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ABSTRACT

Hydrogenated nanodiamonds (H-NDs) exhibit a negative electron affinity that confers a high reactivity
with oxygen species and a positive charge in aqueous solutions. It allows electron emission from H-NDs
following irradiation by photons and in consequence may enhance the effects of radiation on cancer cells.

By using three human radioresistant cancer cell lines, we showed a potentialization of cytotoxicity
after a co-exposure to H-NDs and irradiation; an event occurring through the induction of DNA damage
and reactive oxygen species. This occurred together with a decrease in cell impedance, the activation of
G1/S, an unlocking of G; cell cycle check-points and early low cell death rate. At later stage of exposure,
persistent increases in heterochromatinization, large y-H2AX foci and f-galactosidase activity were
detected providing evidence of cells' entrance into senescence. Similar potentialization was observed
with neocarzinostatin (NCS), a radiomimetic drug.

This original finding underlines a wide clinical potential of H-NDs to intensify radiation effects on
radio-resistant cancer cells.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Nanodiamonds (NDs) have gained increasing attention as an
efficient drug delivery nanoplatform, for both diagnostic and
therapeutic purposes [1—3]. Several in vitro [4—6] and in vivo [7—9]
studies have shown that NDs are non-cytotoxic with an enhanced
cell tolerance compared to other carbon nanoparticles. Depending
on their production method, NDs are scalable with sizes ranging
from 100 nm down to 5 nm. Moreover, luminescent nitrogen-
vacancy (N—V) color photostable centers can be generated in the
diamond lattice of NDs [4,10] and such fluorescent NDs can act as
diagnostic biomarkers when functionalized with specific probes.

Because of these combined properties, NDs have attracted
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growing interest as nano-vectors. The carbon-related surface
chemistry of these particles provides an efficient and versatile
platform for bio-conjugation that can be used in therapeutic ap-
plications [11—15]. For instance, carboxylated nanodiamonds
exhibit a strong negative zeta potential when dispersed in water at
a pH > 5 [16,17]. On the other hand, surface treatments such as
plasma hydrogenation [18,19] or surface graphitization lead to
positive zeta potential in aqueous suspension [16,20]. In both cases,
the diameter of the particle is not affected. As a consequence, the
tuning of the ND surface charge allowed the electrostatic loading of
biomolecules such as siRNAs [11,21,22] or drugs including plant
bioactive metabolites [23]. Another characteristic of NDs provided
by their surface chemistry concerns their electronic properties.
Indeed, hydrogenated detonation NDs have a negative electron
affinity (NEA) that is similar to hydrogenated diamond films [24].
This property induces a strong interaction with water molecules
leading to transfer doping [20]. This p-type conductivity of H-NDs
was recently measured [25].

Our present study findings demonstrate that hydrogenated
nanodiamonds (H-NDs) can act as active nanoparticles. Bearing an
NEA that enables the emission of electrons, and when surrounded

0142-9612/© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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with oxygen-related adsorbents, H-NDs may act as an efficient
source of reactive oxygen species (ROS) when excited with sub-
bandgap energies, from UV to X-rays. Indeed, our experiments
revealed that H-NDs can have a radiosensitizing effect on cancer
cells by generating ROS in addition to those generated by ionizing
irradiation. By testing radiation resistant human cancer cell lines,
we established a higher generation of ROS leading to a greater
cytotoxicity and genotoxicity when intracellular H-NDs were
exposed to y-rays as compared to radiation or H-NDs alone. This
radiation sensitizing effect of H-NDs results in sustained DNA
double strand breaks (DSBs), a cell cycle check-point switch from
G2/M to a G1/S arrest, and finally in cell senescence. Of note, among
the cancer cell lines we tested, those derived from a breast cancer
were found to express a deregulated Ku70 gene involved in DSB
DNA repair through non-homologous end-joining (NHE]), which is
normally active throughout all phases of cell cycle. In contrast, the
renal cancer cell line is wild type for this gene. Hence, considering
that single strand breaks (SSB) result in DSBs if not repaired, or if
misrepaired, and that senescence was triggered in all cell lines
tested, our data strongly suggest that ROS-induced G1/S arrest is the
specific event leading to senescence induction. Taken together, our
data emphasize the wide potential of H-NDs in the development of
new therapeutic strategies combining these nanoparticles with
radiotherapy.

