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Abstract

The contact between two particles of ice is studied experimentally and modeled.

Experiments on the gradual indentation of a single or on two monocrystalline

cylinders of ice demonstrate the e�ect of the relative orientation of their basal

planes with the loading axis. Using polarized light and Digital Image Corre-

lation, the main deformation mechanisms are documented. Experimental ob-

servations show the strong anisotropy of deformation, with strain localization

into shear bands, corresponding to basal gliding of dislocations. When the ro-

tation of cylinders is hindered by a large initial contact size, a simple model is

proposed. It is based on indentation theory and takes into account the prefe-

rential viscoplastic deformation on the basal plane. The model form is validated

by experimental data and by �nite element simulations that incorporate the

transverse isotropic law of an ice crystal.

Keywords: Ice, Contact mechanics, Anisotropy, Digital Image Correlation,

Finite Element Method

1. Introduction

It has been suggested that dislocation creep is the main deformation mecha-

nism responsible for the densi�cation of �rn at low strain-rates (<10−5sec−1)

[1, 2]. It is taken into account in densi�cation models of �rn for which den-

Email address: christophe.martin@grenoble-inp.fr (Christophe L. Martin)

Preprint submitted to Acta Materialia 24 avril 2017



sity is in the range 0.55−0.84 gcm−3 (relative density in the range 0.60-0.92,

ρice =0.917 gcm−3)[3, 4]. However, some other mechanisms have been also pro-

posed for �rn densi�cation. These mechanisms are grain rearrangement, grain-

boundary sliding, sublimation, recrystallization, volume and surface di�usion

[5, 6, 7].

The relative importance of these mechanisms is still an open question and

depends on the densi�cation stage considered. A common feature of these pro-

posed mechanisms is that they do not take into account the anisotropic visco-

plastic behaviour of an ice crystal . However, Rolland du Roscoat et al. [8], using

Di�raction Contrast Tomography on in-situ compression experiments, have de-

monstrated its importance in the intragranular deformation of large-grained

samples during densi�cation. The hexagonal structure of ice makes dislocations

slip mainly on basal planes. This leads to a strong viscoplastic anisotropy : for

a given applied stress, a crystal of ice deforms approximately 103 times faster

in the basal plane than in any other planes [9, 10].

Additionally, in the low range of density, the granular nature of snow was

recognized very early on by analytical models that represented snow as a col-

lection of grains bonded by solid necks [11]. More recently, Theile et al. [7] cou-

pled tomography with Finite Element Modeling, meshing each grain of ice by a

beam element. Ice anisotropy was taken into account by the use of orientation-

dependent material parameters in the �ow law. The use of beams was justi�ed

by the density range (0.20 to 0.35 gcm−3) studied by the authors, which quali�es

the material as low-density snow. In this range of densities, the Discrete Ele-

ment Method (DEM) is also a tool of choice since it allows the discrete nature

of snow to be accounted for. Hagenmuller et al. [12], also proposed to couple

tomography reconstructed volumes of snow with simulations. Representing ice

particles as rigid clumps of spheres, they showed that the compression behavior

of snow is mainly controlled by the actual relative density. Snow densi�cation

may also be tackled using homogenization techniques as in [13], where again

X-ray tomography images were used as initial microstructures.

At the other extreme of density, for deep dense ice core, the coupling bet-
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ween anisotropy (fabrics) and the state of stress, and their strong impact on ice

�ow has received much attention (see for example [14, 15, 16]). In particular,

the e�ect of dynamic recrystallization that accommodates deformation is well

documented [17].

In between these two extremes, in the intermediate range of relative density

(0.60-0.90), the e�ect of ice anisotropy on the densi�cation of �rn has received

much less attention. In that density range, �rn may be considered as a material

that consists of crystallites of ice in contact with each other. Firn bears some

important granular characteristics such as grain rearrangement, grain rotation

and macroscopic densi�cation under compressive stresses. It may be advanta-

geously modeled as a set of discrete grains that interact with each other through

their contacts. The modeling of such a granular packing requires a good unders-

tanding of the contact forces that arise upon densi�cation. However, a reliable

contact law is still in need to account for the mutual indentation of ice particles.

The main ingredients of such a contact law should incorporate viscoplasticity,

ice anisotropy, and size e�ects. Ideally, the contact law should be simple enough

to allow for its implementation into an analytical model or a DEM code. Thus,

the improvement of current models for �rn densi�cation requires the contact me-

chanics between two grains of ice to be considered in more details, with special

attention to anisotropy.

