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Introduction

The present paper was initially conceived as an appendix of the paper of [START_REF] Anglès | Exceptional zeros of L-series and Bernoulli-Carlitz numbers[END_REF], and the main result, essentially due to David Goss, is Theorem 3.1, a new kind of digit principle for certain derivatives of ζ-values in Tate algebras, generalizing the so-called Carlitz zeta values. Later, David Goss and us, the other authors, decided to make it into an independent article, but this plan was interrupted because David Goss suddenly died on April, 4, 2017. In the present newer version, the paper also reflects the mathematical exchanges between us and him. We would like to dedicate it to his memory.

1.1. Derivatives of Riemann's zeta function and Goss' zeta function. The functional equation of Riemann's zeta function ζ : C → P 1 (C) induces, as it is well known, trivial zeroes at the negative even integers. These zeroes are simple, and we have the following identities for the first derivatives:

(1. [START_REF] Anderson | Rank one elliptic A-modules and A-harmonic series[END_REF] ζ (-2n) = (-1) n (2n)! 2(2π) 2n ζ(2n + 1), n > 0.

Moreover, the function ζ(z) has no zero at z = 0, but we have the classical formula

(1.2) ζ (0) = - 1 2 ln(2π),
which is again a consequence of the functional equation.

Let now F q be the finite field having q elements and let θ be an indeterminate over F q . We consider the local field K ∞ = F q ((θ -1 )), which is the completion of the field K = F q (θ) for the valuation at infinity v ∞ (with v ∞ (θ) = -1), as an analogue of the real line. We observe indeed that A = F q [θ] is discrete and co-compact in K ∞ .

In the years 1980, David Goss introduced a theory of global zeta functions in the setting of function fields of positive characteristic. His program was strongly motivated also by several signs going toward the possible existence of a functional equation, and one among them was the phenomenon of trivial zeroes. Indeed, in the above setting, defining, following Goss:

ζ A (-n, z) = P 1 -z deg θ (P ) P n -1 = d≥0 z d a∈A +,d a n ∈ 1 + zA[[z]], n ≥ 0
where A + (resp. A +,d ) denotes the multiplicative monoid of monic polynomials (resp. monic polynomials of degree d) and with the product running over the irreducible polynomials of A + , one sees that ζ A (-n, z) ∈ A [z]. It is also quite easy to show that ζ A (-n, 1) = 0 if and only if n > 0 and n ≡ 0 (mod q -1). Moreover, in this case, the first derivative ζ A (-n, z) in z does not vanish at z = 1, so the trivial zeroes are in this way simple, just as those of Riemann zeta function. The polynomials ζ A (-n, z) and certain natural generalizations, have been the object of extensive investigations by several authors. Nevertheless, no analytic reason has been found, such as the poles of a gamma factor, to justify the above properties, and no relationship connecting these first derivatives to the positive values of Goss' zeta functions has been clearly recognized. 

T s (K ∞ ) = K ∞ [t s
] is an ultrametric Banach algebra, the standard s-dimensional Tate algebra over K ∞ . In [START_REF] Anglès | Functional identities for L-series values in positive characteristic[END_REF][START_REF] Pellarin | Values of certain L-series in positive characteristic[END_REF], the following functions

ζ A (n; s)(t s ) = d≥0 a∈A +,d a(t 1 ) • • • a(t s ) a n ∈ T s (K ∞ ) × , n > 0, s ≥ 0
have been introduced and studied. By [START_REF] Anglès | Functional identities for L-series values in positive characteristic[END_REF]Proposition 6] we know that, for all n > 0 and s ≥ 0, ζ A (n; s) defines an entire function in s variables. By [7, Theorem 1], if n ≡ s (mod q -1), there exists λ n,s ∈ K(t s ) ∩ T s (K ∞ ) × such that:

(1.3) ζ A (n; s) = λ n,s π n ω(t 1 ) • • • ω(t s )
,

where

π := θ(-θ) 1 q-1 i>0 1 - θ θ q i -1 ∈ θ(-θ) 1 q-1 1 + θ -1 F q [[θ -1 ]]
is a fundamental period of the Carlitz exponential (see [21, §3.1]) and ω(t) := (-θ)

1 q-1 i≥0 1 - t θ q i -1 ∈ (-θ) 1 q-1 1 + θ -1 F q [t][[θ -1 ]]
is Anderson-Thakur's function (see §4). The above definitions depend on a common choice of q -1-th root of -θ (see [START_REF] Anderson | Tensor powers of the Carlitz module and zeta values[END_REF]), but the ratio

π n ω(t1)•••ω(ts) does not.
In fact, ω is the inverse of an entire function in the variable t, and its poles determine analytically, trivial zeroes of the functions ζ A (n; s), from which arises naturally the idea of studying the Taylor expansion of the functions ζ A (n; s) in the neighborhood of these trivial zeroes. In particular, if s > 1 and s ≡ 1 (mod q -1), the function ζ A (1; s) vanishes at the point t s = (t 1 , . . . , t s ) = (θ, . . . , θ). In this paper, we will study the values

(1.4) δ s := d dt 1 • • • d dt s (ζ A (1; s)) t1=•••=ts=θ ∈ K ∞ ,
and we will show, in Theorem 3.1 that a sort of digit principle holds for them, first highlighted by David Goss.

Notation

In this paper, we will use the following notation.

• N: the set of non-negative integers.

• N * = N \ {0}: the set of positive integers.

• Z: the set of integers.

• F q : a finite field having q elements.

• p: the characteristic of F q .

• θ: an indeterminate over F q .

• A: the polynomial ring F q [θ].

• A + : the set of monic elements in A.

• For d ∈ N, A +,d denotes the set of monic elements in A of degree d.