2. Results
2.1. Physical and chemical characteristics of H-NDs

Electron emission properties are conferred on NDs by the
presence of hydrogenated terminations on their surface [20]. Such
terminations can be efficiently created by plasma hydrogenation as
described elsewhere [19]. Size and Zeta potential of H-NDs have
been characterized after being dispersed in aqueous suspension by
sonication (Table 1). For this purpose, a suspension of H-NDs at
1 mg/mL was used. As reported in our previous study [20], hy-
drogenated NDs dispersed in an aqueous solution are highly reac-
tive toward oxygenated species, which leads to a conductive
surface layer. A positive Zeta potential was measured in our current
study (44 mV at pH = 7) consistent with our previous report [20].

The H-NDs were then dispersed in DMEM cell culture medium.
The corresponding suspension exhibited an increase of the hy-
drodynamic radius whilst the Zeta potential dropped to —7 mV.
These latter effects are likely related to adsorption of a corona of
proteins on the H-NDs surface that might be at the origin of the
slight aggregation [26,27].

2.2. Real-time cellular index (impedance)

We screened the cytotoxicity of H-NDs, combined or not with
radiation exposure, by monitoring cell impedance (RTCA xCELLi-
gence®™) [28,29]. The cellular index as a function of time reflects a
real-time integrative measure of the morphology, proliferation,
growth and membrane potential of cells. Importantly, impedance
cell dedicated culture plates are compatible with y-irradiation

Table 1

exposure and H-NDs alone do not interfere with this measurement
[30,31]. Thus, the impedance value reflecting global cell “health”
under standard in vitro cell culture conditions, was measured
simultaneously for untreated (controls), irradiated, and H-ND-
treated cells, and also for cells treated with both H-NDs and irra-
diation. We selected three cell lines: two breast cancer derived cell
lines created in our laboratory harboring the conditional expression
of Ku70, an essential protein in the classical NHE] DNA repair
pathway (ZR75.1gy70wt and ZR75.1gy70mut; Bouley et al., submitted)
and a kidney cancer cell line (Caki-1).

In agreement with the previously established radioresistance of
these cell lines by other approaches, they could also be considered
resistant to 4 Gy irradiation using the xCELLigence® assay (Fig. 1).
The evolution of the cellular index of the three untreated cell lines
throughout 180 h was quite similar, indicating their close doubling
times (Fig. 1). Cells were exposed to three different concentrations
of H-NDs: 10 pg/mL, 50 pg/mL and 100 pg/mL corresponding to
6 pg/cm? 32 pg/em? and 64 pg/cm?, respectively. However,
following single cell treatments, this method appeared less robust
and divergent results were obtained between the tested cell lines
since the cell indexes unexpectedly but significantly increased. The
Caki-1 cells treated only by irradiation exhibited a higher (2-fold,
see Table 2) cell index similar to the breast cancer derived cell lines
treated by H-NDs alone (Fig. 1). This of course could not account for
real cell behavior improved by these treatments but rather indi-
cated a morphological change (i.e. cell shrinkage, not shown), and
thus reflected global changes in the extracellular matrix (cell
adhesion) without affecting long term cell proliferation or growth
(as further validated by specific experimental approaches described
below).

Overall, this new methodology showed some limitations in
assessing multiparametric cellular toxicity (i.e. cell treatment
affecting cell morphology and adhesion in addition to membrane
potential, cell mass and proliferation for which it was initially
dedicated). Nevertheless, the xCELLigence® approach allowed us to
conclude that the potentially effective dose of H-NDs combined
with irradiation or with the radio-mimetic drug neocarzinostatin
could be as low as 6 pg/cm?. Thus, this dose was chosen to further
characterize the biological effects of H-NDs through conventional
and validated methods. Using irradiated cells as the controls (rather
than untreated cells), co-exposure of cells to the same concentra-
tions of H-NDs and to 4 Gy irradiation led to a decreased cellular
index for the two more radio-resistant cells (Caki-1 and
ZR751ky70mut). This observation was relevant to the level of
induced cellular toxicity. Indeed, an identical increased effect was
evidenced when the cells were simultaneously treated by H-NDs
and the neocarzinostatin radiomimetic at 3.3 nM, a dose chosen as
the equivalent to irradiation at 4 Gy (see Supplementary Data 1).
This last observation is in agreement with the observed morpho-
logical alterations induced by irradiation that contributed to
increased cell impedance since neocarzinostatin induces oxidative
stress like irradiation (see below).