The aim of this paper is to provide a �rm experimental basis for the deriva-

tion of a simple contact model for ice particles. The article is organized as fol-

lows. In section 2, we present a contact model based on indentation theory that

incorporates explicitly the viscoplastic anisotropy of an ice crystal. In section

3, the diametrical loading of one or two monocrystalline ice cylinders provides

the necessary data to understand the phenomenology of ice particle indentation

with particular consideration for anisotropy. This section also presents a partial

validation of the model proposed in section 2. Section 4 uses a 2D FEM simula-

tion in which a transverse isotropic law is used to �nalize the validation of the

analytical model.
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2. Contact model

In this paper, we report on experiments focusing on the indentation of mo-

nocrystalline ice cylinders and in particular on their anisotropic response. The ~c

axis, which de�nes the cristallographic orientation of an ice crystallite, is perpen-

dicular to the basal plane of the ice hexagonal structure. The elastic behavior of

ice is itself anisotropic. The e�ective Young's modulus varies when it is evaluated

about axes that are rotated away from the ~c axis direction. Still, the maximum

value (along the ~c axis) is only 30% larger than the minimum [18]. At the rather

high temperatures considered here, elasticity may be neglected. Indeed, ice mo-

nocrystals undergo plastic deformation when a shear stress as low as 0.02 MPa

is imposed on the basal plane[19, 20]. Easy basal slip can occur in the three

potential glide directions on the basal plane. Thus the analysis of experimental

results uses a constitutive equation that accounts only for the viscoplastic aniso-

tropy of ice crystals [21] by modeling ice as a transversely isotropic medium. It

has been shown that this simple model captures the essential features of defor-

ming ice single crystals [22]. Further simpli�cation is achieved in this model by

assuming a Newtonian behaviour for the ice crystallite. The literature indicates

power-law exponents less than 2.5 for single crystals [9, 10, 20, 23].

The viscoplatic response of the crystal submitted to a uniaxial stress test

with axial stress σ and axial strain-rate ε̇ writes [21] :

σ = 2µbasal (4α− 1) f (θ)
−1
ε̇n (1)

where µbasal is a material viscosity parameter for shear in the basal plane, θ

is the angle between the ~c axis and the loading axis (Fig. 1), and f (θ) is a π
2

periodic function :

f (θ) = 3 cos4 θ + 2α sin4 θ +
2 (4α− 1)− β

β
sin2 θ cos2 θ − cos2 θ (2)

where α is the ratio of the axial viscosity along the ~c-axis to the axial viscosity

normal to the ~c-axis ; β is the ratio of the shear viscosity parallel to the basal

plane to the shear viscosity in the basal plane (µbasal). Axial viscosities are
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similar along the ~c-axis and the basal plane [22], thus α is approximated in the

remaining of this paper to unity leading to a simple expression for f (θ) :

f (θ) = 2

(
1 + 3

1− β
β

sin2 θ cos2 θ

)
(3)

A value β = 0.01 was proposed in [22] to �t, within the approximation of a New-

tonian behaviour (n = 1), the experimental data obtained on a monocrystalline

inclusion embedded in a �ne-grained isotropic ice matrix. Whatever its initial

crystallographic orientation, the shape of the initially circular inclusion, became

ellipsoidal as axial strain increased. The β = 0.01 value allowed for a reasonable

agreement between observed and computed evolutions of the deformed ellipse

aspect ratio and of the crystallographic orientation.

Figure 1b shows that the minima of f (θ) are located at θ = 0 and θ =

π/2 while the maximum arises for θ = π/4. In other words, the creep rate is

maximum when the ~c-axis is oriented at θ = π/4 with the axial loading axis. For

a given applied stress, Eq. (3) shows that the maximum creep rate is
3 + β

4β
times

the creep rate of the least favorable ~c orientation (θ = 0, π/2). For β = 0.01,

this ratio is approximately 75, indicating the large anisotropy experienced by

ice crystallites.

