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THE DIGIT PRINCIPLE AND DERIVATIVES OF CERTAIN

L-SERIES

D. GOSS, B. ANGLÈS, T. NGO DAC, F. PELLARIN, AND F. TAVARES RIBEIRO

Abstract. We discuss a digit principle for derivatives of certain ζ-values in

Tate algebras of positive characteristic discovered by David Goss.
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1. Introduction

The present paper was initially conceived as an appendix of the paper of [4],
and the main result, essentially due to David Goss, is Theorem 3.1, a new kind of
digit principle for certain derivatives of ζ-values in Tate algebras, generalizing the
so-called Carlitz zeta values. Later, David Goss and us, the other authors, decided
to make it into an independent article, but this plan was interrupted because David
Goss suddenly died on April, 4, 2017. In the present newer version, the paper also
reflects the mathematical exchanges between us and him. We would like to dedicate
it to his memory.

1.1. Derivatives of Riemann’s zeta function and Goss’ zeta function. The
functional equation of Riemann’s zeta function ζ : C→ P1(C) induces, as it is well
known, trivial zeroes at the negative even integers. These zeroes are simple, and
we have the following identities for the first derivatives:

(1.1) ζ ′(−2n) = (−1)n
(2n)!

2(2π)2n
ζ(2n+ 1), n > 0.
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Moreover, the function ζ(z) has no zero at z = 0, but we have the classical formula

(1.2) ζ ′(0) = −1

2
ln(2π),

which is again a consequence of the functional equation.
Let now Fq be the finite field having q elements and let θ be an indeterminate

over Fq. We consider the local field K∞ = Fq((θ−1)), which is the completion of the
field K = Fq(θ) for the valuation at infinity v∞ (with v∞(θ) = −1), as an analogue
of the real line. We observe indeed that A = Fq[θ] is discrete and co-compact in
K∞.

In the years 1980, David Goss introduced a theory of global zeta functions in
the setting of function fields of positive characteristic. His program was strongly
motivated also by several signs going toward the possible existence of a functional
equation, and one among them was the phenomenon of trivial zeroes. Indeed, in
the above setting, defining, following Goss:

ζA(−n, z) =
∏
P

(
1− zdegθ(P )Pn

)−1

=
∑
d≥0

zd
∑

a∈A+,d

an ∈ 1 + zA[[z]], n ≥ 0

where A+ (resp. A+,d) denotes the multiplicative monoid of monic polynomials
(resp. monic polynomials of degree d) and with the product running over the
irreducible polynomials of A+, one sees that ζA(−n, z) ∈ A[z]. It is also quite easy
to show that ζA(−n, 1) = 0 if and only if n > 0 and n ≡ 0 (mod q − 1). Moreover,
in this case, the first derivative ζA(−n, z)′ in z does not vanish at z = 1, so the
trivial zeroes are in this way simple, just as those of Riemann zeta function. The
polynomials ζA(−n, z) and certain natural generalizations, have been the object of
extensive investigations by several authors. Nevertheless, no analytic reason has
been found, such as the poles of a gamma factor, to justify the above properties,
and no relationship connecting these first derivatives to the positive values of Goss’
zeta functions has been clearly recognized.

1.2. Zeta values in Tate algebras. Let us introduce new variables t1, . . . , ts.
For notational convenience, we shall denote by ts the set of {t1, . . . , ts}. We set
t0 := ∅ by convention. The ring K∞[ts] carries the Gauss valuation (infimum of the
valuations of the coefficients of a polynomial), again denoted by v∞. Its completion

Ts(K∞) = K̂∞[ts] is an ultrametric Banach algebra, the standard s-dimensional
Tate algebra over K∞.

In [7, 24], the following functions

ζA(n; s)(ts) =
∑
d≥0

∑
a∈A+,d

a(t1) · · · a(ts)

an
∈ Ts(K∞)×, n > 0, s ≥ 0

have been introduced and studied. By [7, Proposition 6] we know that, for all n > 0
and s ≥ 0, ζA(n; s) defines an entire function in s variables. By [7, Theorem 1], if
n ≡ s (mod q − 1), there exists λn,s ∈ K(ts) ∩ Ts(K∞)× such that:

(1.3) ζA(n; s) = λn,s
π̃n

ω(t1) · · ·ω(ts)
,

where

π̃ := θ(−θ)
1
q−1

∏
i>0

(
1− θ

θqi

)−1

∈ θ(−θ)
1
q−1
(
1 + θ−1Fq[[θ−1]]

)
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is a fundamental period of the Carlitz exponential (see [21, §3.1]) and

ω(t) := (−θ)
1
q−1

∏
i≥0

(
1− t

θqi

)−1

∈ (−θ)
1
q−1
(
1 + θ−1Fq[t][[θ−1]]

)
is Anderson-Thakur’s function (see §4). The above definitions depend on a common

choice of q − 1-th root of −θ (see [3]), but the ratio π̃n

ω(t1)···ω(ts)
does not.

In fact, ω is the inverse of an entire function in the variable t, and its poles
determine analytically, trivial zeroes of the functions ζA(n; s), from which arises
naturally the idea of studying the Taylor expansion of the functions ζA(n; s) in the
neighborhood of these trivial zeroes. In particular, if s > 1 and s ≡ 1 (mod q− 1),
the function ζA(1; s) vanishes at the point ts = (t1, . . . , ts) = (θ, . . . , θ). In this
paper, we will study the values

(1.4) δs :=
d

dt1
· · · d

dts
(ζA(1; s))t1=···=ts=θ ∈ K∞,

and we will show, in Theorem 3.1 that a sort of digit principle holds for them, first
highlighted by David Goss.

