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Abstract We consider a continuous extension of a regularized version of the minimax, or dis-
persion, criterion widely used in space-filling design for computer experiments and quasi-Monte
Carlo methods. We show that the criterion is convex for a certain range of the regularization
parameter (depending on space dimension) and give a necessary and sufficient condition char-
acterizing the optimal distribution of design points. Using results from potential theory, we
investigate properties of optimal measures. The example of design in the unit ball is considered
in details and some analytic results are presented. Using recent results and algorithms from ex-
perimental design theory, we show how to construct optimal measures numerically. They are
often close to the uniform measure but do not coincide with it. The results suggest that designs
minimizing the regularized dispersion for suitable values of the regularization parameter should
have good space-filling properties. An algorithm is proposed for the construction of n-point
designs.

Keywords dispersion · optimal design · space-filling design · potential theory
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1 Introduction: dispersion and its regularization

Let X denote a compact subset of Rd with strictly positive d-dimensional Lebesgue measure
and equal to the closure of its interior. Typical examples include the d-dimensional unit ball
Bd(0,1) = {x ∈Rd : ‖x‖ ≤ 1} and convex polytopes. Throughout the paper, ‖.‖ will denote
the usual Euclidean norm, vol(X ) the volume of X , with Vd = vol[Bd(0,1)] = πd/2/Γ (d/2+
1) the volume of Bd(0,1); µ will always denote the probability measure proportional to the
Lebesgue measure on X (with therefore µ(X ) = 1), but many of our results generalize to
arbitrary probability measures on X .

Consider an n-point set Xn = {x1, . . . ,xn}⊂X . The dispersion Φ(Xn) of Xn in X is defined
by

Φ(Xn) = max
x∈X

min
i=1,...,n

‖x−xi‖ ; (1)
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see [14, Chap. 6]. It coincides with the Hausdorff distance between Xn and X , with the minimax-
distance criterion of [8], and is related to the covering radius of Xn, see [5]. As explained in [16]
and many other references, n-point sets Xn with small dispersion are often desirable.

From classical properties of Lq and lq norms, for any n-point set Xn we have Φ(Xn) =
limq→∞ Φq(Xn), where, for q 6= 0,

Φq(Xn) = Φq(Xn; µ) =

∫
X

(
1
n

n

∑
i=1
‖xi−x‖−q

)−1

µ(dx)

1/q

, (2)

which coincides with the coverage criterion suggested in [20] when p = q in their notation; see
also [17, Sect. 3.2].

Denote by Ξ the set of probability measures on X (called design measures) and let ξn =
1
n ∑

n
i=1 δxi denote the empirical design measure associated with Xn. Then we can also write

Φq(Xn) = φq(ξn), where, for any design measure ξ ∈ Ξ we define the q-regularized dispersion
by

φq(ξ ) = φq(ξ ; µ) =

[∫
X

(∫
X
‖x− z‖−q

ξ (dz)
)−1

µ(dx)

]1/q

, q 6= 0 . (3)

Straightforward calculation yields the following extension of φq(ξ ) for q = 0:

φ0(ξ ) = exp
∫

X

∫
X

log‖x− z‖ξ (dz)µ(dx) .

We shall investigate the properties of regularized dispersions φq(·) and characterize optimal
measures that minimize them. Our results suggest that designs obtained by minimizing Φq(·)
defined in (2) with q > 0 between d−2 and d should have good space-filling properties.

The paper is organized as follows. Properties of regularized dispersion are considered in
Section 2. The cases q < 0 and q≥ d are of limited interest and will only be briefly considered.
Convexity of the functional φ

q
q (·) for q≥ 0 is proved in Section 2.2 and a necessary and sufficient

condition for design optimality is derived in Section 2.3 for the case 0 < q < d. In Section 3, we
show that optimal measures can be singular when 0 < q≤ d−2 but do not contain any atoms in
the interior of X when max{0,d−2}< q < d. A comparison with the behaviour of minimum-
energy measures, which maximize a regularized maximin-distance criterion, is discussed in
Section 3.4. The algorithmic construction of optimal measures and numerical examples are
presented in Section 4, and the generation of n-point sets with small dispersion is considered in
Section 5. Section 6 draws some conclusions.

2 Properties of regularized dispersion

Note that for any q ∈ R and any measure ξ ∈ Ξ , we have 0 ≤ φq(ξ ) ≤ diam(X ), where
diam(X ) = maxx,z∈X ‖x− z‖ is the diameter of X . When ξ = δz, the delta measure at some
z ∈X , then

φq(δz) =

[∫
X
‖z−x‖q

µ(dx)
]1/q

. (4)

By taking the derivative with respect to q and using Jensen’s inequality for the function t →
t log t we can observe that φq(δz) is an increasing function of q ∈ R. Also, φq(δz) > 0 for
q >−d and φq(δz) = 0 for q≤−d.

From the convexity of f (t) = 1/t and Jensen’s inequality, for any real q and any ξ ∈ Ξ , we
have

∫
X ‖z−x‖q ξ (dz)≥ [

∫
X ‖z−x‖−q ξ (dz)]−1 for any x ∈X . This implies

max
z∈X

∫
X
‖z−x‖q

µ(dx) ≥
∫

X

∫
X
‖z−x‖q

µ(dx)ξ (dz)

≥
∫

X

[∫
X
‖z−x‖−q

ξ (dz)
]−1

µ(dx) = φ
q
q (ξ ) .
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Therefore, when q < 0,

φq(ξ )≥
[∫

X
‖z∗−x‖q

µ(dx)
]1/q

= φq(δz∗) ,

where z∗ is any point such that∫
X
‖z∗−x‖q

µ(dx) = max
z∈X

∫
X
‖z−x‖q

µ(dx) . (5)

When q < 0, φq-optimal measures minimizing φq(·) are thus delta measures concentrated at any
such z∗. In particular, when X contains its center of symmetry c, then z∗ = c. We shall only
consider the case q≥ 0 in the rest of the paper.

2.1 The case q≥ d

Suppose that the measure ξ satisfies ξ [Bd(z0,r)] = 0 for some ball Bd(z0,r) ⊂ X having
center z0 and radius r > 0. Then, ‖z−x‖> r/2 for any x ∈Bd(z0,r/2) and any z in the support
of ξ , so that

φ
q
q (ξ )≥

∫
Bd(z0,r/2)

(r/2)q
µ(dx) =

Vd

vol(X )
(r/2)d+q > 0 ,

which shows in particular that φq(ξ )> 0 for any q≥ 0 when ξ is a discrete measure.
On the other hand, when q ≥ d then φq(ξ ) = 0 for any ξ ∈ Ξ equivalent to the Lebesgue

measure on X . Any such measure is therefore φq-optimal. Note that, similarly to Theorem 1,
we can prove that the functionals φ

q
q (·) are convex for q≥ d.

