
HAL Id: hal-01864317
https://hal.science/hal-01864317v1

Submitted on 29 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A blockchain-based access control scheme
Maryline Laurent, Nesrine Kaaniche, Christian Le, Mathieu Vander Plaetse

To cite this version:
Maryline Laurent, Nesrine Kaaniche, Christian Le, Mathieu Vander Plaetse. A blockchain-based
access control scheme. SECRYPT 2018: 15th International Conference on Security and Cryptography,
Jul 2018, Porto, Portugal. pp.168 - 176, �10.5220/0006855601680176�. �hal-01864317�

https://hal.science/hal-01864317v1
https://hal.archives-ouvertes.fr

An Access Control Scheme based on Blockchain Technology

M. Laurent∗, N. Kaaniche∗, C. Le, M. Vander Plaetse
SAMOVAR, CNRS, Telecom SudParis, University Paris-Saclay,

* Member of the Chair Values and Policies of Personal Information, Paris, France
first name.last name@telecom-sudparis.eu

Keywords: access control, data secrecy, blockchain, smart contract, Ethereum

Abstract: Recent years have witnessed the trend of increasingly relying on remote and distributed infrastructures. This
increased the number of reported incidents of security and privacy breaches, mainly due to the loss of data
control. Towards these challenges, we propose a new access control scheme based on emerging blockchain
infrastructures. Our approach relies on the use of smart auditable contracts deployed in blockchain infrastruc-
tures. Thus, it offers transparent and controlled access to outsourced data, such that malicious entities cannot
process data without data owners’ authorization. In fact, the effectiveness of the authentication relies on the
blockchain intrinsic properties. Moreover, an implementation of the proposed solution based on Ethereum
Blockchain is presented to show the applicability of our scheme in real-world scenarios.

1 INTRODUCTION

Data security and privacy are major challenges in the
adoption of remote data storage applications, mainly
due to the loss of data control (Kaaniche and Laurent,
2017b), and thus the possibility for third-party data
storage providers to get privacy-sensitive information
about users and potentially leak confidential infor-
mation about the content. Relying on cryptographic
mechanisms at the client side is a good alternative
to mitigate data secrecy concerns. However, the use
of conventional encryption approaches is not suffi-
cient to support the enforcement of fine-grained ac-
cess control policies and flexible data sharing among
dynamic groups of users. Thus, the challenge is to
define a comprehensive access control mechanism for
outsourced data while both ensuring data confiden-
tiality and protecting users’ privacy.
This need for designing security mechanisms to en-
sure privacy-preserving access control schemes to
outsourced data files is emphasized by the recent
adoption of the new General Data Protection Regu-
lation (GDPR), in 2016 (Regulation(EU), 2016) that
will be enforced in every European member state in
May 2018. The new key concepts behind the GDPR
include the user consent that must be collected by
a service provider before processing users’ data, ac-
countability which makes mandatory that any service
providers prove data processing is compliant to for-
mer user’s consent.

Recently, various accountable technical systems
appeared, namely Bitcoin 1 which enables users to
transfer cryptocurrencies (i.e. bitcoins) securely with
no need for a centralized authority, using a pub-
licly verifiable open ledger, referred to as blockchain.
Consequently, blockchain technologies are widely
adopted for data accounting and auditing features,
thanks to their main intrinsic properties, namely,
tamper-proof infrastructure and availability.

In this paper, we propose a new blockchain-based
access control scheme, in a data-owner centric
manner. That is, access privileges are defined by
the data owner, via access control lists associated
with auditable smart contracts, and managed by the
blockchain infrastructure that supports the authenti-
cation of requesting users.

Paper Organization –Section 2 introduces the nec-
essary background about the blockchain technology,
reviews blockchain related works for data protection
and highlights the security and privacy requirements
for designing a secure access control scheme. Section
3 presents our proposed blockchain-based access con-
trol mechanisms and details the different procedures.
Section 4 provides a security and privacy discussion
of the proposed access control scheme. Section 5 dis-
cusses the implementation of the defined algorithms,
based on Ethereum blockchain environment. Section
6 concludes the paper.

