
HAL Id: hal-01864079
https://hal.science/hal-01864079v2

Preprint submitted on 17 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Spectral Measures of Distortion for Change Detection in
Dynamic Graphs

Luca Castelli Aleardi, Semih Salihoglu, Gurprit Singh, Maks Ovsjanikov

To cite this version:
Luca Castelli Aleardi, Semih Salihoglu, Gurprit Singh, Maks Ovsjanikov. Spectral Measures of Dis-
tortion for Change Detection in Dynamic Graphs. 2018. �hal-01864079v2�

https://hal.science/hal-01864079v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Spectral Measures of Distortion for Change
Detection in Dynamic Graphs

Luca Castelli Aleardi1, Semih Salihoglu2, Gurprit Singh3 Maks Ovsjanikov1

Abstract We propose a novel framework for detecting, quantifying and visualizing
changes between two snapshots of a dynamic network. Unlike existing approaches,
which can be sensitive to noise, and are often based on heuristics, we show how
a theoretically-justified, inherently multi-scale notion of change, or distortion, can
be defined and computed using spectral graph-theoretic tools. Our primary observa-
tion is that informative, robust and multi-scale measures of change can be obtained
by computing a real-valued function (which we call the distortion function) on the
nodes of the input graph, via the optimization of a pre-defined distortion energy in
a provably optimal way. Based on extensive tests on a wide variety of networks, we
demonstrate the ability of our approach to highlight the evolution of the network in
an informative and multi-scale manner.

1 Introduction

Many real-world evolving systems can be conveniently encoded as dynamic graphs
(e.g., biological networks, where the connectivity can represent the evolution of pro-
tein interactions or collaboration networks, where new links and nodes are added
over time [1, 2, 27]). A key challenge in the visualization and analysis of dynamic
networks is capturing the structural changes in the graph in a robust and efficient
way. In particular, a fundamental problem is to define principled measures of change
or difference between graphs that can be used to highlight the modified regions,
while not being sensitive to noise. Unfortunately, in many cases these two objectives
are contradictory, especially in the presence of large networks with many structural
changes, where simple measures result in highly noisy highlighted regions that are
difficult to interpret. In this context, several methods [15, 17, 18] have been pro-
posed to produce informative summaries of dynamic graphs. However, as discussed

1LIX, Ecole Polytechnique, France · 2University of Waterloo, Canada · 3Max Planck Institute for
Informatics, Germany.

1

2 Castelli Aleardi et al.

in Section 3, they typically suffer from the lack of precise control over the type of
changes that are considered and the scale at which they are computed, e.g., local
changes of individual vertices vs. global distortions to the structure of entire re-
gions in the graph. Furthermore, these existing techniques typically do not allow to
capture and highlight only the primary areas of change, and can result in cluttered
visualizations. Finally, most existing methods are based on heuristics and often lack
formal guarantees of global optimality.

In this paper, we propose an efficient, flexible and multi-scale framework for
detecting and analyzing changes in dynamic graphs, in the online setting, where
only the current and the previous timestamp information are known. Given a pair of
graphs, our framework is based on defining and computing an optimal node distor-
tion function, which associates to each vertex a real value that quantifies the change
associated with this vertex across the two graphs (with higher values corresponding
to larger changes). We use the term distortion to emphasize the fact that our function
should measure the most dramatic changes in graph structure, at a given scale. To
this end, we leverage concepts from spectral graph theory to both ensure robustness
against noise (i.e. disparate and unrelated, local changes), by controlling the scale at
which the changes are computed, and provide theoretical guarantees on the global
optimality of the highlighted changes.

1.1 Related Work

The problem of capturing changes in dynamic graphs has recently attracted a lot of
attention and a variety of different techniques have been proposed, including the use
of animation (time-to-time mapping) or timeline (time-to-space mapping) methods
(see [4], for a taxonomy of methods for dynamic graph visualization).
Network visualization. Many existing works [6, 7, 10, 11, 15, 17, 23, 30, 29] make
use of a large variety of different graph drawing techniques in order to update the
layout while preserving the mental map [23], which is considered as the main re-
quirement to obtain good readability and facilitate graph exploration [3]. For in-
stance, two interesting approaches combine the notion of vertex ages [17] and node
pinning weights [15] with force-directed layouts to produce visualizations of dy-
namic graphs: the main idea consists to reduce node displacement via a mechanism
based on the associated distortion at a vertex (which is close to simulated anneal-
ing [12]). The approach described in [15], where node pinning weights are asso-
ciated with a distance-to-modification measure, is more sophisticated: it integrates
force-directed layouts with a coarsening phase, and can exploit GPU parallelism
for efficiency. Spectral methods, which have been extensively used for graph visu-
alization for several decades [20, 22, 25], have recently been adapted to deal with
dynamic networks [6, 10, 30]. While one approach is to extend the classic spectral
layout to the case of dynamic graphs [6], another possible use of spectral methods
is in the layout post-processing [10, 30, 31] that can be combined with arbitrary
static layouts. In this case, node positions or even additional data such as grouping
or temporal penalties can reduce node displacements.