2.2 Properties of φq(·) when 0≤ q < d

For this range of q, φq(ξ )> 0 for any ξ ∈ Ξ . This follows from the fact that Riesz potentials

Pν ,q(x) =
∫

X
‖x− z‖−q

ν(dz) (6)

are such that, for any positive measure ν on X , Pν ,q(x) is finite for µ-almost all x when q < d;
see [9, p. 61]. The key property for the determination of φq-optimal measures is convexity of
the functionals φ0(·) and φ

q
q (·) when q > 0.

Theorem 1 The functional φ0(·) is convex on Ξ and the functionals φ
q
q (·) are strictly convex

for 0 < q < d.

Proof The convexity of φ0(·) directly follows from the convexity of the exponential function.
Suppose now that q> 0 and consider ξα = (1−α)ξ0+αξ1 for ξ0 and ξ1 two arbitrary measures
in Ξ and α ∈ [0,1]. Direct calculation gives

dφ
q
q (ξα)

dα
=−

∫
X

{(∫
X
‖x− z‖−q

ξα(dz)
)−2 ∫

X
‖x− z‖−q (ξ1−ξ0)(dz)

}
µ(dx) (7)

and

d2φ
q
q (ξα)

dα2

∣∣∣∣
α=0

= 2
∫

X

{(∫
X
‖x− z‖−q

ξ0(dz)
)−3

×
(∫

X
‖x− z‖−q (ξ1−ξ0)(dz)

)2
}

µ(dx) .
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Since this second-order derivative is non-negative, the functional φ
q
q (·) is convex. Let us show

that it is strictly convex. Since q < d, Pξ0,q(x) =
∫
X ‖x− z‖−q ξ0(dz) is finite for µ-almost all

x; see [9, p. 61]. Moreover, Pξ1,q(x) = Pξ0,q(x) implies that ξ0 = ξ1; see [9, p. 74]. This yields
d2φ

q
q (ξα)/dα2

∣∣
α=0 > 0 for ξ1 6= ξ0. ut

Note that φ0(·) is clearly not strictly convex. On the other hand, the minimum of φ0(ξ ) is
attained when ξ is the delta measure at any z∗ = argminz∈X

∫
X log‖z− x‖µ(dx). As in the

case q < 0, if c is a center of symmetry for X and c ∈X , then z∗ = c. Together with (5), this
solves the problem of determination of φq-optimal measures for q≤ 0, for any set X . The case
q > d has been solved in Section 2.1. Hence, only the case 0 < q < d is considered in the rest
of the paper (except in Section 5, where values q≥ d are used to construct n-point sets).

2.3 Necessary and sufficient condition for optimality

From Theorem 1, when 0 < q < d there exists a unique design measure ξ q,∗ that minimizes
φq(ξ ) with respect to ξ ∈ Ξ . The convexity of φ

q
q (·) yields a necessary and sufficient condition

for the optimality of ξ q,∗, as expressed by the following theorem. We denote by Fq(ξ ,y) the
directional derivative of φ

q
q (·) at ξ in the direction of the delta measure at y,

Fq(ξ ,y) =
dφ

q
q [(1−α)ξ +αδy]

dα

∣∣∣∣
α=0

. (8)

Theorem 2 The measure ξ q,∗ is φq-optimal (0 < q < d) if and only if

∀y ∈X , d(ξ q,∗,y)≤ φ
q
q (ξ

q,∗) , (9)

where, for any ξ ∈ Ξ and y ∈X ,

d(ξ ,y) = φ
q
q (ξ )−Fq(ξ ,y) =

∫
X

{
‖y−x‖−q

(∫
X
‖x− z‖−q

ξ (dz)
)−2

}
µ(dx) . (10)

Moreover, ξ q,∗ is unique and d(ξ q,∗,y) = φ
q
q (ξ

q,∗) for ξ q,∗-almost all y ∈X .

Proof The proof of (9) follows from the expression (7) using the property that ξ q,∗ ∈ Ξ min-
imizes φq(ξ ) if and only if dφ

q
q (ξα)/dα

∣∣
α=0 ≥ 0 for any ξ1 ∈ Ξ when we write ξα = (1−

α)ξ q,∗+αξ1. Noticing that
∫
X d(ξ ,y)ξ (dy)= φ

q
q (ξ ) for any ξ ∈Ξ , we obtain that d(ξ q,∗,y)=

φ
q
q (ξ

q,∗), ξ q,∗-almost everywhere. The uniqueness of ξ q,∗ follows from the strict convexity of
φ

q
q (·) established in Theorem 1. ut

Remark 1 Consider the measure νξ defined by

νξ (dx) =
[∫

X
‖x− z‖−q

ξ (dz)
]−2

µ(dx) . (11)

We can then write d(ξ ,y) = Pνξ ,q(y), where Pν ,q(·) is the Riesz potential for the measure ν , as
defined in (6).

In the next section we show how to use Theorem 2 to characterize optimal design measures.

3 Properties of optimal design measures

We consider the two cases 0 < q≤ d−2 and max{0,d−2}< q < d separately.



Measures minimizing regularized dispersion 5

3.1 0 < q≤ d−2

Direct calculations give the following expressions for the first and second-order derivatives of
the function d(ξ ,y):

∂d(ξ ,y)
∂y

= −q
∫

X
(y−x)‖y−x‖−q−2

νξ (dx) ,

∂ 2d(ξ ,y)
∂y∂y>

= q
∫

X
‖y−x‖−q−4

[
(q+2)(y−x)(y−x)>−‖y−x‖2Id

]
νξ (dx) ,

where νξ (dx) is the measure defined by (11) and Id denotes the d×d identity matrix. One can
readily notice that for all y ∈X the Laplacian ∆d(ξ ,y) satisfies

∆d(ξ ,y) = trace
[

∂ 2d(ξ ,y)
∂y∂y>

]
= q(q+2−d)

∫
X
‖y−x‖−q−2

νξ (dx) , (12)

which is finite and non-positive for 0 < q ≤ d− 2. This corresponds to the fact that the Riesz
potentials Pν ,q(·) of Remark 1 are superharmonic on Rd for this range of q; see [9, p. 66].
The minimum principle for superharmonic functions implies that d(ξ q,∗,y) cannot reach its
minimum in the interior of X ; therefore, either ξ q,∗ is fully supported away from the boundary
of X or d(ξ q,∗,y) is constant over X . Typically, the later would mean that ξ q,∗ is equivalent to
µ .

Using the property of superharmonicity of d(ξ q,∗, ·), we can construct examples where the
φq-optimal measure is singular.