2. Notation

In this paper, we will use the following notation.

• N: the set of non-negative integers.
• N∗ = N \ {0}: the set of positive integers.
• Z: the set of integers.
• Fq: a finite field having q elements.
• p: the characteristic of Fq.
• θ: an indeterminate over Fq.
• A: the polynomial ring Fq[θ].
• A+: the set of monic elements in A.
• For d ∈ N, A+,d denotes the set of monic elements in A of degree d.
• K = Fq(θ): the fraction field of A.
• ∞: the unique place of K which is a pole of θ.
• v∞: the discrete valuation on K corresponding to the place ∞ normalized

such that v∞(θ) = −1.
• K∞ = Fq(( 1

θ )): the completion of K at ∞.
• C∞: the completion of a fixed algebraic closure of K∞. The unique valua-

tion of C∞ which extends v∞ will still be denoted by v∞.

• λθ = (−θ)
1
q−1 a fixed (q − 1)th-root of −θ in C∞.

• For s ∈ N, {t1, t2, . . . , ts} denotes a set of s variables and we will also denote
it by ts.

3. The digit Principle

Let N be a positive integer. We consider its base-q expansion

(3.1) N =

k∑
i=0

niq
i,
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so that ni ∈ {0, . . . , q − 1} for all i. We recall that `q(N) =
∑k
i=0 ni and the

definition of the Carlitz factorial:

Π(N) =
∏
i≥0

Dni
i ∈ A+,

where [i] = θq
i − θ if i > 0 and Dj = [j][j − 1]q · · · [1]q

j−1

for j > 0, while we set
D0 = 1.

It is easy to see (the details are in §4, 5 and 6) that, if we denote by a′ the
derivative d

dθa of a ∈ A with respect to θ, the series∑
d≥1

∑
a∈A+,d

a′N

a

converges in K∞ to a limit that we denote by δN . This limit is easily seen to be
equal to the evaluation of entire function of the variables tN

δN :=
d

dt1
· · · d

dtN
(ζA(1;N))t1=···=tN=θ

in compatibility with (1.4).
In particular, if n = qj with j > 0, we will see (Proposition 5.1) that

δ1 = −
∑
k≥1

1

[k]
and δqj =

Dj

[j]
π̃1−qj .

Let N ≥ 1, `q(N) ≥ 2 and N ≡ 1 (mod q − 1). We set:

(3.2) BN (t, θ) = (−1)
`q(N)−1

q−1 LN (t)

(
k∏
i=0

ω(tq
i

)ni

)
π̃−1,

whereN has base q expansion (3.1), LN (t) =
∑
a∈A+

a(t)N

a , and ω(t) is the Anderson-

Thakur special function (see §4). By [9], Lemma 7.6, we have:

BN (t, θ) ∈ A[t].

We will prove the following:

Theorem 3.1. If N ≥ q is such that N ≡ 1 (mod q − 1) and `q(N) ≥ q, then

δN
π̃

= βN
Π(N)

Π([Nq ])
q

k∏
i=1

(
δqi

π̃

)ni
,

where for x ∈ R, [x] denotes the integer part of x, and where

βN = (−1)
`q(N)−1

q−1 BN (θ, θ).

Theorem 3.1 can be viewed as a kind of digit principle for the values δj in the
sense of [14].

In §4, using a log-algebraic result which was originally discovered by Leonard
Carlitz in 1942, we give the first properties of Anderson and Thakur function ω(t).
In §5 we discuss the one-digit case of our Theorem, while the general case is dis-
cussed in §6. In §8 we also give some complements on these problems.
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4. Carlitz log-algebraic result and its ramifications

This section is an elementary introduction to some of the recent developments
on the arithmetic of special values of certain L-functions introduced by David Goss
in 1979 ([20]). We have tried to keep this paragraph as self-contained as possible.
All the results contained in this section are well-known but some of their proofs are
new.

Lemma 4.1. Let X1, . . . , Xm be m ≥ 1 indeterminates over C∞. Let d ∈ N be an
integer such that (q − 1)d > m. Then:∑

a∈A+,d

a(X1) · · · a(Xm) = 0.

Proof. This Lemma is a special case of [21], Lemma 8.8.1. We have:∑
a∈A+,d

a(X1) · · · a(Xm) =
∑

ζ1,...,ζd∈Fq

m∏
k=1

(Xd
k +

d∑
l=1

ζlX
l−1
k ).

If we develop the right side of the above equality and we use that
∑
ζ∈Fq ζ

n = 0 if

n 6≡ 0 (mod q − 1), we get the assertion of the Lemma. �

Lemma 4.2. Let d ≥ 1 be an integer. Then:∑
a∈A+,d

1

a
=

1

ld
,

where ld =
∏d
k=1(θ − θqk).

Proof. Let us set:

ed(X) =
∏

a∈A,degθ a<d

(X − a).

Then one can show by induction on d (see [21], pages 46 and 47) the following
identity due to Leonard Carlitz:

ed(X) =

d∑
k=0

Dd

Dk`d−k
Xqk ,

where `0 = 1. Taking the logarithmic derivative, we get:

Dd

lded(X)
=

∑
a∈A,degθ a<d

1

X − a
.

Evaluating the above equality at θd and using the fact that ed(θ
d) = Dd ([21],

Proposition 3.1.6), we get the desired result. �

Let t be an indeterminate over C∞. Leonard Carlitz also obtained the following
remarkable result ([13], formula (5.8)):

Proposition 4.3. Let d ∈ N, d ≥ 1. Then:∑
a∈A+,d

a(t)

a
=

1

ld

d−1∏
k=0

(t− θq
k

).
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Proof. Let us set:

F (t) =
∑

a∈A+,d

a(t)

a
∈ K[t].