Spectral Measures of Distortion for Change Detection in Dynamic Graphs 3

Distorted Region Detection. There are relatively few works, in the context of net-
work visualization that consider the problem of detecting and highlighting the re-
gions with the most relevant changes and evolution. A notable exception is [18],
where the authors address this problem by introducing a measure of relevance for
vertices and weighted edges (called strength), and makes use of a threshold filtering
based on a sliding time-window in order to efficiently visualize the most relevant
evolving regions in the graph. Detecting relevant regions is a crucial ingredient that
can be combined with other tools for the visualization of large networks [19].
Our Motivation and Contribution. Our work is inspired by previous techniques [15,
17, 18] that define various distortion measures aimed at capturing changes between
graphs. These distortion measures are then combined either with force-directed
methods [16, 21, 28] for graph visualization, or integrated in detecting most dis-
torted regions. In context of the former, a distortion function allows controlling the
displacement of vertices by manipulating the forces acting on them, while in the
latter it can be used to filter vertices by, e.g., thresholding their values. The main
distinguishing characteristics of our framework is that it provides precise control
over both the type of distortions and the scale at which changes are computed, with
theoretical optimality guarantees for the computed distortion function. None of the
existing methods enable these features in a single coherent framework.

2 Proposed Framework

Preliminaries: A dynamic network is defined by a sequence of graphs {G1, . . . ,GT}
where Gi = (Vi,Ei) represents a snapshot at time i. As in previous works [10, 11, 29,
15, 17, 18, 30], we assume that we are given the correspondence between nodes in
two consecutive snapshots. The nodes and edges of each Gi are allowed to be asso-
ciated with positive weights: we denote by di(u),wi(u,v) the weight of vertex u and
of edge (u,v) in Gi, respectively. In the simplest case, di(u) is the degree of vertex
u in Gi, and, for unweighted graphs, wi(u,v) = 1 if (u,v) ∈ Ei and 0 otherwise. We
then define a diagonal matrix Di, s.t. Di(u,u) = di(u) and a symmetric matrix Wi,
s.t. Wi(u,v) = wi(u,v) = wi(v,u). Finally, we define the weighted Laplacian matrix
LGi as: LGi =Ui−Wi, where Ui is a diagonal matrix, s.t. Ui(u,u) = ∑v wi(u,v).

Our framework aims at detecting the structural changes between two instances Gi
and Gi+1 of a dynamic network (graph) by computing a distortion function f :Vi−→
R, such that f (v) should: 1) quantify the changes at vertex v between Gi and Gi+1,
with higher values corresponding to larger changes and f (v) = 0 corresponding to
no changes, 2) be multi-scale to reflect changes in the neighborhood of v at any given
scale, 3) be efficiently computable in practice. The second property is especially
important to detect and highlight evolving regions in graphs and to gain resilience
to noisy, dispersed changes throughout the graph.

General overview: To compute the distortion function that satisfies the above three
criteria, we first define a distortion energy E(Gi,Gi+1, f) that assigns a scalar score

4 Castelli Aleardi et al.

ϕ2 ϕ3

ϕ4 ϕ5 fopt[u] =
∑p

j=1 σj(fj[u])2

f1 = Φkξ1
f2 = Φkξ2

compute

. . .
fp = Φkξp

σ1(f1[u])
2

σ2(f2[u])
2

energy
maximization

(Section 3.3)

extracting
basis functions
(Section 3.2)

0.036

0

0.018

0.019

0.027

Fig. 1: Algorithm overview: given a graph and its modification, (removed edges are
marked in red), we first construct a set of basis functions, then pick a distortion
energy and compute its maximizers in the linear span of the basis. Finally, we com-
pute the optimal distortion function that smoothly reflects the changes at each vertex
from very high (in red) to least affected vertices (in blue).

to an arbitrary real-valued function f : Vi −→ R. We then construct a multi-scale
family F of functions. Finally, we compute the optimal distortion function fopt
which corresponds to the maximizer of E(Gi,Gi+1, f) for given Gi,Gi+1, and s.t.
f lies within the family F (see Fig. 1 for an illustration). We then use fopt to visual-
ize the changes across Gi,Gi+1, by color-coding the vertices, and to detect the most
distorted regions as described in Section 3.