Example 1
Take X = Bd(0,1) and ξ = δ0, the delta measure at the centre of the ball. The function
d(δ0,y)=Pνδ0

,q(y) only depends on ‖y‖, and d(δ0,y)=
∫

Pνδ0
,q(z)µSd(0,‖y‖)(dz), where µSd(0,r)

is the normalized surface measure on the sphere Sd(0,r) of radius r centered at the origin. Since
Pν ,q(·) is superharmonic onRd ,∫

Pνδ0
,q(z)µSd(0,‖y‖)(dz)≤ Pνδ0

,q(0) ;

see [9, p. 52]. Direct calculation shows that Pνδ0
,q(0) = d(δ0,0) = φ

q
q (δ0). Therefore, d(δ0,y)≤

φ
q
q (δ0) for all y in X , and Theorem 2 implies that the design measure δ0 is φq-optimal.

On the other hand, we show below that δ0 is no longer φq-optimal when the ball is deformed
into an ellipsoid. Consider X = {x ∈ Rd : x>Ax ≤ 1} with A = diag{a2,1, . . . ,1}. For y =
(r,0, . . . ,0), we get

d(δ0,y) = Pνδ0
,q(y) =

∫
X

‖x‖2q

[(x1− r)2 +ρ2]q/2 µ(dx)

=
1
a

∫
Bd(0,1)

[z2
1/a2 +ρ2]q

[(z1/a− r)2 +ρ2]q/2 µ(dz) ,

where ρ2 = ∑i≥2 x2
i and z = (ax1,x2, . . . ,xd). The marginal density of z1 for z uniformly dis-

tributed in Bd(0,1) is

ϕd(z1) =
Vd−1

Vd
(1− z2

1)
(d−1)/2 , z1 ∈ [−1,1] ,

and the conditional density of ρ given z1 is

ϕd(ρ|z1) =
(d−1)ρd−2

(1− z2
1)

(d−1)/2 , ρ ∈ [0,
√

1− z2
1] .
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This gives

d(δ0,y) =
(d−1)Vd−1

2aVd

∫ 1

−1

∫ 1−z2
1

0

[z2
1/a2 + s]q

[(z1/a− r)2 + s]q/2 s(d−3)/2 dsdz1 ,

where we made the change of variable s = ρ2. The function d(δ0,y), for any given r, can thus
be made arbitrarily large by taking a small enough.

Example 2
Take q= 2 and X the d-dimensional cube [−1/2,1/2]d with d = 4. Figure 1 shows the values of
d(δ0,y), obtained by numerical integration, as a function of ‖y‖when y moves along a principal
axis (dashed line) and along the main diagonal of X (solid line). The figure shows that, although
the delta measure δ0 is φq-optimal for X = B4(0,1) with q = 2, it is not optimal for the cube.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

Fig. 1 d(δ0,y) as a function of ‖y‖ when y moves along a principal axis (dashed line) or along the main diagonal
(solid line) of the cube [−1/2,1/2]4, q = d−2 = 2.

3.2 max{0,d−2}< q < d

From the expression (12) of the second-order derivative of d(ξ ,y), we can deduce the following
property concerning the presence of atoms in a φq-optimal design measure.

Theorem 3 For any q ∈ (max{0,d−2},d), the φq-optimal design measure ξ q,∗ does not con-
tain atoms in the interior of X .

Proof Assume ξ is φq-optimal and has an atom at some z in the interior of X . This implies
that ∂d(ξ ,y)/∂y

∣∣
y=z = 0. Let us write ξ as ξ = wδz +(1−w)ξ ′, where w > 0 and ξ ′ is any

probability measure on X . Then, (12) gives

trace

[
∂ 2d(ξ ,y)

∂y∂y>

∣∣∣∣
y=z

]
= q(q+2−d)

∫
X
‖z−x‖−q−2

×
(

w‖x− z‖−q +(1−w)
∫

X
‖x−y‖−q

ξ
′(dy)

)−2

µ(dx) ,

which is strictly positive, bounded by [q(q+2−d)/w2]
∫
X ‖z−x‖q−2 µ(dx)< ∞ and thus well

defined. Therefore, max{0,d−2}< q < d implies that

e>i
∂ 2d(ξ ,y)

∂y∂y>
ei > 0
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for at least one basis vector ei. Since ∂d(ξ ,y)/∂y
∣∣
y=z = 0, it implies that there exists a y in the

neighborhood of z such that d(ξ ,y)> d(ξ ,z), which contradicts the optimality condition for ξ

in Theorem 2. ut

Examples of Section 4.4 will present situations where ξ q,∗ has a density with respect to the
Lebesgue measure.

3.3 Spherically symmetric design measures in the unit ball

Assume that X = Bd(0,1) and 0 < q < d. By symmetry, φq-optimal mesures are spherically
symmetric, and we can thus restrict our attention to such measures. Also, the integral

∫
X ‖x−

z‖−q ξ (dz) in (3) only depends on x through ρ = ‖x‖, with ρ having the density dρd−1, ρ ∈
[0,1]. We can thus write

φ
q
q (ξ ) = d

∫ 1

0
J−1

d,q(ρ)ρ
d−1 dρ , (13)

where Jd,q(ρ) =
∫
X ‖xρ − z‖−q ξ (dz), with ‖xρ‖ = ρ . Let ωξ denote the probability measure

of R = ‖z‖ when z∼ ξ , then

Jd,q(ρ) =
∫ 1

0
Id,q(R,ρ)ωξ (dR) , (14)

where

Id,q(R,ρ) =
∫

Sd(0,R)
‖xρ − z‖−q

ξR(dz) (15)

and ξR(dz) denotes the probability measure of z∼ ξ conditional on ‖z‖=R. Take xρ =(ρ,0, . . . ,0),
decompose ‖xρ−z‖ as ‖xρ−z‖= [(z1−ρ)2+∑

d
i=2 z2

i ]
1/2 = [(z1−ρ)2+R2−z2

1]
1/2, and denote

ψd(t|R) =
(d−1)Vd−1

dVd

(R2− t2)(d−3)/2

Rd−2 , t ∈ [−R,R],

the density of the first component t = z1 of z = (z1, . . . ,zd) uniformly distributed on the sphere
Sd(0,R). We can then write

Id,q(R,ρ) =
∫ R

−R
[(t−ρ)2 +R2− t2]−q/2

ψd(t|R)dt . (16)

Using the expression (16), we can express the integral (15) in terms of the hypergeometric
function 2F1(·, ·; ·; ·) as follows:

Id,q(R,ρ) =
(
R2 +ρ

2)−q/2
2F1

(
q
4
,

q+2
4

;
d
2

;
4ρ2R2

(R2 +ρ2)2

)
,

which reveals the full symmetry between R and ρ . Explicit expressions of Id,q(R,ρ) for partic-
ular values of d and q are given in Appendix, together with values of Jd,q(ρ), see (14), when z
is uniformly distributed in Bd(0,1) (so that ωξ (dR) = dRd−1 dR).
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3.4 Comparison with regularized maximin-distance optimal design

The maximin-distance criterion for a given n-point set Xn = (x1, . . . ,xn) ∈X is

Ψ(Xn) = min
i6= j
‖xi−x j‖ ; (17)

see [8]. Although the criterion Ψ(·) is less intuitively appealing than Φ(·) defined in (1), designs
that maximize Ψ(Xn) for a given n are also often considered in computer experiments; see [17]
and [16, Sect. 2]. The regularized version Ψq(Xn) of Ψ(Xn) is similar to Φq(Xn) given by (2):

Ψq(Xn) =

[
2

n(n−1) ∑
1≤i< j≤n

‖xi−x j‖−q

]−1/q

, q > 0 .