1https://bitcoin.org/en/

2 BACKGROUND AND DESIGN
REQUIREMENTS

In this section, we first introduce the blockchain tech-
nology (subsection 2.1). Then, we detail related work
for data protection (subsection 2.2) and highlight the
design and security requirements (subsection 2.3).

2.1 Blockchain Technology

Bitcoin appeared as an innovative technology en-
abling users to directly transfer cryptocurrencies in
between with no intermediaries. It is considered as
the first decentralized cryptocurrency transfer sys-
tem. It relies on cryptographic proofs of work, digi-
tal signatures, and peer-to-peer networking to provide
a distributed ledger containing transactions, and re-
ferred to as a blockchain (Crosby et al., 2016), (Swan,
2015). Two approaches, known as permissionless
blockchains, have emerged to implement decentral-
ized services and applications. The first approach
relies on the existing Bitcoin blockchain and builds
a new framework on top of it. The main advan-
tage of this approach is that the Bitcoin blockchain
already exists and is adopted by many users, which
makes it more secure, transparent and resilient. The
disadvantage is that blocks are mined every 10 min-
utes, and the Bitcoin scripting language is not Turing-
complete (Swan, 2015). The second approach is to
build an alternative blockchain with all the desired
features, which promises full decentralization, such
as Ethereum2. Additionally to functions already sup-
ported by other public blockchain platforms such as
bitcoin, e.g. mining of the digital currencies and
transaction management, Ethereum also provides a
contract functionality known as smart contract.
Transactions submitted to the Ethereum environment
are organized into blocks and chained to each other
based on a cryptographic hash function, initially rely-
ing on a pre-computed genesis block. Once a block
is added to the blockchain, it cannot be modified or
removed for two reasons: first, a block modification
would lead to wrong verification of the chain of hash
values, and second, the block modification would re-
quire intensive efforts to change every replicate of the
blockchain supposed to be hosted on a large number
of independent nodes. The verification and addition
of new blocks to the blockchain is based on the mining
process, which relies on the proof of work feature. In-
deed, miners have to solve a cryptographic challenge
and winners are rewarded. The main idea behind the
cryptographic challenge is the regulation of the new
block creation operation.

2https://www.ethereum.org/

2.2 Blockchain Related Work for Data
Protection

The nature of the blockchain is particularly suitable
for data accounting and auditing features. It has at-
tracted interest of the research community due to its
shared and fault-tolerance database. Indeed, several
constructions have been introduced to ensure prove-
nance tracking (Fu et al., 2017), (Ouaddah et al.,
2016), (Zyskind et al., 2015), (Kaaniche and Laurent,
2017a).

In (Zyskind et al., 2015), Zyskind et al. presented
a personal data management system that combines
blockchain, considered as an access control modera-
tor, and off-blockchain storage solution. Designed as
unique owners of their personal data, clients are aware
of data collected about them by service providers and
how they are used. However, the (Zyskind et al.,
2015) proposal permits to only define simple per-
mit/deny access policies through a white/blacklisting.
Afterwards, Ouaddah et al. proposed, in (Ouaddah
et al., 2016), a blockchain based access control frame-
work for IoT applications, referred to as FairAccess.
Their proposal relies on the blockchain-based bitcoin
technology as an access moderator that permits to
distribute authorization tokens, where each authoriza-
tion token represents the data owner signature of the
granted access right. In (Fu et al., 2017), Anmin et
al. introduced a blockchain-based auditing system for
shared data in cloud applications. In order to mit-
igate the power abuse of single tracing authorities,
(Fu et al., 2017) presents a threshold approach, where
at least t entities have to collaborate to recover the
identity of a malicious user, thus ensuring the non-
frameability of users. Based on a blockchain architec-
ture, the proposed construction enables group users
to trace data changes and recover latest correct data
blocks when current data are damaged.

