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We consider a continuous extension of a regularized version of the minimax, or dispersion, criterion widely used in space-filling design for computer experiments and quasi-Monte Carlo methods. We show that the criterion is convex for a certain range of the regularization parameter (depending on space dimension) and give a necessary and sufficient condition characterizing the optimal distribution of design points. Using results from potential theory, we investigate properties of optimal measures. The example of design in the unit ball is considered in details and some analytic results are presented. Using recent results and algorithms from experimental design theory, we show how to construct optimal measures numerically. They are often close to the uniform measure but do not coincide with it. The results suggest that designs minimizing the regularized dispersion for suitable values of the regularization parameter should have good space-filling properties. An algorithm is proposed for the construction of n-point designs.

Let X denote a compact subset of R d with strictly positive d-dimensional Lebesgue measure and equal to the closure of its interior. Typical examples include the d-dimensional unit ball B d (0, 1) = {x ∈ R d : x ≤ 1} and convex polytopes. Throughout the paper, . will denote the usual Euclidean norm, vol(X ) the volume of X , with V d = vol[B d (0, 1)] = π d/2 /Γ (d/2 + 1) the volume of B d (0, 1); µ will always denote the probability measure proportional to the Lebesgue measure on X (with therefore µ(X ) = 1), but many of our results generalize to arbitrary probability measures on X .

Consider an n-point set X n = {x 1 , . . . ,

x n } ⊂ X . The dispersion Φ(X n ) of X n in X is defined by Φ(X n ) = max x∈X min i=1,...,n x -x i ; (1) 
see [START_REF] Niederreiter | Random Number Generation and Quasi-Monte Carlo Methods[END_REF]Chap. 6]. It coincides with the Hausdorff distance between X n and X , with the minimaxdistance criterion of [START_REF] Johnson | Minimax and maximin distance designs[END_REF], and is related to the covering radius of X n , see [START_REF] Conway | Sphere Packings, Lattices and Groups[END_REF]. As explained in [START_REF] Pronzato | Minimax and maximin space-filling designs: some properties and methods for construction[END_REF] and many other references, n-point sets X n with small dispersion are often desirable. From classical properties of L q and l q norms, for any n-point set X n we have Φ(X n ) = lim q→∞ Φ q (X n ), where, for q = 0,

Φ q (X n ) = Φ q (X n ; µ) =   X 1 n n ∑ i=1 x i -x -q -1 µ(dx)   1/q , (2) 
which coincides with the coverage criterion suggested in [START_REF] Royle | An algorithm for the construction of spatial coverage designs with implementation in SPLUS[END_REF] when p = q in their notation; see also [START_REF] Pronzato | Design of computer experiments: space filling and beyond[END_REF]Sect. 3.2]. Denote by Ξ the set of probability measures on X (called design measures) and let ξ n = 1 n ∑ n i=1 δ x i denote the empirical design measure associated with X n . Then we can also write Φ q (X n ) = φ q (ξ n ), where, for any design measure ξ ∈ Ξ we define the q-regularized dispersion by φ q (ξ ) = φ q (ξ ; µ) = X X

xz -q ξ (dz)

-1

µ(dx)

1/q , q = 0 .

Straightforward calculation yields the following extension of φ q (ξ ) for q = 0:

φ 0 (ξ ) = exp X X log x -z ξ (dz) µ(dx) .
We shall investigate the properties of regularized dispersions φ q (•) and characterize optimal measures that minimize them. Our results suggest that designs obtained by minimizing Φ q (•) defined in [START_REF] Audze | New approach for planning out of experiments[END_REF] with q > 0 between d -2 and d should have good space-filling properties.

The paper is organized as follows. Properties of regularized dispersion are considered in Section 2. The cases q < 0 and q ≥ d are of limited interest and will only be briefly considered. Convexity of the functional φ q q (•) for q ≥ 0 is proved in Section 2.2 and a necessary and sufficient condition for design optimality is derived in Section 2.3 for the case 0 < q < d. In Section 3, we show that optimal measures can be singular when 0 < q ≤ d -2 but do not contain any atoms in the interior of X when max{0, d -2} < q < d. A comparison with the behaviour of minimumenergy measures, which maximize a regularized maximin-distance criterion, is discussed in Section 3.4. The algorithmic construction of optimal measures and numerical examples are presented in Section 4, and the generation of n-point sets with small dispersion is considered in Section 5. Section 6 draws some conclusions.

Properties of regularized dispersion

Note that for any q ∈ R and any measure ξ ∈ Ξ , we have 0 ≤ φ q (ξ ) ≤ diam(X ), where diam(X ) = max x,z∈X xz is the diameter of X . When ξ = δ z , the delta measure at some z ∈ X , then

φ q (δ z ) = X z -x q µ(dx) 1/q . ( 4 
)
By taking the derivative with respect to q and using Jensen's inequality for the function t → t logt we can observe that φ q (δ z ) is an increasing function of q ∈ R. Also, φ q (δ z ) > 0 for q > -d and φ q (δ z ) = 0 for q ≤ -d.

From the convexity of f (t) = 1/t and Jensen's inequality, for any real q and any ξ ∈ Ξ , we have

X z -x q ξ (dz) ≥ [ X z -x -q ξ (dz)] -1 for any x ∈ X . This implies max z∈X X z -x q µ(dx) ≥ X X z -x q µ(dx) ξ (dz) ≥ X X z -x -q ξ (dz) -1 µ(dx) = φ q q (ξ ) .
Therefore, when q < 0,

φ q (ξ ) ≥ X z * -x q µ(dx) 1/q = φ q (δ z * ) ,
where z * is any point such that

X z * -x q µ(dx) = max z∈X X z -x q µ(dx) . (5) 
When q < 0, φ q -optimal measures minimizing φ q (•) are thus delta measures concentrated at any such z * . In particular, when X contains its center of symmetry c, then z * = c. We shall only consider the case q ≥ 0 in the rest of the paper.

The case q ≥ d

Suppose that the measure ξ satisfies ξ [B d (z 0 , r)] = 0 for some ball B d (z 0 , r) ⊂ X having center z 0 and radius r > 0. Then, zx > r/2 for any x ∈ B d (z 0 , r/2) and any z in the support of ξ , so that

φ q q (ξ ) ≥ B d (z 0 ,r/2) (r/2) q µ(dx) = V d vol(X ) (r/2) d+q > 0 ,
which shows in particular that φ q (ξ ) > 0 for any q ≥ 0 when ξ is a discrete measure.

On the other hand, when q ≥ d then φ q (ξ ) = 0 for any ξ ∈ Ξ equivalent to the Lebesgue measure on X . Any such measure is therefore φ q -optimal. Note that, similarly to Theorem 1, we can prove that the functionals φ q q (•) are convex for q ≥ d.