Indentation laws are generally written for spherical particles, taking advan-

tage of spherical symmetries for the derivation. For viscoplastic isotropic ma-

terials, Storåkers et al. [24] have for example proposed analytical contact laws

that give the indentation load on a spherical body as a function of the viscoplas-

tic material properties. More importantly for the problem treated here, these

authors have resolved the contact problem between two dissimilar viscoplastic

bodies i and j with constitutive equations of the form :

σ = σiε̇
n (4)

where the material parameter σi pertains to material i but the creep index n is

identical for the two materials. Based on indentation theory and on von Mises

isotropic �ow theory, the indentation load, Nv, writes for two spherical particles
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of radius Ri and Rj (R∗ = RiRj/ (Ri +Rj))[24, 25] :

Nv = χ
(
σ

−1
n
i + σ

−1
n
j

)−n
(2R∗)(

1−n
2 ) h(1−n

2 )ḣn (5)

where h is the indentation and ḣ is the normal rate of approach of the two

particles and χ is a geometric factor with no unit. Nv is positive in compression(
ḣ > 0

)
. For two particles i and j, which ~c axis make angles θi and θj with the

contact normal, the formulation of Storåkers et al. applied to Eq. (1) leads to :

Nv = 2χµbasal (4α− 1) (f (θi)
n

+ f (θj)
n
)
−n

(2R∗)(
1−n

2 ) h(1−n
2 )ḣn (6)

Eq. (6) is the general contact law of two particles which anisotropic behaviour

is given by Eq. (1). Now specializing the problem to a Newtonian material and

for two particles of identical radius R and a small indentation (h � R), the

contact radius, a (Fig. 1), may be approximated by :

a2 = Rh (7)

Introducing the area of contact, A = πa2, Eq. (6) rewrites (α = 1), :

Nv = 6χµbasal (f (θi) + f (θj))
−1

(
A

π

)1/2

ḣ (8)

The aim of this work is to analyze the applicability of Eqs. (3) and (8) to

the indentation problem of two ice particles having arbitrary ~c orientations. The

general formulation of Storåkers et al. [25] applies to an indenter of arbitrary

pro�le. However, Eq. (6) has only been derived for axisymmetric contact condi-

tions (typically spheres or �at punches). From an experimental point of view, it

is too complex a task to machine or form spherical monocrystalline ice particles.

Instead, for practical reasons, we opt for cylindrical geometry. The full deriva-

tion of Storåkers et al. formulation for the problem of two indenting cylinders

is beyond the scope of this paper (see [26] for the elastic problem of two iden-

tical indenting cylinders). Still, we aim at evaluating the suitability of Eq. (8)

to the 2-dimensional problem of two cylinders indenting each other and forming

a contact of radius a and area of contact A = 2aL with L the cylinder length.

The rationale for cylinders also rests on the pluses of a 2D con�guration, which
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allows the propagation of basal slips to be visualized by polarized light (section

3.2), and strains to be quanti�ed by Digital Image Correlation (section 3.3).

These observations would be much more di�cult with spheres. Finite Element

simulations using the open source code Elmer/Ice [27] complement the expe-

rimental investigation and allow for a direct comparison with Eq. (8). These

simulations are carried out on a cylindrical geometry (section 4).

3. Experimental indentation of ice cylinders

3.1. Methods

Diametrical loading tests were carried out either on a single cylinder or on

two cylinders (Fig. 2). Cylinders (diameter : 20 mm ± 0.05 mm, length : 8 mm

± 0.05 mm) were made of single crystals of ice, which were slowly grown in a

crystallizer on top of a cooling device [28]. The ~c axis is parallel to the planar

faces of the cylinder (the out-of-plane scatter is ±2◦) to ensure plane stress

conditions. The out-of-plane strain (εxx) is negligible. Various θ angles were

selected to investigate the e�ect of the crystal orientation on the viscoplastic

contact behavior. The creep test set up is detailed in Mansuy et al. [29, 30]

and is sketched in �gure 2. A constant load was applied on the diameter of

the samples and the maximum applied load (109 N ± 1 N) was small enough to

avoid fracture. Tests lasting typically �ve hours were carried out in a cold room

at −10 ◦C (±1 ◦C).

Ice samples are placed between two plates of glass to avoid sublimation and

to ensure plane strain conditions. Horizontal black marks allow the samples to

be correctly positioned during the tests. Crossed polarizers were used to follow

the evolution of basal slips. Images were recorded and analyzed by ImageJ [31]

to compute logarithmic strains and rotations. The error on strain was evaluated

to be of the order of 0.3% for the single cylinder con�guration, and less than

0.1% for the two-cylinders con�guration. For some tests with two cylinders, both

cylinders were truncated to mimic indented particles and to limit rotation of the
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~c axis during loading. The initial con�guration is characterized by the ratio a0
R ,

where 2a0 is the initial length of the truncated contact (Fig. 2b).