Recently, Neisse et al. discussed design require-
ments of blockchain-based solutions for data prove-
nance tracking (Neisse et al., 2017), namely client-
centric, server-centric and data-centric approaches.
The authors also presented an evaluation of their im-
plementation results, in order to give a comprehensive
overview of different defined approaches. Later, in
(Kaaniche and Laurent, 2017a), Kaaniche and Lau-
rent presented a blockchain-based platform for data
usage auditing while preserving personal data secrecy
and ensuring data availability, relying on the use of
the hierarchical ID-based cryptographic technique.

2.3 Security and Privacy Requirements

Our blockchain-based access control solution has to
consider a set of security and functional properties,
defined as follows:

• Authenticated access control — the proposed
scheme has to ensure an efficient access control
to outsourced data, where requesting entities are
authenticated.

• Management efficiency — the proposed scheme
should offer efficient management processes.

• Privacy through pseudonymity and unlinkability
measures — entities’ privacy is preserved thanks
to the pseudonymity supported by the blockchain
and the inability to directly link some data to an
entity, or an access session to a requesting user
identity. Privacy is strengthened with untraceabil-
ity in case of one-time blockchain accounts, with
one account used per system interaction.

• Auditability — each data owner should have a
transparent view over how data are collected, ac-
cessed and processed.

3 A NEW BLOCKCHAIN-BASED
ACCESS CONTROL SCHEME

In this section, we first give an overview of our
proposed blockchain-based access control scheme in
subsection 3.1. Then, we detail the different proce-
dures in subsection 3.2.

3.1 Overview

Our proposed access control scheme relies on four
different entities defined as follows:

• data storage provider (DSP) — it has significant
resources to govern distributed remote servers and
to host application services. These services can be
used by the data owner to manage his data stored
in the remote servers. Note that the DSP is not an
active client of the blockchain, thus having only
read access and not write access to the blockchain.

• data owner (DO) — a data owner makes use
of data storage provider’s resources to store and
share data with multiple entities. He is respon-
sible for defining a whitelist of authorized enti-
ties with respected access rights for a specific file
stored on DSP. The whitelist is stored in a per file
smart contract (C) into the blockchain.

• data retriever (DR) — data retrievers are able to
access the content stored in remote servers, de-
pending on their access rights which are autho-
rizations granted by the DO. As the DR is known
as a blockchain client, the blockchain can partici-
pate in the authentication of DR with DSPs before
granting access to outsourced data.

• blockchain infrastructure (BC) — the blockchain
is considered as an access control mediator, as it
permits to authenticate DRs, to keep traces of each
DR access to data and to preserve the access rights
history of each DO.

The notations used in this paper are listed in Table 1.

Table 1: Our notations

Notation Description
BC blockchain infrastructure

DSP data storage provider
DO data owner
DR data retriever
C smart contract

Our scheme aims at providing the DO with the
capacity of defining the access rights for each of his
data resource (file, directory, image...), and of dynam-
ically deleting these rights when needed. Rights are
expressed per DR and registered in a smart contract
as a whitelist of authorized DRs with a detailed spe-
cific access control list. The interest is therefore mul-
tifold. First, no one can alter the list of authorized
entities to access certain resources, as all blockchain-
specific operations are considered as secure and non-
corruptible, thus ensuring non-tamper proofs of data
access activities. Second, our scheme relies on a data
owner-centric model, as the data owner creates a con-
tract for each outsourced data resource, including the
access control list w.r.t. data usage. Third, the en-
tire identification system and the robustness of the au-
thentication process rely on BC properties. Indeed,
DRs and DOs are known through their BC identifiers,
which make them be uniquely identified. Fourth, any
DR access is registered in BC, thus leading to later
possible auditing activities to take place over the ac-
cess control system. As such, the use of BC permits
to publish a whitelist which remains under the control
of the DO, to support efficient identification and au-
thentication processes of DOs and DRs, and to enable
auditing activities thanks to useful registered traces
(whitelists, access requests).
In a nutshell, DO is responsible for creating a smart
contract in the BC, adding or removing an address
from the whitelist. A DR trying to access the re-
sources outsourced on a DSP has to go through the

corresponding smart contract. He is authorized to ac-
cess a resource based on the authentication protocol
played between the DSP and DR with BC support,
and the whitelist registered in the BC. Hence, interac-
tions of entities with BC support the following rules:

• The DO is the only entity that might modify the
whitelist, as he is the owner of the outsourced
data. He must therefore be able to add or remove
an authorized address, referring to a specific au-
thorized DR, from this list. Note that the contract
has to include the address of the DO, its creator,
for assigning modification of right permissions.