Then for k ∈ {1, . . . , d− 1}, we have by Lemma 4.1:

F (θq
k

) =
∑

a∈A+,d

aq
k−1 =

∑
a∈A+,d

a(θ)q−1a(θq)q−1 · · · a(θq
k−1

)q−1 = 0.

One also observes that F (θ) = 0 since d ≥ 1. Therefore:

F (t) =

 ∑
a∈A+,d

1

a

 d−1∏
k=0

(t− θq
k

).

It remains to apply Lemma 4.2. �

Let τ : C∞[[t]]→ C∞[[t]] be the homomorphism of Fq[[t]]-algebras such that:

τ(
∑
n≥0

αnt
n) =

∑
n≥0

αqnt
n, αn ∈ C∞.

We denote by Tt ⊂ C∞[[t]] the Tate algebra in the variable t with coefficients in C∞,

which is the completion Ĉ∞[t]v∞ for the Gauss valuation at infinity v∞. Observe
that:

{f ∈ C∞[[t]], τ(f) = f} = Fq[[t]],
from which one deduces easily that

{f ∈ Tt, τ(f) = f} = Fq[t].
Let φ : A→ A[t]{τ} be the homomorphism of Fq-algebras such that:

φθ = θ + (t− θ)τ.
We refer the reader to [9] for a detailed study of such objects that we may call Drin-
feld modules over Tate algebras. Let logφ be the unique element in 1+τC∞[[t]]{{τ}}
such that:

logφ φθ = θ logφ .

We have:

Lemma 4.4. logφ = 1 +
∑
d≥1

1
ld

∏d−1
k=0(t− θqk)τd.

Proof. Write logφ =
∑
n≥0 ln(φ)τn, ln(φ) ∈ C∞[[t]], with l0(φ) = 1. From the

equation logφ φθ = θ logφ, we get for n ≥ 1:

(θ − θq
n

)ln(φ) = ln−1(φ)(t− θq
n−1

).

The Lemma follows. �

Let us observe that logφ converges on {f ∈ Tt, v∞(f) > −1} since for all d ≥ 0,

v∞( 1
ld

∏d−1
k=0(t− θqk)) = qd − 1 where v∞ is the ∞-adic Gauss valuation on Tt.

We set

L(t) = ζA(1; 1) =
∑
d≥0

∑
a∈A+,d

a(t)

a
=

∏
P monic prime of A

(
1− P (t)

P

)−1

∈ T×t .

Then, Proposition 4.3 implies immediately the following log-algebraic result in the
sense of Anderson ([1], [2]):
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Corollary 4.5. We have the following equality in Tt:
L(t) = logφ(1).

We refer the interested reader to [5, 10, 12, 22, 23] for the recent developments
around Anderson’s log-algebraicity Theorem.

We denote by (−θ)
1
q−1 a fixed q − 1th root of −θ in C∞, and we recall:

π̃ = (−θ)
1
q−1 θ

∏
i≥1

(1− θ1−qi)−1 ∈ C×∞,

ω(t) = (−θ)
1
q−1

∏
i≥0

(1− t

θqi
)−1 ∈ T×t .

The following result is due to F. Pellarin ([24], Theorem 1):

Theorem 4.6. We have the following equality in Tt:
L(t)ω(t)

π̃
=

1

θ − t
.

Proof. We give a new proof of this result by using Proposition 4.3. Let d ≥ 1 be
an integer. By Carlitz formula (Proposition 4.3):

θ−dtd
∑

a∈A+,d

a( 1
t )

a( 1
θ )

=

d∏
k=1

(1− θ1−qk)−1
d−1∏
k=0

(1− t

θqk
).

Now:

θ−dtd
∑

a∈A+,d

a( 1
t )

a( 1
θ )

=
∑

a∈A,a(0)=1,degθ a≤d

a(t)

a
.

Furthermore: ∑
a∈A,a(0)=1,degθ a≤d

a(t)

a
= −

∑
a∈A,a(0) 6=0,degθ a≤d

a(t)

a
.

Letting d tend to +∞, we get:

(1− t

θ
)
∑

a∈A\{0}

a(t)

a
= − π̃

θ
ω(t)−1.

Finally observe that: ∑
a∈A\{0}

a(t)

a
= −

∑
a∈A+

a(t)

a
.

The Theorem follows. �

The function ω(t) was introduced by G. Anderson and D. Thakur in [3] (see
[22], [6] for generalizations of this special function). The Anderson-Thakur special
function is intimately connected to Gauss-Thakur sums as it was highlighted in [8].

Let C : A→ A{τ} be the Carlitz module ([21], chapter 3), in other words, C is
the homomorphism of Fq-algebras given by Cθ = τ + θ. Let us set:

expC =
∑
i≥0

1

Di
τ i ∈ Tt{{τ}}.

expC is called the Carlitz exponential. We have the following equality in Tt{{τ}} :

expC θ = Cθ expC .



8 D. GOSS, B. ANGLÈS, T. NGO DAC, F. PELLARIN, AND F. TAVARES RIBEIRO

Let us observe that expC converges on Tt.

Lemma 4.7. We have:

ker expC |C∞= π̃A.

Proof. Note that the edges of the Newton polygon of expC(X)
X =

∑
i≥0

1
Di
Xqi−1 are

(qi − 1, iqi), i ≥ 0. Since ker expC |C∞ is an A-module, we deduce that there exists
η ∈ C∞, v∞(η) = −q

q−1 such that:

ker expC |C∞= ηA.

Since expC defines an entire function on C∞, we deduce that:

expC(X) =
∑
i≥0

1

Di
Xqi = X

∏
a∈A\{0}

(1− X

ηa
).