Some of the two-cylinders con�guration experiments were analyzed by Di-

gital Image Correlation (DIC) to quantify the strain �eld. The surface of ice

samples was slightly scratched with glass paper and a speckle (shoe polish)

was applied to obtain a proper grey level and a su�cient contrast for the DIC

analysis. A correct light-level was obtained by using two LED lamps with the ad-

vantage of limiting brilliance, enabling su�cient contrast and avoiding shadows.

This method was already successfully used on polycrystalline ice by Grennerat

et al. [32] and recently by Chauve et al. [33]. Strain �elds are extracted using

the CMV software [34] using a plane strain hypothesis. Details on strain cal-

culations can be found in [35]. Integration schemes number 2 or 3 were chosen

[34, 35] to ensure a correct identi�cation of local strains with good accuracy.

Biquintic subpixel optimization was performed to improve the �nal correlation

output.

3.2. Diametrical loading on a single cylinder

Polarised light allows for the observation and the identi�cation of the de-

formation by basal slips. A color evolution near the contact is detected when

deformation initiates in the sample (Fig. 3). The deformation is strongly hete-

rogeneous. However, because test conditions are symmetric, heterogeneities are

also symmetric with respect to the cylinder center. The strain is localized in slip

bands along basal planes. Two perpendicular lines appear for each contact point

in red, contrasting with the undeformed green color. Slip lines are propagating

through the crystal perpendicularly to the ~c-axis direction (Fig. 3). The bottom

contact in Images (A2) and (A3) could indicate an additional slip line parallel to

the ~c-axis direction. However, a closer examination reveals that these patterns

are in fact short slip lines that develop perpendicular to the ~c-axis. These lines

fully develop in images (A4) and (A5).

Since the basal plane provides only two independent systems, additional

degrees of freedom are necessary to accommodate arbitrary loading. In ice, non-
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basal planes are seldom activated, thus requiring other mechanisms [19]. For

example, recent studies [33, 36] emphasized that recrystallisation could occur

even at low strain (less than 1 %) or low stress (0.5 MPa) at grain boundaries

and triple junctions of polycrystalline ice. Moreover, despite being commonly

observed in hexagonal metals, twinning is excluded in ice. Kink and bending

bands on the other hand can appear and were observed by Mansuy et al. on

polycrystalline ice deformed with our experimental set up [30, 37]. In our loading

conditions, the cylinder has few constraints and can deform easily by shear on

basal planes except for speci�c values of θ (0◦ and 90◦). This peculiar condition

is well illustrated by sample C in Fig. 3. For all other θ values the cylinder

can deform freely. Melting is another candidate for strain accommodation. It

may have occurred as large stress concentration may develop below the contact

points. The melting point temperature decreases by about 0.1◦ C for every

1 MPa [10]. A 100 MPa stress would thus be necessary to trigger melting under

contacts at −10◦ C.

In any case, all these mechanisms (recrystallisation, kink and bending bands,

and melting) would have left a clear signature that was not observed with po-

larised light. Note that bright spots at contact points on sample B are linked

to an image contrast enhancement processing. Hence, dislocation motion on

{0001} planes should be the main strain accommodation mechanism in our ex-

periment. This should mainly occur by screw dislocations with Burgers vector(
a
3

)
< 112̄0 > as these are the least energetic dislocation lines [19]

We observed a clear evolution of the orientation of the ~c-axis during the test

(Fig. 3). Whatever the θ value, the ~c-axis rotates towards the loading direction

in agreement with the compression of a single crystal [38]. For example, crystal

(A) has rotated by approximately 10◦ between its initial state (A1) and its

(A5) state . In accordance with crystal anisotropy, strain is primarily limited

when the ~c-axis is perpendicular or parallel to the loading direction as shown

by sample (C).

Fig. 4a quantitatively con�rms the qualitative observations of Fig. 3. Fig. 4a

plots the rotation ∆θ of the ~c-axis angle against time for all tested samples in
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the single-cylinder con�guration. Relative uncertainties are shown only for the

60◦ curves but are representative of the other curves (typically ∆(∆θ) < 4◦).

Signi�cant rotation is observed for samples with loads of the order of 100 N

as demonstrated by Fig. 3. For these samples, basal glide propagates from the

contact point (CP) through the whole cylinder. This is due to the heterogeneous

stress �eld around CP and to the strong ice crystal anisotropy. Note that the

two samples corresponding to θ = 0◦ and θ = 90◦ lead to ∆θ = 0◦ even for very

long times (Fig. 3) .