• The DR is authorized to issue a transaction w.r.t.
the contract to request access to resources. If the
transaction is accepted by the BC, it means both
that the DR is authenticated, and it is authorized
to access the resources. Thus, a successful au-
thentication leads to the smart contract registering
into the blockchain the address of DR as a permit-
ted entity. Note that our scheme assumes that the
comparison process is performed by the hosting
server. As a result, the contract must be passive
when it receives users’ transactions.

• Any entity including DSP, can read the content of
the whitelist, for performing the addresses com-
parison, for every DR’s access request.

Note that although the contract script becomes un-
changeable after its deployment on BC, its state may
vary. Indeed, variables are defined (i.e; DR’ addresses
in our case) so that they can be modified by the DO
w.r.t. subsequent solicitations. That is, the whitelist
can be modified, but the contract script cannot.

3.2 Procedures

3.2.1 Whitelist Creation Process

As stated above, each smart contract, created by a
data owner, permits to list the addresses of authorized
DRs to access a given data file, outsourced on a re-
mote server. Hence, the question is about the defi-
nition of the relation between the smart contract (C)
and the outsourced data file. For this purpose, we fo-
cus on the process of the smart contract creation by
DO with the DSP. Note that our blockchain-based ac-
cess control mechanism requires the deployment of a
client interface, such that each DO can easily perform
the whitelist creation process. The different steps, de-
picted by Figure 1, are as follows:

1. DO authenticates with DSP and shares the name
of the data file, that he intends to protect, with
DSP.

2. DO creates a smart contract. To do so, the DO
sends a transaction to the null address. The ad-
dress of the created contract is given randomly,
using the client interface. The smart contract has
also to record the whitelist in the BC, in order to
keep the history of the whitelists, such that the
DSP can retrieve the last valid one.

Figure 1: Whitelist Creation Process

3. DO sends the address of the newly created con-
tract as well as the data file to the remote DSP.

4. DO sends the address of the created contract to
the authorized DRs. In fact, we emphasize that
each authorized DR has to communicate the ad-
dress of the contract, when he wants to access to
the corresponding outsourced data file.

5. DO recovers the address of each authorized DR,
to be included in the whitelist.

6. DO sets up the whitelist, by introducing the ad-
dresses of authorized DRs, via the client interface.
Note that it is also possible to remove an address

from the whitelist using the same process used to
add a newly authorized address. In fact, the contract
is linked to the outsourced file thanks to its address
stored in the DSP. A main advantage of our proposed
solution is that the whitelist can be modified without
any need to interact with the DSP. Indeed, only a hy-
perlink to the whitelist is stored on the DSP.

3.2.2 Resource Access Process

When an authorized DR wants to access to an out-
sourced data file, he starts the resource access process
with the remote hosting DSP (cf. Fig.2), as follows:
1. the DR sends an access request to the DSP, via an

off-blockchain channel.

2. the DSP sends a randomly generated nonce to the
requesting DR. Subsequently, the DSP starts lis-
tening to the blockchain by scanning the newly
added transactions associated with the corre-
sponding contract and analyzes transactions con-
taining the given nonce.

Figure 2: Access to Resources Process

3. the DR sends a transaction to the contract with
the nonce as input data. Recall that the contract
remains passive during this step, unlike for the so-
licitation issued by the DO. This transaction does
not result in making the contract react, but instead
it leaves a trace on the BC, and it proves the trans-
action is authentic.

4. Once the generated nonce has been identified by
the DSP in the input data field of a transaction as-
sociated with the corresponding contract, the DSP
selects the address of the entity that issued the
transaction. Then, it compares the authorized ad-
dresses of the whitelist with the originating ad-
dress of the transaction.