• K = F q (θ): the fraction field of A.

• ∞: the unique place of K which is a pole of θ.

• v ∞ : the discrete valuation on K corresponding to the place ∞ normalized such that v ∞ (θ) = -1. • K ∞ = F q (( 1 θ )): the completion of K at ∞. • C ∞ : the completion of a fixed algebraic closure of K ∞ . The unique valua- tion of C ∞ which extends v ∞ will still be denoted by v ∞ . • λ θ = (-θ) 1 q-1 a fixed (q -1)th-root of -θ in C ∞ .
• For s ∈ N, {t 1 , t 2 , . . . , t s } denotes a set of s variables and we will also denote it by t s .

The digit Principle

Let N be a positive integer. We consider its base-q expansion (3.1) N = k i=0 n i q i , so that n i ∈ {0, . . . , q -1} for all i. We recall that q (N ) = k i=0 n i and the definition of the Carlitz factorial:

Π(N ) = i≥0 D ni i ∈ A + , where [i] = θ q i -θ if i > 0 and D j = [j][j -1] q • • • [1] q j-1 for j > 0, while we set D 0 = 1.
It is easy to see (the details are in §4, 5 and 6) that, if we denote by a the derivative d dθ a of a ∈ A with respect to θ, the series

d≥1 a∈A +,d
a N a converges in K ∞ to a limit that we denote by δ N . This limit is easily seen to be equal to the evaluation of entire function of the variables t N

δ N := d dt 1 • • • d dt N (ζ A (1; N )) t1=•••=t N =θ
in compatibility with (1.4).

In particular, if n = q j with j > 0, we will see (Proposition 5.1) that

δ 1 = - k≥1 1 [k] and δ q j = D j [j] π 1-q j .
Let N ≥ 1, q (N ) ≥ 2 and N ≡ 1 (mod q -1). We set:

(3.2) B N (t, θ) = (-1) q (N )-1 q-1 L N (t) k i=0 ω(t q i ) ni π -1 ,
where N has base q expansion (3.1), L N (t) = a∈A+ a(t) N a , and ω(t) is the Anderson-Thakur special function (see §4). By [START_REF] Anglès | Arithmetic of positive characteristic L-series values in Tate algebras[END_REF], Lemma 7.6, we have:

B N (t, θ) ∈ A[t].
We will prove the following:

Theorem 3.1. If N ≥ q is such that N ≡ 1 (mod q -1) and q (N ) ≥ q, then δ N π = β N Π(N ) Π([ N q ]) q k i=1 δ q i π ni ,
where for x ∈ R, [x] denotes the integer part of x, and where

β N = (-1) q (N )-1 q-1 B N (θ, θ).
Theorem 3.1 can be viewed as a kind of digit principle for the values δ j in the sense of [START_REF] Conrad | The digit principle[END_REF].

In §4, using a log-algebraic result which was originally discovered by Leonard Carlitz in 1942, we give the first properties of Anderson and Thakur function ω(t). In §5 we discuss the one-digit case of our Theorem, while the general case is discussed in §6. In §8 we also give some complements on these problems.

Carlitz log-algebraic result and its ramifications

This section is an elementary introduction to some of the recent developments on the arithmetic of special values of certain L-functions introduced by David Goss in 1979 ( [START_REF] Goss | v-adic zeta functions, L-series and measures for function fields[END_REF]). We have tried to keep this paragraph as self-contained as possible. All the results contained in this section are well-known but some of their proofs are new.

Lemma 4.1. Let X 1 , . . . , X m be m ≥ 1 indeterminates over C ∞ . Let d ∈ N be an integer such that (q -1)d > m. Then: a∈A +,d a(X 1 ) • • • a(X m ) = 0.
Proof. This Lemma is a special case of [START_REF] Goss | Basic Structures of Function Field Arithmetic[END_REF], Lemma 8.8.1. We have:

a∈A +,d a(X 1 ) • • • a(X m ) = ζ1,...,ζ d ∈Fq m k=1 (X d k + d l=1 ζ l X l-1 k ).
If we develop the right side of the above equality and we use that ζ∈Fq ζ n = 0 if n ≡ 0 (mod q -1), we get the assertion of the Lemma.

Lemma 4.2. Let d ≥ 1 be an integer. Then:

a∈A +,d 1 a = 1 l d ,
where

l d = d k=1 (θ -θ q k ). Proof. Let us set: e d (X) = a∈A,deg θ a<d (X -a).
Then one can show by induction on d (see [START_REF] Goss | Basic Structures of Function Field Arithmetic[END_REF], pages 46 and 47) the following identity due to Leonard Carlitz:

e d (X) = d k=0 D d D k d-k X q k ,
where 0 = 1. Taking the logarithmic derivative, we get:

D d l d e d (X) = a∈A,deg θ a<d 1 X -a .
Evaluating the above equality at θ d and using the fact that e d (θ d ) = D d ([21], Proposition 3.1.6), we get the desired result.

Let t be an indeterminate over C ∞ . Leonard Carlitz also obtained the following remarkable result ( [START_REF] Carlitz | Some topics in the arithmetic of polynomials[END_REF], formula (5.8)):

Proposition 4.3. Let d ∈ N, d ≥ 1. Then: a∈A +,d a(t) a = 1 l d d-1 k=0 (t -θ q k ).
Proof. Let us set:

F (t) = a∈A +,d a(t) a ∈ K[t].
Then for k ∈ {1, . . . , d -1}, we have by Lemma 4.1:

F (θ q k ) = a∈A +,d a q k -1 = a∈A +,d a(θ) q-1 a(θ q ) q-1 • • • a(θ q k-1 ) q-1 = 0.
One also observes that F (θ) = 0 since d ≥ 1. Therefore:

F (t) =   a∈A +,d 1 a   d-1 k=0 (t -θ q k ).
It remains to apply Lemma 4.2.