Thus, to further explore the biological effects of H-NDs, we next
evaluated cell death, cell cycle control, the induction of ROS and
DNA damage by applying this dose of H-NDs. We also assessed

Polydispersity Indexes after sonication, Dynamic Light Scattering, and Zeta Potential of 1 mg/mL H-NDs suspended in water and complete media.

Suspension medium Polydispersity index (PDI)

Dynamic light scattering (DLS)

Zeta potential

Hydrodynamic radius (nm) %Number SD Value SD
Water Peak 1 0.311 16 100 +5.5 44 +4.92
Complete DMEM* Peak 1 0.590 20 89.4 +3.3 -7 +0
Peak 2 53 10.6 +35.14

¢ DMEM medium with 10% vol/vol FBS (pH = 7).
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Fig. 1. Real-time monitoring of cells exposed to H-NDs and|/or irradiation to measure the cell index. Real-time monitoring of the cell index in a) Caki-1, b) ZR75.1xu70wt, and c)
ZR75.1ky70mut Cells exposed to three dose levels of H-NDs with or without irradiation (4 Gy). Impedance measurements (one representative experiment among three independent
experiments is shown) were carried out for 170 h and the cell index values were normalized at time O to avoid inter-well variability prior to the addition of nanoparticles. “Control”

and “4 Gy” cells were not exposed to H-NDs.

whether cell growth arrest was due to entry into irreversible
senescence.

2.3. Cell death assessment

The cytotoxicity of H-NDs alone or in combination with ionizing
irradiation was analyzed by measuring trypan blue exclusion which
indicates cell viability (Fig. 2). As expected, since we specifically
tested a radiation resistant cell line, ionizing irradiation exposure at
a4 Gy dose did not significantly affect cell viability up to 72 h post-
treatment. H-NDs alone induced only a 20% rate of cell death in the
breast cancer lines and did not affect Caki-1 cell viability at all.
However, a combined exposure of H-NDs (6 pg/cm?) and irradiation
(4 Gy), significantly increased the rate of cell death in all three cell
lines as compared to each single exposure (irradiation or H-NDs
alone) with a stronger effect being observed for Caki-1 and
ZR75-1KU70mut cells (Fig. 2).

2.4. Cell cycle check-point activation (flow cytometry)

Considering that ionizing irradiation activates cell cycle

checkpoints [32,33], we addressed whether a co-exposure to H-
NDs and irradiation would activate specific cell cycle checkpoints.
Indeed, upon exposure to radiation alone, an accumulation of cells
in Gy/M phase was observed for all three cell lines at 24 h after
exposure. This was expected since these three cell lines express all
TP53 wild type. The intensity of the G, blockage depended on the
radiation sensitivity of each cell line. Being the most resistant line,
Caki-1 cells displayed a higher proportion of G/M arrested cells
followed by ZR75.1ky70mut and ZR75.1gu70wt (Fig. 3). It should be
noted that Caki-1 cells exhibited an additional blockage in Gy
phase. Interestingly, while exposure to H-NDs alone did not modify
the cell cycle distribution of the three treated cell lines, the co-
exposure to H-NDs and irradiation induced a partial lifting of G,/
M arrest leading to a higher proportion of cells with a G1/S
blockage, as compared to irradiation alone.

2.5. Early intracellular ROS levels

This prompted us to analyze the intracellular ROS level in Caki-1
cells which were selected for having a higher level of radiation
resistance than the other two cell lines analyzed. As shown in
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Compilation of final cell event ratios. The ratios between the sample and control values were calculated for each experimental condition. The time points at the maximal
observed effects were chosen. Irradiation (IR, 4Gy) only compares results between irradiation and control. IR + H-NDs (hydrogenated nanodiamonds) compares results
between double cell treatment and IR only. NI, Non Irradiated.