5. In the case where the originating address of the
transaction corresponds to one of the authorized
addresses, as defined in the whitelist, the DSP
identifies the DR.

Finally, we have to emphasize the necessity of includ-
ing a randomly generated nonce for each authenti-
cation session. That is, the nonce permits to prove
the freshness of the transaction to the DSP. This latter
makes the link between a received request and a suc-
cessful authentication by the BC thanks to the gener-
ated nonce. Our access control application makes use
of a public blockchain technology for decentralized
authentication, ensuring data auditability and trans-
parency requirements. In fact, although the list of au-
thorized addresses is publicly verifiable, it is impossi-
ble to alter the whitelist, where the DO is the unique
entity that can grant privileges to DRs.

4 SECURITY DISCUSSION

In this section, we first present our threat model.
Then, we provide a security discussion of our pro-
posed blockchain-based access control scheme, with
respect to the security and privacy requirements de-
tailed in section 2.3.

4.1 Threat Model

For designing a secure blokchain-based access con-
trol scheme, we consider that an attacker is able
to read, send and drop a transaction addressed to
the blockchain. The attacker targets data owners,
data retrievers, data storage providers as well as the
blockchain, as follows:

• based on previous data access requests sessions,
as well as provided blockchain data, an attacker
tries to impersonate a data owner to afford a hon-
est data storage provider some rights to be logged
into the blockchain without the legal data owner’s
granted privileges. This attack is considered with
respect to the authenticated access control and au-
ditability requirements.

• an attacker tries an attack against the privacy prop-
erty w.r.t. both data owners, while trying to di-
rectly link a smart contract to a specific owner,
and data retrievers while attempting to link an ac-
cess session to a requesting entity.

• an attacker attempts to prevent the publication of
a legitimate transaction in the blockchain. For ex-
ample, an attacker may try a DoS attack against
an access list modification activity or attempt a
flooding attack on the blockchain with invalid in-
formation. This attack is considered against the
auditability and the availability requirements.

4.2 Security And Privacy Analysis

AUTHENTICATED ACCESS CONTROL — our ap-
proach ensures an authenticated access control for
several reasons here-below listed:

• blockchain-based authentication – our scheme re-
lies on the blockchain infrastructure to enforce the
authentication of the participating entities. That
is, each entity has to include its blokchain-account
address to either outsourcing (i.e; for DOs) or ac-
cessing (i.e; for DRs) requests.

• access lists’ integrity – in our approach, access
control lists are stored in the blockchain as well
as on the remote hosting server. That is, as access
lists are stored on all blockchain nodes, each en-
tity has a copy of all smart contracts. Thus, in or-
der to afford a honest data storage provider some
rights to be logged into the blockchain without
the legal data owner’s granted privileges, the at-
tacker has to corrupt all blockchain-hosting nodes
to tamper access lists.

PRIVACY — The privacy property is ensured
thanks to the following technical features:

• one smart contract per outsourced data resource
– for each outsourced data resource to a remote
server, the DO creates a new smart contract which
points out the authorized DRs’ addresses. Thus, it
is impossible for an attacker to link a smart con-
tract with its DO, mainly in case of one-time ac-
counts, as emphasized in section 2.3.

• a per-access session nonce – for each access ses-
sion, the remote server generates a random nonce
that is used by the requesting DR in its access
transaction w.r.t. the smart contract associated to
the outsourced data resource, thus proving fresh-
ness, and pseudonymity ownership while not re-
vealing the true identity.

AUDITABILITY — Our proposed access control
scheme ensures the auditability requirement as:

• tamper-proof architecture – all blockchain-
specific operations, such as transaction anchoring
activities, are considered as secure and non-
corruptible, thus ensuring non-tamper proofs of
data access activities.

• transparent usage – our approach is based on a
public blockchain infrastructure, that permits pub-
lic access (i.e; read privilege) to the contract and
its associated transactions, to anyone.

