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SUP × INF INEQUALITY FOR AN ELLIPTIC EQUATION

We give a sup × inf inequality for an equation with nonlinear perturbation with

INTRODUCTION AND MAIN RESULTS

We are on Riemannian manifold (M, g) of dimension n ≥ 3. In this paper we denote ∆ g = -∇ j (∇ j ) the Laplace-Beltrami operator and N = 2n n-2 . We consider the following equation [START_REF] Aubin | Some Nonlinear Problems in Riemannian Geometry[END_REF] ∆ g u = V u N -1 + W u n/(n-2) , u > 0.

Where V is a function. For a, b, c, d, (A i ), (B i ) > 0, we consider a sequence (u i , V i , W i ) i of solutions of the previous equation with the following conditions:

0 < a ≤ V i ≤ b < +∞, ||∇V i || ∞ ≤ A i → 0. 0 < c ≤ W i ≤ d < +∞, ||∇W i || ∞ ≤ B i .
Here we study some properties of this nonlinear elliptic equation. We try to find some estimates of type sup × inf. We denote by S g the scalar curvature.

There are many existence and compactness results which concern this type of equations, see for example . In particluar in [START_REF] Aubin | Some Nonlinear Problems in Riemannian Geometry[END_REF], we can find some results about the Yamabe equation and the Prescribed scalar curvature equation. Many methods where used to solve these problems, as a variationnal approach and some other topological methods. Note that the problems come from the nonlinearity of the critical Sobolev exponent. We can find in [START_REF] Aubin | Some Nonlinear Problems in Riemannian Geometry[END_REF] some uniform estimates for various equations on the unit sphere or for the Monge-Ampere equation. Note that Tian and Siu proved uniform upper and lower bounds for the sup + inf for the Monge-Ampere equation under some condition on the Chern class, see [START_REF] Aubin | Some Nonlinear Problems in Riemannian Geometry[END_REF]. In the case of the Scalar curvature equation and in dimension 2 Shafrir used the isoperimetric inequality of Alexandrov to prove an inequality of type sup + inf with only L ∞ assumption on the prescribed curvature, see [START_REF] Shafrir | A sup+inf inequality for the equation -∆u = V e u[END_REF]. The result of Shafrir is an extention of a result of Brezis and Merle, see [START_REF] Brezis | Uniform estimates and blow-up bihavior for solutions of -∆u = V e u in two dimensions[END_REF] and later, Brezis-Li-Shafrir proved a sharp sup + inf inequality for the same equation with Lipschitzian assumption on the prescribed scalar curvature, see [START_REF] Brezis | A sup+inf inequality for some nonlinear elliptic equations involving exponential nonlinearities[END_REF]. Li in [START_REF] Yy | Harnack Type Inequality: the Method of Moving Planes[END_REF] extend the previous last result to compact Riemannian surfaces. In the higher dimensional case, we can find in [START_REF] Korevaar | Refined asymptotics for constant scalar curvature metrics with isolated singularities[END_REF] a proof of the sup × inf inequality in the constant case for the scalar curvature equation on open set of R n . We have various estimates in [START_REF] Bahoura | Majorations du type sup u × inf u ≤ c pour l'équation de la courbure scalaire sur un ouvert de R n , n ≥ 3[END_REF] when we consider the nonconstant case. To prove our result, we use a blow-up analysis and the moving-plane method, based on the maximum principle and the Hopf Lemma as showed in [START_REF] Bahoura | Majorations du type sup u × inf u ≤ c pour l'équation de la courbure scalaire sur un ouvert de R n , n ≥ 3[END_REF][START_REF] Brezis | A sup+inf inequality for some nonlinear elliptic equations involving exponential nonlinearities[END_REF][START_REF] Korevaar | Refined asymptotics for constant scalar curvature metrics with isolated singularities[END_REF][START_REF] Yy | Harnack Type Inequality: the Method of Moving Planes[END_REF], and a condition on the scalar curvature is sufficient to prove the estimate.