Recall that, for n ∈ N,
∑
ζ∈F×q ζ

n = −1 if n ≥ 1, n ≡ 0 (mod q−1) and
∑
ζ∈F×q ζ

n =

0 otherwise. We deduce:

X

expC(X)
= 1−

∑
n≡0 (mod q−1),n≥1

η−n(
∑
a∈A+

1

an
)Xn.

We therefore get:

−η1−q
∑
a∈A+

1

aq−1
=

1

θq − θ
.

Now, a simple computation shows that τ(ω(t)) = (t − θ)ω(t). Thus, by Theorem
4.6, we get:

(
∑
d≥0

∑
a∈A+,d

a(t)
aq )(t− θ)ω(t)

π̃q
=

1

θq − t
.

We evaluate t at θ to obtain:

−π̃1−q
∑
a∈A+

1

aq−1
=

1

θq − θ
.

Thus:
η

π̃
∈ F×q .

�

We will need the following crucial result in the sequel:

Proposition 4.8. We have the following equality in Tt :

ω(t) = expC

(
π̃

θ − t

)
.

Proof. This result is a consequence of the formulas established in [24]. We give a
detailed proof for the convenience of the reader.

Recall that ω(t) ∈ T×t . Let us set

F (t) = expC

(
π̃

θ − t

)
.
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By Lemma 4.7, we observe that:

Cθ(F (t)) = expC

(
θπ̃

θ − t

)
= expC

(
(θ − t+ t)π̃

θ − t

)
= expC (π̃) + expC

(
tπ̃

θ − t

)
= t expC

(
π̃

θ − t

)
= tF (t).

Therefore:

τ(F (t)) = (t− θ)F (t).

Since τ(ω(t)) = (t− θ)ω(t), we get:

τ

(
F (t)

ω(t)

)
=
F (t)

ω(t)
.

We have then:
F (t)

ω(t)
∈ Fq[t].

Now observe that

F (t) = expC

∑
j≥0

π̃

θj+1
tj

 =
∑
j≥0

λθj+1tj ,

where λθj+1 = expC( π̃
θj+1 ). Note that λθ = (−θ)

1
q−1 . We also observe that for all

j ≥ 0, v∞(λθj+1) = j + 1 − q
q−1 . This implies v∞(F (t)

λθ
− 1) > 0. By the definition

of ω(t), we also have v∞(ω(t)
λθ
− 1) > 0. Thus:

v∞

(
F (t)

ω(t)
− 1

)
> 0.

Since F (t)
ω(t) ∈ Fq[t], we get ω(t) = F (t). �

Notice that ω(t) defines a meromorphic function on C∞ without zeroes. Its only

poles, simple, are located at t = θ, θq, θq
2

, . . .. As an immediate consequence of
Proposition 4.8, we get:

Corollary 4.9. For all j ≥ 0, we have:

(t− θq
j

)ω(t) |t=θqj= − π̃
qj

Dj
.

Let expφ ∈ 1 + τTt{{τ}} be such that:

expφ θ = φθ expφ .

By the same argument as that of the proof of Lemma 4.4, we have:

expφ = 1 +
∑
i≥1

∏i−1
k=0(t− θqk)

Di
τ i.

Observe that expφ converges on Tt.

Lemma 4.10. The exponential series expφ induces an exact sequence of Fq[t]-
modules:

0→ π̃

ω(t)
A[t]→ Tt → Tt → 0.
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Proof. Let us observe that in Tt{{τ}}:

expC ω(t) = ω(t) expφ .

Thus expC defines an entire function on C∞ and thus expC(C∞) = C∞. Therefore:

expC(Tt) = Tt.

Since ω(t) ∈ T×t , we get:

expφ(Tt) = Tt,

ker expφ =
1

ω(t)
ker expC .

Now, Lemma 4.7 implies:

ker expC = π̃A[t].

�

Following L. Taelman ([25]), we introduce the module of “units” associated to
φ/A[t]:

U(φ/A[t]) = {f ∈ Tt ∩K∞[[t]] | expφ(f) ∈ A[t]}.
Observe that U(φ/A[t]) is an A[t]-module. We have:

Proposition 4.11.

U(φ/A[t]) = L(t)A[t].

Proof. By Carlitz log-algebraic result (Corollary 4.5):

expφ(L(t)) = 1.

Thus:

L(t)A[t] ⊂ U(φ/A[t]).

Now, let us set:

M = {f ∈ Tt ∩K∞[[t]] | v∞(f) > 0}.
We have:

M∩A[t] = {0},

expφ(M) =M,

Tt ∩K∞[[t]] = A[t]⊕M.

Since L(t) ∈ (Tt ∩K∞[[t]])× and v∞(L(t)) = 0, we get:

Tt ∩K∞[[t]] = L(t)A[t]⊕M.

Thus:

expφ(Tt ∩K∞[[t]]) ∩A[t] = expφ(L(t)A[t]).

We deduce that:

U(φ/A[t]) ⊂ L(t)A[t] + ker expφ .

The Proposition is then a consequence of Lemma 4.10 and Theorem 4.6. �

The above Proposition reflects a class formula similar to that obtained in [26].
We refer the interested reader to the references [5, 9, 10, 11, 15, 16, 17, 18, 19].
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5. The one digit case

Recall that:

L(t) = ζA(1; 1) =
∑
d≥0

∑
a∈A+,d

a(t)

a
∈ Tt.

Furthermore, we recall that we have the following equality in Tt (Theorem 4.6):

L(t)ω(t)

π̃
=

1

θ − t
.