Remark 1. As a highly decentralized infrastructure,
the blockchain technology helps also in terms of
availability. It becomes possible to provide liveness
guarantees of data usage. To prevent DOS attacks,
our access control mechanism requires that both DSP
and DR use a per-session nonce, randomly generated
by the remote server, such that the DR has to include
the freshly derived nonce in his access request trans-
action w.r.t. to a given smart contract.

5 IMPLEMENTATION

In this section, we detail the implementation
of our proposed blockchain-based access control
scheme, based on the Ethereum environment, w.r.t.
the smart creation process (cf. Section 5.1), instal-
lation scripts of the blockchain (cf. Section 5.2) and
the client interface development (cf. Section 5.3).

For the implementation of our access control
scheme, we first point out three different softwares,
namely the client software for the DO, the client soft-
ware for the DR and the DSP software. Then, we de-
fine the structure of the smart contract that will con-
tain the whitelist, and its instantiating BC script.

5.1 Smart Contract Creation

To implement our smart contract, we are solidity
language 3 which is a specific Ethereum program-
ming language. We note that there exist several
programming languages for smart contract creation,
but solidity is a high-level language that perfectly
matches our design requirements. To be interpretable
by the Ethereum blockchain, the smart contract has
to be compiled into bytecodes. For this purpose,
we used a compiler called browser-solidity. It is a
compiler with a web interface.
Hereafter, we detail the code of each created smart
contract. First, we define the attributes of our
contract, namely owner and whitelist. Then, we
define a set of functions, namely the whitelist and
get whitelist functions for creating the whitelist and
the add(address a) and remove(address a) for adding
and removing DR addresses respectively.

owner is an address that maps the address of the entity
instantiating the contract and whitelist is an array
that is used to store addresses of authorized DRs.

address public owner;
address[] whitelist;

The whitelist () function refers to the constructor. We
assign the owner attribute to the msg.sender address,
such that DO is the unique entity that can get use of
the defined constructor.

function WhiteList() public
{owner=msg.sender;}

The get whitelist () function returns the array of al-
lowed addresses. This function permits to the check
if the whitelist contains a given DR’s address.

function get_whitelist() constant
returns (address[])
{return whitelist;}

The add (address a) function permits to add a new
address to the whitelist. In the following, we detail the
different execution of this function. First, a checking
line code is added to verify if the entity (msg.sender)
trying to modify the existing whitelist is the owner of
the contract (owner).

if(msg.sender==owner){

Then, to save storage capacities and avoid redundancy
and inconsistency, the add (address a) function veri-
fies whether the new address is not already present in
the list. This is particularly important for the deletion
step, ensuring that a given address is presented only
once at the same whitelist.

for(i=0; i<whitelist.length; i++){
if(whitelist[i] == a){
throw;}}

3https://solidity.readthedocs.io/en/develop/

Afterwards, the adding function checks if there exists
zero entries in the whitelist table. The checking loop
aborts if one of the addresses is zero or if it reaches
the end of the table. In case of the existence of a zero
entry, it is then replaced by the new address otherwise
the new address is appended at the end of the table:

while(i<whitelist.length && whitelist[i] != 0)
{i++;}
if(i!=whitelist.length)
{whitelist[i] = a;}
else
{whitelist.push(a);}

Similarly, the remove (address a) function first checks
whether the requesting entity is the allowed DO
(msg.sender). Then, it points out the corresponding
address to proceed for its deletion. For adding a new
smart contract in the blockchain, several javascript
commands from the geth console (i.e; blockchain in-
terface) are defined. The browser-solidity compiler
provides a script, generated with bytecode to allow
easy integration of smart contracts such as:

var whitelistcontract =
web3.eth.contract([{"constant":false,"inputs":[
{"name":"a","type":"address"}],"name":"add",
"outputs":[],"payable":false,"type":"function"}
,{"constant":true,"inputs":[],"name":"owner",
"outputs":[{"name":"","type":"address"}],"payab
le":false,"type":"function"},{"constant":true,
"inputs":[],"name":"get_whitelist","outputs":
[{"name":"","type":"address[]"}],"payable":fals
e,"type":"function"},{"inputs":[],"payable":fal
se,"type":"constructor"}]);