2.2 Properties of φ q (•) when 0 ≤ q < d For this range of q, φ q (ξ ) > 0 for any ξ ∈ Ξ . This follows from the fact that Riesz potentials

P ν,q (x) = X x -z -q ν(dz) (6) 
are such that, for any positive measure ν on X , P ν,q (x) is finite for µ-almost all x when q < d; see [9, p. 61]. The key property for the determination of φ q -optimal measures is convexity of the functionals φ 0 (•) and φ q q (•) when q > 0.

Theorem 1 The functional φ 0 (•) is convex on Ξ and the functionals φ q q (•) are strictly convex for 0 < q < d.

Proof The convexity of φ 0 (•) directly follows from the convexity of the exponential function. Suppose now that q > 0 and consider ξ α = (1-α)ξ 0 +αξ 1 for ξ 0 and ξ 1 two arbitrary measures in Ξ and α ∈ [0, 1]. Direct calculation gives

dφ q q (ξ α ) dα = - X X x -z -q ξ α (dz) -2 X x -z -q (ξ 1 -ξ 0 )(dz) µ(dx) (7) 
and

d 2 φ q q (ξ α ) dα 2 α=0 = 2 X X x -z -q ξ 0 (dz) -3 × X x -z -q (ξ 1 -ξ 0 )(dz) 2 µ(dx) .
Since this second-order derivative is non-negative, the functional φ q q (•) is convex. Let us show that it is strictly convex. Since q < d, P ξ 0 ,q (x) = X xz -q ξ 0 (dz) is finite for µ-almost all x; see [9, p. 61]. Moreover, P ξ 1 ,q (x) = P ξ 0 ,q (x) implies that ξ 0 = ξ 1 ; see [9, p. 74]. This yields d 2 φ q q (ξ α )/dα 2 α=0 > 0 for ξ 1 = ξ 0 .

Note that φ 0 (•) is clearly not strictly convex. On the other hand, the minimum of φ 0 (ξ ) is attained when ξ is the delta measure at any z * = arg min z∈X X log zx µ(dx). As in the case q < 0, if c is a center of symmetry for X and c ∈ X , then z * = c. Together with [START_REF] Conway | Sphere Packings, Lattices and Groups[END_REF], this solves the problem of determination of φ q -optimal measures for q ≤ 0, for any set X . The case q > d has been solved in Section 2.1. Hence, only the case 0 < q < d is considered in the rest of the paper (except in Section 5, where values q ≥ d are used to construct n-point sets).

Necessary and sufficient condition for optimality

From Theorem 1, when 0 < q < d there exists a unique design measure ξ q, * that minimizes φ q (ξ ) with respect to ξ ∈ Ξ . The convexity of φ q q (•) yields a necessary and sufficient condition for the optimality of ξ q, * , as expressed by the following theorem. We denote by F q (ξ , y) the directional derivative of φ q q (•) at ξ in the direction of the delta measure at y,

F q (ξ , y) = dφ q q [(1 -α)ξ + αδ y ] dα α=0 . ( 8 
)
Theorem 2 The measure ξ q, * is φ q -optimal (0 < q < d) if and only if ∀y ∈ X , d(ξ q, * , y) ≤ φ q q (ξ q, * ) ,

where, for any ξ ∈ Ξ and y ∈ X , d(ξ , y) = φ q q (ξ ) -F q (ξ , y)

= X y -x -q X x -z -q ξ (dz) -2 µ(dx) . (10) 
Moreover, ξ q, * is unique and d(ξ q, * , y) = φ q q (ξ q, * ) for ξ q, * -almost all y ∈ X .

Proof The proof of (9) follows from the expression (7) using the property that ξ q, * ∈ Ξ minimizes φ q (ξ ) if and only if dφ q q (ξ α )/dα α=0 ≥ 0 for any ξ 1 ∈ Ξ when we write ξ α = (1α)ξ q, * +αξ 1 . Noticing that X d(ξ , y) ξ (dy) = φ q q (ξ ) for any ξ ∈ Ξ , we obtain that d(ξ q, * , y) = φ q q (ξ q, * ), ξ q, * -almost everywhere. The uniqueness of ξ q, * follows from the strict convexity of φ q q (•) established in Theorem 1.

Remark 1 Consider the measure ν ξ defined by

ν ξ (dx) = X x -z -q ξ (dz) -2 µ(dx) . ( 11 
)
We can then write d(ξ , y) = P ν ξ ,q (y), where P ν,q (•) is the Riesz potential for the measure ν, as defined in (6).

In the next section we show how to use Theorem 2 to characterize optimal design measures.

Properties of optimal design measures

We consider the two cases 0 < q ≤ d -2 and max{0, d -2} < q < d separately.

3.1 0 < q ≤ d -2

Direct calculations give the following expressions for the first and second-order derivatives of the function d(ξ , y):

∂ d(ξ , y) ∂ y = -q X (y -x) y -x -q-2 ν ξ (dx) , ∂ 2 d(ξ , y) ∂ y∂ y = q X y -x -q-4 (q + 2)(y -x)(y -x) -y -x 2 I d ν ξ (dx) ,
where ν ξ (dx) is the measure defined by [START_REF] Molchanov | Steepest descent algorithm in a space of measures[END_REF] and I d denotes the d × d identity matrix. One can readily notice that for all y ∈ X the Laplacian ∆ d(ξ , y) satisfies

∆ d(ξ , y) = trace ∂ 2 d(ξ , y) ∂ y∂ y = q(q + 2 -d) X y -x -q-2 ν ξ (dx) , (12) 
which is finite and non-positive for 0 < q ≤ d -2. This corresponds to the fact that the Riesz potentials P ν,q (•) of Remark 1 are superharmonic on R d for this range of q; see [9, p. 66].

The minimum principle for superharmonic functions implies that d(ξ q, * , y) cannot reach its minimum in the interior of X ; therefore, either ξ q, * is fully supported away from the boundary of X or d(ξ q, * , y) is constant over X . Typically, the later would mean that ξ q, * is equivalent to µ.

Using the property of superharmonicity of d(ξ q, * , •), we can construct examples where the φ q -optimal measure is singular.

Example 1

Take X = B d (0, 1) and ξ = δ 0 , the delta measure at the centre of the ball. The function d(δ 0 , y) = P ν δ 0 ,q (y) only depends on y , and d(δ 0 , y) = P ν δ 0 ,q (z) µ S d (0, y ) (dz), where µ S d (0,r) is the normalized surface measure on the sphere S d (0, r) of radius r centered at the origin. Since P ν,q (•) is superharmonic on R d , P ν δ 0 ,q (z) µ S d (0, y ) (dz) ≤ P ν δ 0 ,q (0) ; see [9, p. 52]. Direct calculation shows that P ν δ 0 ,q (0) = d(δ 0 , 0) = φ q q (δ 0 ). Therefore, d(δ 0 , y) ≤ φ q q (δ 0 ) for all y in X , and Theorem 2 implies that the design measure δ 0 is φ q -optimal.