Maximization of Ψq(Xn) is equivalent to the determination of n Fekete points xi that minimize
the q-energy ∑1≤i< j≤n ‖xi− x j‖−q; see for example [7], [19]. The continuous version of this
energy is the functional

Eq(ζ ) =
∫

X

∫
X
‖z− t‖−q

ζ (dt)ζ (dz) .

The determination of minimum-energy probability measures ζ q,∗ (called q-equilibrium mea-
sures) is one of the main topics in potential theory; see [9]. A typical result is as follows. For
d−2 < q < d, ζ q,∗ is uniquely defined and is equivalent to the Lebesgue measure on X , show-
ing some similarity with the situation in Section 3.2. For 0 < q≤ d−2, ζ q,∗ is concentrated on
the boundary of X , a configuration opposite to that encountered in Section 3.1, see Example 1.

4 Algorithmic constructions of discrete approximations to optimal measures

4.1 An A-optimal design problem

Consider a discrete approximation of µ , given by µN = (1/N)∑
N
i=1 δxi , where the xi are taken

from a regular grid or correspond to the first N points of a low-discrepancy sequence in X .
Denote by M (z) the N×N matrix M (z) = diag{N ‖z−xi‖−q, i = 1, . . . ,N}. Then,

φ
q
q (ξ ; µN) = trace[M−1(ξ )] ,

where M(ξ ) =
∫
X M (z)ξ (dz) can be considered as an information matrix for the measure ξ

(approximate design theory), with M (z) the elementary information matrix for z. This indi-
cates that the determination of a φq(·; µN)-optimal measure corresponds to an A-optimal design
problem. From Caratheodory theorem, for any ξ ∈ Ξ , there always exists a discrete measure
ξm ∈ Ξ supported on m ≤ N + 1 points in X and such that M(ξ ) = M(ξm), and therefore
φq(ξ ; µN) = φq(ξm; µN). On the other hand, for any given ξ ∈ Ξ , if µN tends to µ (weak conver-
gence of probability measures) then φq(ξ ; µN) tends to φq(ξ ) = φq(ξ ; µ). When µN corresponds
to a low discrepancy sequence, Koksma-Hlawka inequality, see [14, p. 20], gives the error bound
|φq(ξ ; µN)−φq(ξ )|<C (logN)d/N for some constant C.

4.2 Algorithms

From Section 4.1, when considering a discrete approximation of µ , given by µN =(1/N)∑
N
i=1 δxi ,

the construction of a φq-optimal design measure corresponds to an A-optimal design problem,
for which several optimization algorithms are available; see, e.g., [18, Chap. 9].

Consider the approximation of ξ by a discrete measure, ξm =∑
m
j=1 w jδz j , where the weights

wi are positive and sum to one. The z j are fixed and such that ‖z j − xi‖ > 0 for any i, j. For
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instance, one may take the xi as the first N points of a low-discrepancy sequence in X , and the
z j as the next m points of the same sequence.

The measure ξ is then characterized by the m-dimensional vector of weights w, with compo-
nents w j. The determination of the optimal vector of weights w∗, unique from the strict convex-
ity of φq(·), forms a convex problem. However, the high dimensionality of w makes the direct
use of nonlinear programming methods rather inefficient, and two methods from the experimen-
tal design literature are suggested below.

4.2.1 Multiplicative algorithm

Let ξ
(k)
m denote the design measure at iteration k, with weight w(k)

j assigned to z j, j = 1, . . . ,m.

Suppose that w(0)
j > 0 for all j. In [22], the algorithm defined by

w(k+1)
j = w(k)

j
dλ (ξ

(k)
m ,z j; µN)

∑
m
`=1 dλ (ξ

(k)
m ,z`; µN)

(18)

is proved to converge monotonically to the optimal measure for φq(·; µN) supported on the z j,
for any λ ∈ (0,1).

4.2.2 Vertex-exchange algorithm

We consider the method proposed in [3,4] and [10,11], and denote

j+ = argmax
j

d(ξ (k)
m ,z j; µN) and j− = argmin

j
d(ξ (k)

m ,z j; µN)

(take any of them in case there are several solutions), with ξ
(k)
m the design measure at iteration

k. The updating rule is given by

w(k+1)
j+ = w(k)

j+ +α
k , w(k+1)

j− = w(k)
j− −α

k and w(k+1)
j = w(k)

j for all j 6= j+, j− ,

with αk ∈ [0,w(k)
j− ]. The value of αk can be chosen by minimizing φq(ξ

(k+1)
m ; µN), but an Armijo

type line-search [1] is generally very efficient. Note that the point z j− is removed from the
support of ξ

(k)
m when αk = w(k)

j− ; a more general procedure for reducing the support of ξ
(k)
m is

presented in the next section.

4.2.3 Support reduction

Using the equivalence between φq(·; µN)- and A-optimal designs, and the results in [15], we
can derive an inequality that the support points of the optimal design must satisfy. In many
situations, this gives a simple characterization of an outer set of this support. Removing points
that cannot be in the support of the optimal design also reduces the amount of computations in
the algorithms above.

From [15, Theorem 2], any z such that

trace[M (z)M−2(ξ )]< κ
2 B(t,ε)

cannot be in the support of the optimal measure for φq(·; µN). Here, B(t,ε) = t(1+ε/t)−1, with
t = trace[M−1(ξ )] and ε = maxz∈X trace[M (z)M−2(ξ )]− t, and κ is the unique solution in
(
√

α,1] of the equation in θ

α

θ 2 +
(1−α)3

(1+ ε/t−αθ)2 = 1 ,

where α = λmin[M−1(ξ )]/t.
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4.3 Algorithmic constructions in the unit ball

The constructions described in Sections 4.1 and 4.2 suppose that one is able to generate dense
enough sequences in X , and are thus restricted to very small dimensions d (typically, d = 1 or
2). On the other hand, when X is the unit ball Bd(0,1), using the representation given by (13)
and (14) for φq(ξ ) when ξ is spherically symmetric, together with the expression in Appendix
for Id,q(R,ρ), we only need to use one-dimensional sequences for any d > 1. The construction
is as follows.