Fig. 5 sketches the proposed main deformation mechanisms encountered for

small and large initial θ angles. Cylinders are sheared by two localized bands to

form three di�erent fragments. The central fragment is contained between the

contact points and the �rst basal planes that shear (Fig. 3). The three fragments

di�er in size depending on initial θ angle. The central fragment contains all

the planes that are gliding during the deformation. The other two fragments

are simply pushed away by the rigid planes. For small θ values, two small caps

quickly form. This is illustrative of sample (A) in Fig. 3. In that case, the rotation

initiates early (Fig. 4a) but saturates further on since the small cap hinders

rotation. For large θ values, two large caps gradually form. This is illustrative of

sample (B) in Fig. 3. The rotation takes more time to initiate since dislocations

need to propagate on a larger distance along the large cap. Once initiated, the

rotation is facilitated by the geometry of the two large caps. Thus, the ~c-axis

rotates towards the loading direction. In that �nal con�guration, the fragments

get stuck and there is no more driving force for rotation. Therefore, the rotation

reaches its maximum and stays constant with time.

Fig. 4b shows the strain evolution in the loading direction z. It follows a

pattern which is very similar to the pattern of Fig. 4a. It indicates that for a ~c-

axis oriented parallel (θ = 0◦) or normal (θ = 90◦) to the loading axis, no strain

is observed although a non-negligible load (50 N) is applied. We observed that

those samples exhibited less than 1 % of axial strain even after more than 17

hours. Similarly, those sample exhibited negligible rotation. Fig. 4a and b also

demonstrate the e�ect of the applied load intensity with increasing rotation and
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strain for increasing loads for a given θ value.

3.3. Diametrical loading on two cylinders

Tests carried out with the two-cylinders con�guration are in qualitative

agreement with the observations gathered on the single cylinder con�guration.

For this con�guration, we were able to evaluate the full strain �eld by DIC on

the face of the two cylinders (Fig. 6). In particular, it is possible to obtain the

shear strain in the basal plane (εbc). The θ values of each sample were selec-

ted using polarized light outside the set-up. Once installed in the set-up, these

values were con�rmed by the observation of the basal plane angles, which are

assumed to correspond to the maximum shearing. This hypothesis is validated

by the very small values of the diagonal components of the strain tensor in the

crystallographic axes reference (~b,~c), such as εcc as illustrated in Fig. 6a. These

low eigenvalues of strain obtained by DIC are associated to the resolved shear

stress needed to activate non-basal glide, which is 60 times greater than for the

basal plane activation for the same strain rate [9, 10].

As already observed in the single-cylinder con�guration, Figs. 6b-d show

strong heterogeneities in shear strain. These �gures illustrate that shearing in

localized bands becomes very large with increasing strain. For example, Fig.

6d shows that the maximum value of the shear strain in the basal plane εbc at

200 min is more than 40%, while the macroscopic strain εzz is only 10%.

We observed that for small strains the cylinder with the most disorientated

~c-axis (j cylinder) consistently exhibits localized shear strain around its contact

with the other cylinder (Fig. 6b). For larger strains, heterogeneities that start

from loaded contact points or from the extremities of the neck rapidly overthrow

any other heterogeneities (Figs. 6c-d).

For the top cylinder (i), which exhibits a small θ angle, we observed that a

strong shear band always develops from the contact with the rigid plane. The

maximum shear strain is consistently larger in the small θ angle cylinder as

compared to the maximum shear strain in the large θ angle cylinder. The width

of the shear band in cylinder i is clearly larger than the one of the bottom

11



cylinder j. This is in agreement with experiments involving only one cylinder

where we observed large peripheral fragments for large θ angles. This con�rms

that the size of the shear bands depends primarily on the ~c-axis orientation,

whatever the con�guration.

Fig. 7 groups the rotation ∆θ of the ~c-axis angle against time for samples

tested either with point contact between the two cylinders (a0R = 0) or with �nite

contact size (a0R = 0.2, 0.32, 0.35). The imposed load for all samples is 54 N. Fig.

7 only plots ∆θ for the cylinder that experiences maximum rotation but the

same qualitative conclusions can be drawn for others. Although error bars on

∆θ are rather large (Fig. 4a), machining an initial �nite neck size tends to

decrease the ability of cylinders to rotate. This may re�ect a more realistic state

for which multiple contacts between ice crystals exist in the �rn. Such contacts

would have enlarged over time through sintering mechanisms and viscoplastic

deformation to form necks with �nite size.

