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SUMMARY

This paper describes a selective mass scaling (SMS) method which is designed for the analysis of wave
propagation problems in nearly incompressible materials. The incompressibility of materials leads to a
high value of the compressional wave speed which makes the time step extremely small in explicit
time integration method. The proposed SMS method selects the eigenfrequencies related to volumetric
deformation modes to decrease them, while it keeps the shear eigenmodes unchanged. This makes the time
step no longer limited by the compressional wave speed but by the shear wave speed. A significant reduction
of CPU time is obtained with a good accuracy for transient problems in small strains on free or largely
prestressed media.
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2 W. YE ET AL.

1. INTRODUCTION

More and more finite element analysis (FEA) are used for surgical simulations [1, 2] and bio-

mechanical simulations [3]. Many of them are carried out in dynamic domain, some even need

transient analysis. As a consequence, a fast and high-quality time integration tool is valuable.

Explicit time integration has shown its good performance in bio-mechanical domain thanks to its

robustness for complex nonlinear problems.

The main limitation of the explicit time integration method (typically the central difference

scheme) is that the size of time step is limited, since the algorithm is only conditionally stable.

For a system with no damping, the critical time step takes the form:

Δtcrit ≤
2

ωmax
(1)

where ωmax is the maximum frequency of the assembled mesh. This equation is usually replaced

by the following simplified expression for engineering applications:

Δtcrit ≤
Le
min

cL
, cL =

√
K + 4

3G

ρ
(2)

where Le
min is the characteristic length of the smallest element, cL the compressional wave speed

in the solid, K the bulk modulus, G the shear modulus and ρ the density. This equation means that

the time step must be smaller than the time required by a compressional stress wave to cross the

smallest element of the mesh. Hence the time step is controlled by the compressional wave speed.

For bio-materials which are nearly incompressible, this leads to a very small time step.

One approach used to amplify the critical time step for explicit time integration is the selective

mass scaling (SMS) method. The basic idea is to add mass to reduce eigenfrequencies in high

frequency range while changing the lower ones as little as possible [4].

Some SMS methods focus on thin wall structures, see in [5, 6, 7]. In this case, the time step is

limited by the small thickness, the selective mass scaling consists in increasing the masses associated

with the local rotations. Olovsson et al.[5] propose an acceleration filter for solid elements in

order to reduce the relative motion among the nodes in thickness direction. Cocchetti et al.[6, 7]

consider solid-shell elements, the displacements of nodes are represented by a linear transformation

on the middle plane, then mass is added on the “deformation” of middle plane to decrease the

high frequencies. These methods keep the scaled mass matrix in lumped form. They have a good

performance for finite rotation and deformation problems. However, these methods can not be used

directly for general 3D structures.

Frı́as et al.[8] propose a method to choose global high eigenfrequencies range by the

proper orthogonal decomposition (POD) method, the mass scaling is applied only on the high

eigenfrequencies. This method also keeps the lumped mass matrix but a pre-calculation with normal

time steps is required at the beginning of simulations to create the POD space.

A number of SMS methods are proposed for general utilization for which no pre-calculation is

required. For example, stiffness proportional method is described in [4, 9]. This method is accurate

in numerous applications and it preserves the eigenmodes: this can be analytically proven. This

method is referred to as existing SMS method in the present article. Tkachuk and Bischoff [10]

This article is protected by copyright. All rights reserved.
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SMS METHOD FOR SHEAR WAVE PROPAGATION 3

present different strategies to construct the scaled mass matrix, and they prove mathematically that

accurate SMS methods should not distort the eigenmodes of the original systems, which are related

to the eigenspace of stiffness matrix.

For the above mentioned methods [4, 9, 10], the scaled mass matrix can not be lumped. This leads

to a larger CPU time to get the accelerations, especially for non linear problems. One way to avoid

this time consuming step is to directly construct the inverse mass matrix as presented in [11, 12].

Tkachuk and Bischoff [11] propose a general method based on the Hamilton’s principle: the method

shows its accuracy for many problems, but the reduction of computational cost is limited (typically

50%).

To our knowledge, all these SMS methods are developed for inertia dominant problems, but not

for transient dynamic problems. One reason is that the optimal SMS requires the knowledge of mode

distributions in the spectrum [10]. For transient dynamic problems, the response mode distribution

depends on the loading type which may change a lot for each problem. On the other hand, the

amplification of time step is normally not desired for these problems, because the simulation

duration is always short and the number of output requests is not far from the number of time

step.

However, wave propagation in incompressible material is specific. The incompressibility makes

the compressional wave speed much faster than the shear wave speed (typically 3 orders of

magnitude larger for the biological tissues), but hardly any energy transmits by compressional wave.