Our main result is:

Theorem 1.1. Assume S g > 0 on M , then, for every compact K of M , there exist a positive constant c ′ = c ′ (a, b, c, d, (A i ), (B i ), K, M, n, g) such that:

sup K u i × inf M u i ≤ c.
Remark: in the case where (M, g) = (Ω ⊂ R n , δ) an open set of the euclidean space with the flat metric, we have the same inequality on compact sets of Ω in this case the scalar curvature S δ ≡ 0, see a previous print.

If we consider the Green function G of the Laplacian with Dirichlet condition on small balls of M , we can have a positive lower bound for G and we have the following corollary: Corollary 1.2. Assume S g > 0 on M , then, for every compact K of M , there exist a positive constant c ′′ = c ′′ (a, b, c, d, (A i ), (B i ), K, M, n, g) such that:

K u 2n n-2 i dv g ≤ c ′′ .

PROOF OF THE THEOREM.

Let us consider x 0 ∈ M , by a conformal change of the metric g = ϕ 4/(n-2) g with ϕ > 0 we can consider an equation of type:

(2)

∆ g u + R g u = V u N -1 + W ϕ -2/(n-2) u n/(n-2) + R g ϕ 2-N u, u > 0.
with, Ricci g(x 0 ) = 0.

Here

; R g = n -2 4(n -1) S g and R g = n -2 4(n -1)
S g

Part I: The metric in polar coordinates.

Let (M, g) a Riemannian manifold. We note g x,ij the local expression of the metric g in the exponential map centered in x.

We are concerning by the polar coordinates expression of the metric. Using Gauss lemma, we can write: g = ds 2 = dt 2 + g k ij (r, θ)dθ i dθ j = dt 2 + r 2 gk ij (r, θ)dθ i dθ j = g x,ij dx i dx j , in a polar chart with origin x", ]0, ǫ 0 [×U k , with (U k , ψ) a chart of S n-1 . We can write the element volume:

dV g = r n-1 |g k |drdθ 1 . . . dθ n-1 = [det(g x,ij )]dx 1 . . . dx n , then, dV g = r n-1 [det(g x,ij )][exp x (rθ)]α k (θ)drdθ 1 . . . dθ n-1 , where, α k is such that, dσ Sn-1 = α k (θ)dθ 1 . . . dθ n-1 . (Riemannian volume element of the sphere in the chart (U k , ψ) ).
Then,

|g k | = α k (θ) [det(g x,ij )].
Clearly, we have the following proposition: Proposition 2.1. Let x 0 ∈ M , there exist ǫ 1 > 0 and if we reduce U k , we have:

|∂ r gk ij (x, r, θ)| + |∂ r ∂ θ m gk ij (x, r, θ)| ≤ Cr, ∀ x ∈ B(x 0 , ǫ 1 ) ∀ r ∈ [0, ǫ 1 ], ∀ θ ∈ U k . and, |∂ r |g k |(x, r, θ)| + ∂ r ∂ θ m |g k |(x, r, θ) ≤ Cr, ∀ x ∈ B(x 0 , ǫ 1 ) ∀ r ∈ [0, ǫ 1 ], ∀ θ ∈ U k . Remark: ∂ r [log |g k |]
is a local function of θ, and the restriction of the global function on the sphere S n-1 , ∂ r [log det(g x,ij )]. We will note, J(x, r, θ) = det(g x,ij ).

Part II: The laplacian in polar coordinates

Let's write the laplacian in [0,

ǫ 1 ] × U k , -∆ = ∂ rr + n -1 r ∂ r + ∂ r [log |g k |]∂ r + 1 r 2 |g k | ∂ θ i (g θ i θ j |g k |∂ θ j ).
We have,

-∆ = ∂ rr + n -1 r ∂ r + ∂ r log J(x, r, θ)∂ r + 1 r 2 |g k | ∂ θ i (g θ i θ j |g k |∂ θ j ).
We write the laplacian ( radial and angular decomposition),

-∆ = ∂ rr + n -1 r ∂ r + ∂ r [log J(x, r, θ)]∂ r -∆ Sr(x) ,
where ∆ Sr (x) is the laplacian on the sphere S r (x).