Let τ : C ∞ [[t]] → C ∞ [[t]] be the homomorphism of F q [[t]
]-algebras such that:

τ ( n≥0 α n t n ) = n≥0 α q n t n , α n ∈ C ∞ .
We denote by

T t ⊂ C ∞ [[t]] the Tate algebra in the variable t with coefficients in C ∞ , which is the completion C ∞ [t] v∞ for the Gauss valuation at infinity v ∞ . Observe that: {f ∈ C ∞ [[t]], τ (f ) = f } = F q [[t]], from which one deduces easily that {f ∈ T t , τ (f ) = f } = F q [t].
Let φ : A → A[t]{τ } be the homomorphism of F q -algebras such that:

φ θ = θ + (t -θ)τ.
We refer the reader to [START_REF] Anglès | Arithmetic of positive characteristic L-series values in Tate algebras[END_REF] for a detailed study of such objects that we may call Drinfeld modules over Tate algebras. Let log φ be the unique element in 1+τ C ∞ [[t]]{{τ }} such that: log φ φ θ = θ log φ . We have:

Lemma 4.4. log φ = 1 + d≥1 1 l d d-1 k=0 (t -θ q k )τ d . Proof. Write log φ = n≥0 l n (φ)τ n , l n (φ) ∈ C ∞ [[t]], with l 0 (φ) = 1. From the equation log φ φ θ = θ log φ , we get for n ≥ 1: (θ -θ q n )l n (φ) = l n-1 (φ)(t -θ q n-1
).

The Lemma follows.

Let us observe that log

φ converges on {f ∈ T t , v ∞ (f ) > -1} since for all d ≥ 0, v ∞ ( 1 l d d-1 k=0 (t -θ q k )) = q d -1 where v ∞ is the ∞-adic Gauss valuation on T t . We set L(t) = ζ A (1; 1) = d≥0 a∈A +,d a(t) a = P monic prime of A 1 - P (t) P -1 ∈ T × t .
Then, Proposition 4.3 implies immediately the following log-algebraic result in the sense of Anderson ([1], [START_REF] Anderson | Log-Algebraicity of Twisted A-Harmonic Series and Special Values of L-series in Characteristic p[END_REF]):

Corollary 4.5. We have the following equality in T t :

L(t) = log φ (1).
We refer the interested reader to [START_REF] Anglès | Stark units in positive characteristic[END_REF][START_REF] Anglès | Anderson-Stark Units for Fq[END_REF][START_REF] Anglès | Arithmetic of function fields units[END_REF][START_REF] Green | Special L-values and shtuka functions for Drinfeld modules on elliptic curves[END_REF][START_REF] Papanikolas | Log-Algebraicity on Tensor Powers of the Carlitz Module and Special Values of Goss L-Functions[END_REF] for the recent developments around Anderson's log-algebraicity Theorem.

We denote by (-θ)

1 q-1 a fixed q -1th root of -θ in C ∞ , and we recall:

π = (-θ) 1 q-1 θ i≥1 (1 -θ 1-q i ) -1 ∈ C × ∞ , ω(t) = (-θ) 1 q-1 i≥0 (1 - t θ q i ) -1 ∈ T × t .
The following result is due to F. Pellarin ([24], Theorem 1):

Theorem 4.6. We have the following equality in T t :

L(t)ω(t) π = 1 θ -t .
Proof. We give a new proof of this result by using Proposition 4.3. Let d ≥ 1 be an integer. By Carlitz formula (Proposition 4.3):

θ -d t d a∈A +,d a( 1 t ) a( 1 θ ) = d k=1 (1 -θ 1-q k ) -1 d-1 k=0 (1 - t θ q k ). Now: θ -d t d a∈A +,d a( 1 t ) a( 1 θ ) = a∈A,a(0)=1,deg θ a≤d a(t) a .
Furthermore:

a∈A,a(0)=1,deg θ a≤d a(t) a = - a∈A,a(0) =0,deg θ a≤d a(t) a .
Letting d tend to +∞, we get:

(1 - t θ ) a∈A\{0} a(t) a = - π θ ω(t) -1 .
Finally observe that:

a∈A\{0} a(t) a = - a∈A+ a(t) a .
The Theorem follows.

The function ω(t) was introduced by G. Anderson and D. Thakur in [START_REF] Anderson | Tensor powers of the Carlitz module and zeta values[END_REF] (see [START_REF] Green | Special L-values and shtuka functions for Drinfeld modules on elliptic curves[END_REF], [START_REF] Anglès | Special functions and twisted L-series[END_REF] for generalizations of this special function). The Anderson-Thakur special function is intimately connected to Gauss-Thakur sums as it was highlighted in [START_REF] Anglès | Universal Gauss-Thakur sums and L-series[END_REF].

Let C : A → A{τ } be the Carlitz module ( [START_REF] Goss | Basic Structures of Function Field Arithmetic[END_REF], chapter 3), in other words, C is the homomorphism of F q -algebras given by C θ = τ + θ. Let us set:

exp C = i≥0 1 D i τ i ∈ T t {{τ }}.
exp C is called the Carlitz exponential. We have the following equality in T t {{τ }} :

exp C θ = C θ exp C .
Let us observe that exp C converges on T t .