In other words, almost all strain energy is contained in shear wave propagation. So the time step

required to accurately integrate the global system is much larger than the stable time step which is

limited by the compressional wave.

It is worthy to mention others approaches for dynamic problems for incompressible materials.

Larhiri et al.[13] presented a fractional time-step integration method which treats the compressional

wave through an implicit method but uses an explicit scheme for the shear wave. The stable time

step then depends only on the shear wave speed. The method is then extended to Petrov-Galerkin

formulation to enforce the stabilization [14, 15].

In present work, the SMS method is applied in such a way that the stable time step is driven by

the shear wave speed and no more by the compressional wave speed. The shear eigenmodes and

the volumetric eigenmodes are separated, the mass scaling is then applied only on the volumetric

modes. Selective integration is used to control locking for simple elements. This method results in

a mass matrix which can not be lumped. For geometrically linear problems, the resulting scaled

mass matrix is inverted only once during the whole simulations. Unlike the implicit time integration

methods, no iteration is needed to deal with the material non-linearity. Finally, a significant reduction

of computational costs is obtained with a good accuracy.

This work is presented as follow. Section 2 describes the separation between the shear eigenmodes

and volumetric eigenmode as well as the reduced/selective integration for quadrilateral and

hexahedral elements. Sect. 3 recalls the existing SMS method, then the proposed method is

described. A numerical validation is also included in this section. Some numerical applications

are presented in Sect. 4, and the conclusions are given in Sect. 5.

This article is protected by copyright. All rights reserved.
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2. SEPARATION OF SHEAR AND VOLUMETRIC EIGENMODES

For a linear elastic isotropic material, the constitutive matrix D can be written by two independent

parameters: K for bulk modulus and G for shear modulus. Then it can be divided into a deviatoric

part and a volumetric part as follows:

D = Ddev + Dvol =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G −G −G 0 0 0

−G G −G 0 0 0

−G −G G 0 0 0

0 0 0 G 0 0

0 0 0 0 G 0

0 0 0 0 0 G

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K + 1
3G K + 1

3G K + 1
3G 0 0 0

K + 1
3G K + 1

3G K + 1
3G 0 0 0

K + 1
3G K + 1

3G K + 1
3G 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

Notice that 1
3G appears in Dvol which means that a pure shear deformation also leads pressure

even if there is no volume change, this is known as the Kelvin effect [16]. However, this effect is

only significant for large strain and it can be neglected for nearly incompressible materials for which

K is much larger than G.

Using above expression, the elemental stiffness matrix Ke can also be divided into two parts:

Ke = Ke
S + Ke

L (4a)

=

∫
Ωe

BTDdevBdΩe +

∫
Ωe

BTDvolBdΩe (4b)

where B is the displacement-strain operator, and Ωe is the element integration domain. The two

parts of stiffness matrix (Ke
S and Ke

L) may be integrated by different strategies.

Ke being a symmetric, positive-definite matrix, its spectral expression is:

Ke =

ndof∑
i=1

γe
iΨ

eT
i Ψ

e
i (5)

where ndof is the number of degrees of freedom of the element, γe
i denotes the eigenvalues sorted

in ascending order and Ψe
i are the corresponding eigenvectors. In 2D (resp. 3D), there should be 3

(resp. 6) zeros eigenvalues correspondinh to the 3 (resp. 6) rigid body eigenmodes. It can be seen

that these modes have no contribution on the stiffness. The others eigenmodes (γe
i �= 0) represent

all possible deformations of an element. We will now show that they can be differentiated when

specific integration strategies are employed.

Let us now focus on an ideal four-node square element with unit length side, the eigenvectors

Ψe
i and eigenvalues γe

i can be calculated analytically. We consider the three possible integration

strategies: the reduced integration (R.I.) which uses one Gauss points for both Ke
S and Ke

L; the

selective integration (S.I.) which uses four Gauss points for Ke
S but one point for Ke

L; and the full

integration (F.I.) which uses four points for both Ke
S and Ke

L.

The results are displayed in Tab.I, each element has 8 modes (see in Fig.1): three rigid motion

modes, two hourglass modes, two shear deformation modes and one volumetric deformation mode.