We set

L θ (x, r)(...) = r 2 ∆ Sr (x) (...)[exp x (rθ)],
clearly, this operator is a laplacian on S n-1 for particular metric. We write,

L θ (x, r) = ∆ gx,r, S n-1 ,
and,

∆ = ∂ rr + n -1 r ∂ r + ∂ r [J(x, r, θ)]∂ r - 1 r 2 L θ (x, r). If, u is function on M , then, ū(r, θ) = u[exp x (rθ)]
is the corresponding function in polar coordinates centered in x. We have,

(3) -∆u = ∂ rr ū + n -1 r ∂ r ū + ∂ r [J(x, r, θ)]∂ r ū - 1 r 2 L θ (x, r)ū.
Part III: "Blow-up" and "Moving-plane" methods

The "blow-up" analysis Let, (u i ) i a sequence of functions on M such that, (4)

∆ g u i + R gu i = V i u N -1 i + W i ϕ -2/(n-2) u n/(n-2) i + R g ϕ 2-N u i , u i > 0, N = 2n n -2 ,
We argue by contradiction and we suppose that sup × inf is not bounded.

We assume that:

∀ c, R > 0 ∃ u c,R solution of (E) such that: R n-2 sup B(x0,R) u c,R × inf M u c,R ≥ c. (H) Proposition 2.2.
There exist a sequence of points (y i ) i , y i → x 0 and two sequences of positive real number

(l i ) i , (L i ) i , l i → 0, L i → +∞, such that if we consider v i (y) = u i [exp yi (y)] u i (y i ) , we have: i) 0 < v i (y) ≤ β i ≤ 2 (n-2)/2 , β i → 1. ii) v i (y) → 1 1 + |y| 2 (n-2)/2
, uniformly on every compact set of R n .

iii) l

(n-2)/2 i [u i (y i )] × inf M u i → +∞ Proof:
Without loss of generality, we can assume that:

V (x 0 ) = n(n -2).
We use the hypothesis (H). We can take two sequences

R i > 0, R i → 0 and c i → +∞, such that, R i (n-2) sup B(x0,Ri) u i × inf M u i ≥ c i → +∞. Let, x i ∈ B(x 0 , R i ), such that sup B(x0,Ri) u i = u i (x i ) and s i (x) = [R i -d(x, x i )] (n-2)/2 u i (x), x ∈ B(x i , R i ). Then, x i → x 0 . We have, max B(xi,Ri) s i (x) = s i (y i ) ≥ s i (x i ) = R i (n-2)/2 u i (x i ) ≥ √ c i → +∞.
Set :

l i = R i -d(y i , x i ), ūi (y) = u i [exp yi (y)], v i (z) = u i [exp yi z/[u i (y i )] 2/(n-2) ] u i (y i ) .
Clearly, y i → x 0 . We obtain:

L i = l i (c i ) 1/2(n-2) [u i (y i )] 2/(n-2) = [s i (y i )] 2/(n-2) c 1/2(n-2) i ≥ c 1/(n-2) i c 1/2(n-2) i = c 1/2(n-2) i → +∞. If |z| ≤ L i , then y = exp yi [z/[u i (y i )] 2/(n-2) ] ∈ B(y i , δ i l i ) with δ i = 1 (c i ) 1/2(n-2) and d(y, y i ) < R i -d(y i , x i ), thus, d(y, x i ) < R i and, s i (y) ≤ s i (y i ), we can write, u i (y)[R i -d(y, y i )] (n-2)/2 ≤ u i (y i )(l i ) (n-2)/2 . But, d(y, y i ) ≤ δ i l i , R i > l i and R i -d(y, y i ) ≥ R i -δ i l i > l i -δ i l i = l i (1 -δ i ), we obtain, 0 < v i (z) = u i (y) u i (y i ) ≤ l i l i (1 -δ i ) (n-2)/2 ≤ 2 (n-2)/2 .
We set,