This implies that L(t) extends to an entire function on C∞ (see also [7], Proposition
6). We set:

L′(t) =
∑
d≥0

∑
a∈A+,d

a′(t)

a
∈ Tt,

where a′(t) denotes the derivative d
dta(t) of a(t) with respect to t. The derivative d

dt
induces a continuous endomorphism of the algebra of entire functions on C∞, and
therefore L′(t) extends to an entire function on C∞. Thus, for j ≥ 0 an integer,∑
d≥1

∑
a∈A+,d

a′q
j

a converges in K∞ and we have:

δqj =
∑
d≥1

∑
a∈A+,d

a′q
j

a
= L′(t) |t=θqj .

Proposition 5.1. The following properties hold:

(1) We have:

δ1 = −
∑
k≥1

1

[k]
.

(2) Let j ≥ 1 be an integer, then:

δqj =
Π(qj)

[j]
π̃1−qj .

Proof.

(1) It is well known that, for n > 0, Dn =
∏
a∈A+,n

a [21, Proposition 3.1.6].

Therefore,
∑
a∈A+,n

a′

a = − 1
[n] from which the first formula follows.

(2) By [21], Remark 8.13.10, we have:

L(t) |t=θqj= 0.

Thus:

δqj = L′(t) |t=θqj=
L(t)

t− θqj
|t=θqj .

But,
L(t)

t−θqj
(t− θqj )ω(t)

π̃
=

1

θ − t
.

It remains to apply Corollary 4.9.

�

Remark 5.2. The transcendence over K of the “bracket series” δ1 =
∑
i≥1

1
[i] was

first obtained by Wade [27]. The transcendence of δ1 directly implies the transcen-
dence of π̃.
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6. The several digit case

As a consequence of [9], Lemma 7.6 (see also [7], Corollary 21), the series LN (t) =∑
d≥0

∑
a∈A+,d

a(t)N

a has a zero of order at least N at t = θ. Furthermore,

L̃N (t) =
∑
d≥1

∑
a∈A+,d

a′(t)N

a

defines an entire function on C∞ such that

δN = L̃N (θ).

Proof of Theorem 3.1. Recall that N =
∑k
i=0 niq

i is the q-expansion of N . We set
s = `q(N). Recall moreover Equation (3.2):

(−1)
s−1
q−1BN (t, θ) = LN (t)

(
k∏
i=0

ω(tq
i

)ni

)
π̃−1 ∈ A[t].

Observe that:

LN (t) =
∑
a∈A+

∏k
i=0 a(tq

i

)ni

a
.

Let s =
∑k
i=0 ni and let t1, . . . , ts be s indeterminates over C∞. We set:

Ls(t) =
∑
a∈A+

a(t1) · · · a(ts)

a
.

Since δN = L̃N (θ), it is the evaluation at t1 = . . . = tn0
= θ, tn0+1 = . . . = tn0+n1

=

θq, . . . , tn0+···+nk−1+1 = . . . = tn0+···+nk−1+nk = θq
k

of the function

Ls(t)∏k
i=0

∏ni
j=1(tn0+...+ni−1+j − θqi)

.

We obtain, by [7] Theorem 1, by Corollary 4.9 and our previous discussions:

βN =
δN
∏k
i=0(−π̃

qi

Di
)ni

π̃
.

Now, by Proposition 5.1, we have, for all i ≥ 1, Di = [i]δqi π̃
qi−1. We obtain the

Theorem by using the fact that:

Π(N)

Π([Nq ])q
=
∏
i≥1

[i]ni .

�

7. Some non vanishing results

Proposition 7.1. Let N ≥ 1 be an integer such that N ≡ 1 (mod q − 1). Then
δN 6= 0.

Proof. It follows from Theorem 3.1 and the fact that BN (t, θ) |t=θ 6= 0 ([4]). �

The aim of this section is to prove that the series δN do not vanish for other
values of N :
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Theorem 7.2. Suppose that q > 2. Let N ≥ 1 be a positive integer such that
2 ≤ s := `q(N) ≤ q − 1. Then δN 6= 0.

7.1. Decomposition of series in K∞. Let i be an integer, 0 ≤ i ≤ q−2. We set:

K(i)
∞ := θiFq((θ1−q)) =


∑
n≤n0

n≡i mod q−1

αnθ
n;n0 ∈ Z;αn ∈ Fq

 ⊂ K∞.
Then, we have the obvious decomposition:

K∞ =
⊕

0≤i≤q−1

K(i)
∞

and the characterization:

K(i)
∞ =

{
f(θ) ∈ K∞;∀λ ∈ F∗qf(λθ) = λif(θ)

}
.

For simplicity, if f ∈ K∞, we will note f|θ 7→λθ for the image of f under the substi-

tution θ 7→ λθ, so that if f ∈ K∞, then f ∈ K(i)
∞ if, and only if f|θ 7→λθ = λif for all

λ ∈ F∗q .
Consider now for an N ≥ 1, and d ≥ 0,

f =
∑

a∈A+,d

a′N

a

then if λ ∈ F∗q , f|θ 7→λθ = λN(d−1)−df . Thus, f ∈ K(d(N−1)−N mod q−1)
∞ .

Proposition 7.3. Let N ≥ 1 be an integer, and m = q−1
(N−1,q−1) . Then, δN = 0 if,

and only if, for all 0 ≤ j ≤ m− 1,∑
d≡j (mod m)

∑
a∈A+,d

a′N

a
= 0.

Proof. Write for all d ≥ 0

fd =
∑

a∈A+,d

a′N

a
.