On the other hand, we show below that δ 0 is no longer φ q -optimal when the ball is deformed into an ellipsoid. Consider X = {x ∈ R d : x Ax ≤ 1} with A = diag{a 2 , 1, . . . , 1}. For y = (r, 0, . . . , 0), we get

d(δ 0 , y) = P ν δ 0 ,q (y) = X x 2q [(x 1 -r) 2 + ρ 2 ] q/2 µ(dx) = 1 a B d (0,1) [z 2 1 /a 2 + ρ 2 ] q [(z 1 /a -r) 2 + ρ 2 ] q/2 µ(dz) , where ρ 2 = ∑ i≥2 x 2 i and z = (ax 1 , x 2 , . . . , x d ). The marginal density of z 1 for z uniformly dis- tributed in B d (0, 1) is ϕ d (z 1 ) = V d-1 V d (1 -z 2 1 ) (d-1)/2 , z 1 ∈ [-1, 1] ,
and the conditional density of ρ given z 1 is

ϕ d (ρ|z 1 ) = (d -1)ρ d-2 (1 -z 2 1 ) (d-1)/2 , ρ ∈ [0, 1 -z 2 1 ] .
This gives

d(δ 0 , y) = (d -1)V d-1 2aV d 1 -1 1-z 2 1 0 [z 2 1 /a 2 + s] q [(z 1 /a -r) 2 + s] q/2 s (d-3)/2 ds dz 1 ,
where we made the change of variable s = ρ 2 . The function d(δ 0 , y), for any given r, can thus be made arbitrarily large by taking a small enough.

Example 2 Take q = 2 and X the d-dimensional cube [-1/2, 1/2] d with d = 4. Figure 1 shows the values of d(δ 0 , y), obtained by numerical integration, as a function of y when y moves along a principal axis (dashed line) and along the main diagonal of X (solid line). The figure shows that, although the delta measure δ 0 is φ q -optimal for X = B 4 (0, 1) with q = 2, it is not optimal for the cube. 

-1/2, 1/2] 4 , q = d -2 = 2. 3.2 max{0, d -2} < q < d
From the expression (12) of the second-order derivative of d(ξ , y), we can deduce the following property concerning the presence of atoms in a φ q -optimal design measure.

Theorem 3 For any q ∈ (max{0, d -2}, d), the φ q -optimal design measure ξ q, * does not contain atoms in the interior of X .

Proof Assume ξ is φ q -optimal and has an atom at some z in the interior of X . This implies that ∂ d(ξ , y)/∂ y y=z = 0. Let us write ξ as ξ = wδ z + (1w)ξ , where w > 0 and ξ is any probability measure on X . Then, [START_REF] Morris | Exploratory designs for computational experiments[END_REF] 

gives trace ∂ 2 d(ξ , y) ∂ y∂ y y=z = q(q + 2 -d) X z -x -q-2 × w x -z -q + (1 -w) X x -y -q ξ (dy) -2 µ(dx) ,
which is strictly positive, bounded by [q(q + 2d)/w 2 ] X zx q-2 µ(dx) < ∞ and thus well defined. Therefore, max{0, d -2} < q < d implies that

e i ∂ 2 d(ξ , y) ∂ y∂ y e i > 0
for at least one basis vector e i . Since ∂ d(ξ , y)/∂ y y=z = 0, it implies that there exists a y in the neighborhood of z such that d(ξ , y) > d(ξ , z), which contradicts the optimality condition for ξ in Theorem 2.

Examples of Section 4.4 will present situations where ξ q, * has a density with respect to the Lebesgue measure.

Spherically symmetric design measures in the unit ball

Assume that X = B d (0, 1) and 0 < q < d. By symmetry, φ q -optimal mesures are spherically symmetric, and we can thus restrict our attention to such measures. Also, the integral X xz -q ξ (dz) in (3) only depends on x through ρ = x , with ρ having the density dρ d-1 , ρ ∈ [0, 1]. We can thus write

φ q q (ξ ) = d 1 0 J -1 d,q (ρ) ρ d-1 dρ , (13) 
where J d,q (ρ) = X x ρ -z -q ξ (dz), with x ρ = ρ. Let ω ξ denote the probability measure of R = z when z ∼ ξ , then

J d,q (ρ) = 1 0 I d,q (R, ρ) ω ξ (dR) , (14) 
where

I d,q (R, ρ) = S d (0,R) x ρ -z -q ξ R (dz) (15) 
and ξ R (dz) denotes the probability measure of z ∼ ξ conditional on z = R. Take x ρ = (ρ, 0, . . . , 0), decompose x ρ -z as

x ρ -z = [(z 1 -ρ) 2 +∑ d i=2 z 2 i ] 1/2 = [(z 1 -ρ) 2 +R 2 -z 2 1 ] 1/2
, and denote

ψ d (t|R) = (d -1)V d-1 dV d (R 2 -t 2 ) (d-3)/2 R d-2 , t ∈ [-R, R],
the density of the first component t = z 1 of z = (z 1 , . . . , z d ) uniformly distributed on the sphere S d (0, R). We can then write

I d,q (R, ρ) = R -R [(t -ρ) 2 + R 2 -t 2 ] -q/2 ψ d (t|R) dt . ( 16 
)
Using the expression ( 16), we can express the integral [START_REF] Pronzato | A delimitation of the support of optimal designs for Kiefer's φ p -class of criteria[END_REF] in terms of the hypergeometric function 2 F 1 (•, •; •; •) as follows:

I d,q (R, ρ) = R 2 + ρ 2 -q/2 2 F 1 q 4 , q + 2 4 ; d 2 ; 4ρ 2 R 2 (R 2 + ρ 2 ) 2 ,
which reveals the full symmetry between R and ρ. Explicit expressions of I d,q (R, ρ) for particular values of d and q are given in Appendix, together with values of J d,q (ρ), see ( 14), when z is uniformly distributed in B d (0, 1) (so that ω ξ (dR) = dR d-1 dR).

Comparison with regularized maximin-distance optimal design

The maximin-distance criterion for a given n-point set

X n = (x 1 , . . . , x n ) ∈ X is Ψ (X n ) = min i = j x i -x j ; (17) 
see [START_REF] Johnson | Minimax and maximin distance designs[END_REF]. Although the criterion Ψ (•) is less intuitively appealing than Φ(•) defined in [START_REF] Armijo | Minimization of functions having Lipschitz continuous first partial derivatives[END_REF], designs that maximize Ψ (X n ) for a given n are also often considered in computer experiments; see [START_REF] Pronzato | Design of computer experiments: space filling and beyond[END_REF] and [START_REF] Pronzato | Minimax and maximin space-filling designs: some properties and methods for construction[END_REF]Sect. 2]. The regularized version Ψ q (X n ) of Ψ (X n ) is similar to Φ q (X n ) given by (2):

Ψ q (X n ) = 2 n(n -1) ∑ 1≤i< j≤n x i -x j -q -1/q
, q > 0 .