First, we generate a low discrepancy point-set u1, . . . ,uN in [0,1], and transform it into ρi =

u1/d
i , so that the ρi have the same distribution as the radii of points uniformly distributed in

Bd(0,1). Each ρi receives the same weight 1/N to approximate the uniform measure µ in
Bd(0,1). We then proceed similarly for the radii R j, j = 1, . . . ,m, each of them receiving some
weight w j, with w j = w(0)

j > 0, for instance w(0)
j = 1/m for all j, at the initialization of an

optimization algorithm. The criterion φq(ξm; µN) is then

φq(ξm; µN) =

 1
N

N

∑
i=1

[
m

∑
j=1

w jIq(R j,ρi)

]−1
1/q

(19)

and the directional derivative of φ
q
q (·; µN) at ξm in the direction δR j is Fq(ξm,R j; µN)= φq(ξm; µN)−

d(ξm,R j; µN), see (8), with

d(ξm,R j; µN) =
1
N

N

∑
i=1


[

m

∑
`=1

w`Iq(R`,ρi)

]−2

Iq(R j,ρi)

 .

The algorithms of Section 4.2 can then be applied straightforwardly.

4.4 Numerical examples

Example 3
Consider X = [−1,1] (d = 1) with q = 1/4. We take µN uniform on the first N points of Sobol’
sequence (renormalized to X ) and ξ

(0)
m is uniform on s4N+1, . . . ,s4N+m in the same sequence,

with N = m = 1024. Figure 2-left presents the approximate density of the optimal measure
obtained with the multiplicative algorithm (18) with λ = 1, stopped when maxi d(ξ (k)

m ,zi; µN)−
φ

q
q (ξ

(k)
m ; µN)< 10−4, see Theorem 2. Figure 2-right shows d(ξ (k)

m ,z; µN) as a function of z ∈X

when the algorithm is stopped; the horizontal dashed line indicates the value of φ
q
q (ξ

(k)
m ; µN).

Example 4
We take X = [0,1]2 (d = 2) and q = 1/2, and construct an approximation of the optimal de-
sign measure ξ q,∗, using µN given by the uniform distribution on the first N points s1, . . . ,sN
of Sobol’ sequence in X and considering discrete measures ξm supported on z1, . . . ,zm =
s4N+1, . . . ,s4N+m in the same sequence, with N = m = 4096. We perform k = 300 iterations
of the multiplicative algorithm (18) with λ = 1 initialized with ξ

(0)
m equal to the uniform mea-

sure on the zi. Figure 3-left presents the level sets corresponding to the 0.01, 0.025, 0.05
and 0.1 percentiles of the (smoothed) design mesure ξ

(k)
m . Figure 3-right shows two level sets

d(ξ (k)
m ,z; µN) = φ

q
q (ξ

(k)
m ; µN)−ε for ε = 0.002 and 0.001, indicating that almost all the mass of

ξ
(k)
m is allocated to points zi such that d(ξ (k)

m ,zi; µN) is very close to φ
q
q (ξ

(k)
m ; µN) and that ξ

(k)
m is

close to being optimal (in fact, maxi d(ξ (k)
m ,zi; µN)−φ

q
q (ξ

(k)
m ; µN)< 8.8 10−4, see Theorem 2).

Example 5
Take X = Bd(0,1). Figure 4 shows φ

q
q (δ0), with δ0 the delta measure at 0 (dotted line), φ

q
q (µ)
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Fig. 2 Left: optimal design mesure ξ
q,∗
m (smoothed density). Right: d(ξ q,∗

m ,z; µN) as a function of z and value of
φ

q
q (ξ

q,∗
m ; µN) (dashed line). X = [−1,1], q = 1/4, µN and ξm are supported on m = N = 1024 points of Sobol’

sequence in X .
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Fig. 3 Left: level sets corresponding to the 0.01, 0.025, 0.05 and 0.1 percentiles of the (smoothed) design mesure
ξ
(k)
m . Right: levels sets d(ξ (k)

m ,z; µN) = φ
q
q (ξ

(k)
m ; µN)− 0.002 and d(ξ (k)

m ,z; µN) = φ
q
q (ξ

(k)
m ; µN)− 0.001. X =

[0,1]2, q = 1/2, µN and ξm are supported by m = N = 4096 points of Sobol’ sequence in X , ξ
(k)
m is obtained by

k = 300 iterations (18) initialized with the uniform measure.

(dashed line), and an approximation of the optimal value (φ̂ ∗q )
q =min{φ q

q (δ0),φ
q
q (µ),φ

q
q (ξ

q,∗
m ; µN)}

(solid line), as functions of q in [0,d], for d = 3 (left) and d = 5 (right). Here, ξ
q,∗
m minimizes

φq(ξm; µN), see (19), and is constructed with the vertex-exchange algorithm of Section 4.2.2.
The radii ρi and R j are given by 1 024 points of Sobol’ sequence and the algorithm is stopped
when max j d(ξ (k)

m ,R j; µN)− φ
q
q (ξ

(k)
m ; µN) < 10−4. As shown in Example 1, δ0 is optimal for

0 < q < d−2, with φ
q
q (δ0) = d/(d +q).

Figure 4 indicates that the optimal value φ ∗q is only marginally better than the value min{φq(δ0),φq(µ)},
hence the interest of considering the performance of the measure µ(r) uniform on the ball
Bd(0,r), with µ(0) = δ0 and µ(1) = µ . In particular, note that the uniform measure µ is al-
most optimal for q ∈ (d−1,d).

Using the expressions in Appendix, φq(µ
(r)) can be evaluated by numerical integration for

d = 3 and d = 5 for any r and q, some analytical expressions being available for particular values
of q and d, such as φ1(µ

(r)) = 3/4− (27/4)r4 +6r4
√

3arctanh
(√

3/3
)

for d = 3.
Figure 5-left presents the efficiency (φ̂ ∗q )

q/φ
q
q (µ

(r)) as a function of r ∈ [0,1] when d = 3,
for q = 1/2 (solid line) and q = 3/2 (dashed line). Figure 5-right shows the value of the radius
r∗q (obtained by numerical optimization) minimizing φq(µ

(r)) for d = 3 and q∈ [0,3]. Numerical
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Fig. 4 φ
q
q (δ0) (dotted line), φ

q
q (µ) (dashed line), and (approximate) optimal value (φ̂∗q )

q (solid line) as functions
of q in [0,d]; d = 3 (left) and d = 5 (right).

calculations give (φ̂ ∗q )
q/φ

q
q (µ

(r∗q)) > 99.9% for all q in [0,3], with r∗q = 0 for q ≤ 1 and r∗q ' 1
for q≥ 5/2, indicating that the uniform measure µ

(r∗q) on B3(0,r∗q) is almost optimal for all q.