XxCELLigence Caki-1 Time 160 h NI IR IR + H-NDs
6 pg/cm? 64 pg/cm? 96 pg/cm? 0 6 pg/cm? 64 pg/cm? 96 pg/cm?
0.95 0.87 0.83 139 0.86 0.85 0.62
ZR75.1 xurome Time 160 h NI IR IR + H-NDs
6 pg/cm? 64 pg/cm? 96 pg/cm? 0 6 pg/cm? 64 pg/cm? 96 pg/cm?
1.52 1.83 1.62 0.71 1.24 1.04 1.03
ZR75.1 kuzomut Time 160 h NI IR IR + H-NDs
6 ug/cm? 64 pg/cm? 96 pg/cm? 0 6 pg/cm? 64 ng/cm? 96 ug/cm?
1.02 1.23 0.89 0.46 0.79 0.77 0.75
Cell Cycle Caki-1 Time 24 h H-NDs IR IR + H-NDs
G1 S G2 G1 S G2 G1 S G2
1.00 0.88 1.01 0.68 0.22 2.23 0.73 0.71 1.78
ZR75.1kuz0we Time 12 h H-NDs IR IR + H-NDs
G1 S G2 G1 S G2 G1 S G2
1.19 0.72 0.48 0.94 0.44 222 1.07 0.45 1.55
ZR75.1xuromut Time 12 h H-NDs IR IR + H-NDs
G1 S G2 G1 S G2 G1 N G2
0.12 0.70 0.86 0.89 0.47 2.29 1.03 0.48 1.64
ROS Caki-1 Time 1 h H-NDs IR IR 4+ H-NDs
Median Median Median
2.19 0.89 2.88
H2AX Caki-1 Time 2 h H-NDs IR IR + H-NDs
Median Median Median
1 12 32

Fig. 4A, one hour after cell exposure to irradiation alone, the ROS
level was not significantly different from the controls (i.e. untreated
cells). In contrast, as expected from the H-ND properties, the
intracellular level of ROS significantly increased by 2- and 3-fold,
after exposure to H-NDs and irradiation, respectively. Interestingly,
it appeared that the higher concentration of H-NDs could also
induce ROS upon entry into the cells.

2.6. DNA double strand breaks induction (v-H2AX foci)

To verify whether exposure to H-NDs alone or in combination
with irradiation could induce a higher level of DNA DSBs than ra-
diation exposure only, phospho-S129-H2AX (y-H2AX), a variant of
histone H2A, undergoing phosphorylation at DNA DSBs sites, was
assayed since it is considered to be the most sensitive marker of
DNA DSBs [34—36]. As shown in Fig. 5, the number of y-H2AX foci
after irradiation was higher than the control cells and was found to
be stable from 2 to 24 h. Remarkably, exposure to H-NDs alone did
not induce y-H2AX foci in the first couple of hours following

exposure but did so later (24 h) at the highest H-ND concentration
(64 pg/cm?).

Combined cell exposure to irradiation (4 Gy) and to H-NDs at
low (6 pg/cm?) and high (64 pg/cm?) concentrations significantly
increased the number of y-H2AX foci following 2 h of exposure
compared to untreated control cells or to cells exposed to radiation
alone. However, at 24 h following treatment, the number of y-
H2AX foci, although higher than in control cells, was not signifi-
cantly different between treatments (i.e. irradiation or H-NDs alone
or in combination).

2.7. Late intracellular ROS level

To fully interpret DNA double strand breaks and specifically to
understand why H-NDs alone induced DNA breaks at 24 h, we
decided to analyze ROS levels 24 h after exposure to H-NDs alone or
to H-NDs and radiation combined exposure (Fig. 4B). Moreover the
level of DNA damages at 24 h is higher after exposure with H-NDs
alone as compared to the combined exposure (Fig. 4A). To verify the

a) Caki-1 b) ZR75.1 Ku70wt c) ZR75'1RKU70mut
30 30 301
. 1
1 I
g2 ] g g 20
: 3 I 8
By — 8o . 3 10, !
'L*: &*: '\"; '»"“: v‘P‘: «’V‘: '»‘“: b?": '0‘:
Time (hours) Time (hours) Time (hours)
—— Control — 6ug/cm? — 4Gy Gug/cm? + 4Gy