This article is protected by copyright. All rights reserved.
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The eight eigenvectors are all orthogonal to each other. We observe that the eigenvectors are the

same for the three integration methods. In fact, they depend only on the shape of the element. Let

us now consider the eigenvalues: the three integration methods give the same results for the rigid

motions, shear modes and volumetric mode. The shear modes only depend on the shear modulus

G, and the volumetric mode depends on both K and G but K is dominant. The difference appears

at hourglass modes. For reduced integration, the eigenvalues go to zero. It is known that this will

lead spurious deformation in simulations if no stabilization is applied. For selective integration,

the eigenvalues depend only on G, consequently, they will be considered as shear modes in the

following. For full integration, the eigenvalues are a combination of K and G. They can be neither

seen as the volumetric modes nor as the shear modes. For nearly incompressible materials (K � G),

it produces locking problems.

To summarize, for reduced or selective integration, the deformation eigenmodes can be gathered

in one group depending only on shear modulus and one group depending mainly on volumetric

modulus. The conclusion can be extended for irregular elements, but no analytical solution is

available. This is the premise to apply selective mass scaling only on the wanted mode, volumetric

mode in this work. Similar decomposition can be found in [17, 18], where decomposition is realized

modally.

3. SELECTIVE MASS SCALING METHOD

In this section, we present the proposed SMS method which is designed to modify only the

volumetric eigenmode with no change for shear eigenmodes. The method is then numerically

validated by comparing the eigenvalues and eigenvectors between the original system and the scaled

system for a model generated randomly.

3.1. General form of SMS

Most SMS methods consist of defining the new global mass matrix M̄ by the expression

M̄ =
⋃
e

M̄e
, M̄e

= Me + λe (6)

where
⋃

e is the assembly operator over each element, M̄e
is the elemental scaled mass matrix, Me

is the original mass matrix, which is often written in lumped form for the explicit time integration,

and λe is the added artificial mass. The objective of SMS methods is to find an appropriate λe

which reduces the high eigenfrequencies of the system while preserving the eigenmodes in lower

frequency range.

This article is protected by copyright. All rights reserved.
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Now consider the finite element discretized problem having n degrees of freedom, the solution

at time t+Δt computed with the explicit time integration scheme using the scaled mass matrix M̄

writes:

t+ΔtU = tU +Δt tU̇ +
1

2
Δt2 tÜ (7a)

M̄ t+ΔtÜ = t+ΔtR (7b)

t+ΔtU̇ = tU̇ +
1

2
Δt(tÜ +t+Δt Ü) (7c)

where U, U̇, Ü represent the nodal displacements, velocities and accelerations respectively, R is the

nodal residual force.

The change of solver M to M̄ leads to a change of stability limit. One can apply an amplification

factor α to the usual critical time step.

Δt = α Δtcrit (8)

We shall see later how α can be estimated. It is important to note that the scaled mass matrix

cannot be lumped, this would lead the Eq.7b to be computationally costly for large size problems.

However, M̄ can be inverted only once at the beginning of simulations for geometrically linear

problems. The examples in the next section will show that.

3.2. The existing SMS method

Stiffness proportional mass scaling is presented in [4]: it can be seen as the basic method of SMS

family. λe is chosen to be:

λe = βKe, β0 (9)

where Ke is the tangential stiffness matrix, and β is a factor to be determined. The eigenfrequencies

of the scaled system can be obtained analytically (see [4] for details):

ω̄2
i =

ωi
2

1 + βωi
2
, i ∈ {1, ..., n} (10)

where ωi represents the eigenfrequencies of the original system sorted in ascending order, and ω̄i

represents the eigenfrequencies for the scaled system. It can be observed that the high values of the

eigenfrequencies decrease much more than the lower ones while the rigid motion modes are not

affected (eigenfrequency equals 0) .

By applying the above expression for the maximal frequency ωmax, and by considering the Eq.1,

the following expression is obtained to estimate the factor β:

β =
α2 − 1

ω2
max

(11)

Before going into the next section, let us take another way to look the existing method using the

conclusion in section 2. The shear eigenmodes and the volumetric eigenmode are totally separated in

This article is protected by copyright. All rights reserved.
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selective/reduced integration, and the volumetric part has only one eigenmode. Eq.9 can be written

in spectral form:

λe = β(γe
LΨ

e
L
TΨe

L +

nS∑
i=1

γe
SiΨ

e
S
T
i Ψ

e
Si) (12)

where γe
L and Ψe

L are the eigenvalue and eigenvector of volumetric mode, γe
S and Ψe

S are the

eigenvalues and eigenvectors of shear modes (nS is the number of shear modes).

For quadrilateral element, nS = 2 with reduced integration and nS = 4 with selective integration.

For hexahedral 3D element, nS = 6 with reduced integration and nS = 12 with selective integration.

It should be mentioned that the above form is referred to as the local spectral SMS method in [10].