Lemma 4.7. We have:

ker exp C | C∞ = πA.
Proof. Note that the edges of the Newton polygon of exp C (X)

X = i≥0 1 Di X q i -1 are (q i -1, iq i ), i ≥ 0. Since ker exp C | C∞ is an A-module, we deduce that there exists η ∈ C ∞ , v ∞ (η) = -q q-1 such that: ker exp C | C∞ = ηA.
Since exp C defines an entire function on C ∞ , we deduce that:

exp C (X) = i≥0 1 D i X q i = X a∈A\{0} (1 - X ηa ).
Recall that, for n ∈ N, ζ∈F × q ζ n = -1 if n ≥ 1, n ≡ 0 (mod q -1) and ζ∈F × q ζ n = 0 otherwise. We deduce:

X exp C (X) = 1 - n≡0 (mod q-1),n≥1 η -n ( a∈A+ 1 a n )X n .
We therefore get:

-η 1-q a∈A+ 1 a q-1 = 1 θ q -θ .
Now, a simple computation shows that τ (ω(t)) = (t -θ)ω(t). Thus, by Theorem 4.6, we get:

( d≥0 a∈A +,d a(t) a q )(t -θ)ω(t) π q = 1 θ q -t .
We evaluate t at θ to obtain:

-π 1-q a∈A+ 1 a q-1 = 1 θ q -θ .

Thus:

η π ∈ F × q .
We will need the following crucial result in the sequel:

Proposition 4.8. We have the following equality in T t :

ω(t) = exp C π θ -t .
Proof. This result is a consequence of the formulas established in [START_REF] Pellarin | Values of certain L-series in positive characteristic[END_REF]. We give a detailed proof for the convenience of the reader.

Recall that ω(t) ∈ T × t . Let us set

F (t) = exp C π θ -t .
By Lemma 4.7, we observe that:

C θ (F (t)) = exp C θ π θ -t = exp C (θ -t + t) π θ -t = exp C ( π) + exp C t π θ -t = t exp C π θ -t = tF (t).
Therefore:

τ (F (t)) = (t -θ)F (t). Since τ (ω(t)) = (t -θ)ω(t), we get: τ F (t) ω(t) = F (t) ω(t) .
We have then:

F (t) ω(t) ∈ F q [t].

Now observe that

F (t) = exp C   j≥0 π θ j+1 t j   = j≥0 λ θ j+1 t j , where λ θ j+1 = exp C ( π θ j+1 ). Note that λ θ = (-θ) 1 q-1 .
We also observe that for all

j ≥ 0, v ∞ (λ θ j+1 ) = j + 1 -q q-1 . This implies v ∞ ( F (t) λ θ -1) > 0. By the definition of ω(t), we also have v ∞ ( ω(t) λ θ -1) > 0. Thus: v ∞ F (t) ω(t) -1 > 0.
Since F (t) ω(t) ∈ F q [t], we get ω(t) = F (t).

Notice that ω(t) defines a meromorphic function on C ∞ without zeroes. Its only poles, simple, are located at t = θ, θ q , θ q 2 , . . .. As an immediate consequence of Proposition 4.8, we get: Corollary 4.9. For all j ≥ 0, we have:

(t -θ q j
)ω(t) | t=θ q j = -π q j D j .

Let exp φ ∈ 1 + τ T t {{τ }} be such that:

exp φ θ = φ θ exp φ .
By the same argument as that of the proof of Lemma 4.4, we have:

exp φ = 1 + i≥1 i-1 k=0 (t -θ q k ) D i τ i .
Observe that exp φ converges on T t .

Lemma 4.10. The exponential series exp φ induces an exact sequence of F q [t]modules:

0 → π ω(t) A[t] → T t → T t → 0.
Proof. Let us observe that in T t {{τ }}:

exp C ω(t) = ω(t) exp φ .
Thus exp C defines an entire function on C ∞ and thus exp

C (C ∞ ) = C ∞ . Therefore: exp C (T t ) = T t .
Since ω(t) ∈ T × t , we get:

exp φ (T t ) = T t , ker exp φ = 1 ω(t) ker exp C .
Now, Lemma 4.7 implies:

ker exp C = πA[t].
Following L. Taelman ([25]), we introduce the module of "units" associated to

φ/A[t]: U (φ/A[t]) = {f ∈ T t ∩ K ∞ [[t]] | exp φ (f ) ∈ A[t]}.
Observe that U (φ/A[t]) is an A[t]-module. We have:

Proposition 4.11. U (φ/A[t]) = L(t)A[t].
Proof. By Carlitz log-algebraic result (Corollary 4.5):

exp φ (L(t)) = 1.
Thus:

L(t)A[t] ⊂ U (φ/A[t]).
Now, let us set:

M = {f ∈ T t ∩ K ∞ [[t]] | v ∞ (f ) > 0}.
We have:

M ∩ A[t] = {0}, exp φ (M) = M, T t ∩ K ∞ [[t]] = A[t] ⊕ M. Since L(t) ∈ (T t ∩ K ∞ [[t]]) × and v ∞ (L(t)) = 0, we get: T t ∩ K ∞ [[t]] = L(t)A[t] ⊕ M. Thus: exp φ (T t ∩ K ∞ [[t]]) ∩ A[t] = exp φ (L(t)A[t]).
We deduce that:

U (φ/A[t]) ⊂ L(t)A[t] + ker exp φ .
The Proposition is then a consequence of Lemma 4.10 and Theorem 4.6.

The above Proposition reflects a class formula similar to that obtained in [START_REF] Taelman | Special L-values of Drinfeld modules[END_REF]. We refer the interested reader to the references [START_REF] Anglès | Stark units in positive characteristic[END_REF][START_REF] Anglès | Arithmetic of positive characteristic L-series values in Tate algebras[END_REF][START_REF] Anglès | Anderson-Stark Units for Fq[END_REF][START_REF] Anglès | with an appendix by V. Bosser, Arithmetic of characteristic p special L-values[END_REF][START_REF] Debry | Towards a class number formula for Drinfeld modules[END_REF][START_REF] Demeslay | A class formula for L-series in positive characteristic[END_REF][START_REF] Fang | Special L-values of abelian t-modules[END_REF][START_REF] Fang | Equivariant Special L-values of abelian t-modules[END_REF][START_REF] Fang | Equivariant trace formula mod p[END_REF].