Maximization of Ψ q (X n ) is equivalent to the determination of n Fekete points x i that minimize the q-energy ∑ 1≤i< j≤n x i -x j -q ; see for example [START_REF] Hardin | Discretizing manifolds via minimum energy points[END_REF], [START_REF] Pronzato | Extremal measures maximizing functionals based on simplicial volumes[END_REF]. The continuous version of this energy is the functional

E q (ζ ) = X X z -t -q ζ (dt) ζ (dz) .
The determination of minimum-energy probability measures ζ q, * (called q-equilibrium measures) is one of the main topics in potential theory; see [START_REF] Landkof | Foundations of Modern Potential Theory[END_REF]. A typical result is as follows. For d -2 < q < d, ζ q, * is uniquely defined and is equivalent to the Lebesgue measure on X , showing some similarity with the situation in Section 3.2. For 0 < q ≤ d -2, ζ q, * is concentrated on the boundary of X , a configuration opposite to that encountered in Section 3.1, see Example 1.

4 Algorithmic constructions of discrete approximations to optimal measures 4.1 An A-optimal design problem Consider a discrete approximation of µ, given by µ N = (1/N) ∑ N i=1 δ x i , where the x i are taken from a regular grid or correspond to the first N points of a low-discrepancy sequence in X . Denote by M (z) the N × N matrix M (z) = diag{N zx i -q , i = 1, . . . , N}. Then,

φ q q (ξ ; µ N ) = trace[M -1 (ξ )] ,
where M(ξ ) = X M (z) ξ (dz) can be considered as an information matrix for the measure ξ (approximate design theory), with M (z) the elementary information matrix for z. This indicates that the determination of a φ q (•; µ N )-optimal measure corresponds to an A-optimal design problem. From Caratheodory theorem, for any ξ ∈ Ξ , there always exists a discrete measure ξ m ∈ Ξ supported on m ≤ N + 1 points in X and such that M(ξ ) = M(ξ m ), and therefore φ q (ξ ; µ N ) = φ q (ξ m ; µ N ). On the other hand, for any given ξ ∈ Ξ , if µ N tends to µ (weak convergence of probability measures) then φ q (ξ ; µ N ) tends to φ q (ξ ) = φ q (ξ ; µ). When µ N corresponds to a low discrepancy sequence, Koksma-Hlawka inequality, see [14, p. 20], gives the error bound

|φ q (ξ ; µ N ) -φ q (ξ )| < C (log N) d /N for some constant C.

Algorithms

From Section 4.1, when considering a discrete approximation of µ, given by µ N = (1/N) ∑ N i=1 δ x i , the construction of a φ q -optimal design measure corresponds to an A-optimal design problem, for which several optimization algorithms are available; see, e.g., [START_REF] Pronzato | Design of Experiments in Nonlinear Models[END_REF]Chap. 9].

Consider the approximation of ξ by a discrete measure, ξ m = ∑ m j=1 w j δ z j , where the weights w i are positive and sum to one. The z j are fixed and such that z j -x i > 0 for any i, j. For instance, one may take the x i as the first N points of a low-discrepancy sequence in X , and the z j as the next m points of the same sequence.

The measure ξ is then characterized by the m-dimensional vector of weights w, with components w j . The determination of the optimal vector of weights w * , unique from the strict convexity of φ q (•), forms a convex problem. However, the high dimensionality of w makes the direct use of nonlinear programming methods rather inefficient, and two methods from the experimental design literature are suggested below.

Multiplicative algorithm

Let ξ (k)

m denote the design measure at iteration k, with weight w (k) j assigned to z j , j = 1, . . . , m. Suppose that w (0) j > 0 for all j. In [START_REF] Yu | Monotonic convergence of a general algorithm for computing optimal designs[END_REF], the algorithm defined by

w (k+1) j = w (k) j d λ (ξ (k) m , z j ; µ N ) ∑ m =1 d λ (ξ (k) m , z ; µ N ) (18) 
is proved to converge monotonically to the optimal measure for φ q (•; µ N ) supported on the z j , for any λ ∈ (0, 1).

Vertex-exchange algorithm

We consider the method proposed in [START_REF] Böhning | Numerical estimation of a probability measure[END_REF][START_REF] Böhning | A vertex-exchange-method in D-optimal design theory[END_REF] and [START_REF] Molchanov | Variational calculus in the space of measures and optimal design[END_REF][START_REF] Molchanov | Steepest descent algorithm in a space of measures[END_REF], and denote

j + = arg max j d(ξ (k) m , z j ; µ N ) and j -= arg min j d(ξ (k) m , z j ; µ N )
(take any of them in case there are several solutions), with ξ

m the design measure at iteration k. The updating rule is given by

w (k+1) j + = w (k) j + + α k , w (k+1) j - = w (k) j --α k and w (k+1) j = w (k) j for all j = j + , j -, with α k ∈ [0, w (k) j -].
The value of α k can be chosen by minimizing φ q (ξ (k+1) m ; µ N ), but an Armijo type line-search [START_REF] Armijo | Minimization of functions having Lipschitz continuous first partial derivatives[END_REF] is generally very efficient. Note that the point z j -is removed from the support of ξ m is presented in the next section.

Support reduction

Using the equivalence between φ q (•; µ N )and A-optimal designs, and the results in [START_REF] Pronzato | A delimitation of the support of optimal designs for Kiefer's φ p -class of criteria[END_REF], we can derive an inequality that the support points of the optimal design must satisfy. In many situations, this gives a simple characterization of an outer set of this support. Removing points that cannot be in the support of the optimal design also reduces the amount of computations in the algorithms above.

From [15, Theorem 2], any z such that

trace[M (z)M -2 (ξ )] < κ 2 B(t, ε)
cannot be in the support of the optimal measure for φ q (•; µ N ). Here, B(t, ε) = t(1 + ε/t) -1 , with t = trace[M -1 (ξ )] and ε = max z∈X trace[M (z)M -2 (ξ )]t, and κ is the unique solution in

( √ α, 1] of the equation in θ α θ 2 + (1 -α) 3 (1 + ε/t -αθ ) 2 = 1 , where α = λ min [M -1 (ξ )]/t.