Then, fd ∈ K(d(N−1)−N mod m)
∞ , and if, d, d′ ≥ 0,

d(N − 1)−N ≡ d′(N − 1)−N mod q − 1

if and only if d ≡ d′ mod m. �

Remark 7.4. The “worst” case in the above proposition occurs when m = 1, so
that the proposition is empty. But this is equivalent to N ≡ 1 mod q − 1 and we
already know by Proposition 7.1 that δN does not vanish. Otherwise, the vanishing
of δN is equivalent to the vanishing of at least two series. The worst remaining case
is then when m = 2, that is, N ≡ q+1

2 mod q − 1.
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7.2. Proof of Theorem 7.2. For d ≥ 0, we set:

bd(X) =

d−1∏
l=0

(X − θq
l

)

and recall that:

ld = (θ − θq
d

)(θ − θq
d−1

) . . . (θ − θq).
Observe that:

v∞(ld) = −q
d+1 − q
q − 1

.

Recall that we have expanded N in base q:

N = qe1 + . . .+ qes

with 0 ≤ e1 ≤ . . . ≤ es and 2 ≤ s ≤ q − 1. Since 2 ≤ s ≤ q − 1, the log-algebraicity
result [10], Proposition 5.6. (see also Example 5.7) gives another expression for δN :∑

a∈A+,d

a(t1) · · · a(ts)

a
=

∏s
i=1 bd(X)

ld

so that

Sd :=
∑

a∈A+,d

a′N

a
=

∏s
i=1

d
dX bd(X)|X=θq

ei

ld

and

δN =
∑
d≥1

Sd.

Let e ≥ 0 be an integer. We define the function fe : N∗ → N as follows:

fe(d) =


−
(
(e− 1)qe + qd−qe

q−1

)
if d ≥ e+ 1,

−(d− 1)qe if 1 ≤ d ≤ e et d 6≡ 0 (mod p),

−(d− 2)qe − qd−1 if 1 ≤ d ≤ e et d ≡ 0 (mod p).

This function is strictly decreasing.

Lemma 7.5. Let d ≥ 1 and e ≥ 0 be integers. Then, we have:

v∞

(
d

dX
bd(X)∣∣X=θqe

)
= fe(d).

Proof. Write:

d

dX
bd(X) =

d−1∏
l=0

(X − θq
l

)

d−1∑
l=0

1

X − θql
.

The Lemma follows by direct calculations. �

Lemme 7.5 implies that for d ≥ 1,

(7.1) v∞(Sd) = −v∞(ld) +

s∑
i=1

fei(d) =
qd+1 − q
q − 1

+

s∑
i=1

fei(d).

We will distinguish two cases: es 6≡ 0 (mod p) et es ≡ 0 (mod p).
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Proposition 7.6. Suppose that es 6≡ 0 (mod p). Let d ≥ 1 be an integer such that
d 6= es. Then:

v∞(Sd) > v∞(Ses).

In particular, δN 6= 0.

Proof. Since es 6≡ 0 (mod p), Equation (7.1) implies:

v∞(Ses) =
qes+1 − q
q − 1

+

s∑
i=1

fei(es) =
qes+1 − q
q − 1

−
s∑
i=1

(
(ei − 1)qei +

qes − qei
q − 1

)
.

We will distinguish three cases:

Case 1: d ≥ es + 1.
By (7.1), we have:

v∞(Sd) =
qd+1 − q
q − 1

+

s∑
i=1

fei(d) =
qd+1 − q
q − 1

−
s∑
i=1

(
(ei − 1)qei +

qd − qei
q − 1

)
.

Since s ≤ q − 1, we obtain:

v∞(Sd)− v∞(Ses) =
qd+1 − qes+1

q − 1
−

s∑
i=1

qd − qes
q − 1

= (q − s)q
d − qes
q − 1

> 0.

Thus,
v∞(Sd) > v∞(Ses) for d ≥ es + 1.

Case 2: d ≤ es − 2.
Since the functions fei are strictly decreasing, it follows that:

v∞(Sd)− v∞(Ses) =
qd+1 − qes+1

q − 1
+

s∑
i=1

(fei(d)− fei(es))

≥ qd+1 − qes+1

q − 1
+ (fes(es − 2)− fes(es))

≥ qd+1 − qes+1

q − 1
+ 2qes

>
−qes+1

q − 1
+ 2qes

> 0.

Thus,
v∞(Sd) > v∞(Ses) for d ≤ es − 2.

Case 3: d = es − 1.
Since the functions fei are strictly decreasing, we obtain:

v∞(Ses−1)− v∞(Ses) =
qes − qes+1

q − 1
+

s∑
i=1

(fei(es − 1)− fei(es))

≥ qes − qes+1

q − 1
+ (fe1(es − 1)− fe1(es)) + (fes(es − 1)− fes(es))

≥ qes − qes+1

q − 1
+ qes−1 + qes = qes−1

> 0.
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Thus,

v∞(Ses−1) > v∞(Ses).

The proof is finished. �

Proposition 7.7. Suppose that es ≡ 0 (mod p). Let d ≥ 1 be an integer such that
d /∈ {es − 1, es, es + 1}. Then:

v∞(Sd) > v∞(Ses) > v∞(Ses−1).

Proof. Let t be the integer such that 0 ≤ t ≤ s− 1 and et < et+1 = . . . = es. Since
es ≡ 0 (mod p), Equation (7.1) implies:

v∞(Ses) =
qes+1 − q
q − 1

+

s∑
i=1

fei(es)

=
qes+1 − q
q − 1

−
t∑
i=1

(
(ei − 1)qei +

qes − qei
q − 1

)
− (s− t)((es − 2)qes + qes−1)

=
qes+1 − q
q − 1

−
s∑
i=1

(
(ei − 1)qei +

qes − qei
q − 1

)
+ (s− t)(qes − qes−1).