β i = 1 1 -δ i (n-2)/2 , clearly β i → 1.
The function v i is solution of:

-g jk [exp yi (y)]∂ jk v i -∂ k g jk |g| [exp yi (y)]∂ j v i = W i ϕ -2/(n-2) [u i (y i )] 2/(n-2) v n/(n-2) i + µϕ -4/(n-2) [u i (y i )] 4/(n-2) v i +V i v i N -1 ,
By elliptic estimates and Ascoli, Ladyzenskaya theorems, (v i ) i converge uniformely on each compact to the function v solution on R n of, ( 5)

∆v = n(n -2)v N -1 , v(0) = 1, 0 ≤ v ≤ 1 ≤ 2 (n-2)/2 ,
By using maximum principle, we have v > 0 on R n , the result of Caffarelli-Gidas-Spruck ( see [START_REF] Caffarelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF]) give, v(y

) = 1 1 + |y| 2 (n-2)/2
. We have the same properties for v i in the previous paper [START_REF] Bahoura | Majorations du type sup u × inf u ≤ c pour l'équation de la courbure scalaire sur un ouvert de R n , n ≥ 3[END_REF].

Polar coordinates and "moving-plane" method Let, w i (t, θ) = e (n-2)/2 ūi (e t , θ) = e (n-2)t/2 u i o exp yi (e t θ), et a(y i , t, θ) = log J(y i , e t , θ).

Lemma 2.3. The function w i is solution of:

(6) -∂ tt w i -∂ t a∂ t w i -L θ (y i , e t )+cw i = V i w N -1 i +e t W i ϕ -2/(n-2) w n/(n-2) i +µe 2t ϕ -4/(n-2) w i , with, c = c(y i , t, θ) = n -2 2 2 + n -2 2 ∂ t a + R g e 2t .
Proof:

We write:

∂ t w i = e nt/2 ∂ r ūi + n -2 2 w i , ∂ tt w i = e (n+2)t/2 ∂ rr ūi + n -1 e t ∂ r ūi + n -2 2 2 w i . ∂ t a = e t ∂ r log J(y i , e t , θ), ∂ t a∂ t w i = e (n+2)t/2 [∂ r log J∂ r ūi ] + n -2 2 ∂ t aw i .
the lemma is proved.

Now we have,

∂ t a = ∂ t b 1 b 1 , b 1 (y i , t, θ) = J(y i , e t , θ) > 0,
We can write,

- 1 √ b 1 ∂ tt ( b 1 w i )-L θ (y i , e t )w i +[c(t)+b -1/2 1 b 2 (t, θ)]w i = V i w N -1 i +e t W i ϕ -2/(n-2) w n/(n-2) i +µe 2t ϕ -4/(n-2) w i , where, b 2 (t, θ) = ∂ tt ( √ b 1 ) = 1 2 √ b 1 ∂ tt b 1 - 1 4(b 1 ) 3/2 (∂ t b 1 ) 2 . Let, wi = b 1 w i , Lemma 2.4. The function wi is solution of: -∂ tt wi + ∆ g y i ,e t , S n-1 ( wi ) + 2∇ θ ( wi ).∇ θ log( b 1 ) + (c + b -1/2 1 b 2 -c 2 ) wi = (7) = V i 1 b 1 (N -2)/2 wN-1 i + e t W i ϕ -2/(n-2) 1 b 1 1/(n-2)
wn/(n-2)

i + µe 2t ϕ -4/(n-2) wi ,
where, c 2 = [ Proof:

We have:

-∂ tt wi -b 1 ∆ θ w i + (c + b 2 ) wi = V i 1 b 1 (N -2)/2 wN-1 i + +e t W i ϕ -2/(n-2) 1 b 1 1/(n-2)
wn/(n-2)

i + µe 2t ϕ -4/(n-2) wi .