The one digit case

Recall that:

L(t) = ζ A (1; 1) = d≥0 a∈A +,d a(t) a ∈ T t .
Furthermore, we recall that we have the following equality in T t (Theorem 4.6):

L(t)ω(t) π = 1 θ -t .
This implies that L(t) extends to an entire function on C ∞ (see also [START_REF] Anglès | Functional identities for L-series values in positive characteristic[END_REF], Proposition 6). We set:

L (t) = d≥0 a∈A +,d a (t) a ∈ T t ,
where a (t) denotes the derivative d dt a(t) of a(t) with respect to t. The derivative d dt induces a continuous endomorphism of the algebra of entire functions on C ∞ , and therefore L (t) extends to an entire function on C ∞ . Thus, for j ≥ 0 an integer,

d≥1 a∈A +,d a q j
a converges in K ∞ and we have:

δ q j = d≥1 a∈A +,d a q j a = L (t) | t=θ q j .
Proposition 5.1. The following properties hold:

(1) We have:

δ 1 = - k≥1 1 [k] .
(2) Let j ≥ 1 be an integer, then:

δ q j = Π(q j ) [j] π 1-q j .
Proof.

(1) It is well known that, for n > 0, D n = a∈A+,n a [21, Proposition 3.1.6].

Therefore, a∈A+,n a a = -1

[n] from which the first formula follows. (2) By [START_REF] Goss | Basic Structures of Function Field Arithmetic[END_REF], Remark 8.13.10, we have:

L(t) | t=θ q j = 0.
Thus:

δ q j = L (t) | t=θ q j = L(t) t -θ q j | t=θ q j . But, L(t) t-θ q j (t -θ q j )ω(t) π = 1 θ -t .
It remains to apply Corollary 4.9.

Remark 5.2. The transcendence over K of the "bracket series" δ 1 = i≥1 1

[i] was first obtained by Wade [START_REF] Wade | Certain quantities transcendental over GF(p n , x)[END_REF]. The transcendence of δ 1 directly implies the transcendence of π.

The several digit case

As a consequence of [START_REF] Anglès | Arithmetic of positive characteristic L-series values in Tate algebras[END_REF], Lemma 7.6 (see also [START_REF] Anglès | Functional identities for L-series values in positive characteristic[END_REF], Corollary 21), the series L N (t) = d≥0 a∈A +,d a(t) N a has a zero of order at least N at t = θ. Furthermore,

L N (t) = d≥1 a∈A +,d a (t) N a
defines an entire function on C ∞ such that

δ N = L N (θ).
Proof of Theorem 3.1. Recall that N = k i=0 n i q i is the q-expansion of N . We set s = q (N ). Recall moreover Equation (3.2):

(-1)

s-1 q-1 B N (t, θ) = L N (t) k i=0 ω(t q i ) ni π -1 ∈ A[t].
Observe that:

L N (t) = a∈A+ k i=0 a(t q i ) ni a .
Let s = k i=0 n i and let t 1 , . . . , t s be s indeterminates over C ∞ . We set:

L s (t) = a∈A+ a(t 1 ) • • • a(t s ) a .
Since δ N = L N (θ), it is the evaluation at t 1 = . . . = t n0 = θ, t n0+1 = . . . = t n0+n1 = θ q , . . . ,

t n0+•••+n k-1 +1 = . . . = t n0+•••+n k-1 +n k = θ q k of the function L s (t) k i=0 ni j=1 (t n0+...+ni-1+j -θ q i )
.

We obtain, by [START_REF] Anglès | Functional identities for L-series values in positive characteristic[END_REF] Theorem 1, by Corollary 4.9 and our previous discussions:

β N = δ N k i=0 ( -π q i Di ) ni π .
Now, by Proposition 5.1, we have, for all i ≥ 1, D i = [i]δ q i π q i -1 . We obtain the Theorem by using the fact that:

Π(N ) Π([ N q ]) q = i≥1 [i] ni .

Some non vanishing results

Proposition 7.1. Let N ≥ 1 be an integer such that N ≡ 1 (mod q -1). Then δ N = 0.

Proof. It follows from Theorem 3.1 and the fact that B N (t, θ) | t=θ = 0 ( [START_REF] Anglès | Exceptional zeros of L-series and Bernoulli-Carlitz numbers[END_REF]).

The aim of this section is to prove that the series δ N do not vanish for other values of N : Theorem 7.2. Suppose that q > 2. Let N ≥ 1 be a positive integer such that 2 ≤ s := q (N ) ≤ q -1. Then δ N = 0. 7.1. Decomposition of series in K ∞ . Let i be an integer, 0 ≤ i ≤ q -2. We set:

K (i) ∞ := θ i F q ((θ 1-q )) =        n≤n0 n≡i mod q-1 α n θ n ; n 0 ∈ Z; α n ∈ F q        ⊂ K ∞ .
Then, we have the obvious decomposition:

K ∞ = 0≤i≤q-1 K (i)
∞ and the characterization:

K (i) ∞ = f (θ) ∈ K ∞ ; ∀λ ∈ F * q f (λθ) = λ i f (θ) .
For simplicity, if f ∈ K ∞ , we will note f |θ →λθ for the image of f under the substi-

tution θ → λθ, so that if f ∈ K ∞ , then f ∈ K (i)
∞ if, and only if f |θ →λθ = λ i f for all λ ∈ F * q . Consider now for an N ≥ 1, and d ≥ 0,

f = a∈A +,d a N a then if λ ∈ F * q , f |θ →λθ = λ N (d-1)-d f . Thus, f ∈ K (d(N -1)-N mod q-1) ∞ .
Proposition 7.3. Let N ≥ 1 be an integer, and m = q-1 (N -1,q-1) . Then, δ N = 0 if, and only if, for all 0 ≤ j ≤ m -1,

d≡j (mod m) a∈A +,d a N a = 0.
Proof. Write for all d ≥ 0

f d = a∈A +,d a N a .
Then,

f d ∈ K (d(N -1)-N mod m) ∞
, and if, d, d ≥ 0,

d(N -1) -N ≡ d (N -1) -N mod q -1 if and only if d ≡ d mod m.
Remark 7.4. The "worst" case in the above proposition occurs when m = 1, so that the proposition is empty. But this is equivalent to N ≡ 1 mod q -1 and we already know by Proposition 7.1 that δ N does not vanish. Otherwise, the vanishing of δ N is equivalent to the vanishing of at least two series. The worst remaining case is then when m = 2, that is, N ≡ q+1 2 mod q -1.

7.2.

Proof of Theorem 7.2. For d ≥ 0, we set:

b d (X) = d-1 l=0 (X -θ q l )
and recall that:

l d = (θ -θ q d )(θ -θ q d-1 ) . . . (θ -θ q ).
Observe that:

v ∞ (l d ) = - q d+1 -q q -1 .
Recall that we have expanded N in base q: N = q e1 + . . . + q es with 0 ≤ e 1 ≤ . . . ≤ e s and 2 ≤ s ≤ q -1. Since 2 ≤ s ≤ q -1, the log-algebraicity result [START_REF] Anglès | Anderson-Stark Units for Fq[END_REF], Proposition 5.6. (see also Example 5.7) gives another expression for δ N :

a∈A +,d a(t 1 ) • • • a(t s ) a = s i=1 b d (X) l d so that S d := a∈A +,d a N a = s i=1 d dX b d (X) |X=θ q e i l d and δ N = d≥1 S d .
Let e ≥ 0 be an integer. We define the function f e : N * → N as follows:

f e (d) =     
-(e -1)q e + q d -q e q-1

if d ≥ e + 1, -(d -1)q e if 1 ≤ d ≤ e et d ≡ 0 (mod p), -(d -2)q e -q d-1 if 1 ≤ d ≤ e et d ≡ 0 (mod p).
This function is strictly decreasing.

Lemma 7.5. Let d ≥ 1 and e ≥ 0 be integers. Then, we have:

v ∞ d dX b d (X)
X=θ q e

= f e (d).

Proof. Write:

d dX b d (X) = d-1 l=0 (X -θ q l ) d-1 l=0 1 X -θ q l .
The Lemma follows by direct calculations. Lemme 7.5 implies that for d ≥ 1,

(7.1) v ∞ (S d ) = -v ∞ (l d ) + s i=1 f ei (d) = q d+1 -q q -1 + s i=1 f ei (d).
We will distinguish two cases: e s ≡ 0 (mod p) et e s ≡ 0 (mod p).

Proposition 7.6. Suppose that e s ≡ 0 (mod p). Let d ≥ 1 be an integer such that d = e s . Then:

v ∞ (S d ) > v ∞ (S es ). In particular, δ N = 0.
Proof. Since e s ≡ 0 (mod p), Equation (7.1) implies:

v ∞ (S es ) = q es+1 -q q -1 + s i=1 f ei (e s ) = q es+1 -q q -1 - s i=1
(e i -1)q ei + q es -q ei q -1 .

We will distinguish three cases:

Case 1: d ≥ e s + 1. By (7.1), we have:

v ∞ (S d ) = q d+1 -q q -1 + s i=1 f ei (d) = q d+1 -q q -1 - s i=1
(e i -1)q ei + q d -q ei q -1 .

Since s ≤ q -1, we obtain:

v ∞ (S d ) -v ∞ (S es ) = q d+1 -q es+1 q -1 - s i=1 q d -q es q -1 = (q -s) q d -q es q -1 > 0. Thus, v ∞ (S d ) > v ∞ (S es ) for d ≥ e s + 1. Case 2: d ≤ e s -2.
Since the functions f ei are strictly decreasing, it follows that:

v ∞ (S d ) -v ∞ (S es ) = q d+1 -q es+1 q -1 + s i=1 (f ei (d) -f ei (e s ))
≥ q d+1 -q es+1 q -1 + (f es (e s -2) -f es (e s ))

≥ q d+1 -q es+1 q -1 + 2q es > -q es+1 q -1 + 2q es > 0. Thus, v ∞ (S d ) > v ∞ (S es ) for d ≤ e s -2.
Case 3: d = e s -1.

Since the functions f ei are strictly decreasing, we obtain:

v ∞ (S es-1 ) -v ∞ (S es ) = q es -q es+1 q -1 + s i=1 (f ei (e s -1) -f ei (e s )) ≥ q es -q es+1 q -1 + (f e1 (e s -1) -f e1 (e s )) + (f es (e s -1) -f es (e s ))
≥ q es -q es+1 q -1 + q es-1 + q es = q es-1 > 0.

Thus,

v ∞ (S es-1 ) > v ∞ (S es ).
The proof is finished.