We will distinguish three cases:

Case 1: d ≥ es + 2.
By (7.1),

v∞(Sd) =
qd+1 − q
q − 1

+

s∑
i=1

fei(d) =
qd+1 − q
q − 1

−
s∑
i=1

(
(ei − 1)qei +

qd − qei
q − 1

)
.

Since s ≤ q − 1 and d ≥ es + 2, we get:

v∞(Sd)− v∞(Ses) =
qd+1 − qes+1

q − 1
−

s∑
i=1

qd − qes
q − 1

− (s− t)(qes − qes−1)

= (q − s)q
d − qes
q − 1

− (s− t)(qes − qes−1)

≥ qes+2 − qes
q − 1

− (q − 1)(qes − qes−1)

> 0.

Thus,

v∞(Sd) > v∞(Ses) for d ≥ es + 2.

Case 2: d ≤ es − 2.
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We have:

v∞(Sd)− v∞(Ses) =
qd+1 − qes+1

q − 1
+

s∑
i=1

(fei(d)− fei(es))

≥ qd+1 − qes+1

q − 1
+ (fe1(es − 2)− fe1(es)) + (fes(es − 2)− fes(es))

≥ qd+1 − qes+1

q − 1
+ (qes−1 + qes−2) + (qes + qes−1)

≥ −q
es+1

q − 1
+ (qes + qes−1) + (qes−1 + qes−2)

> 0.

It follows that

v∞(Sd) > v∞(Ses) for d ≤ es − 2.

Case 3: d = es − 1.
Since s ≥ q − 1, it follows that:

v∞(Ses−1)− v∞(Ses) =
qes − qes+1

q − 1
+

s∑
i=1

(fei(es − 1)− fei(es))

=
qes − qes+1

q − 1
+ sqes−1 = (−q + s)qes−1

< 0

Thus,

v∞(Ses) > v∞(Ses−1).

The proof is finished. �

Suppose now that es ≡ 0 (mod p). Set m = q−1
(q−1,N−1) Then m ≥ 2, and by the

above proposition, the series
∑
d≡es (mod m) Sd does not vanish. By Proposition

7.3, we obtain that δN 6= 0. This completes the proof of Theorem 7.2.

8. Taylor expansions in the neighborhood of (θ, . . . , θ)

We shall first analyze the function ω in the neighborhood of θ.

8.1. Laurent expansion of ω. The Tate algebra Tt := Ĉ∞[t]v∞ is endowed with

the family of continuous C∞-linear endomorphisms (Dn)n≥0 where Dn is the n-th
higher derivative in t defined by Dn(tm) =

(
m
n

)
tm−n.

Let us suppose that a sequence of elements (Ai)i>0 of T×t is given, so that for
all i, Ai is a 1-unit, that is, v∞(Ai − 1) > v∞(Ai) = 0, and limi→∞(Ai − 1) = 0 in
Tt. Then, the product ∏

i>0

Ai

converges to an element F ∈ T×t . We easily obtain, from Leibniz’s rule, and for
n > 0, the formula:

Dn(F ) =
∑

p1,p2,···∈N,
∑
i≥1 pi=n

∏
i≥1

Dpi(Ai).
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Here, by definition, a composition of a positive integer n is an s-tuple (with unre-
stricted s) of positive integers (n1, . . . , ns) such that

∑
i ni = n. We deduce, for

n > 0:

(8.1)
Dn(F )

F
=
∑
s≥1

∑
P=(p1,...,ps)∑

i pi=n

∑
0<i1<···<is

Dp1(Ai1)

Ai1
· · · Dps(Ais)

Ais
.

We now choose

F = (t− θ)ω,
and we recall that the function omega of Anderson and Thakur has the following
product expansion:

ω(t) = (−θ)
1
q−1

∏
i≥0

(
1− t

θqi

)−1

.

hence, setting

Ai =

(
1− t

θqi

)−1

, i ≥ 0

we have

F = −θ(−θ)
1
q−1

∏
i>0

Ai.

Observe now that, for all j > 0 and i ≥ 0:

Dj(Ai)

Ai
= (θq

i

− t)−j .

We deduce

Dn(F )

F
=
∑
s≥1

∑
P

∑
0<i1<···<is

(θq
i1 − t)−p1 · · · (θq

is − t)−ps

where the second sum is over the compositions P = (p1, . . . , ps) of n. Define
η(∅) := 1 and, for (p1, . . . , ps) as above,

η(p1, . . . , ps) =
∑

0<i1<···<is

[i1]−p1 · · · [is]−ps ∈ K∞,

where [i] = θq
i − θ. We deduce, taking into account the above computations:

Lemma 8.1. The following formula holds:

(8.2) (t− θ)ω(t) = −π̃
∑
n≥0

∑
s≥1

∑
p=(p1,...,ps)∑

i pi=n

η(p1, . . . , ps)

 (t− θ)n.

Note that, by the usual conventions, the coefficient corresponding to n = 0 is
−π̃.

We now compute the higher derivatives of another infinite product. Let us
consider:

G =

∏
i>0

(
1− t

θqi

)
∏
i>0

(
1− θ

θqi

) =
∏
i>0

Bi,
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where

Bi =
θq
i − t

θqi − θ
.

We know from the formula (4.6) that this coincides with L(t). Since Dn(Bi)/Bi
equals 1, 1

t−θqi
or 0 depending on whether n = 0, 1 or n > 1, we have the series

expansion:

Dn(G)

G
=

∑
0<i1<···<in

(t− θq
i1

)−1 · · · (t− θq
in

)−1.