Notice that the script creates a variable ”whitelist-
contract” needed to define the interface of the smart
contract such that the web3.eth.contract (...) function
takes as input the contract ABI (i.e; Application Bi-
nary Interface) corresponding to the signature of all
the defined contract functions.
To generate a new contract, the variable ”whitelist-
contract” receives a contract instantiation, such that:

var whitelist = whitelistcontract.new({

The whitelistcontract.new (...) function takes as in-
put the creator of the instance and the bytecode of
contract. It also takes a callback function that dis-
plays the address of the contract. Indeed, it is this
address that has to be provided to any entity for in-
teracting with the newly created contract. In addition,
we added to this script generated by the compiler a
function, called search(end), defined as follows:

function search(end){
bn=0; while(bn==0){
tx=eth.getTransactionFromBlock(eth.blockNumber);
if(tx!=null && tx.to==null &&
tx.from==eth.coinbase){
bn=eth.blockNumber;}}

The search(end) function returns the address of
the contract to the authorized requesting entity (
”owner”).

5.2 Installation scripts of the blockchain

Several scripts have been implemented to enable in-
teraction between the blockchain and the created con-
tract. The first script is designed for the DO that needs
to protect his outsourced data resources. This script
permits to create a whitelist associated with each data
file, add and delete addresses as well as save the cor-
responding whitelist. These functions are accessible
through a user-friendly interface, detailed in subsec-
tion 5.3, to ease the manipulation of our access con-
trol scheme in real-world applications. In addition to
these scripts, we defined and implemented a set con-
figuration scripts that allow to deploy and test the con-
sistency of the proposed construction. First, a script
is launched to enable connection with the BC:
#!/bin/bash
isLaunched=$(ps aux | grep datadir=$1 | head -1)

Consequently, the script checks whether an instance
of geth was launched with the corresponding node
number. If there is no instance, a new instance has to
be created specifying the listening ports to communi-
cate with other nodes. To communicate with the main
node, its exact address, referred to as enode, is then
required as follows:
if [[! $isLaunched =˜ geth]] ;
then
geth --datadir="$1" -verbosity 6
--ipcdisable --port 303$1 --nodiscover
--rpcport 81$1 console 2>> $1.log
else geth --datadir="$1" --port 303$1
--nodiscover --rpcport 81$1 attach
ipc://$PWD/$1/geth.ipc
fi

Similarly to the connection process, the specified
options for the creation of a new nodes include the
specification of listening ports for our nodes. That is,
the init command allows create a node, and ”gene-
sis.json” is a file that describes the first block in the
chain. In particular, for our implementation, we de-
fined the difficulty for mining, and put it relatively
low to speed up operations on our blockchain.
geth --datadir="$1" -verbosity 6 --ipcdisable
--port 303$1 --nodiscover --rpcport 81$1
init genesis.json 2>> $1.log

Afterwards, we create an account, accessible by
”eth.coinbase”. This account permits to the created
node to perform BC transactions. To do so, we define
a default password ”test”, and send the command to
geth using the ”connect.sh” script. Subsequently, we
recover the enode of the created node to be stored as
a result in the ”enodes.txt” file. Thanks this script, a
new blockchain is created, a base-account is derived
and the enode (i.e; identifier) is stored on a text file.
Using the same genesis block, multiple nodes, able to
cooperatively perform tasks on the same BC, can be
created. Finally, a python 4 script is defined, to re-

4https://www.python.org/

cover the saved enodes in the ”enodes.txt” file, and
generate an addEnode.js javascript 5 file that permits
to connect different nodes once they are launched.