The above expression (Eq.12) leads us to observe that the existing SMS method “selects” to scale

down all the deformation modes (both shear modes and volumetric mode), but not the rigid body

modes: this is why it works well for inertia dominant problems. However, for wave propagation

problems, the deformation modes have the same importance as the rigid motion modes, this method

is not so well suited.

3.3. The proposed SMS method

In the simulations of nearly incompressible materials, the volumetric mode contains very little

energy but leads to spurious high frequencies. For this reason, it is proposed to scale only the

volumetric eigenmode of the stiffness matrix, which writes:

λe = β γe
L Ψe

L
TΨe

L (13)

Using this expression requires calculating the volumetric eigenmode for each element which is

time consuming. For the implementation simplicity, we use λe = βKe
L (Ke

L should be integrated

with one Gauss point).

This method can be regarded as an extension of the existing SMS method, the same equation

(Eq.11) can be used to determine β. Theoretically, choosing β large enough makes volumetric

eigenfrequencies very small. However, as the proposed method does not affect any shear eigenmode,

the stable time step is still limited by the maximum frequency of the shear deformation mode,

denoted by ωS,max. For this reason, the amplification factor α must verify:

1 α
ωmax

ωS,max
(14)

The above equation (Eq.14) requires the knowledge of the eigenfrequencies for the whole model.

This ratio of eigenfrequencies can be simply estimated using the two wave speeds: ωmax

ωS,max
� CL

CS
.

By using the maximum admissible value of α, we can say that the time step is no longer limited

by the compressional wave speed, but the shear wave speed. For nearly incompressible materials,

the two wave speed have a huge difference, α can be very large. In practice, as usual in the pure

explicit method, a safety coefficient is used to take account for mesh distortion and approximation

of eigenfrequencies, which leads α = 0.9CL

CS

This article is protected by copyright. All rights reserved.
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3.4. Validation

In this section, we aim to validate the preservation property of proposed SMS method. The

characteristic equations for the undamped linear systems are:

- For the original system:

(K − ω2M)Φ = 0 (15)

- For the scaled system:

(K − ω̄2M̄)Φ̄ = 0 (16)

where ωi and ω̄i have been introduced in Section 3.2, Φi and Φ̄i represent the corresponding

eigenvectors.

As pointed out previously [4, 10], the premises to achieve accurate solutions with SMS method

are the preservation or small variation of eigenmode values and vectors. The preservation is not

necessarily applying for all eigenmodes, but must be assured for the relevant modes which have

high energy content. In real applications, due to the complexity of structures and various types of

loads, the important eigenmodes are difficult to know a priori. However, nearly incompressible

materials have a specific property, because of the huge difference between bulk modulus and shear

modulus: the structure deforms barely in the volumetric way, almost all the potential energy stores

in shear deformation modes. This is quite universal for all loading.

In order to examine the preservation property of the proposed method, only the eigenmodes

related to shear deformations should be considered. A test model of 50 degrees of freedom is

presented in Fig.2. Considering a 2D plate with 4× 4 elements, the nodes position is given

in a random way. The material parameters are shown in the figure, they correspond to strong

incompressibility, the ratio of the compressional wave speed to the shear wave speed equals 100.

Accordingly, the amplification factor α is set to 90 to ensure stability of the explicit time stepping.

Hence, β = 1.54× 10−7 (Eq.11).

The reasons why an irregular mesh is used are:

• The sensitivity to mesh distortions is checked;

• No symmetric eigenmode will be produced (equal eigenvalue).

The mass matrix M is lumped, and the stiffness matrix K is formed by using selective integration

strategy, with plane strain hypothesis.

3.4.1. Preservation of eigenvalues

Eigenvalues of the test model are calculated respectively for the original unscaled system, the

system scaled by the existing SMS method, and the system scaled by the proposed SMS method.

The results are displayed in Fig.3. The first three eigenvalues which equal 0 are not shown, they

correspond to 3 rigid motion modes.

Fig.3(a) shows that an important jump appears at the 35th mode for the original system (red

points): the eigenvalues experience a huge increase from this point. Herein, the eigenmodes from

4− 34 correspond to shear deformation modes, while modes 35− 50 correspond to volumetric

deformation ones. Notice that there are 16 volumetric modes: this is the number of elements of the

system.

Remark:

This article is protected by copyright. All rights reserved.
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When one replaces K by KL(the volumetric stiffness) in equation Eq.15, only the high

eigenvalues (35− 50 modes) are found. While KS is used, all eigenvalues are small. This

observation confirms the deduction above.