Proposition 7.7. Suppose that e s ≡ 0 (mod p). Let d ≥ 1 be an integer such that d / ∈ {e s -1, e s , e s + 1}. Then:

v ∞ (S d ) > v ∞ (S es ) > v ∞ (S es-1 ).
Proof. Let t be the integer such that 0 ≤ t ≤ s -1 and e t < e t+1 = . . . = e s . Since e s ≡ 0 (mod p), Equation (7.1) implies:

v ∞ (S es ) = q es+1 -q q -1 + s i=1 f ei (e s ) = q es+1 -q q -1 - t i=1
(e i -1)q ei + q es -q ei q -1 -(s -t)((e s -2)q es + q es-1 ) = q es+1 -q q -1 -s i=1

(e i -1)q ei + q es -q ei q -1 + (s -t)(q es -q es-1 ).

We will distinguish three cases:

Case 1: d ≥ e s + 2. By (7.1),

v ∞ (S d ) = q d+1 -q q -1 + s i=1 f ei (d) = q d+1 -q q -1 - s i=1
(e i -1)q ei + q d -q ei q -1 .

Since s ≤ q -1 and d ≥ e s + 2, we get:

v ∞ (S d ) -v ∞ (S es ) = q d+1 -q es+1 q -1 - s i=1 q d -q es q -1 -(s -t)(q es -q es-1 )
= (q -s) q d -q es q -1 -(s -t)(q es -q es-1 ) ≥ q es+2 -q es q -1 -(q -1)(q es -q es-1 ) > 0.

Thus,

v ∞ (S d ) > v ∞ (S es ) for d ≥ e s + 2.
Case 2: d ≤ e s -2.

We have:

v ∞ (S d ) -v ∞ (S es ) = q d+1 -q es+1 q -1 + s i=1 (f ei (d) -f ei (e s ))
≥ q d+1 -q es+1 q -1 + (f e1 (e s -2) -f e1 (e s )) + (f es (e s -2) -f es (e s ))

≥ q d+1 -q es+1 q -1 + (q es-1 + q es-2 ) + (q es + q es-1 ) ≥ -q es+1 q -1 + (q es + q es-1 ) + (q es-1 + q es-2 )

> 0. It follows that v ∞ (S d ) > v ∞ (S es ) for d ≤ e s -2.
Case 3: d = e s -1.

Since s ≥ q -1, it follows that:

v ∞ (S es-1 ) -v ∞ (S es ) = q es -q es+1 q -1 + s i=1 (f ei (e s -1) -f ei (e s ))
= q es -q es+1 q -1 + sq es-1 = (-q + s)q es-1 < 0 Thus, v ∞ (S es ) > v ∞ (S es-1 ).

The proof is finished.

Suppose now that e s ≡ 0 (mod p). Set m = q-1 (q-1,N -1) Then m ≥ 2, and by the above proposition, the series d≡es (mod m) S d does not vanish. By Proposition 7.3, we obtain that δ N = 0. This completes the proof of Theorem 7.2.

8.

Taylor expansions in the neighborhood of (θ, . . . , θ)

We shall first analyze the function ω in the neighborhood of θ.

8.1.

Laurent expansion of ω. The Tate algebra T t := C ∞ [t] v∞ is endowed with the family of continuous C ∞ -linear endomorphisms (D n ) n≥0 where D n is the n-th higher derivative in t defined by D n (t m ) = m n t m-n . Let us suppose that a sequence of elements (A i ) i>0 of T × t is given, so that for all i, A i is a 1-unit, that is, v ∞ (A i -1) > v ∞ (A i ) = 0, and lim i→∞ (A i -1) = 0 in T t . Then, the product i>0 A i converges to an element F ∈ T × t . We easily obtain, from Leibniz's rule, and for n > 0, the formula:

D n (F ) = p1,p2,•••∈N, i≥1 pi=n i≥1 D pi (A i ).
Here, by definition, a composition of a positive integer n is an s-tuple (with unrestricted s) of positive integers (n 1 , . . . , n s ) such that i n i = n. We deduce, for n > 0: 

D p1 (A i1 ) A i1 • • • D ps (A is ) A is .
We now choose F = (t -θ)ω, and we recall that the function omega of Anderson and Thakur has the following product expansion:

ω(t) = (-θ) 1 q-1 i≥0 1 - t θ q i -1 . 
hence, setting

A i = 1 - t θ q i -1 , i ≥ 0 we have F = -θ(-θ) 1 q-1 i>0 A i .
Observe now that, for all j > 0 and i ≥ 0:

D j (A i ) A i = (θ q i -t) -j .
We deduce

D n (F ) F = s≥1 P 0<i1<•••<is (θ q i 1 -t) -p1 • • • (θ q is -t) -ps
where the second sum is over the compositions P = (p 1 , . . . , p s ) of n. Define η(∅) := 1 and, for (p 1 , . . . , p s ) as above,

η(p 1 , . . . , p s ) = 0<i1<•••<is [i 1 ] -p1 • • • [i s ] -ps ∈ K ∞ ,
where [i] = θ q i -θ. We deduce, taking into account the above computations:

Lemma 8.1. The following formula holds:

(8.2) (t -θ)ω(t) = -π n≥0      s≥1 p=(p1,...,ps) i pi=n η(p 1 , . . . , p s )      (t -θ) n .
Note that, by the usual conventions, the coefficient corresponding to n = 0 is -π.