But,

∆ θ ( b 1 w i ) = b 1 ∆ g y i ,e t , S n-1 w i -2∇ θ w i .∇ θ b 1 + w i ∆ g y i ,e t , S n-1 ( b 1 ),
and,

∇ θ ( b 1 w i ) = w i ∇ θ b 1 + b 1 ∇ θ w i , we deduce than, b 1 ∆ θ w i = ∆ θ ( wi ) + 2∇ θ ( wi ).∇ θ log( b 1 ) -c 2 wi , with c 2 = [ 1 √ b 1 ∆ g y i ,e t , S n-1 ( √ b 1 ) + |∇ θ log( √ b 1 )| 2 ].
The lemma is proved.

The "moving-plane" method:

Let ξ i a real number, and suppose ξ i ≤ t. We set t ξi = 2ξ i -t and wξi i (t, θ) = wi (t ξi , θ).

We have,

-∂ tt wξi i + ∆ θ ( wi ) + 2∇ θ ( wξi i ).∇ θ log( b 1 ) wξi i + [c(t ξi ) + b -1/2 1 (t ξi , .)b 2 (t ξi ) -c ξi 2 ] wξi i = = V i 1 b ξi 1 (N -2)/2 ( wξi i ) N -1 + +e t W i ϕ -2/(n-2) 1 b 1 1/(n-2)
wn/(n-2)

i + µe 2t ϕ -4/(n-2) wi .

By using the same arguments than in [START_REF] Bahoura | Majorations du type sup u × inf u ≤ c pour l'équation de la courbure scalaire sur un ouvert de R n , n ≥ 3[END_REF], we have:

Proposition 2.5. We have:

1) wi (λ i , θ) -wi (λ i + 4, θ) ≥ k > 0, ∀ θ ∈ S n-1 .
For all β > 0, there exist c β > 0 such that:

2) 1 c β e (n-2)t/2 ≤ wi (λ i + t, θ) ≤ c β e (n-2)t/2 , ∀ t ≤ β, ∀ θ ∈ S n-1 .
We set,

Zi = -∂ tt (...) + ∆ θ (...) + 2∇ θ (...).∇ θ log( b 1 ) + (c + b -1/2 1 b 2 -c 2 )(...)
Remark: In the operator Zi , by using the proposition 3, the coeficient c + b

-1/2 1 b 2 -c 2 satisfies: c + b -1/2 1 b 2 -c 2 ≥ k ′ > 0, pour t << 0,
it is fundamental if we want to apply Hopf maximum principle.

Goal:

Like in [START_REF] Bahoura | Majorations du type sup u × inf u ≤ c pour l'équation de la courbure scalaire sur un ouvert de R n , n ≥ 3[END_REF], we have elliptic second order operator. Here it is Zi , the goal is to use the "movingplane" method to have a contradiction. For this, we must have:

Zi ( wξi i -wi ) ≤ 0, if wξi i -wi ≤ 0. We write: Zi ( wξi i -wi ) = (∆ ξi θ -∆ θ ) wξi i )+ +2(∇ θ,e t ξ i -∇ θ,e t )(w ξi i ).∇ θ,e t ξ i log( b ξi 1 ) + 2∇ θ,e t ( wξi i ).∇ θ,e t ξ i [log( b ξi 1 ) -log b 1 ]+ +2∇ θ,e t w ξi i .(∇ θ,e t ξ i -∇ θ,e t ) log b 1 -[(c + b -1/2 1 b 2 -c 2 ) ξi -(c + b -1/2 1 b 2 -c 2 )] wξi i + +V ξi i 1 b ξi 1 (N -2)/2 ( wξi i ) N -1 -V i 1 b 1 (N -2)/2 wN-1 i + +e t ξ i (W i ϕ -2/(n-2) ) ξi b ξi 1 -1/(n-2) ( wξi i ) n/(n-2) -e t (W i ϕ -2/(n-2) )b -1/(n-2) 1 ( wi ) n/(n-2) + +µ(e 2t ξ i (ϕ -4/(n-2) ) ξi wξi i -e 2t ϕ -4/(n-2) wi ) ( * * * 1)
Clearly, we have:

Lemma 2.6. b 1 (y i , t, θ) = 1 - 1 3 Ricci yi (θ, θ)e 2t + . . . , R g (e t θ) = R g (y i )+ < ∇R g (y i )|θ > e t + . . . .
According to proposition 1 and lemma 3, Proposition 2.7.

Zi ( wξi

i -wi ) ≤ Ãi (e t -e t ξ )( wξi i ) N -1 + (1/2)(e t ξ i -e t )( wξi i ) n/(n-2) + +C|e 2t -e 2t ξ i | |∇ θ wξi i | + |∇ 2 θ ( wξi i )| + o(1)[ wξi i + ( wξi i ) N -1 ] + ϕ -2/(n-2) ( wξi i ) n/(n-2) + µ wξi i .
Proof:

We use proposition 1, we have:

a(y i , t, θ) = log J(y i , e t , θ) = log b 1 , |∂ t b 1 (t)| + |∂ tt b 1 (t)| + |∂ tt a(t)| ≤ Ce 2t ,
and,

|∂ θj b 1 | + |∂ θj,θ k b 1 | + ∂ t,θj b 1 | + |∂ t,θj,θ k b 1 | ≤ Ce 2t , then, |∂ t b 1 (t ξi ) -∂ t b 1 (t)| ≤ C ′ |e 2t -e 2t ξ i |, on ] -∞, log ǫ 1 ] × S n-1 , ∀ x ∈ B(x 0 , ǫ 1 )
Locally,

∆ θ = L θ (y i , e t ) = - 1 |g k (e t , θ)| ∂ θ l [g θ l θ j (e t , θ) |g k (e t , θ)|∂ θ j ].
Thus, in [0, ǫ 1 ] × U k , we have,

A i =   1 |g k | ∂ θ l (g θ l θ j |g k |∂ θ j ) ξi - 1 
|g k | ∂ θ l (g θ l θ j |g k |∂ θ j )   ( wξi i )
then, A i = B i + D i with, B i = gθ l θ j (e t ξ i , θ) -gθ l θ j (e t , θ) ∂ θ l θ j wξi i (t, θ), and,

D i = 1 |g k |(e t ξ i , θ) ∂ θ l [g θ l θ j (e t ξ i , θ) |g k |(e t ξ i , θ)] - 1 |g k |(e t , θ) ∂ θ l [g θ l θ j (e t , θ) |g k |(e t , θ)] ∂ θ j wξi i (t, θ),
we deduce,

A i ≤ C k |e 2t -e 2t ξ i | |∇ θ wξi i | + |∇ 2 θ ( wξi i )| , We take C = max{C i , 1 ≤ i ≤ q}
and if we use ( * * * 1), we obtain proposition 4. We have:

∂ θj w λ i (t, θ) w λ i = e (n-2)[(λ-λi)+(ξi-t)]/2 e [(λ-λi)+(ξi-t)] (∂ θj v i )(e [(λ-λi)+(λ-t)] θ) e (n-2)[(λ-λi)+(λ-t)]/2 v i [e (λ-λi)+(λ-t) θ] ≤ Ci ,
and,

∂ θj ,θ l w λ i (t, θ) w λ i = e (n-2)[(λ-λi)+(ξi-t)]/2 e 2[(λ-λi)+(ξi-t)] (∂ θj ,θ l v i )(e [(λ-λi)+(λ-t)] θ) e (n-2)[(λ-λi)+(λ-t)]/2 v i [e (λ-λi)+(λ-t) θ] ≤ Ci ,
with Ci tending to 0 and does not depend on λ ≤ λ i + 2.