More importantly, the figure (Fig.3(a)) shows that the volumetric eigenvalues obtained by both

SMS methods decrease significantly (up to the same value of shear eigenvalues), while the shear

eigenvalues remain unchanged. A zoom is presented in Fig.3(b): the eigenvalues for the original

system and for the system scaled by the proposed SMS method are the same. However, the existing

SMS method does not match so well. For instance, the eigenvalues are decreased of about 50% than

the original ones. This will introduce notable errors in simulation of shear wave propagations.

3.4.2. Preservation of eigenvectors

As eigenvectors are also affected, a criterion is needed to quantify the eigenvectors distortion.

Thus, ϕi which represents the distortion angle between original system and scaled system for ith

mode is introduced [10]:

ϕi = arccos(
Φ̄iΦi

|Φ̄i||Φi|
) (17)

Fig.4 shows the values of distortion angles for all eigenmodes of the test model. For shear

eigenmode vectors, the two SMS methods have same performance, no distortion is observed. For

volumetric eigenvectors, the existing SMS keeps the mode shapes while the proposed SMS leads

to important distortions. The result about the existing SMS method is coincident with the analytical

solution in [4, 9]. However, it must be mentioned that these distortions have no significant effect in

the solutions, because volumetric modes contain very little energy. Examples will emphasize this

observation in the next section.

In Fig. 5 and 6, three shear eigenvectors and three volumetric eigenvectors are chosen to illustrate

the distortion. For shear eigenvectors, the eigenvectors for the three systems are identical. For

volumetric eigenvectors, the modes of the existing SMS method are the same as those of the original

system, while the proposed SMS method leads to distortions.

We can conclude from the presented test model, that both SMS methods decrease high

eigenfrequencies, which means a larger stable time step can be obtained. The proposed SMS method

keeps both shear eigenvalues and eigenvectors with a good accuracy, but does not preserve the

volumetric eigenvalues and eigenvectors, which barely influences in the simulations. However, the

existing SMS will lead to inaccurate results in simulation of shear dominated transient problems

because the shear eigenvalues are not well preserved.

4. NUMERICAL EXAMPLES

To illustrate the performance of the proposed method, several examples of wave propagation

problems with nearly incompressible elastic materials are presented. The objective is to show that

the proposed SMS method improves greatly the computational speed when compared to the pure

explicit one, while the accuracy is still guaranteed.

This article is protected by copyright. All rights reserved.
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All simulations are carried out by our Finite Element code implemented in Fortran. For the SMS

methods, the algorithm PARDISO [19] is used as the inverse matrix solver.

Selective integration is used in all the examples. Reduced integration is also available, but the

hourglass modes should be carefully controlled.

4.1. Cantilever beam

The first example is a cantilever beam problem, the model is described in Fig.7. The initial velocity

V0 = 10 mm/s is applied in x direction for all the nodes except the left end. The simulation time

lasts for 0.01 s.

The mesh consists of 3072 regular cubic elements with a side length of le = 0.125 mm. The

time step is estimated by Δt = 0.8 le
CL

for the pure explicit simulations, and Δt = 0.8 le
CS

for the

proposed SMS simulations.The material parameters are: the shear modulus G = 0.001 MPa,

the density ρ = 1000 kg/m3, so the shear wave speed is fixed to CS = 1 m/s. The Poisson’s

coefficients are given different values to obtain different levels of incompressibility, see Tab. II.

The ratio of the compressional wave speed to the shear wave speed increases while the Poisson’s

coefficient approaches to 0.5. Consequently, the explicit method needs more time steps to complete

the simulations. However, for SMS method, the stable time step is kept constant. The CPU cost of

the simulation is therefore even more decreased as the ratio CL/CS gets higher. The time saving

gets remarkable for CL/CS reaching 1000, which is a typical value for biological tissues.

The displacement results along A-A’ point are shown in Fig.8, the results obtained by the explicit

method are displayed by lines, and the results obtained by the proposed SMS method are displayed

by different marks. For different Poisson’s coefficients, the results are presented by different colors

at different time points. The explicit method and the SMS method give exactly the same results. We

would like to point out here that the problem being not in transient dynamic (wave propagation)

range, the use of the extreme Poisson’s coefficient does not have significant effect on simulation

results (at the same time point, using different Poisson’s coefficients yields almost the same curve).

But the objective of this example is to show the computational performance of the proposed SMS

method. We experience that the proposed method is much more efficient in applications of highly

incompressible materials.

4.2. Circular shear wave propagation

The above example shows that in the proposed method, the time step is not controlled by the

compressional wave speed anymore, but by the shear wave speed. However, it is also important

to consider the influence of the frequency of external load.

