the Indium fraction and 
reach a maximum of about 15% for pure InP. The main 
correction is attributed to non-linear elasticity. 

 
 

 
Figure 2 Out of plane [111] strain of InxGa(1-x)P versus Indium 
fraction x in percentage for the linear and non-linear model in the 
case of a InxGa(1-x)P/GaP [111] heterostructure.  

 
 
 
On figure 3, the electric field along the 111 direction is 

plotted as a function of the Indium fraction. A linear model, 
the effects of non-linear elasticity, electrostriction and non-
linear piezoelectricity, and finally a complete non-linear 
model are presented. The internal electric field undergoes a 
sign change for intermediate In content, as a result of the 
competition between linear and non-linear effects. This 
field reaches a large negative value for pure InP and is 
mainly associated to non-linear piezoelectricity but also to 
electrostriction. 
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Figure 3 Electric field E[111] [in 105V.cm-1] in InxGa(1-

x)P biaxially strained on GaP [111] versus Indium fraction 
x [in percentage] for the linear model, non-linear elasticity, 
electrostriction, non-linear piezoelectricity, and non-linear 
model. 

 
On figure 4, we focused on the positive value of the in-

ternal electric field. A maximum is reached at x=0.52 and 
x=0.14 for the linear model and for the non-linear model 
respectively. This large difference is also mainly associat-
ed to the non-linear piezoelectricity. When only electro-
striction is added to the linear model, the maximum is 
shifted to x=0.42. 

 

 

 
Figure 4 Zoom on the Electric field E[111] [in 105V.cm-1] maxi-
mum versus Indium fraction x [in percentage] for the linear mod-
el, non-linear elasticity, electrostriction, non-linear piezoelectrici-
ty, and non-linear model with InxGa(1-x)P/GaP [111]. 

  
5 Conclusion  
A complete set of non-linear electro-elastic constants 

has been calculated for InP and GaP zinc-blende bulk ma-
terials using Density Functional Theory. A symmetry 
based analytical model is proposed for the non-linear stress 
and polarization in biaxially strained heterostructures on 

[111] substrates. Numerical results for InxGa(1-x)P/GaP 
[111] quantum wells indicate that non-linear piezoelectrici-
ty is the most important contribution to polarization, but 
electrostriction has to be taken into account in a coupled 
non-linear model. Non linear elasticity yields a significant 
correction for strain calculation. 
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