Fig. 2. Cell death induction after H-NDs and/or irradiation treatments. Cell death measurements of a) Caki-1, b) ZR75.1u70wt and ¢) ZR75.1xu70mut cells, exposed to 6 pg/cm? of
H-NDs combined or not with irradiation (4 Gy). Cell death induction is represented as the percentage of dead cells among the entire population. Cell counts were taken at 24, 48 and
72 h after treatment. At least 600 cells were counted for each condition. “Control” and “4 Gy” cells were not exposed to H-NDs.
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Fig. 3. Cell cycle checkpoint activation following H-NDs and|/or irradiation treatments. Cell cycle analysis of a) Caki-1, b) ZR75.1ky70w, and ¢) ZR75.1 ky70mut Cells exposed to 6 ug/
cm? of H-NDs combined or not with irradiation (4 Gy). “Control” and “4 Gy” cells were not exposed to H-NDs. Cell cycle checkpoint activation was evaluated by flow cytometry
(FacsCalibur) 24 h after treatment. Statistical analysis was performed for each exposure condition compared to non-exposed cells (Student's t-test, *p < 0.01).

importance of H-NDs surface for explaining this intriguing result, as
a control we compared ROS level after cell exposure to H-NDs or to
H-NDs previously irradiated (before any contact with the cells)
(Fig. 4B). Overall, it can be seen that i) the ROS level is persistent
24 h after the double exposure to H-NDs and radiation, ii) H-NDs
alone induced a slight ROS increase at 24 h and it is effectively
related to H-NDs surface since if nanoparticles are irradiated before
cell contact, no more ROS are detectable.

The ROS levels observed 24 h after exposure could fully
explained DNA double strand breaks at 24 h (Fig. 5).

2.8. Induction of senescence

After 72 h of exposure to H-NDs and irradiation, the cell lines we
tested remained in culture without any apparent growth or cell
death. Hence, we hypothesized that the senescence can be initiated
by persistent DNA damage and act as a barrier to cell proliferation.

Several hallmarks of cellular senescence have been described

previously [37—41] including B-galactosidase activation. As shown
in Fig. 6A, B-galactosidase activity was found to increase in our
three tested cell lines following 7 days of exposure to both H-NDs
and radiation. As positive control of senescence, the three cell lines
were treated with doxorubicin (140 nM) (Fig. 6C). To further
confirm these data, two other markers of senescence were evalu-
ated: the appearance of large persistent y-H2AX foci and the hyper-
methylation of a histone H3 (3-methyl-histone-H3K9) that is
related to senescence-associated heterochromatinization (SAH).
Representative images of the labeling of these two markers are
presented in Fig. 6B. These results clearly demonstrated that at 7
days after co-exposure to H-NDs (6 pg/cm?) and gamma rays (4 Gy),
Caki-1 cells displayed large y-H2AX foci (green labeling) and the
increased labeling of 3-methyl-Histone H3K9 (red labeling), indi-
cating irreversibly entry into senescence.

To further highlight the potentialization of co-treatment with H-
NDs and irradiation, the ratios of the obtained results between the
samples and controls were compiled for all performed tests. These

Caki-1 B
T=1h Caki-1
T=24h
150 |
/ %\ 401 %* 40
100 - Y 2 2
™ | ] —_ a2
o | € £
| 4 8 20 82
50 // Y \\ § §
73 0
/ W £ 104 ] £ 104
/ TRAL AN 3 3
o N N\ T [
0 T ey e . 0- T T T 0-
1 2 3
10 10 10 10 10
FL1-H
m Control 6ug/cm? mm 4Gy 6ug/cm? + 4Gy mm 6 pg/cm? irradiated 4Gy