We have,

c(y i , t, θ) = n -2 2 2 + n -2 2 ∂ t a + R g e 2t , (α 1 ) b 2 (t, θ) = ∂ tt ( b 1 ) = 1 2 √ b 1 ∂ tt b 1 - 1 4(b 1 ) 3/2 (∂ t b 1 ) 2 , ( α 2 ) 
c 2 = [ 1 √ b 1 ∆ g y i ,e t , S n-1 ( b 1 ) + |∇ θ log( b 1 )| 2 ], ( α 3 ) 
Then,

∂ t c(y i , t, θ) = (n -2) 2 ∂ tt a, by proposition 1, |∂ t c 2 | + |∂ t b 1 | + |∂ t b 2 | + |∂ t c| ≤ K 1 e 2t .
We have:

w i (2ξ i -t, θ) = w i [(ξ i -t + ξ i -λ i -2) + (λ i + 2)],
Thus,

w i (2ξ i -t, θ) = e [(n-2)(ξi-t+ξi-λi-2)]/2 e n-2 v i [θe 2 e (ξi-t)+(ξi-λi-2) ] ≤ 2 (n-2)/2 e n-2 = c. We set δ = (n + 2) -(n -2)α 2 .
The left right side are denoted Z 1 et Z 2 , we can write:

Z 1 = ( V ξi i -Vi )( wξi i ) N -1 + Vi [( wξi i ) N -1 -wN-1 i ],
and, 2) ]+e t ξ i ( wξi i ) n/(n-2) [(W i ϕ -2/(n-2) ) ξi -W i ϕ -2/(n-2) ]+ +ϕ -2/(n-2) ( wξi i ) n/(n-2) (e t ξ i -e t ). We can write the part with nonlinear terms as: 2) [(A i w ξi i 2/(n-2) + o( 1))(e t -e t ξ i ) + c(e t ξ i -e t )].

Z 2 = e t ϕ -2/(n-2) [( wξi i ) n/(n-2) -( wi ) n/(n-
( wξi i ) n/(n-
where o(1) = e t ξ i → 0 come from the difference [W i ϕ -2/(n-2) ] ξi -[W i ϕ -2/(n-2) ].

Because w ξi i ≤ c, we have:

-Zi (( wi ) ξi -( wi )) ≤ ( wξi i ) n/(n-2) [(A i c2/(n-2) +o( 1))(e t -e t ξ i )+c(e t ξ i -e t )]+( wi ) ξi (µ/2)(e 2t ξ i -e 2t )]

where o(1) = e t ξ i → 0. Finaly:

-Zi (( wi ) ξi -( wi )) ≤ ( wξi i ) n/(n-2) [-1+A i c2/(n-2) +o( 1)](e t -e t ξ i )+( wi ) ξi (µ/2)(e 2t ξ i -e 2t )

We apply proposition 3. We take t i = log √ l i with l i like in proposition 2. The fact We define ξ i by: ξ i = sup{λ ≤ λ i + 2, wi (2λ -t, θ) -wi (t, θ) ≤ 0 on [λ, t i ] × S n-1 }.

√ l i [u i (y i )]
If we use proposition 4 and the similar technics that in [START_REF] Bahoura | Majorations du type sup u × inf u ≤ c pour l'équation de la courbure scalaire sur un ouvert de R n , n ≥ 3[END_REF] we can deduce by Hopf maximum principle, min Sn-1 wi (t i , θ) ≤ max Sn-1 wi (2ξ i -t i , θ), which implies,

l i (n-2)/2 u i (y i ) × min M u i ≤ c.
It is in contradiction with proposition 2.

Then we have, 

u

  ≤ c = c(a, b, A, K, M, g, n).

  2/(n-2) → +∞ ( see proposition 2), implies t i = log √ l i > 2 n -2 log u i (y i ) + 2 = λ i + 2.Finaly, we can work on ] -∞, t i ].