Algorithmic constructions in the unit ball

The constructions described in Sections 4.1 and 4.2 suppose that one is able to generate dense enough sequences in X , and are thus restricted to very small dimensions d (typically, d = 1 or 2). On the other hand, when X is the unit ball B d (0, 1), using the representation given by ( 13) and ( 14) for φ q (ξ ) when ξ is spherically symmetric, together with the expression in Appendix for I d,q (R, ρ), we only need to use one-dimensional sequences for any d > 1. The construction is as follows.

First, we generate a low discrepancy point-set u 1 , . . . , u N in [0, 1], and transform it into ρ i = u 1/d i , so that the ρ i have the same distribution as the radii of points uniformly distributed in B d (0, 1). Each ρ i receives the same weight 1/N to approximate the uniform measure µ in B d (0, 1). We then proceed similarly for the radii R j , j = 1, . . . , m, each of them receiving some weight w j , with w j = w (0) j > 0, for instance w (0) j = 1/m for all j, at the initialization of an optimization algorithm. The criterion φ q (ξ m ; µ N ) is then

φ q (ξ m ; µ N ) =   1 N N ∑ i=1 m ∑ j=1 w j I q (R j , ρ i ) -1   1/q (19)
and the directional derivative of φ q q (•;

µ N ) at ξ m in the direction δ R j is F q (ξ m , R j ; µ N ) = φ q (ξ m ; µ N )- d(ξ m , R j ; µ N ), see (8), with d(ξ m , R j ; µ N ) = 1 N N ∑ i=1    m ∑ =1 w I q (R , ρ i ) -2 I q (R j , ρ i )    .
The algorithms of Section 4.2 can then be applied straightforwardly.

Numerical examples

Example 3

Consider X = [-1, 1] (d = 1) with q = 1/4. We take µ N uniform on the first N points of Sobol' sequence (renormalized to X ) and ξ

m is uniform on s 4N+1 , . . . , s 4N+m in the same sequence, with N = m = 1 024. Figure 2-left presents the approximate density of the optimal measure obtained with the multiplicative algorithm [START_REF] Pronzato | Design of Experiments in Nonlinear Models[END_REF] with λ = 1, stopped when max i d(ξ

(k) m , z i ; µ N ) - φ q q (ξ (k) m ; µ N ) < 10 -4 , see Theorem 2. Figure 2-right shows d(ξ (k) 
m , z; µ N ) as a function of z ∈ X when the algorithm is stopped; the horizontal dashed line indicates the value of φ q q (ξ (k) m ; µ N ).

Example 4

We take X = [0, 1] 2 (d = 2) and q = 1/2, and construct an approximation of the optimal design measure ξ q, * , using µ N given by the uniform distribution on the first N points s 1 , . . . , s N of Sobol' sequence in X and considering discrete measures ξ m supported on z 1 , . . . , z m = s 4N+1 , . . . , s 4N+m in the same sequence, with N = m = 4 096. We perform k = 300 iterations of the multiplicative algorithm [START_REF] Pronzato | Design of Experiments in Nonlinear Models[END_REF] with λ = 1 initialized with ξ (0) m equal to the uniform measure on the z i . Figure 3-left presents the level sets corresponding to the 0.01, 0.025, 0.05 and 0.1 percentiles of the (smoothed) design mesure ξ (k) m . Figure 3-right shows two level sets d(ξ

(k) m , z; µ N ) = φ q q (ξ (k)
m ; µ N )ε for ε = 0.002 and 0.001, indicating that almost all the mass of ξ

(k) m is allocated to points z i such that d(ξ (k) m , z i ; µ N ) is very close to φ q q (ξ (k) m ; µ N ) and that ξ (k)
m is close to being optimal (in fact, max i d(ξ

(k) m , z i ; µ N ) -φ q q (ξ (k) m ; µ N ) < 8.8 10 -4 , see Theorem 2).
Example 5 Take X = B d (0, 1). Figure 4 shows φ q q (δ 0 ), with δ 0 the delta measure at 0 (dotted line), φ q q (µ) Fig. 2 Left: optimal design mesure ξ q, * m (smoothed density). Right: d(ξ q, * m , z; µ N ) as a function of z and value of φ q q (ξ q, * m ; µ N ) (dashed line). X = [-1, 1], q = 1/4, µ N and ξ m are supported on m = N = 1 024 points of Sobol' sequence in X . m is obtained by k = 300 iterations [START_REF] Pronzato | Design of Experiments in Nonlinear Models[END_REF] initialized with the uniform measure.

(k) m , z; µ N ) = φ q q (ξ (k) m ; µ N ) -0.001. X = [0, 1] 2 , q = 1/2,
(dashed line), and an approximation of the optimal value ( φ * q ) q = min{φ q q (δ 0 ), φ q q (µ), φ q q (ξ q, * m ; µ N )} (solid line), as functions of q in [0, d], for d = 3 (left) and d = 5 (right). Here, ξ q, * m minimizes φ q (ξ m ; µ N ), see [START_REF] Pronzato | Extremal measures maximizing functionals based on simplicial volumes[END_REF], and is constructed with the vertex-exchange algorithm of Section 4.2.2. The radii ρ i and R j are given by 1 024 points of Sobol' sequence and the algorithm is stopped when max j d(ξ

(k) m , R j ; µ N ) -φ q q (ξ (k) m ; µ N ) < 10 -4 .
As shown in Example 1, δ 0 is optimal for 0 < q < d -2, with φ q q (δ 0 ) = d/(d + q). Figure 4 indicates that the optimal value φ * q is only marginally better than the value min{φ q (δ 0 ), φ q (µ)}, hence the interest of considering the performance of the measure µ (r) uniform on the ball B d (0, r), with µ (0) = δ 0 and µ (1) = µ. In particular, note that the uniform measure µ is almost optimal for q ∈ (d -1, d).

Using the expressions in Appendix, φ q (µ (r) ) can be evaluated by numerical integration for d = 3 and d = 5 for any r and q, some analytical expressions being available for particular values of q and d, such as φ 1 (µ (r) ) = 3/4 -(27/4) r 4 + 6 r 4 √ 3 arctanh √ 3/3 for d = 3.