We deduce:

Lemma 8.2. The following formula holds:

L(t) =
∑
n≥0

(−1)nη(1, . . . , 1︸ ︷︷ ︸
n times

)(t− θ)n.

The above formula of course agrees with (1) of Proposition 5.1. Note also that
both entire functions (t−θ)ω and L(t) define invertible formal series in K∞[[t−θ]].

8.2. The s variable case. We work in Ts and we suppose that n ≡ s (mod q−1).
We recall that ∑

a∈A+

a(t1) · · · a(ts)

an
∈ Ts(K∞)×

represents an entire function in the variables ts. We can expand in series

ζA(n; s)(ts) =
∑
i

ci(t1 − θ)i1 · · · (ts − θ)is ∈ K∞[[t1 − θ, . . . , ts − θ]].

The Newton polyhedron of this series is likely to be interesting. We consider the
case n = 1, s > 1. Then, in [7], it is proved that

L(ts) = ζA(1; s)(ts) =
π̃λ1,s

ω(t1) · · ·ω(ts)
,

with λ1,s ∈ A[ts]. It is easy to show that, for all i = 1, . . . , s with s > 1, L(ts)|ti=θ =
0.

This means that

µ1,s :=
λ1,s

(t1 − θ) · · · (ts − θ)
∈ A[ts].

The main conjecture in [7], proved in the paper [4], asserts that if s > 1, then µ1,s

is a unit of K[[t1− θ, . . . , ts− θ]]; it does not vanish at ti = θ. This implies (it is in
fact equivalent to) the non-vanishing of δs.

In [7] the following result is proved (see Theorem 1):

Theorem 8.3. For n ≥ 1, n ≡ s (mod q − 1),

Vn,s := π̃−nζA(n; s)ω(t1) · · ·ω(ts)

s∏
i=1

δ−1∏
j=0

(
1− ti

θqj

)
∈ K[ts],

where δ is the smallest non-negative integer such that at once qδ − n ≥ 0 and
s+ `q(q

δ − n) ≥ 2.
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8.2.1. Some examples with s = n. If n = s = 1, Theorem 8.3 is sharp by the explicit
formula L(χt, 1) = − π̃

(t−θ)ω . We take as another example the case t = s = q for

which δ = 1. We have

ζA(q; s) = τ(ζA(1; s)) = − π̃q

(t1 − θ) · · · (tq − θ)ω(t1) · · ·ω(tq)

so, again, the result is sharp.

8.2.2. More about the polynomials Vn,s. We have observed that V1,s is a unit of
K[[t1−θ, . . . , ts−θ]] for all s > 1, s ≡ 1 (mod q−1) (recall that V1,s is a polynomial)
and the case s = n = 1 is clear too. What about the more general case of Vn,s with
n ≡ s (mod q − 1) and n > 1? We shall set, for commodity,

V ∗n,s = π̃−nζA(n; s)ω(t1) · · ·ω(ts)

s∏
i=1

(θ − ti).

If n ≥ 2, then δ ≥ 1 in Theorem 8.3 and Vn,s ∈ V ∗n,sK[[t1 − θ, . . . , ts − θ]]×. From
now on, we assume that n ≥ 2. We want to analyze the singularity of V ∗n,s at ti = θ
for all i which is the same as that of Vn,s.

8.2.3. Case s ≤ n. This is the simplest case. Indeed, since evθ(ζA(n; s)), the evalu-
ation at t1 = · · · = ts = θ of ζA(n; s), equals the Carlitz zeta value ζA(n− s) which
is non-zero, we see that Vn,s (or equivalently, V ∗n,s) are units of K[[t1−θ, . . . , ts−θ]].

8.2.4. Case s > n. We shall prove:

Theorem 8.4. Let us consider integers n, s such that n ≡ s (mod q−1), s > n ≥ 2.
For all choices of (k1, . . . , ks) ∈ Zs, (t1 − θ)k1 · · · (ts − θ)ksVn,s, an element of
K((t1 − θ, . . . , ts − θ)), is not a unit of K[[t1 − θ, . . . , ts − θ]].

Proof. Observe that the main result of [4] implies that V1,s−n+1 is a unit of K[[t1−
θ, . . . , ts−n+1−θ]]. In this case, evθ(V

∗
n,s) = 0 (indeed, n > s and s ≡ n (mod q−1)

implies evθ(V
∗
n,s) = evθ(ζA(n; s)) = 0. Let us choose I ⊂ {1, . . . , s} a subset with

n−1 elements and let us denote by J the set {1, . . . , s}\I. We have |J | = s−n+1.
We observe:

V ∗n,s = π̃−n
∏
i∈I

[(θ − ti)ω(ti)]
∏
j∈J

[(θ − tj)ω(tj)] ζA(n; s).

Since

lim
ti→θ;i∈I

ζA(n; s) = L(tJ) :=
∑
d≥0

∑
a∈A+,i

∏
i∈J a(ti)

a
,

we deduce that

lim
ti→θ;i∈I

V ∗n,s = V ∗1,s−n+1(tJ) = V1,s−n+1(tJ)
∏
j∈J

(θ − tj).

We know that V1,s−n+1(tJ) is a unit of K[[tj − θ; j ∈ J ]]. In particular, expanding

V ∗n,s =
∑

i1,...,is≥0

ci1,...,is(t1 − θ)is · · · (ts − θ)is ∈ K[[t1 − θ, . . . , ts − θ]],

we have c0,...,0 = 0 and, for any subset J ⊂ {1, . . . , s} with s− n + 1 elements, by
setting (i1, . . . , is) with ij = 1 for j ∈ J and ij = 0 otherwise, we have ci1,...,is 6= 0.
This ends the proof of the Proposition. �
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