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SIMULATION OF NON LINEAR TRANSIENT ELASTOGRAPHY: FINITE ELEMENT MODEL FOR THE PROPAGATION OF SHEAR WAVES IN SOFT TISSUES
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Weakly nonlinear viscoelastic Landau's theory, widely used in acoustical physic, is introduced into a Finite Element formulation to model the nonlinear behaviour of finite amplitude shear waves in soft solids, typically, in biological tissues. Numerical models for plane waves are developed and compared to transient elastography experiments. A good agreement is achieved as we observe the generation of odd harmonics. Simulation results are confronted to an existing analytical model; we show that the numerical model is an extension of the analytical formulation and helps identifying non-linear parameters in a wider range of experimental conditions.

INTRODUCTION

Transient elastography is a medical imaging technique which characterizes the elastic properties of biological tissues in vivo by observing shear wave propagation. These mechanical properties provide useful clinical information for diagnostic process. Assuming that the soft tissue is homogeneous, isotropic and linear elastic, the shear modulus µ can be estimated by µ = ρc 2 s where ρ is the mass density and c s is the shear wave speed. Although the measurement could be affected by multiple factors, such as boundary conditions, frequencies or geometries, this technique has been clinically proven to be able to evaluate many diseases, such as cancers and liver fibrosis. Lately, experimental efforts have been made to determine the nonlinear properties of biological soft tissues [START_REF] Catheline | Observation of shock transverse waves in elastic media[END_REF][START_REF] Jacob | Nonlinear shear wave interaction in soft solids[END_REF][START_REF] Jiang | Characterization of the nonlinear elastic properties of soft tissues using the supersonic shear imaging (ssi) technique: inverse method, ex vivo and in vivo experiments[END_REF]. At the same time, theoretical work is necessary to support experimental results. In the work of [START_REF] Zabolotskaya | Modeling of nonlinear shear waves in soft solids[END_REF][START_REF] Wochner | Cubic nonlinearity in shear wave beams with different polarizations[END_REF][START_REF] Destrade | Third-and fourth-order constants of incompressible soft solids and the acousto-elastic effect[END_REF], analytical models are established but the solutions can be achieved only under simple cases. Thanks to its possibility to represent real geometries and its flexibility, Finite Element Method (FEM) could be a performing tool for analyzing shear wave propagation in elastography.

In this work, the weakly nonlinear elastic theory of the third-(forth-) order Landau's law is developed in the Finite Element formulation; viscosity is considered by Voigt model in finite strain domain. Secondly, the FE simulations are carried out to model the nonlinear dynamic response of nearlyincompressible soft tissues and comparison with experimental results [START_REF] Jacob | Nonlinear shear wave interaction in soft solids[END_REF] is performed.

MATERIAL AND METHODS

Material modeling

In seismology and physic acoustics, non-linear elasticity is usually modeled using Landau's weakly nonlinear theory [START_REF] Landau | Theory of Elasiticy[END_REF]. Assuming that W can be approximated by a series expansion, at the third order and in the decoupled form, we have [START_REF] Hamilton | Separation of compressibility and shear deformation in the elastic energy density (l)[END_REF] 

W = W dev + W vol with W dev = µI 2 + A 3 I 3 + DI 2 2 (1) 
with

I k = tr(E k ) for k = 1, 2, 3
, µ, A and D represent the shear moduli at the second, third and fourth order. They all have the same order of magnitude (kP a) in soft solids, and they play a key role in nonlinear shear wave propagation. In the following, we will consider the nonlinear parameter γ = µ + A 3 + D. Viscosity also needs to be taken into account. Indeed in finite amplitude wave propagation, nonlinear elasticity generates higher harmonics of the fundamental frequency. On the other hand, the absorption of the medium decreases the amplitude of deformation which limits the generation of these harmonics. As a result, nonlinear wave propagation cannot be modeled without considering viscosity. In nonlinear acoustic, the viscoelasticity of soft solids is often described by the Voigt model [START_REF] Catheline | Measurement of viscoelastic properties of homogeneous soft solid using transient elastography: an inverse problem approach[END_REF]. In finite strain the formulation becomes [START_REF] Zabolotskaya | Modeling of nonlinear shear waves in soft solids[END_REF]:

S visco = 2η Ėdev + ξ Ėvol (2) 
where η and ξ are the shear and bulk viscosity coefficients, respectively, S visco the PK2 stress tensor and Ėdev is given by [START_REF] Belytschko | Nonlinear finite elements for continua and structures[END_REF]:

Ėvol = 1 3 ( Ė : C -1 )C, Ėdev = Ė - Ėvol (3) 

Numerical simulation of plane waves

In the following, all simulations are carried out by our in-house Finite Element codes implemented in Fortran. Landau's hyperelastic model and Voigt viscous model are implemented in the code. Bi-linear quadrangular elements combined with selective integration strategy are used to handle the volumetric locking and the hourglass effect at the same time. For these fast dynamic (wave propagation) simulations, a classical explicit time integration scheme is used. However, the time step will be largely limited by the big value of the bulk modulus K. We consider the propagation of plane shear wave into a soft solid, the experiment is described in [START_REF] Jacob | Nonlinear shear wave interaction in soft solids[END_REF]. The model is formulated in plane strain, it contains 4949 nodes and 4800 elements. To generate plane waves, a vertical displacement is prescribed (smoothed harmonic excitation, frequency f ) on the rigid plate at the right side of the phantom. The simulation time is chosen to establish nonlinear effect and avoid reflections. The time step is ∆t = 0.5 × 10 -6 s to keep the stability of the explicit integration scheme. The material parameters are chosen to be close to the values reported in the experiments, see Tab.1. Note that these parameters lead to a volumetric wave speed c l = 100 m/s, and the shear wave speed c s = 2.1 m/s in infinitesimal deformation. The realistic bulk modulus K (order of GP a) or realistic volumetric wave speed (c l 1500 m/s) is not ensured. In this paper, we use the assumption that in a homogeneous medium the volumetric wave does not play an important role to keep the time step reasonable. Besides, it should be noted that only the nonlinear coefficient γ is given in [START_REF] Jacob | Nonlinear shear wave interaction in soft solids[END_REF], there is so far no effective way to discriminate the third and fourth order shear moduli A and D separately. Herein, we set D = 0 to determine the value of A. Figure 1: Nonlinear plane shear wave experiment [START_REF] Jacob | Nonlinear shear wave interaction in soft solids[END_REF] and the corresponding model.

Analytical model for harmonics amplitude

Zabolotskaya et al. [START_REF] Zabolotskaya | Modeling of nonlinear shear waves in soft solids[END_REF] have proposed an analytical formulation for fundamental and first odd harmonic amplitude as a function of the propagation distance. This expression is valid as long as Goldberg number Γ, a dimensionless coefficient function of γ characterizing the relative importance of nonlinearity and viscosity, remains small. Besides this model does not give the expression of the other odd harmonic components. We therefore compare the harmonic amplitudes obtained by the plane wave numerical model with the ones determined by the analytical model, for different excitation amplitudes, excitation frequencies, material non-linear elastic parameters and viscosity parameters.

RESULTS AND CONCLUSIONS

The results are displayed in terms of shear wave speed spectrum at the distance of propagation from 5 to 50 mm (Fig. 2) and compared to experimental results reported in [START_REF] Jacob | Nonlinear shear wave interaction in soft solids[END_REF]. It can be seen that the two results are very similar, they both exhibit the odd harmonic at 3f which penetrates the whole measured zone. The experimental results looks more precise in spectrum, this is because that the experiment has a longer duration which leads to a better Fourier transform. The comparison with the analytical model (Fig. 3) shows that the numerical model extends the harmonics amplitude modeling to larger Goldberg numbers Γ than the analytical form, that is to say to larger application range. The comparison indicates that the analytical solution is accurate when Γ is smaller than about 13. By measuring the harmonics amplitude in a plane wave experiment, one can evaluate Γ using the analytical or numerical relationship between Γ and the harmonics amplitude, then determine γ, which gives a first equation linking A and D. However a second type of test is necessary to discriminate A and D. FEM simulations of the nonlinear shear wave propagation by using Landau's viscoelastic law are presented. In plane wave, the numerical results show a good qualitative agreement with the experimental work [START_REF] Jacob | Nonlinear shear wave interaction in soft solids[END_REF]. It is also consistent with the existing analytical model and extends its application. Consequently, Landau's hyperelastic model combined with Voigt model can be further used in the numerical study of the nonlinear shear wave propagation in soft solids. It has already been applied to non-plane shear waves. This FEM model has a broad perspective in numerical simulations of complex nonlinear wave phenomena, such as real geometry, heterogeneity, diffraction and focalisation effect.
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 2 Figure 2: Spectra of the vertical velocity v.s. propagation depth z
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 3 Figure 3: Evolution of the third harmonic component along the propagation distance for varying parameters. Lines: FEM simulations; circles: analytical model; number: Goldberg number.
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