prior to exposure

Fig. 4. Intracellular generation of reactive oxygen species (ROS) by H-NDs and/or irradiation treatments. (A) Caki-1 cells were treated for 1 h with H-NDs (6 pg/cm?) alone
(blue) or in combination with irradiation (green). Control (basal level, red) and 4 Gy (orange) cells were not exposed to H-NDs. The ROS level was monitored by measurement of the
fluorescence intensity (arbitrary units) of an oxidized fluorescent probe. The left part of the figure presents curves obtained after flow cytometry analysis. For the right part, the
median fluorescence intensity of each sample is recorded. Statistical analysis was performed for each exposure condition compared to non-exposed cells (Student's t-test, *p < 0.01).
(B) Caki-1 cells were treated were treated for 24 h in the same conditions and with H-NDs (6 pg/cm?) irradiated at 4 Gy prior to exposure.
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Fig. 6. (A) Induction of B-galactosidase activity following cotreatment with H-NDs and irradiation. p-galactosidase activity measurements in a) Caki-1, b) ZR75.1S, and c) ZR75.1R
cell lines exposed for 7 days to H-NDs in combination or not with irradiation (4 Gy). Control cells were not exposed to H-NDs. (B) Measurement of senescence associated het-
erochromatinization (SAH) and the induction of persistent large y-H2Ax foci in cells treated with H-NDs and irradiation. Caki-1 cells were exposed for 7 days to a) H-NDs (6 pg/cm?)
combined with irradiation (4 Gy) or b) irradiation (4 Gy) only. (C) Positive control of senescence induction. All three cell lines have been exposed to adryamycin (140 nM) for 24 h.
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ratios, indicated in Table 2, were calculated for the time points at
which the observed effects were the most obvious. This allowed us
to convert all of our previously described results into real number
values. Indeed, these ratios were found to be consistent with our
first hypothesis i.e. the co-exposure of cells to H-NDs and irradia-
tion is a valid strategy for overcoming the radio-resistance of cancer
cells.

As an illustration of our aforementioned observations, we
calculated the cellular index ratios for each condition following
160 h of exposure (Table 2). Samples treated with H-NDs or radi-
ation alone were compared to the control and those exposed to H-
NDs and radiation were compared to the irradiated sample. These
initial biological data suggested that the deleterious effects of DNA
DSBs produced either by NCS or ionizing irradiation can be
amplified by H-NDs.

3. Discussion

Our current data provide robust evidence for the potentializa-
tion of ionizing irradiation by H-NDs at doses as low as 6 pg/cm?; in
parallel, H-NDs alone do not induce any cell cytotoxicity after 48 h
of exposure at doses up to 96 ug/cm?. These data are also consistent
with the absence of ND toxicity already described in some studies
of detonation ND biokinetics for 100 fold higher concentrations
[42].

The co-exposure (H-NDs and radiation) leads to a higher level of
intracellular ROS than either single treatment. Based on their
characteristics, H-NDs in an aqueous environment are expected to
adsorb a high level of oxygen-related species [43], thus acting as a
potential source of ROS if activated by electron photoemission via
ionizing radiation. Ionizing radiation is known to induce very early
and transiently intra-cellular ROS that are no longer detectable at
30 min after exposure [44], explaining why we could not quantify
any intra-cellular ROS 1 h after exposure. It also confirms the high
level of oxidative stress generated within the cells by H-NDs
especially after double treatment. Furthermore, the ROS level
measured 1 h after treatment highlights a sustained production of
ROS. Thus, the higher cytotoxic effect observed after the double
exposure, in terms of cell death and cell cycle could be related to the
increased ROS level generated by both H-NDs and irradiation.

This hypothesis is also compatible with data obtained when
cells are exposed to both H-NDs and the radiomimetic drug neo-
carzinostatin (Supplementary Data 1). This drug physically in-
teracts with DNA through its chromophore moiety and this
interaction is followed by thiol activation and the ROS-dependent
generation of carbon-centered radicals on deoxyribose [45—47].
Given that ionizing irradiation or neocarzinostatin induce both
DNA SSBs and DSBs, through direct energy deposition and also
indirectly through ROS generation followed by DNA alkylation, a
second source of sustained ROS production (that may be otherwise
tolerated by cells) generated by H-NDs may result in increased and
sustained DNA damage.

The activation of a G1/S cell cycle checkpoint also appears to be a
specific effect of this associated cell treatment, as a consequence of
a concomitant increase in DNA SSBs occurring in Gqi phase
following the generation of ROS. DNA DSBs and SSBs are induced
directly by ionizing radiation through energy deposition [33].
Indirectly, ionizing radiation also induces ROS (i.e. through water
radiolysis) that alkylates DNA bases resulting in SSBs. These SSBs, if
unrepaired, could lead to DSBs. This finding was consistent with the
number of unrepaired DNA breaks that cause both G; and Gy/M cell
cycle arrest (Fig. 3).