A shear wave propagation problem is considered in plane strain hypotheses, the model is shown

in Fig.9(a). The shear modulus is set to G = 0.001 MPa, Poisson’s coefficient ν = 0.49995 and

the density ρ = 1000 kg/m3. These parameters yield a compressional wave speed CL = 100 m/s,

and a shear wave speed CS = 1 m/s. Line forces are applied at the center zone defined by Ricker

wavelet function:

f(t) = A(1− 2π2f2(t− t0)
2)exp(−π2f2(t− t0)

2) (18)

with the amplitude A = 0.0001 N , the frequency f = 300 Hz and t0 = 0.003 s. In this example,

the critical time step for classical explicit method is limited to 5× 10−6 s. By applying the selective

This article is protected by copyright. All rights reserved.
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mass scaling, the maximal amplification of time step can be theoretically α = 100, which leads

to Δt = 5× 10−4 s. However, the time step should also be smooth enough to approximate the

load function. Finally, we choose to set α = 30 and α = 60, the time steps are 1.5× 10−4 s and

3× 10−4 s accordingly. The load function with Δt = 3× 10−4 s is plotted in Fig.10(b), we note

that its shape is well approximated, yet not very accurate. Its effect on the simulation results is

presented later.

Fig.10 shows the velocity and the shear stress field at the end of the simulation (t = 0.03 s). The

result is obtained by the proposed SMS method with α = 30. We observe the shear wave front in

a circular form reaching the edge of the plate. The results obtained by the pure explicit method are

not presented here, because they are the same as Fig.10. More detailed comparisons are displayed

through the measuring points.

Fig.11 shows the displacement history for three measuring points A, B and C. Notice that all the

results present post oscillations because the used methods are all explicit. Generally, the proposed

SMS with α = 30 (green) gives result which is close to the pure explicit method (red). For results

obtained by SMS with α = 60 (blue), only the shear wave front is well described. For example, at

point A and B, the blue curves are strongly dephased compared to the reference (red), while the

green ones present a much better coherence. At point C, which is far from the load, we note that the

wave front just arrives, and the amplitude of blue curve is superior than the other two.

Fig.12 shows the vertical velocity distribution along O-O’ at three different times. We observe

that the post oscillations are more serious for the velocities. At the beginning of the simulation

(t = 0.006 s), three results are the same. The result with α = 60 (blue) leads much more distortion

as the wave propagates. A similar conclusion can be done: SMS with α = 30 yields much better

results than α = 60.

As presented earlier, choosing a high scaling factor α induces more errors in results, even though

the algorithm is still stable. Moreover, the computational speed is not necessarily improved. In this

example, the explicit method takes 189 s, the SMS with α = 30 takes 17 s, and the SMS with α = 60

takes 13 s. Consequently, when using SMS method, the amplification factor of time step should be

well considered in order to improve the computational speed while maintaining the accuracy. In this

example, the loading must be described with a sufficient number of points which limits α to 30.

4.3. Planar shear wave propagation in heterogeneous media

The two previous examples can also be performed by the existing SMS method. Its efficiency is the

same as the proposed SMS method, however, because of the poor preservation of eigenvalues for

shear deformation modes, the accuracy of simulation is not so good. A model of planar shear wave

propagation in a heterogeneous medium is now presented to illustrate this point.

We consider a square plate in plane strain which is constituted by two linear elastic materials, as

shown in Fig.13. The mesh has 3600 square elements. The material parameters are summarized in

Tab.III, in which G is the shear modulus, ν is the Poisson’s coefficient and CL and CS represent the

compressional wave speed and the shear wave speed respectively.

An initial velocity of 10mm/s is applied at the top side and released after 0.0008 s (see Fig.13).

The simulation time is set to 0.16 s so that the shear wave travels through the whole model. Note that

for pure explicit method, the time step is controlled by the compressional wave speed of material

I, which is 0.8× 10−5 s. While using SMS method (both existing and proposed), the time step

This article is protected by copyright. All rights reserved.
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raises up to 0.8× 10−3 s just by considering the faster shear wave speed in the two materials. For

computational speed, the pure explicit method costs 221 s, and the two SMS methods cost around

10 s.

Fig.14, 15 show the displacement and velocity distribution along A-A’. The advancement of shear

wave front is clearly observed at different time. The proposed SMS method (green) presents the

results which are very close to the explicit method (red), for both displacements and velocities.

However, the existing SMS results (blue) is not accurate.

Fig.16 and 17 show the displacement and the velocity history at three measuring points. The

difference between the two SMS methods is quite clear, the proposed method results is more

accurate than the existing SMS method.

In Fig.18, the shear stress contour plot are compared at times t = 0.064 s and t = 0.16 s. The time

points are chosen so that the shear wave front reaches the heterogeneous part, so one can distinguish

the heterogeneity position by stress distribution. The explicit method and the proposed SMS method

show the two heterogeneous parts as expected. The existing SMS method gives unfaithful results.