Figure 5-left presents the efficiency ( φ * q ) q /φ q q (µ (r) ) as a function of r ∈ [0, 1] when d = 3, for q = 1/2 (solid line) and q = 3/2 (dashed line). Figure 5-right shows the value of the radius r * q (obtained by numerical optimization) minimizing φ q (µ (r) ) for d = 3 and q ∈ [0, 3]. Numerical Fig. 4 φ q q (δ 0 ) (dotted line), φ q q (µ) (dashed line), and (approximate) optimal value ( φ * q ) q (solid line) as functions of q in [0, d]; d = 3 (left) and d = 5 (right). calculations give ( φ * q ) q /φ q q (µ (r * q ) ) > 99.9% for all q in [0, 3], with r * q = 0 for q ≤ 1 and r * q 1 for q ≥ 5/2, indicating that the uniform measure µ (r * q ) on B 3 (0, r * q ) is almost optimal for all q. On the other hand, the shape of the optimal measure ξ q, * differs significantly from µ (r * q ) when q ∈ (1, 3), as shown on Figure 6 which presents the optimal density ω ξ q, * (dr)/(dr d-1 ) for four different values of q (note that ω µ (r * q ) (dr)/[dr d-1 /(r * q ) d ] = 1 for r ∈ [0, r * q ] and equals zero elsewhere). Here ξ q, * is approximated using the technique in Section 4.3 and the multiplicative algorithm [START_REF] Pronzato | Design of Experiments in Nonlinear Models[END_REF], with 4 096 points from Sobol' sequence for the R j and ρ i in [START_REF] Pronzato | Extremal measures maximizing functionals based on simplicial volumes[END_REF]. The algorithm is stopped when max j d(ξ Fig. 5 Left: efficiency ( φ * q ) q /φ q q (µ (r) ) as a function of r ∈ [0, 1] when d = 3, for q = 1/2 (solid line) and q = 3/2 (dashed line). Right: r * q minimizing φ q (µ (r) ) for d = 3 as a function of q ∈ [0, 3].

(k) m , R j ; µ N ) -φ q q (ξ (k) m ; µ N ) < 10 -4 .

Construction of n-point designs

As shown in Section 3.2, the optimal measure ξ q, * has no atoms when max{0, d -2} < q < d. Also, when q ≥ d, φ q (ξ ) = 0 for any measure equivalent to the Lebesgue measure, whereas φ q (ξ ) > 0 when ξ is discrete, see Section 2.1. In this section we consider a method for generating n-point sets with small dispersion based on an algorithm for the construction of optimal design measures for q > 0, and compare its performance with that of a greedy algorithm for the minimization of the coverage criterion (2). Fig. 6 Optimal density ω ξ q, * (dr)/(dr d-1 ) for d = 3: left for q = 2 (solid line) and q = 2.1 (dashed line); right for q = 2.25 (solid line) and q = 2.5 (dashed line).

A vertex-direction algorithm with predefined step-sizes

As in Section 4.2, we use a discrete approximation µ N = (1/N) ∑ N i=1 δ x i of µ and consider the construction of design measures supported on a m-point set Z m = {z 1 , . . . , z m } ⊂ X , disjoint from X N = {x 1 , . . . , x N }, with N and m large enough (we assume that m n, with m and N being of the same order of magnitude). But in contrast with Section 4.2, here we use this construction to generate n-point designs, for a given n.

Let X k 0 denote an initial k 0 -point set in Z m . Denote by ξ (k 0 ) the corresponding empirical measure, ξ (k 0 ) = (1/k 0 ) ∑ s∈X k 0 δ s , and consider the following vertex-direction algorithm with predefined step-sizes, initially proposed by Wynn [START_REF] Wynn | The sequential generation of D-optimum experimental designs[END_REF] for D-optimal design: for all k ≥ k 0 , set

ξ (k+1) = 1 - 1 k + 1 ξ (k) + 1 k + 1 δ s k+1 , with s k+1 = arg max z ∈Z m d(ξ (k) , z ; µ N ) (20) 
the best vertex-direction. Denote by ∇ 2 q (ξ , y) the second-order derivative d 2 φ q q [(1α)ξ + αδ y ]/dα 2 α=0 and by ∇ 2 q (ξ , y; µ N ) the value obtained when µ N is substituted for µ. We obtain

∇ 2 q (ξ , y) = 2 X 1 P ξ ,q (x)
1 -yx -q P ξ ,q (x) 2 µ(dx) , with P ξ ,q (x) given by [START_REF] Fedorov | Theory of Optimal Experiments[END_REF]. Although ∇ 2 q (ξ , y) is infinite for d/2 ≤ q < d (it is finite for µ-almost all y when q < d/2, see Section 2.2), ∇ 2 q (ξ , z j ; µ N ) is finite for any q > 0 and all j = 1, . . . , m when Z m and X N are disjoint. By standard arguments (see for instance [START_REF] Pronzato | Design of Experiments in Nonlinear Models[END_REF]Chap. 9]), the convexity of φ q q (•; µ N ) and the non-summability of the sequence {1/k} imply that φ q (ξ (k) ; µ N ) tends to max ξ ∈Ξ m φ q (ξ ; µ N ) as k → ∞, with Ξ m denoting the set of probability measures on Z m . Note that this property only relies on convexity, and is thus also valid for q ≥ d, see Section 2.1. Values of q larger that d will be considered in Section 5.3. The convergence of [START_REF] Royle | An algorithm for the construction of spatial coverage designs with implementation in SPLUS[END_REF] to an optimal measure is usually much slower than that of the algorithms in Section 4.2, but (20) provides a simple method for the generation of n-point sets.

When q > d -2 and m and N are large enough compared to n, the measure ξ (k) generated by [START_REF] Royle | An algorithm for the construction of spatial coverage designs with implementation in SPLUS[END_REF] has more than n distinct support points for large k. We can thus construct an n-point set X n by stopping [START_REF] Royle | An algorithm for the construction of spatial coverage designs with implementation in SPLUS[END_REF] at iteration k = k n ≥ n, when ξ (k n ) has exactly n distinct support points (which often gives k n = n). When the initial design X k 0 is suitably chosen (for instance, k 0 = 1 and X 1 = {s 1 } with s 1 = arg min z∈Z m ∑ N i=1 zx i q , see (4)), in general the design X n has already good space-filling properties, see Section 5.3. It can also be improved by local minimization, using for instance a Fedorov-type exchange algorithm [START_REF] Fedorov | Theory of Optimal Experiments[END_REF]Chap. 3] for the minimization of Φ q (•; µ N ) given by ( 2), similarly to [START_REF] Royle | An algorithm for the construction of spatial coverage designs with implementation in SPLUS[END_REF].

One may notice that the calculation of the d(ξ (k) , z ; µ N ) in [START_REF] Royle | An algorithm for the construction of spatial coverage designs with implementation in SPLUS[END_REF] only involves the evaluations of weighted sums of distances x i -z -q , since

d(ξ (k) , z ; µ N ) = 1 N N ∑ i=1 ν k (x i ) x i -z -q , with ν k (x i ) = m ∑ j=1 ξ (k) (z j ) x i -z j -q -2 . ( 21 
)
All the terms x i -z -q , i = 1, . . . , N, = 1, . . . , m, can be computed in advance, and we only need to update the sum in [START_REF] Wynn | The sequential generation of D-optimum experimental designs[END_REF] to be able to determine s k+1 in [START_REF] Royle | An algorithm for the construction of spatial coverage designs with implementation in SPLUS[END_REF].