3.4. Neck size e�ect

When rotation is hindered by an initially large neck size, Eq. (8) should allow

for a simple relation between strain and load for a given set of angles θi and θj .

In this section, we show that experimental data on truncated cylinders support

such a relation. For small axial strain εzz, the initial area of contact A0 = 2a0L

is assumed to remain constant and the ratio of actual to initial indentation is :

h

h0
= 1 + 2

R

h0
εzz (9)

with εzz positive in compression. Integrating between times 0 and t for a constant

load test (creep), Eq. (8) leads to :

εzz

(a0
R

)1/2

=
(f (θi) + f (θj))

(π
2

)1/2

12χµbasalR3/2L1/2
Nvt (10)

Fig. 8 plots the product εzz
(
a0
R

)1/2
against time for three tests with a0

R =

0.2, 0.32, 0.35 for a given load (53 N) and a given set of angles θi (θi = 30◦,

θj = 65◦). Fig. 8 shows that the three tests fall on a master curve for small
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strains (or times). For times smaller than 80 min, the master curve exhibits a

linear portion. Using the slope of this linear portion, Eq. (10), which is only valid

for small strains, allows for an estimation of the product χµbasal. Experimental

data points lead to χµbasal ≈ 4 1012 Pa s. Although the exact value of the

geometric parameter χ is di�cult to ascertain for two cylinders, we note that

for two indenting Newtonian spheres, χ ≈ 2 [24]. The viscosity µbasal at −10 ◦C

may be estimated from the literature for the stress range of interest here at the

contact (0.1 - 10 MPa). It is of the order of 0.5 to 5.1012 Pa s [9, 22], and thus

in good accordance with the value of the product χµbasal found here. In the

following an approximate basal viscosity µbasal = 1 1012 Pa s is chosen.

4. Comparison between 2D FEM simulations and experiments

The aim of this section is to complement the experimental validation of Eq.

(8) by speci�cally investigating the e�ect of the θ angle on the normal force

at the contact. The Finite Element Method (FEM) with the Elmer/ice open-

source code was used to simulate some of the experiments with two truncated

cylinders. The model implemented in Elmer/Ice solves the Stokes equations, i.e.

neglecting inertial terms, with the full transverse isotropic law of an ice crystal

as proposed by Meyssonnier and Philip [21]. It simpli�es to Eq. (1) for a uniaxial

stress state of compression. In accordance with the analytical model, the values

of parameters α and β are set to 1. and 0.01, respectively. Gillet-Chaulet et

al. [39] have studied the e�ect of those parameters on the �ow response of ice.

Details on the model and on the numerical methods can be found in [40, 41].

Here, we use the initial angle orientation of the two ~c vectors de�ning the

contacting cylinders as input, together with the geometry of the truncated

contact. Cylinders were meshed using triangular elements with approximate

size of 0.5 mm. No speci�c mesh re�nement was used close to the contact zone.

A displacement is imposed on the upper boundary to obtain a compressive force

(54 N) with no lateral constraint. Note that neither the cylinder geometry nor

the crystallographic orientation evolve for a given simulation.
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Fig. 9 shows the comparison between the FEM simulated and the DIC com-

puted strain-rate �elds. Since ~c vectors are given as input to the Elmer/ice

code, the orientation of the shear bands coincides with the experimental one,

as it should. More interestingly, FEM simulations predict satisfactorily the po-

sition and the width of the shear bands as compared to the DIC results. In

particular, the FEM simulations reproduce the signi�cant e�ect of the contact

on the spreading of the shear band. For example, considering the bottom cylin-

der, the shear band starts from point A and develops leftward until it encounters

contact point B. This shear band is relatively thick due to the combination of

geometrical and orientation constraints. In contrast, the shear band on the top

cylinder is much thinner due to the ~c axis being nearly perpendicular to the

load axis. Note that for the two bands, the strain-rate value becomes null at the

extremities of the contact.

Since DIC strain rates are calculated using incremental calculation of a strain

map over time, they are far less resolved than strain maps which are calculated

from the initial con�guration (Fig. 6). Thus, the comparison between FEM

simulations and experimental strain rate is merely qualitative. However, the

strain-rate magnitudes of FEM and DIC are in reasonable agreement for the

chosen value µbasal = 1 1012 Pa s .