Particularly, the second heterogeneous block is not visible in Fig.18(b).

4.4. Shear wave propagation in a pre-stressed medium

This example could be considered as an application of a medical imaging technology named

elastography [20]. We consider wave propagation in a pre-stressed medium: a dynamic load is

applied on a statically pre-deformed state. Since the pre-stressing load is much higher than the

dynamic load, the geometrical non-linearity in the dynamic step can be neglected, the problem is

called small on big [21].

The model considered is described in Fig.19. As shown, due to symmetry, just a half domain is

described. The static pressure is applied at the top with a ramp distribution, the maximum is set to

0.002 N and the minimum is zero. A Neo-Hookean hyper-elastic law is employed for the material,

for which the elastic potential can be expressed in terms of the right Cauchy-Green tensor C , the

Jacobian J , and two constant as :

W = C10(J
−2/3tr(C)− 3) +

K

2
(J − 1)2 (19)

The properties are chosen in the range of biological tissues, where ρ = 1000kg/m3, C10 =

0.001MPa, K = 10MPa. These parameters lead to the speed of compressional wave CL =

100 m/s, and the shear wave speed Cs = 1.41 m/s in small deformation.

First, the static simulation is carried out by classical Newton-Raphson algorithm, both material

and geometrical non-linearities are considered. The results are shown in Fig.20, we observe the

model deforms in the range of finite strain. Based on this state, a small sinusoidal load is then

added at the top-left corner (see Fig.20): the vertical displacement with an amplitude 0.1mm, and a

frequency of 100 Hz is imposed and released at t = 0.03 s. The static pressure is still kept to avoid

rebound. Dynamic simulation is carried out both by explicit method and proposed SMS method.

During this simulation, we treat only material non-linearity but not geometrical non-linearity as the

dynamic strain remains small.

The dynamic simulation lasts 0.05 s. By considering the deformation of the mesh under the static

load, the time step for the explicit method is set to 5× 10−6 s, and for SMS method is 2.5× 10−4 s

This article is protected by copyright. All rights reserved.
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which is 50 times larger than previous. For computational speed, the explicit method costs 110 s but

the SMS method costs just 13 s.

Fig.21 shows the dynamic displacement field at the end of the simulation. For both results,

shear wave front (in the medium) and Rayleigh wave front (at the superior surface) are clearly

distinguishable. No visible difference can be found on the figure. Then, it is important to note the

amplitude is largely smaller than the static displacements field.

Fig.22, 23 show the displacement and the velocity history in time for three measuring points. We

can observe that the explicit solution generates high frequency oscillations, especially for velocities.

The SMS method has much less oscillations, this is caused by using the larger time step. However,

the two results are very close. No significant difference is observed for average values, both for

displacements and velocities.

The time evolution of energy is described in Fig. 24 . In Fig.24(a), the internal energy is divided

into two parts: deviatoric part and volumetric part. We can observe that the deviatoric internal energy

curve is the same for the two methods but not the volumetric one. However, it is important to note

that the volumetric energy represents less than 3% of the whole internal energy. Fig.24(b) shows the

two methods give very close kinetic energy evolution in time.

5. CONCLUSION

A selective mass scaling method based on volumetric and shear mode separation has been presented.

The method aims at increasing the stable time step in explicit analyses for nearly incompressible

materials. The analysis shows that the proposed method keeps exactly the eigenmodes related to

the shear deformation, so the method is accurate for analysis of nearly incompressible materials in

which shear deformation is dominant.

The method might be less interesting for inertia dominant problems, for which one can choose a

smaller value of bulk modulus with nearly no effect on the dynamical response. However, for wave

propagation analysis, keeping the real incompressibility is important. The proposed method is very

useful in this domain to reduce the CPU time, for example, in case of analysis of wave propagation

in biological soft tissues, such as elastography [22]. Moreover, the method was initially developed

for biological materials which are often anisotropic. The anisotropy only applies to the deviatoric

part [23]: this will result in a different expression of Ddev (Eq.3), but nearly no change in Dvol if

G � K. The proposed method should then be applicable as it is.

Besides, the method is based on adding artificial terms to the mass matrix. The added term can

not be lumped, which leads to a mass matrix which is no longer diagonal. As shown in examples, for

linear geometrical problems, the scaled mass matrix is inverted only once. For nonlinear materials,

no iteration is required in the explicit method. Moreover, it is known that the implicit methods lead

to the pre-shock oscillations and the explicit methods lead to the post-shock oscillations, see in

[17, 18]. For wave propagation simulations, the latter case is more interesting. So the explicit time

integration is really interesting in this context.