We now compute the higher derivatives of another infinite product. Let us consider:

G = i>0 1 -t θ q i i>0 1 -θ θ q i = i>0 B i ,
where

B i = θ q i -t θ q i -θ .
We know from the formula (4.6) that this coincides with L(t). Since D n (B i )/B i equals 1, 1 t-θ q i or 0 depending on whether n = 0, 1 or n > 1, we have the series expansion:

D n (G) G = 0<i1<•••<in (t -θ q i 1 ) -1 • • • (t -θ q in ) -1 .
We deduce:

Lemma 8.2. The following formula holds:

L(t) = n≥0 (-1) n η(1, . . . , 1 n times )(t -θ) n .
The above formula of course agrees with (1) of Proposition 5.1. Note also that both entire functions (t -θ)ω and L(t) define invertible formal series in K

∞ [[t -θ]].
8.2. The s variable case. We work in T s and we suppose that n ≡ s (mod q -1). We recall that

a∈A + a(t 1 ) • • • a(t s ) a n ∈ T s (K ∞ ) ×
represents an entire function in the variables t s . We can expand in series

ζ A (n; s)(t s ) = i c i (t 1 -θ) i1 • • • (t s -θ) is ∈ K ∞ [[t 1 -θ, . . . , t s -θ]].
The Newton polyhedron of this series is likely to be interesting. We consider the case n = 1, s > 1. Then, in [START_REF] Anglès | Functional identities for L-series values in positive characteristic[END_REF], it is proved that

L(t s ) = ζ A (1; s)(t s ) = πλ 1,s ω(t 1 ) • • • ω(t s ) , with λ 1,s ∈ A[t s ].
It is easy to show that, for all i = 1, . . . , s with s > 1, L(t s )| ti=θ = 0. This means that

µ 1,s := λ 1,s (t 1 -θ) • • • (t s -θ) ∈ A[t s ].
The main conjecture in [START_REF] Anglès | Functional identities for L-series values in positive characteristic[END_REF], proved in the paper [START_REF] Anglès | Exceptional zeros of L-series and Bernoulli-Carlitz numbers[END_REF], asserts that if s > 1, then µ 1,s is a unit of K[[t 1 -θ, . . . , t s -θ]]; it does not vanish at t i = θ. This implies (it is in fact equivalent to) the non-vanishing of δ s . In [START_REF] Anglès | Functional identities for L-series values in positive characteristic[END_REF] the following result is proved (see Theorem 1):

Theorem 8.3. For n ≥ 1, n ≡ s (mod q -1), V n,s := π -n ζ A (n; s)ω(t 1 ) • • • ω(t s ) s i=1 δ-1 j=0 1 - t i θ q j ∈ K[t s ],
where δ is the smallest non-negative integer such that at once q δ -n ≥ 0 and s + q (q δ -n) ≥ 2.

8.2.1. Some examples with s = n. If n = s = 1, Theorem 8.3 is sharp by the explicit formula L(χ t , 1) = -π (t-θ)ω . We take as another example the case t = s = q for which δ = 1. We have ζ A (q; s) = τ (ζ A (1; s)) = -π q (t 1 -θ) • • • (t q -θ)ω(t 1 ) • • • ω(t q ) so, again, the result is sharp. 8.2.2. More about the polynomials V n,s . We have observed that V 1,s is a unit of K[[t 1 -θ, . . . , t s -θ]] for all s > 1, s ≡ 1 (mod q-1) (recall that V 1,s is a polynomial) and the case s = n = 1 is clear too. What about the more general case of V n,s with n ≡ s (mod q -1) and n > 1? We shall set, for commodity,

V * n,s = π -n ζ A (n; s)ω(t 1 ) • • • ω(t s ) s i=1 (θ -t i ).
If n ≥ 2, then δ ≥ 1 in Theorem 8.3 and V n,s ∈ V * n,s K[[t 1 -θ, . . . , t s -θ]] × . From now on, we assume that n ≥ 2. We want to analyze the singularity of V * n,s at t i = θ for all i which is the same as that of V n,s . 8.2.3. Case s ≤ n. This is the simplest case. Indeed, since ev θ (ζ A (n; s)), the evaluation at t 1 = • • • = t s = θ of ζ A (n; s), equals the Carlitz zeta value ζ A (n -s) which is non-zero, we see that V n,s (or equivalently, V * n,s ) are units of K[[t 1 -θ, . . . , t s -θ]].

8.2.4. Case s > n. We shall prove:

Theorem 8.4. Let us consider integers n, s such that n ≡ s (mod q-1), s > n ≥ 2. For all choices of (k 1 , . . . , k s ) ∈ Z s , (t 1 -θ) k1 • • • (t s -θ) ks V n,s , an element of K((t 1 -θ, . . . , t s -θ)), is not a unit of K[[t 1 -θ, . . . , t s -θ]].

Proof. Observe that the main result of [START_REF] Anglès | Exceptional zeros of L-series and Bernoulli-Carlitz numbers[END_REF] implies that V 1,s-n+1 is a unit of K[[t 1θ, . . . , t s-n+1 -θ]]. In this case, ev θ (V * n,s ) = 0 (indeed, n > s and s ≡ n (mod q -1) implies ev θ (V * n,s ) = ev θ (ζ A (n; s)) = 0. Let us choose I ⊂ {1, . . . , s} a subset with n -1 elements and let us denote by J the set {1, . . . , s} \ I. We have |J| = s -n + 1. We observe: 

V * n,s = π -n
V * n,s = V * 1,s-n+1 (t J ) = V 1,s-n+1 (t J ) j∈J (θ -t j ).
We know that V 1,s-n+1 (t J ) is a unit of K[[t j -θ; j ∈ J]]. In particular, expanding

V * n,s = i1,...,is≥0 c i1,...,is (t 1 -θ) is • • • (t s -θ) is ∈ K[[t 1 -θ, . . . , t s -θ]],
we have c 0,...,0 = 0 and, for any subset J ⊂ {1, . . . , s} with s -n + 1 elements, by setting (i 1 , . . . , i s ) with i j = 1 for j ∈ J and i j = 0 otherwise, we have c i1,...,is = 0. This ends the proof of the Proposition.
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