On the other hand, the shape of the optimal measure ξ q,∗ differs significantly from µ
(r∗q)

when q ∈ (1,3), as shown on Figure 6 which presents the optimal density ωξ q,∗(dr)/(drd−1) for
four different values of q (note that ω

µ
(r∗q)(dr)/[drd−1/(r∗q)

d ] = 1 for r ∈ [0,r∗q] and equals zero

elsewhere). Here ξ q,∗ is approximated using the technique in Section 4.3 and the multiplicative
algorithm (18), with 4096 points from Sobol’ sequence for the R j and ρi in (19). The algorithm
is stopped when max j d(ξ (k)

m ,R j; µN)−φ
q
q (ξ

(k)
m ; µN)< 10−4.
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Fig. 5 Left: efficiency (φ̂∗q )
q/φ

q
q (µ

(r)) as a function of r ∈ [0,1] when d = 3, for q = 1/2 (solid line) and q = 3/2
(dashed line). Right: r∗q minimizing φq(µ

(r)) for d = 3 as a function of q ∈ [0,3].

5 Construction of n-point designs

As shown in Section 3.2, the optimal measure ξ q,∗ has no atoms when max{0,d−2}< q < d.
Also, when q ≥ d, φq(ξ ) = 0 for any measure equivalent to the Lebesgue measure, whereas
φq(ξ ) > 0 when ξ is discrete, see Section 2.1. In this section we consider a method for gener-
ating n-point sets with small dispersion based on an algorithm for the construction of optimal
design measures for q > 0, and compare its performance with that of a greedy algorithm for the
minimization of the coverage criterion (2).
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Fig. 6 Optimal density ωξ q,∗ (dr)/(drd−1) for d = 3: left for q = 2 (solid line) and q = 2.1 (dashed line); right for
q = 2.25 (solid line) and q = 2.5 (dashed line).

5.1 A vertex-direction algorithm with predefined step-sizes

As in Section 4.2, we use a discrete approximation µN = (1/N)∑
N
i=1 δxi of µ and consider the

construction of design measures supported on a m-point set Zm = {z1, . . . ,zm} ⊂X , disjoint
from XN = {x1, . . . ,xN}, with N and m large enough (we assume that m � n, with m and
N being of the same order of magnitude). But in contrast with Section 4.2, here we use this
construction to generate n-point designs, for a given n.

Let Xk0 denote an initial k0-point set in Zm. Denote by ξ (k0) the corresponding empirical
measure, ξ (k0) = (1/k0)∑s∈Xk0

δs, and consider the following vertex-direction algorithm with
predefined step-sizes, initially proposed by Wynn [21] for D-optimal design: for all k ≥ k0, set

ξ
(k+1) =

(
1− 1

k+1

)
ξ
(k)+

1
k+1

δsk+1 , with sk+1 = arg max
z`∈Zm

d(ξ (k),z`; µN) (20)

the best vertex-direction.
Denote by ∇2

q(ξ ,y) the second-order derivative d2φ
q
q [(1− α)ξ + αδy]/dα2

∣∣
α=0 and by

∇2
q(ξ ,y; µN) the value obtained when µN is substituted for µ . We obtain

∇
2
q(ξ ,y) = 2

∫
X

{
1

Pξ ,q(x)

[
1− ‖y−x‖−q

Pξ ,q(x)

]2
}

µ(dx) ,

with Pξ ,q(x) given by (6). Although ∇2
q(ξ ,y) is infinite for d/2≤ q < d (it is finite for µ-almost

all y when q < d/2, see Section 2.2), ∇2
q(ξ ,z j; µN) is finite for any q > 0 and all j = 1, . . . ,m

when Zm and XN are disjoint. By standard arguments (see for instance [18, Chap. 9]), the
convexity of φ

q
q (·; µN) and the non-summability of the sequence {1/k} imply that φq(ξ

(k); µN)
tends to maxξ∈Ξm φq(ξ ; µN) as k→∞, with Ξm denoting the set of probability measures on Zm.
Note that this property only relies on convexity, and is thus also valid for q≥ d, see Section 2.1.
Values of q larger that d will be considered in Section 5.3. The convergence of (20) to an optimal
measure is usually much slower than that of the algorithms in Section 4.2, but (20) provides a
simple method for the generation of n-point sets.

When q> d−2 and m and N are large enough compared to n, the measure ξ (k) generated by
(20) has more than n distinct support points for large k. We can thus construct an n-point set Xn
by stopping (20) at iteration k = kn ≥ n, when ξ (kn) has exactly n distinct support points (which
often gives kn = n). When the initial design Xk0 is suitably chosen (for instance, k0 = 1 and
X1 = {s1} with s1 = argminz∈Zm ∑

N
i=1 ‖z− xi‖q, see (4)), in general the design Xn has already

good space-filling properties, see Section 5.3. It can also be improved by local minimization,
using for instance a Fedorov-type exchange algorithm [6, Chap. 3] for the minimization of
Φq(·; µN) given by (2), similarly to [20].
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One may notice that the calculation of the d(ξ (k),z`; µN) in (20) only involves the evalua-
tions of weighted sums of distances ‖xi− z`‖−q, since

d(ξ (k),z`; µN) =
1
N

N

∑
i=1

νk(xi)‖xi− z`‖−q ,

with

νk(xi) =

(
m

∑
j=1

ξ
(k)(z j)‖xi− z j‖−q

)−2

. (21)

All the terms ‖xi− z`‖−q, i = 1, . . . ,N, `= 1, . . . ,m, can be computed in advance, and we only
need to update the sum in (21) to be able to determine sk+1 in (20).

Remark 2 Let ξ be any measure in the set Ξm of probability measures on Zm, denote by ξ q,∗

an optimal measure that minimizes φq(·; µN) over Ξm and by Xq,∗
n an optimal n-point design

minimizing Φq(·; µN) over Zm. We then have

Φ
q
q (X

q,∗
n ; µN)≥ φ

q
q (ξ

q,∗; µN) ≥ φ
q
q (ξ ; µN)+ min

z`∈Zm
Fq(ξ ,z`; µN)

= 2φ
q
q (ξ ; µN)− max

z`∈Zm
d(ξ ,z`; µN) ,

see (10), where the first inequality follows from the optimality of ξ q,∗ and the second from the
convexity of φ

q
q (·; µN). Therefore, any n-point design Xn in Zm (in particular, an n-point design

generated with (20)) satisfies

effq(Xn; µN) =
Φq(X

q,∗
n ; µN)

Φq(Xn; µN)
≥ Bq(Xn,ξ ; µN) ,

where

Bq(Xn,ξ ; µN) =

[
max

{
0,2−

maxz`∈Zm d(ξ ,z`; µN)

φ
q
q (ξ ; µN)

}]1/q
φq(ξ ; µN)

Φq(Xn; µN)
.