Our results suggested that ROS are spontaneously generated or
induced once H-NDs enter the cells at a level that persists and is
high enough to continuously induce DNA DSBs. In fact, considering

that cells exposed to H-NDs (at the highest concentration) alone
showed a higher rate of y-H2AX foci than control cells after 24 h,
one could postulate a higher level of DNA DSB at this time point in
cells co-exposed to H-NDs and to irradiation. Two non-exclusive
hypotheses could arise as explanations: i) at 24 h after exposure,
about 20% of Caki-1 cells have died, as assessed by trypan blue
staining, and it can be assumed that these cells contained higher
numbers of DNA breaks; or ii) once the cell is irradiated, H-NDs can
no longer generate ROS and therefore do not induce DNA breaks in
addition to those induced by irradiation alone. This second hy-
pothesis has been confirmed in our current analyses, since the ROS
level quantified in the cells exposed to H-NDs and irradiated prior
to exposure was 50% lower than that measured in cells exposed to
H-NDs alone (see Supplementary Data 2).

Consequently, we hypothesize that the cooperation between H-
NDs and irradiation leads to a global increase in DNA SSBs and
DSBs, in both cases initiated by ROS. In addition, DSBs initiated in
this way may further contribute to de novo ROS generation [48].
These repeated loop-reactions might explain why persistent and
large y-H2AX foci were observed in cells exposed to both H-NDs
and irradiation (Fig. 6B). Most importantly, following the same type
of double cell treatment, we show from our results that activation
of a G1/S cell cycle checkpoint occurs in parallel with a Go/M release
initiated by irradiation exposure (Fig. 5). These two findings are
consistent with the relatively low level of cell death we observed
and indicate a predominant senescence process since it has been
reported that sustained SSBs may also initiate y-H2AX foci forma-
tion through chromatin structural reorganization [49].

The final outcome of this combination treatment is cellular
senescence, a finding that may be of particular relevance for
advancing future radiotherapy regimens, most notably the possi-
bility of reducing the dose of irradiation and also overcoming the
resistance of certain cancer cells to this therapy.

The activation of senescence by otherwise sub-lethal doses of
irradiation is of particular interest and our results highlight a
potentiation effect of H-NDs on irradiation in radio-resistant cells
which has promising implications for future clinical approaches.
Effectively the induction of senescence has been proposed as a
potent tumor-suppressive irreversible process of particular interest
in cases where chemo- and/or radio-therapy fail to induce cell
death [50,51]. In this work we presented initiation of senescence as
the final biological effect of H-NDs and irradiation in cancer cell
lines displaying functional p53. In few other cell lines expressing
mutated p53 or being p53 deficient, we did not observed senes-
cence but rather increased cell death (data not shown).

Finally, all these biological effects resulting from H-NDs exposed
to irradiation goes in line with the current and strong scientific
emulation around hydrogenated diamond. Indeed, recent works of
Hamers et al. summarized the possibility to easily photo-generate
solvated electrons and/or radicals from its surface, opening the
way to new promising applications for diamond, notably toward
photo-catalysis [52,53]. In this context, we demonstrated here for
the first time the potential of hydrogenated nanodiamond for
radiosensitization of tumor cells. Compared to metallic high-Z
nanoparticles (gold NPs, HfO, NPs), widely studied today because
of their high photon absorption and consecutive radiation—matter
interactions, H-NDs present several assets: (i) they benefit from
their semiconductor behavior and negative electron affinity to
photo-emit directly low-energy electrons into the surrounding
medium, (ii) they exhibit a native positive zeta potential without
any coating and (iii) they are surrounded with high amount of
adsorbed oxygen-containing molecules [20]. H-NDs have promise
indeed in improving the treatment of radiation resistant tumors
but also could have impact on the radio-sensitive tumors by
enabling lower doses of ionizing radiations to be used and thus
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potentially reducing adverse side effects. For all these reasons, H-
ND definitely constitutes a valuable candidate as radiosensitizing
agent possibly associated with antisense molecular therapy.

4. Methods
4.1. Nanodiamonds

Detonation nanodiamonds (NDs) were provided by the Nano-
carbon Research Institute.