A second set of FEM simulations was carried out to con�rm the validity

of the analytical formulation proposed in Eq. (8). FEM calculations were per-

formed for two truncated cylinders with various pairs of (θi, θj) angles for four

values of a0R (0.141, 0.2, 0.3, 0.4). Fig. 10 plots the adimensional rate of approach

of the two cylinders obtained by FEM simulations :

˜̇
h =

A
1/2
0 µbasal
Nv

ḣ (11)

Using Eq. (8), the analytical expression of
˜̇
h rewrites :

˜̇
h =

f (θi) + f (θj)

6χ
π1/2 (12)

Fig. 10 compares the analytical expression to the FEM simulations. In this

�gure, the angle θj of the vector ~c that characterizes the bottom cylinder is set
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to 0 and π/4 while the angle θi is varied between 0 and π/2 by π/20 steps, taking

advantage of the π/2 periodicity of the f (θ) function. Note that χ was used as a

�tting parameter to minimize by a least square method the error between Eqs.

(11) and (12) (µbasal = 1 1012 Pa s). A value χ ≈ 16 was found to minimize the

error. Even though Fig. 10 only shows the comparison for θj = 0 and θj = π/4,

the �t has been conducted on a much larger set of θj values (11 θi× 11 θj =121

pairs) for the four a0/R values studied here.

The match between Eqs. (11) and (12) is far from perfect with maximum

error for the smallest a0/R value and θj = π/4 of the order of 20% and negligible

errors for θj = 0. Still the comparison is satisfactory in that the general shape

of the f (θ) function is well retrieved.

5. Concluding remarks

We have shown that the viscoplastic contact response between monocrystal-

line ice particles exhibits strong anisotropy. This anisotropy directly originates

from the hexagonal structure of ice. When rotation is not hindered, the phe-

nomenology of the indentation is rather complex, involving the propagation

of basal slips and the formation of ice 'fragments' within the particle during

loading. Localization of shear bands is the major strain mechanism. Light po-

larization and DIC are well suited to capture these strong heterogeneities that

arise mainly parallel to the basal planes. These strain heterogeneities are coupled

with a rotation of the ~c axis towards the loading axis.

When rotation is limited by a large contact area, the indentation evolution of

two particles with arbitrary ~c axis orientation is more tractable. In that case, the

simple analytical model presented here provides a means of extrapolating the

contact response of strongly anisotropic ice particles. The simple forms of Eq.

(3), and Eq. (8) have been partially validated by a combination of experiments

on truncated cylinders and by 2D FEM calculations. In particular, the role of

contact size and of the crystallographic disorientation between the particles are

correctly rendered.
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It should be clear that the Newtonian law used here for single ice crystals

is only a simplifying assumption which may not re�ect the correct strain-rate

dependency. Power-law exponent of 1.5 to 2.5 are typically mentioned in the

literature [9, 20]. For polycrystalline ice, both Newtonian and non-Newtonian

behaviors have been observed [42, 43]. In any case, it would be interesting to

generalize this study to non-Newtonian behavior and investigate the e�ect of

n > 1 in Eq. (5) on the shape of the
˜̇
h versus θi curves (Fig. 10).

As stated above, the proposed analytical model is only valid when rotation

may be neglected. Fortunately, this assumption is appropriate in many cases

that are relevant for �rn at intermediate relative density (above 0.60). In that

density range, the �rn still exhibits a particulate structure with ice particles

contacting each other. In the densifying �rn, a representative ice particle is in

contact with an increasing number of neighboring particles. Assuming a sphe-

rical shape, the coordination number should be larger than �ve for a relative

density larger than 0.6. This should safely ensure a limited amount of rotation

at the contact scale. Thus, we believe that the simple equations proposed here

should be useful for applications where the viscoplastic anisotropy of the mu-

tual indentation of ice particles needs to be taken into account. Such equations

may be used in analytical models or in Discrete Element Method simulations

that could predict �rn densi�cation with the anisotropy of ice crystals taken

into account. Such models or numerical simulations should shed new light on

the problem of pore closure and thus should improve understanding of ice core

records of past atmospheric composition. In particular, we have demonstrated

here that contacts between ice particles in the �rn behave very di�erently depen-

ding on the orientation of particles. The �rn microstructure, in the intermediate

relative density range, should re�ect somehow this contact network, with some

contacts experiencing large deformation while others nearly none.