Note that miner.sh script is also designed to launch
a node in miner mode, as follows:

#!/bin/bash
geth --datadir="$1" --port 303$1 --nodiscover
--rpcport 81$1 --mine

5.3 User Interface

For our access control scheme, we designed one com-
posite server-interface and two simple user interfaces.
Indeed, user interfaces include the DO-interface that
permits to the DO to define the authorized accessing
entities’ addresses, via the creation of a whitelist, as
defined in subsection 5.1, and the DR-interface that
enables a DR to request access to a given outsourced
data file. The composite server-interface is defined
w.r.t. two different scripts, where the first script main-
tains DOs’ storing requests and the second script han-
dles DRs’ access requests.
For ease of presentation – and submission guidelines–
, only the DO-interface is detailed, w.r.t. to BC com-
mands. To do so, we first recover the name of the file
that will be sent to the remote server. Once recovered,
a DO-DSP connection is instantiated and the data file
is sent to the remote server, as follows:

s = socket.socket()
host = socket.gethostname()
port = 1234
s.connect((host, port))
s.send((dataf+".dat").encode(’ascii’))

The DO then creates a smart contract and retrieves
its associated address, as detailed in subsection 5.1.
The contract address is then sent to the hosting server
such as:

s.send(json.dumps(data).encode(’ascii’))

Afterwards, the DO updates the whitelist dictionary
which corresponds to the new created whitelist as
shown hereafter, where ”whtext” is a variable that dis-
plays the whitelist in the GUI (Graphic User Inter-
face) and ”stringFormat” function allows to obtain a
string of characters representing the whitelist.

whitelist["address"]=address
whitelist["list"]=[]
whtext.set(stringFormat(whitelist))

Finally, the DO-interface proposes two different
functions, as explained in subsection 5.1, namely the
addWL function which allows to add an address to the
whitelist and the removeWL function that removes ad-
dresses from the access list. The definition of both
functions is almost similar.

5https://www.javascript.com/

6 CONCLUSION

In this paper, we presented a new blockchain-
based access control scheme that permits data own-
ers to define access rights for each of their out-
sourced data resources on remote storage servers, and
to dynamically delete these granted privileges when
needed. Access rights are expressed per data retriever
and registered in a smart contract as a whitelist of
authorized users with a detailed specific access con-
trol list. Our proposed scheme provides an authen-
ticated access control, conducted via the blockchain
infrastructure, and ensures an adequate management
process w.r.t. efficient whitelists definition. In ad-
dition, thanks to the pseudonymity supported by the
blockchain, our access control mechanism enables
to preserve entities’ privacy. Stronger unlinkabil-
ity properties can be provided in case of one-time
blockchain accounts thus ensuring unlinkability be-
tween different access sessions and between different
data resources belonging to the same owner.

REFERENCES

Crosby, M., Pattanayak, P., Verma, S., and Kalyanaraman,
V. (2016). Blockchain technology: Beyond bitcoin.
Applied Innovation, 2:6–10.

Fu, A., Yu, S., Zhang, Y., Wang, H., and Huang, C. (2017).
Npp: A new privacy-aware public auditing scheme for
cloud data sharing with group users. IEEE Transac-
tions on Big Data.

Kaaniche, N. and Laurent, M. (2017a). A blockchain-based
data usage auditing architecture with enhanced pri-
vacy and availability.

Kaaniche, N. and Laurent, M. (2017b). Data security and
privacy preservation in cloud storage environments
based on cryptographic mechanisms. Computer Com-
munications, 111:120–141.

Neisse, R., Steri, G., and Nai-Fovino, I. (2017). A
blockchain-based approach for data accountabil-
ity and provenance tracking. arXiv preprint
arXiv:1706.04507.

Ouaddah, A., Abou Elkalam, A., and Ait Ouahman, A.
(2016). Fairaccess: a new blockchain-based access
control framework for the internet of things. Security
and Communication Networks, 9(18):5943–5964.

Regulation(EU) (2016). 2016/679 of the european parlia-
ment and of the council of 27 april 2016 on the protec-
tion of natural persons with regard to the processing of
personal data, ojeu l 119/1 of 4.05.2016.

Swan, M. (2015). Blockchain: Blueprint for a new econ-
omy. O’Reilly Media, Inc.

Zyskind, G., Nathan, O., et al. (2015). Decentralizing pri-
vacy: Using blockchain to protect personal data. In
Security and Privacy Workshops (SPW), 2015 IEEE,
pages 180–184. IEEE.