For nonlinear geometric problems, the scaled mass matrix has to be updated regularly, an iterative

algorithm is available [24], but it is still heavy. Further work is still needed to improve that point.

This article is protected by copyright. All rights reserved.
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Figure 1. All eigenvectors of an ideal quadrilateral element (given by Tab.I)
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Figure 2. Test model: a square plate with distorted mesh of 50 degrees of freedom.
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Figure 3. Eigenvalues of test model, first three (rigid motion) modes absent
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Figure 4. Eigenvectors distortion of test model (first three rigid body modes absent)
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Figure 5. Deformations of eigenvectors for 3 shear eigenmode
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Figure 6. Deformations of eigenvectors for 3 volumetric eigenmode
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Figure 7. Cantilever beam model, dimension: 1× 1× 6 mm.
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Figure 8. Cantilever Beam: Displacement along A-A’ for different cases. Lines: results by pure explicit
simulation; Marks: results by proposed SMS method
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Figure 9. Circular shear wave propagation model
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Figure 10. Circular shear wave propagation: Velocity distribution (Left) and shear stress distribution (Right)
at t = 0.03 s. Results obtained by proposed SMS method with α = 30.

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
A

rt
ic

le
26 W. YE ET AL.

Figure 11. Circular shear wave propagation: Vertical displacement at measuring points
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Figure 12. Circular shear wave propagation: Vertical velocity along O-O’ at different time
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Figure 13. Heterogeneous model: Geometry and boundary conditions
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Figure 14. Heterogeneous model: Horizontal displacement along A-A’ at different time
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Figure 15. Heterogeneous model: Horizontal velocity along A-A’ at different time
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Figure 16. Heterogeneous model: Horizontal displacement at measuring points
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Figure 17. Heterogeneous model: Horizontal velocity at measuring points
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Figure 18. Heterogeneous model: Shear stress distribution. Left: Pure explicit; Middle: Proposed SMS;
Right: Existing SMS
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Figure 19. Pres-stressed model: Geometry and static load distribution
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Figure 20. Deformed configuration after static load, amplification factor = 1
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Figure 21. Dynamic displacement distribution at t = 0.05 s. Left: Explicit; Right: Proposed SMS.
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Figure 22. Pre-stressed model: Vertical displacement at measuring points
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Figure 23. Pre-stressed model: Vertical velocity at measuring points
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Figure 24. Pre-stressed model: Time history of energy evolution
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Mode Description Eigenvector Ψe Eigenvalue γe

R.I. S.I. F.I.
Translation X

[
1
2

0 1
2

0 1
2

0 1
2

0
]T

0 0 0

Translation Y
[
0 1

2
0 1

2
0 1

2
0 1

2

]T
0 0 0

Rotation 1√
8
[−1 1 −1 −1 1 −1 1 1]

T
0 0 0

Hourglass X
[
1
2

0 − 1
2

0 1
2

0 − 1
2

0
]T

0 2
3
G 7

9
G+ 1

3
K

HourglassY
[
0 1

2
0 − 1

2
0 1

2
0 − 1

2

]T
0 2

3
G 7

9
G+ 1

3
K

Shear X
[
1
2

0 0 − 1
2

− 1
2

0 0 1
2

]T
2G 2G 2G

Shear Y
[
0 − 1

2
− 1

2
0 0 1

2
1
2

0
]T

2G 2G 2G

Volumetric 1√
8
[−1 −1 1 −1 1 1 −1 1]

T
2(K + 1

3
G) 2(K + 1

3
G) 2(K + 1

3
G)

Table I. The eigenmodes of an ideal quadrilateral element with different integration strategies. (R.I.: reduced
integration; S.I.: selective integration; F.I.: full integration;)
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ν CL/CS Pure explicit Proposed SMS Gains
Δt(s) No. of steps CPU (s) Δt(s) No. of steps CPU (s)

0.47917 5 2× 10−5 500 18 1× 10−4 100 15.1 1.2
0.49495 10 1× 10−5 103 36.1 1× 10−4 100 15 2.4
0.49995 100 1× 10−6 104 360 1× 10−4 100 15.4 24

0.4999995 1000 1× 10−7 105 3600 1× 10−4 100 15.4 240

Table II. Cantilever beam model: Summary of simulation parameters
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Material I Material II

ρ(kg/m3) 1000 1000
G(MPa) 10−4 10−3

ν 0.49999 0.4
CL(m/s) 100 2.45
CS(m/s) 0.317 1

Table III. Heterogeneous model: Material parameters
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