Remark 2 Let ξ be any measure in the set Ξ m of probability measures on Z m , denote by ξ q, * an optimal measure that minimizes φ q (•; µ N ) over Ξ m and by X q, * n an optimal n-point design minimizing Φ q (•; µ N ) over Z m . We then have Φ q q (X q, * n ; µ N ) ≥ φ q q (ξ q, * ; µ N ) ≥ φ q q (ξ ; µ N ) + min

z ∈Z m F q (ξ , z ; µ N ) = 2φ q q (ξ ; µ N ) -max z ∈Z m d(ξ , z ; µ N ) , see (10) 
, where the first inequality follows from the optimality of ξ q, * and the second from the convexity of φ q q (•; µ N ). Therefore, any n-point design X n in Z m (in particular, an n-point design generated with (20)) satisfies

eff q (X n ; µ N ) = Φ q (X q, * n ; µ N ) Φ q (X n ; µ N ) ≥ B q (X n , ξ ; µ N ) , where B q (X n , ξ ; µ N ) = max 0, 2 - max z ∈Z m d(ξ , z ; µ N ) φ q q (ξ ; µ N ) 1/q φ q (ξ ; µ N ) Φ q (X n ; µ N ) .
This lower bound on eff q (X n ; µ N ) is generally not informative when ξ = ξ n , the empirical measure associated with X n , in the sense that B q (X n , ξ n ; µ N ) is often equal to zero. On the other hand, using the algorithms of Section 4.2, we can easily obtain an ε-optimal measure ξ ε ∈ Ξ m such that max z ∈Z m d(ξ ε , z ; µ N )/φ q q (ξ ε ; µ N ) < 1 + ε, for a small ε, which gives

eff q (X n ; µ N ) ≥ B q (X n , ξ ε ; µ N ) > (1 -ε) 1/q φ q (ξ ε ; µ N ) Φ q (X n ; µ N ) . (22) 

Greedy minimization of the coverage criterion

The greedy minimization of the coverage criterion Φ q (•; µ N ) given by (2) (with q > 0) corresponds to

X k+1 = X k ∪ ẑk+1 with ẑk+1 = arg min z j ∈Z m Φ q (X k ∪ {z j }; µ N ) , (23) 
for all k ≥ k 0 , for some given k 0 -point set X k 0 . Note that this construction may involve repetitions; that is, some points can be repeated several times in X k (including X k 0 ). When it happens, like in Section 5.1 we continue the iterations until the design contains n distinct points. Also note that the determination of ẑk+1 requires the exponentiation of N × m elements, whereas only N exponentiations are required for the calculation of s k+1 in [START_REF] Royle | An algorithm for the construction of spatial coverage designs with implementation in SPLUS[END_REF], see [START_REF] Wynn | The sequential generation of D-optimum experimental designs[END_REF].

method in [16, Section 2.4]) and Ψ (X a 100 ) 0.6011. The lower bound [START_REF] Yu | Monotonic convergence of a general algorithm for computing optimal designs[END_REF] (with ε = 10 -4 ) gives eff q (X a 100 ; µ N ) > 0.8288 and eff q (Z m ; µ N ) > 0.9702. The computational time of X a n , including the computation of all x i -z -q , is about 2.8 s in Matlab on a PC with a clock speed of 2.50 Gz and 32 Go RAM. Algorithm (23) requires about 30 s to generate a design X b n with Φ(X b 100 ) 1.349 and Φ(X b 100 ) 0.3550. Similar behaviours are observed for the hypercube [0, 1] d with different d and other values of m, N and n, and indicate that the vertex-direction algorithm [START_REF] Royle | An algorithm for the construction of spatial coverage designs with implementation in SPLUS[END_REF] is significantly faster than the greedy-method (23) and yields designs with better space-filling properties.

Conclusions

We have shown (Theorem 1) that a continuous extension of a regularized version of the dispersion criterion is a convex functional when the regularization parameter q is positive, and strictly convex when 0 < q < d. For the range of q where the functional is strictly convex, we have given a characterization of optimal measures (Theorem 2). Their properties have been investigated using results from potential theory and several examples have been studied in details. In particular, analytic results have been obtained for the case when the design space is the unit ball and experimental design algorithms have been used for numerical constructions. In the same way as the determination of Fekete points that minimize the q-energy is easier than the construction of an optimal design for the maximin criterion [START_REF] Pronzato | Design of computer experiments: space filling and beyond[END_REF], see [START_REF] Audze | New approach for planning out of experiments[END_REF], [START_REF] Morris | Exploratory designs for computational experiments[END_REF], the minimization of ( 2) is easier that the construction of a design minimizing the dispersion [START_REF] Armijo | Minimization of functions having Lipschitz continuous first partial derivatives[END_REF]. The results in the paper suggest that the construction of designs having good space-filling properties requires q to be larger than d -2, but that very large values of q are not needed. Numerical experiments indicate that n-point designs with good space-filling properties can easily be generated with a vertex-direction algorithm with predefined step-sizes.

Appendix: explicit expressions of integrals for X = B d (0, 1)

In this appendix we give the explicit expression of the integral [START_REF] Pronzato | A delimitation of the support of optimal designs for Kiefer's φ p -class of criteria[END_REF], and also of ( 14) when ξ = µ, for particular values of d and q when X = B d (0, 1).

1. q = d -2, any d ≥ 2

We have I d,q (R, ρ) = (max{R, ρ}) -q , implying J d,q (ρ) = ρ 2 (1d/2) + d/2 when z is uniformly distributed in B d (0, 1) (so that ω ξ (dR) = dR d-1 dR in ( 14)). Hence, the integral (13) can be evaluated exactly when ξ = µ. Table 1 gives the values of φ q q (µ) for d = 3, . . . , 10 and q = d -2. 2. d = 3 and 0 < q < 3 We obtain I 3,q (R, ρ) = (Rρ) 2 1-q/2 -(ρ + R) 2 1-q/2 2ρ (q -2) R for q = 2 ,

I 3,2 (R, ρ) = log (ρ + R) 2 -log (R -ρ) 2 4ρ R for q = 2 .
When z is uniformly distributed in B 3 (0, 1), the evaluation of J d,q (ρ) = 3 1 0 I d,q (R, ρ)R 2 dR gives J 3,2 (ρ) = 3 (1ρ 2 ) log [(1 + ρ)/(1ρ)] + 2 ρ 4ρ , J 3,q (ρ) = 3 (ρ + 1) 3-q (q + ρ -3) -(qρ -3) (1ρ) 3-q 2ρ (q -2) (q -3) (q -4) for q = 2 .