4.2. Plasma hydrogenation of nanodiamonds

80-100 mg of NDs were deposited in a quartz tube and inserted
in a plasma Downstream source (Sairem). High purity research
grade N9.0 hydrogen gas was injected in the tube at a pressure of
15 mbar and plasma was generated in the quartz tube with a mi-
crowave power of 300 W (2.45 GHz). During the plasma, the tube
was air cooled and a smooth rotation is applied in order to mix the
particles in the plasma. NDs were exposed to hydrogen plasma for
15 min and were cooled down under hydrogen, leading to H-NDs.

4.3. Preparation of nanodiamonds dispersions

H-NDs were dispersed in ultrapure water by sonication
(Hielscher UP400S, 300W, 24 kHz) for 2h under cooling. Larger
aggregates were removed from the solution by 1 h centrifugation at
4000 rpm. NDs are resuspended in water and not in PBS solution,
that could be more compatible with cells, because too get its pos-
itive zeta potential and to disaggregate them, H-NDs need to be first
sonicated in pure water. This is not possible directly in PBS due to its
very high ionic strength.

4.4. Cell lines and cell culture

Caki-1 (ATCC number: HTB-46™) and ZR75.1 cells were
routinely grown at 37 °C in a humidified atmosphere of 5% CO, and
95% air, in Dulbecco's modified Eagle medium (DMEM) glutumax
supplemented with 10% (v/v) heat-inactivated fetal bovine serum
(Sigma—Aldrich),1 mM penicillin-streptomycin (Invitrogen) and 1%
(v/v) non-essential amino acids (Invitrogen). ZR75.1 cells (ATCC
number: CRL-1500™) were transfected using Amaxa Nucleofector
(Lonza, France) with vectors containing cDNAs for the non-
homologous end-joining DNA repair protein Ku70 as described
elsewhere (Bouley et al., submitted). Stable populations of cells
expressing either wild type or mutant Ku70 were established under
hygromycin selection (125 pg/mL).

4.5. y-lonizing irradiation

Cells were irradiated immediately after being exposed to H-NDs
in a ¥’Cs source irradiation unit (IBL637, CisBio International, Gif
sur Yvette, France) at 1.61 Gy min~'. We used 4 Gy which has
previously been reported as a sub-toxic dose [54,55], (Bouley et al.,
submitted).
4.6. xCELLigence® real-time follow-up

Refer to Supplementary Data.
4.7. Determination of cell toxicity (trypan blue)

After treatments, dead cells were counted after 24, 48 and 72 h

of exposure. At each time point, adherent cells and supernatant
were collected. For each sample, at least 600 cells were counted

(living and dead cells) in a 50% V/V dilution of 0.04% Trypan Blue
Solution (Sigma), to obtain the percentage of dead cells in the
complete population.

4.8. Cell cycle check-points

Following 6, 12, 24 and 48 h of exposure, the supernatant was
removed, and the cells were washed and trypsinized for 5 min. Cells
were suspended at a density of 108 cells/ml in PBS, fixed in 3 vol-
umes of 70% ethanol (50% final concentration) and then incubated
for 30 min at 4 °C. After centrifugation at for 5 min at 300 x gat4°C
and 3 times washes in PBS, cells were treated with RNase A (DNase
free) at a final concentration of 0.3 mg/ml in PBS and propidium
iodide (PI) to a final concentration of 20 pg/ml. PI fluorescence was
analyzed on a standard FacsCalibur (BD Biosciences, San Jose, CA)
with log acquisition in the FL2 (585/42 nm) channel after doublet
discrimination. Statistical analysis of data was performed using
Flow]o software (Treestar, Ashland, OR).

4.9. Measurement of reactive oxygen species (ROS)

15 x 10 Caki-1 cells were seeded on 6 well plates (TPP) at least
27 h before exposure. After treatment, supplier's instructions were
followed to measure ROS intra-cellular level with CM-H2DCFDA
probe (Life Technologies). ROS level was analyzed on a standard
FacsCalibur (BD Biosciences, San Jose, CA) with log acquisition in
the FL1 (530/30 nm) channel. Statistical analysis of the data was
performed using Flow]Jo software (Treestar, Ashland, OR).

4.10. Genotoxicity and confocal microscopy y —H2AX foci count
Refer to Supplementary Data.

4.11. Induction of senescence: measurement of ($-galactosidase
activity and senescence associated heterochromatinization (SAH)

Refer to Supplementary Data.
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