This lower bound on effq(Xn; µN) is generally not informative when ξ = ξn, the empirical mea-
sure associated with Xn, in the sense that Bq(Xn,ξn; µN) is often equal to zero. On the other
hand, using the algorithms of Section 4.2, we can easily obtain an ε-optimal measure ξε ∈ Ξm
such that maxz`∈Zm d(ξε ,z`; µN)/φ

q
q (ξε ; µN)< 1+ ε , for a small ε , which gives

effq(Xn; µN)≥ Bq(Xn,ξε ; µN)> (1− ε)1/q φq(ξε ; µN)

Φq(Xn; µN)
. (22)

5.2 Greedy minimization of the coverage criterion

The greedy minimization of the coverage criterion Φq(·; µN) given by (2) (with q > 0) corre-
sponds to

Xk+1 = Xk ∪ ẑk+1 with ẑk+1 = arg min
z j∈Zm

Φq(Xk ∪{z j}; µN) , (23)

for all k ≥ k0, for some given k0-point set Xk0 . Note that this construction may involve repeti-
tions; that is, some points can be repeated several times in Xk (including Xk0 ). When it happens,
like in Section 5.1 we continue the iterations until the design contains n distinct points. Also
note that the determination of ẑk+1 requires the exponentiation of N×m elements, whereas only
N exponentiations are required for the calculation of sk+1 in (20), see (21).



Measures minimizing regularized dispersion 15

Remark 3 One can easily check that for any q > 0, the un-normalized version of Φ
q
q (·; µN)

defined by Φ̃
q
q (Xn) = (1/n)Φq

q (Xn; µN) is non-increasing (that is, Φ̃
q
q (Xn∪{z j}) ≤ Φ̃

q
q (Xn) for

any Xn and z j in Zm), and super-modular (that is, Φ̃
q
q (Xn)− Φ̃

q
q (Xn∪{z j})≥ Φ̃

q
q (Xn∪{z`})−

Φ̃
q
q (Xn∪{z`,z j}) for any Xn and z j,z` in Zm). The selection of ẑk+1 in (23) can also be written

as
ẑk+1 = arg min

z j∈Zm
Φ̃

q
q (Xk ∪{z j}) .

The results in [13] on the maximization of submodular set functions thus imply that the greedy
minimization (23) ensures that

1
k0

Φ
q
q (Xk0 ; µN)− 1

k0+t Φ
q
q (Xk0 ∪{ẑk0+1, . . . , ẑk0+t}; µN)

1
k0

Φ
q
q (Xk0 ; µN)− 1

k0+t Φ
q
q (Xk0 ∪{z∗k0+1, . . . ,z

∗
k0+t}; µN)

≥ 1−
(

1− 1
t

)t

≥ 1−1/e , (24)

for any non-empty set Xk0 and any t ≥ 1, where the t points z∗k0+1, . . . ,z
∗
k0+t minimize Φq(Xk0 ∪

{zk0+1, . . . ,zk0+t}; µN) with respect to zk0+1, . . . ,zk0+t in Zm. Such efficiency bounds gener-
ally motivate the use of greedy algorithms for the construction of n-point sets with suitable
properties; one should notice, however, that (24) does not provide any exploitable bound on
Φ

q
q (Xk0 ∪{z∗k0+1, . . . ,z

∗
k0+t}; µN)/Φ

q
q (Xk0 ∪{ẑk0+1, . . . , ẑk0+t}; µN).

5.3 Numerical examples

Example 6
We take X = [0,1]2, with Zm formed by the 33×33 regular grid with {z j}1,2 ∈{0,1/32,2/32, . . . ,1},
and XN formed by the 32× 32 regular grid interlaced with Zm, with {xi}1,2 ∈ {1/64,1/64+
1/32, . . . ,1/64+31/32}.

Figure 7 shows the 100-point designs generated by (20) with X1 = {(1/2,1/2)} for q = 1
(left) and q = 3/2 (right), illustrating the better space-filling behaviour of the design generated
when q increases.

Fig. 7 Designs X100 generated by (20) for q = 1 (left) and q = 3/2 (right).

Figure 8-left shows the design Xa
50 generated by (20) with X1 = {(1/2,1/2)} for q= 10. The

lower bound (22) with ε = 10−4 gives effq(Xa
50; µN) > 0.3292. We also obtain effq(Zm; µN) >

0.9938, which indicates that the uniform measure on Zm is almost optimal. The dispersion of
Xa

50 (evaluated by Voronoı̈ tessellation, see [16, Section 2.4]) is Φ(Xa
50)' 0.1141; its maximin-

distance is Ψ(X (a)
n ) ' 0.0938, see (17). The design Xb

50 in Figure 8-right is generated by (23),

with the same X1 and the same q, and Φ(Xb
50) ' 0.1310, Ψ(X (b)

n ) ' 0.0699. The designs ob-
tained can be used to initialize a local optimization algorithm for the minimization of Φq(·; µN).
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In particular, the small values of m and n used in the example allow us to apply the Fedorov-type
exchange algorithm proposed in [20]. When initialized at Xa

50 (respectively Xb
50), it yields a de-

sign X̃a
50 with Φ(X̃a

50)' 0.1127 and Ψ(X̃ (a)
n )' 0.0988 (respectively, X̃b

50 with Φ(X̃b
50)' 0.1127

and Ψ(X̃ (b)
n )' 0.0938).

Performances are slightly worse for smaller values of q, with for instance Φ(Xa
50)' 0.1273

and Φ(Xb
50)' 0.1563 when q = 2.

Fig. 8 Left: design Xa
50 generated by (20); Right: Xb

50 generated by (23); X1 = {(1/2,1/2)}, q = 10. The circles
have radii equal to the dispersion, with Φ(Xa

50)' 0.1141 and Φ(Xb
50)' 0.1310.

Algorithm (20) does not require X to be convex. Figure 9-left shows the design obtained
when X = [0,1]2 \B2((1/2,1/2),1/4) and q = 10. The set Zm (respectively, XN) corresponds
to the subset of the first m′ points s1, . . . ,sm′ of Sobol’ sequence in [0,1]2 (respectively, the
subset of s4m′+1, . . . ,s4m′+N′ ) that lie in X , with m′ = N′ = 4096 (which gives m = 3292 and
N = 3295). The direct use of the first 50 points of Sobol’ sequence that fall in X gives the
design in Figure 9-right, with clearly worse space-filling properties.

Fig. 9 Left: design X50 generated by (20) when X = [0,1]2 \B2((1/2,1/2),1/4); Right: first 50 points of Sobol’
sequence in X .