The numerical evaluation of the integral φ q (µ) is now straightforward, see [START_REF] Nemhauser | An analysis of approximations for maximizing submodular set functions-I[END_REF]; φ 1 (µ) can be computed exactly, see Table 1; also, lim q→0 φ q (µ) = 2 exp(-3/4) 0.9447331. where α = 4q > -1 and β = 6q = α + 2. The integral [START_REF] Niederreiter | Random Number Generation and Quasi-Monte Carlo Methods[END_REF] explicitly evaluates when z is uniform in B 5 (0, 1), using the representation J 5,q (ρ) = 5 |R -ρ| α R 2 dR = α 2 + 2 α ρ + 2 ρ 2 + 3 α + 2 ρ + 2 (1ρ) α+1 + 2ρ α+3 (α + 3) (α + 2) (α + 1) , so that φ q (µ) can easily be evaluated numerically.

When q = 2 and q = 4, we obtain The case q = 3 is considered in Table 1.
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Table 1

 1 Values of φ d-2 d-2 (µ) for d = 3, . . . , 10 when X = B d (0, 1).

	d 3	6	φ d-2 d-2 (µ) 3 arctanh √ √ 3/3 -6	0.843113970
	4 5	4 log (2) -2 15 arctanh [2 • 5 2 √ √ 15/5 ]/27 -20/3	0.772588722 0.733016111
	6 7	3 3 log (3) /2 3 -3 35 arctanh [2 • 7 3 √ √ 35/7 ]/5 4 -2758/375	0.707816475 0.690405156
	8 9	2 9 log (2) /3 4 -100/27 7 arctanh [2 • 3 9 √ √ 7/3 ]/7 5 -94968/12005	0.677671067 0.667959803
	10	5 5 log (5) /2 10 -3265/768	0.660312638
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Remark 3 One can easily check that for any q > 0, the un-normalized version of Φ q q (•; µ N ) defined by Φq q (X n ) = (1/n)Φ q q (X n ; µ N ) is non-increasing (that is, Φq q (X n ∪ {z j }) ≤ Φq q (X n ) for any X n and z j in Z m ), and super-modular (that is, Φq q (X n ) -Φq q (X n ∪ {z j }) ≥ Φq q (X n ∪ {z }) -Φq q (X n ∪ {z , z j }) for any X n and z j , z in Z m ). The selection of ẑk+1 in (23) can also be written as ẑk+1 = arg min

The results in [START_REF] Nemhauser | An analysis of approximations for maximizing submodular set functions-I[END_REF] on the maximization of submodular set functions thus imply that the greedy minimization (23) ensures that

for any non-empty set X k 0 and any t ≥ 1, where the t points z * k 0 +1 , . . . , z * k 0 +t minimize Φ q (X k 0 ∪ {z k 0 +1 , . . . , z k 0 +t }; µ N ) with respect to z k 0 +1 , . . . , z k 0 +t in Z m . Such efficiency bounds generally motivate the use of greedy algorithms for the construction of n-point sets with suitable properties; one should notice, however, that (24) does not provide any exploitable bound on

Numerical examples

Example 6

We take X = [0, 1] 2 , with Z m formed by the 33×33 regular grid with {z j } 1,2 ∈ {0, 1/32, 2/32, . . . , 1}, and X N formed by the 32 × 32 regular grid interlaced with Z m , with {x i } 1,2 ∈ {1/64, 1/64 + 1/32, . . . , 1/64 + 31/32}. Figure 7 shows the 100-point designs generated by [START_REF] Royle | An algorithm for the construction of spatial coverage designs with implementation in SPLUS[END_REF] with X 1 = {(1/2, 1/2)} for q = 1 (left) and q = 3/2 (right), illustrating the better space-filling behaviour of the design generated when q increases. Fig. 7 Designs X 100 generated by [START_REF] Royle | An algorithm for the construction of spatial coverage designs with implementation in SPLUS[END_REF] for q = 1 (left) and q = 3/2 (right).

Figure 8-left shows the design X a 50 generated by [START_REF] Royle | An algorithm for the construction of spatial coverage designs with implementation in SPLUS[END_REF] with X 1 = {(1/2, 1/2)} for q = 10. The lower bound [START_REF] Yu | Monotonic convergence of a general algorithm for computing optimal designs[END_REF] with ε = 10 -4 gives eff q (X a 50 ; µ N ) > 0.3292. We also obtain eff q (Z m ; µ N ) > 0.9938, which indicates that the uniform measure on Z m is almost optimal. The dispersion of X a 50 (evaluated by Voronoï tessellation, see [16, Section 2.4]) is Φ(X a 50 ) 0.1141; its maximindistance is Ψ (X (a) n ) 0.0938, see [START_REF] Pronzato | Design of computer experiments: space filling and beyond[END_REF]. The design X b 50 in Figure 8-right is generated by (23), with the same X 1 and the same q, and Φ(X b 50 ) 0.1310, Ψ (X (b) n ) 0.0699. The designs obtained can be used to initialize a local optimization algorithm for the minimization of Φ q (•; µ N ).

In particular, the small values of m and n used in the example allow us to apply the Fedorov-type exchange algorithm proposed in [START_REF] Royle | An algorithm for the construction of spatial coverage designs with implementation in SPLUS[END_REF]. When initialized at X a 50 (respectively X b 50 ), it yields a design Xa 50 with Φ( Xa 50 ) 0.1127 and Ψ ( X(a) n ) 0.0988 (respectively, Xb 50 with Φ( Xb 50 ) 0.1127 and Ψ ( X(b) n ) 0.0938). Performances are slightly worse for smaller values of q, with for instance Φ(X a 50 ) 0.1273 and Φ(X b 50 ) 0.1563 when q = 2. Algorithm [START_REF] Royle | An algorithm for the construction of spatial coverage designs with implementation in SPLUS[END_REF] does not require X to be convex. Figure 9-left shows the design obtained when X = [0, 1] 2 \ B 2 ((1/2, 1/2), 1/4) and q = 10. The set Z m (respectively, X N ) corresponds to the subset of the first m points s 1 , . . . , s m of Sobol' sequence in [0, 1] 2 (respectively, the subset of s 4m +1 , . . . , s 4m +N ) that lie in X , with m = N = 4 096 (which gives m = 3292 and N = 3295). The direct use of the first 50 points of Sobol' sequence that fall in X gives the design in Figure 9-right, with clearly worse space-filling properties. 

Example 7

We take X = [0, 1] 10 and n = 100; Z m corresponds to the first m points s 1 , . . . , s m of Sobol' sequence in X , X N corresponds to s 4m+1 , . . . , s 4m+N , with m = N = 4 096. The design X a 100 generated by [START_REF] Royle | An algorithm for the construction of spatial coverage designs with implementation in SPLUS[END_REF] with q = 10 has dispersion Φ(X a 100 ) 1.310 (computed with the MCMC