More generally, the methodology described here can be applied to other

strongly anisotropic particulate materials such as magnesium, zinc, or titanium

powders. The macroscopic behaviour of those important engineering materials

is well described by a transverse isotropic law. The form proposed in Eqs. (1)
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and (2) remains valid. Depending on the relative weight of basal, prismatic

or pyramidal gliding mechanisms, the values of the µbasal and of the α and β

parameters in Eq. (2) may di�er. Still, Eq. (6) o�ers a useful tool to model the

collective behaviour of strongly anisotropic powders.
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Figure 1: (a) Schematic representation of the anisotropic contact law between two indented

spheres. (~bi, ~ci) is the local reference of the ice crystal i. a0 is the initial contact radius (Eq.

7) (b) Evolution with the angle θ of orientation function f given by Eq. (2) for α = 1 and

β = 0.01.
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Figure 2: Experimental diametrical loading set-ups with ~c axis parallel to the planar surface

of cylinders. Crossed polarisers may be placed in front and behind the set-up. a) Single cylinder

con�guration. b) Double cylinder con�guration with initial contact length 2a0. c) Photo of a

typical monocrystalline ice cylinder.
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Sample A

45°-105N

60°-109N

Sample B

0°-50N

Sample C

Figure 3: Evolution of the propagation of basal slips under polarized light for three di�erent

initial orientations (A : 45◦±2◦, B : 60◦±2◦, C : 0◦±2◦) and various applied loads. Cylinder

(A1) is the crystal just before loading. The dashed line indicates the loading direction. Strain

localization is shown at Contact Points (CP) on (A2). (A3) and (A4) illustrate the propagation

of slips through the crystal with the red areas spreading perpendicular to the ~c-axis. (A4) shows

the activation of multiple basal slip planes. (A5) shows an entire cap sliding (area SZ, Shearing

Zone). Cylinder (B) exempli�es a condition for which the rotation is signi�cant. Cylinder (C)

exhibits negligible strain and rotation of the ~c-axis even for very long times.
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Figure 4: Evolution of the (a) rotation angle ∆θ and (b) strain εzz against time for mono-

crystalline cylinders of ice (single cylinder con�guration). Samples are submitted to various

loads and di�erent initial angles of the ~c-axis with respect to the load direction are tested.

Strain is positive in compression. Error bars are shown only for sample B for clarity. Black

markers A, B, C relate to observations in �gure 3. Sample C2 is outside the time scale (56 h).

The two samples corresponding to θ = 0◦ and θ = 90◦ lead to ∆θ = 0◦.
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Figure 5: Schematics of the deformation process for the cylinders with a (a) small θ and a

(b) large θ.
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Figure 6: Strain maps (in %) in the local reference (~b,~c) obtained by DIC analysis (see

Fig. 1a), considering that basal planes are parallel to the maximum shearing. Applied load :

53 N, initial orientations : θi = 30◦, θj = 295◦. Initial contact size : a0
R

= 0.20. (a) : strain

εcc at 200 min. (b-d) : shear strain in the basal plane εbc at di�erent times : (b) 20 min, (c)

120 min and (d) 200 min. The gage length for this test is 504µm ± 2µm and the resolution is

12.60µm/pixel ± 0.05µm/pixel (integration scheme 2 [35]).
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Figure 7: Evolution of the disorientation of θ with the indendation for the cylinder that

turns the most in two-cylinders con�guration experiments (load 54 N). One can notice that

maximum rotations for cylinders with initial neck size is lower than without neck. In other

terms, the blue lines come from experiments in which cylinders rotate independently of one

another in point contact con�gurations, while the red lines show that rotation is hindered

because of the contact plane.
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a creep load of 53 N. Tests are carried out for a given set of (θi, θj) angles (see inset) for three

di�erent values of a0
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. Maximum macroscopic strains represented here are εzz = 0.141, 0.084
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Figure 9: Strain rate �eld ε̇zz (s−1) at 80 minutes under 54 N for θinitial(i) = 75◦ and

θinitial(j) = 63◦. a) Finite Element simulation results with µbasal = 1 1012 Pa s and b) DIC

results ε̇zz . The gage length for this test is 864µm ± 2 µm and the resolution is 21.60µm/pixel

± 0.05µm/pixel (integration scheme 2 [35]).
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Figure 10: Evolution of the adimensional indentation rate ˜̇
h against θi for four values of

a0/R. Comparison of ˜̇
h given by �nite elements simulations (Eq. (11)) and by the anisotropic

contact model (Eq. (12)) for θj = 0 (red dotted curves) and θj = π/4 (blue plain curves). All

curves are π/2 periodic.
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