Example 7
We take X = [0,1]10 and n = 100; Zm corresponds to the first m points s1, . . . ,sm of Sobol’
sequence in X , XN corresponds to s4m+1, . . . ,s4m+N , with m = N = 4096. The design Xa

100
generated by (20) with q = 10 has dispersion Φ(Xa

100) ' 1.310 (computed with the MCMC
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method in [16, Section 2.4]) and Ψ(Xa
100)' 0.6011. The lower bound (22) (with ε = 10−4) gives

effq(Xa
100; µN) > 0.8288 and effq(Zm; µN) > 0.9702. The computational time of Xa

n , including
the computation of all ‖xi − z`‖−q, is about 2.8 s in Matlab on a PC with a clock speed of
2.50 Gz and 32 Go RAM. Algorithm (23) requires about 30 s to generate a design Xb

n with
Φ(Xb

100) ' 1.349 and Φ(Xb
100) ' 0.3550. Similar behaviours are observed for the hypercube

[0,1]d with different d and other values of m,N and n, and indicate that the vertex-direction
algorithm (20) is significantly faster than the greedy-method (23) and yields designs with better
space-filling properties.

6 Conclusions

We have shown (Theorem 1) that a continuous extension of a regularized version of the disper-
sion criterion is a convex functional when the regularization parameter q is positive, and strictly
convex when 0 < q < d. For the range of q where the functional is strictly convex, we have
given a characterization of optimal measures (Theorem 2). Their properties have been investi-
gated using results from potential theory and several examples have been studied in details. In
particular, analytic results have been obtained for the case when the design space is the unit ball
and experimental design algorithms have been used for numerical constructions. In the same
way as the determination of Fekete points that minimize the q-energy is easier than the con-
struction of an optimal design for the maximin criterion (17), see [2], [12], the minimization of
(2) is easier that the construction of a design minimizing the dispersion (1). The results in the
paper suggest that the construction of designs having good space-filling properties requires q
to be larger than d− 2, but that very large values of q are not needed. Numerical experiments
indicate that n-point designs with good space-filling properties can easily be generated with a
vertex-direction algorithm with predefined step-sizes.

Appendix: explicit expressions of integrals for X = Bd(0,1)

In this appendix we give the explicit expression of the integral (15), and also of (14) when
ξ = µ , for particular values of d and q when X = Bd(0,1).

1. q = d−2, any d ≥ 2

We have Id,q(R,ρ) = (max{R,ρ})−q, implying Jd,q(ρ) = ρ2(1− d/2) + d/2 when z is uni-
formly distributed in Bd(0,1) (so that ωξ (dR) = dRd−1 dR in (14)). Hence, the integral (13)
can be evaluated exactly when ξ = µ . Table 1 gives the values of φ

q
q (µ) for d = 3, . . . ,10 and

q = d−2.

d φ
d−2
d−2 (µ)

3 6
√

3 arctanh
(√

3/3
)
−6 ' 0.843113970

4 4 log(2)−2 ' 0.772588722
5 [2 ·52

√
15 arctanh

(√
15/5

)
]/27−20/3 ' 0.733016111

6 33 log(3)/23−3 ' 0.707816475
7 [2 ·73

√
35 arctanh

(√
35/7

)
]/54−2758/375 ' 0.690405156

8 29 log(2)/34−100/27 ' 0.677671067
9 [2 ·39

√
7 arctanh

(√
7/3
)
]/75−94968/12005 ' 0.667959803

10 55 log(5)/210−3265/768 ' 0.660312638

Table 1 Values of φ
d−2
d−2 (µ) for d = 3, . . . ,10 when X = Bd(0,1).
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2. d = 3 and 0 < q < 3

We obtain

I3,q(R,ρ) =

(
(R−ρ)2

)1−q/2
−
(
(ρ +R)2

)1−q/2

2ρ (q−2)R
for q 6= 2 ,

I3,2(R,ρ) =
log
(
(ρ +R)2

)
− log

(
(R−ρ)2

)
4ρ R

for q = 2 .

When z is uniformly distributed in B3(0,1), the evaluation of

Jd,q(ρ) = 3
∫ 1

0
Id,q(R,ρ)R2 dR

gives

J3,2(ρ) = 3
(1−ρ2) log [(1+ρ)/(1−ρ)]+2ρ

4ρ
,

J3,q(ρ) = 3
(ρ +1)3−q (q+ρ−3)− (q−ρ−3)(1−ρ)3−q

2ρ (q−2)(q−3)(q−4)
for q 6= 2 .

The numerical evaluation of the integral φq(µ) is now straightforward, see (13); φ1(µ) can
be computed exactly, see Table 1; also, limq→0 φq(µ) = 2exp(−3/4)' 0.9447331.

3. d = 5 and 0 < q < 5

If q /∈ {2,3,4} then

I5,q(R,ρ) = 3
(R+ρ)β −βRρ (R+ρ)α − |R−ρ|β −βRρ |R−ρ|α

2R3ρ3α (α2−4)
,

where α = 4−q >−1 and β = 6−q = α +2. The integral (14) explicitly evaluates when z is
uniform in B5(0,1), using the representation

J5,q(ρ) = 5
∫ 1

0
I5,q(R,ρ)R4 dR = c(J1−βρJ2− J3−βρJ4) ,

where c = 15/
[
2ρ3α

(
α2−4

)]
and

J1 =
∫ 1

0
(R+ρ)β RdR =

ρβ+2 +(ρ +1)β+1 (β −ρ +1)
(β +2)(β +1)

,

J2 =
∫ 1

0
(R+ρ)α R2 dR =

(
α2−2α ρ +2ρ2 +3α−2ρ +2

)
(1+ρ)α+1−2ρα+3

(α +3)(α +2)(α +1)
,

J3 =
∫ 1

0
|R−ρ|β RdR =

ρβ+2 +(ρ +β +1)(1−ρ)β+1

(β +1)(β +2)
,

J4 =
∫ 1

0
|R−ρ|α R2 dR =

(
α2 +2α ρ +2ρ2 +3α +2ρ +2

)
(1−ρ)α+1 +2ρα+3

(α +3)(α +2)(α +1)
,

so that φq(µ) can easily be evaluated numerically.
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When q = 2 and q = 4, we obtain

I5,2(R,ρ) = 3
2ρR(R2 +ρ2)+(R2−ρ2)2 log |(R−ρ)/(R+ρ)|

16R3ρ3 ,

J5,2(ρ) = 5
2ρ(3−ρ2)(3ρ2 +1)+(1−ρ2)3 log[(1−ρ)/(1+ρ)]

96ρ3 ,

I5,4(R,ρ) = 3
−2ρR+(R2 +ρ2) log |(R+ρ)/(R−ρ)|

8R3ρ3 ,

J5,4(ρ) = 15
2ρ(3ρ2−1)+(1−ρ2)(1+3ρ2) log[(1−ρ)/(1+ρ)]

32ρ3 .

The case q = 3 is considered in Table 1.

Acknowledgements We thank the two anonymous referees for their comments that helped us to improve the
presentation and incited us to consider the construction of n-point designs (Section 5).
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