Our motivation for adopting this pipeline is that it allows us to 1) precisely control
the types of changes the approach should be sensitive to via the choice of distortion
energy, 2) control the scale of the computed changes via the choice of family F
and 3) provide theoretical guarantees, making sure that the computed maximizer of
E(Gi,Gi+1, f) is globally optimal.

2.1 Distortion Energies

The main considerations when choosing a distortion energy are first to ensure that
it is sensitive to the changes that are meaningful in the context of the evolution of
Gi and second, it should be easy to optimize, so that computing the maximizer f of
E(Gi,Gi+1, f) w.r.t. f can be done efficiently in practice. To this end, we consider
the following two distortion energies (notations from Sec. 2):

Evertex diff(Gi,Gi+1, f) =
∑u f (u)2(di(u)−di+1(u))2

∑u f (u)2di(u)
,

Eedge diff(Gi,Gi+1, f) =
∑u,v(f (u)− f (v))2(wi(u,v)−wi+1(u,v))2

∑u f (u)2di(u)
.

(1)

Intuitively, these two energies, Evertex diff and Eedge diff, are sensitive to the abso-
lute changes (increase or decrease) of the weights of the vertices and the edges,
respectively. These energies associate a scalar score to any real-valued function
f , which can then be used to find the optimal distortion function by computing
fopt = argmax f E(Gi,Gi+1, f). In each case, E(Gi,Gi+1, f) is large when f is sup-
ported on the regions where these weights change the most. Note also that both

Spectral Measures of Distortion for Change Detection in Dynamic Graphs 5

Evertex diff(f), and Eedge diff(f) are defined such that the change is scaled by the
vertex weight di(u) in the denominator. This is because a single edge addition or
deletion is typically less important for a vertex with a large weight (or degree) than
for a vertex with a small weight. However, this choice might also be application-
specific. If this normalization is not necessary, it can easily be removed from all of
the derivations below.

2.2 Choice of Scale via Reduced Functional Space

After selecting a distortion energy E(Gi,Gi+1, f) our goal is to find the optimal
distortion function fopt by maximizing E for given Gi,Gi+1. Moreover, as mentioned
in Section 2, we would like to be able to control the scale of the solution, in order
to gain robustness to disparate, possibly noisy local changes, and to detect the areas
or regions where the most important changes occur.

Thus, instead of maximizing E(Gi,Gi+1, f) across all choices of f , we propose
to consider the function f that lies in the appropriate functional subspace. More
concretely, we enforce the function f to lie in the linear subspace spanned by some
“desirable” functions ϕ , i.e., we force: f = ∑

k
j=1 a jϕ j where ϕ j are some k fixed

pre-defined functions, i.e., ϕ j : Vi −→R and a j are the unknown scalar coefficients.
This way, computing the optimal f amounts to finding the coefficients {ak} such
that E(Gi,Gi+1, f) = E(Gi,Gi+1,∑ j a jϕ j) is maximized.

In practice, we control the scale of the solution via the choice of k, which corre-
sponds to the dimensionality of the functional space. A small value of k corresponds
to global scale as it enforces f to be chosen in the space spanned by a small set (of
potentially globally supported) functions, whereas larger values of k provide more
freedom for selecting the optimal distortion function f . In the limit, when k equals
the number of vertices in the graph, and ϕ are linearly independent, then f can be
chosen to be an arbitrary function, including an indicator function of a single vertex.
In this paper, we consider the following two families of functions:

Option 1: Region-based functions. Perhaps the most intuitive choice of a func-
tional family corresponds to simply taking ϕ j to represent indicator (characteristic)
functions of some regions on the graph Gi. In the simplest case, each such func-
tion can represent a neighborhood of some fixed vertex, of a given size. More pre-
cisely, given a partition of the vertex set Vi into k distinct regions {R1,R2, . . . ,Rk}
we define ϕ j : Vi −→ [0,1] as the indicator function of R j: ϕ j(u) = 1 if u ∈ R j, and
ϕ j(u) = 0 otherwise. We can also incorporate a distance-to-modification behavior
by simply defining ϕ j(u) = 1 if u ∈ R j and u has a modified neighborhood, and
ϕ j(u) = h(dist(u)) where dist(u) is the distance from u to the closest modification
and h : {0,1, . . .n− 1} → [0,1] is a decreasing function provided by the user (we
define h(dist(u)) = 1/(1+ dist(u)) in the experiments reported in Section 3). In
practice we use the partitions computed by the Louvain algorithm [5], which is a hi-
erarchical method for community detection based on modularity optimization. Such

6 Castelli Aleardi et al.

a clustering method is especially appropriate in our setting since it provides a res-
olution parameter that controls the desired level in the clustering hierarchy, which
naturally corresponds to the scale at which we analyze the graph.

Option 2: Laplacian eigen-basis. We consider as basis the eigenfunctions associ-
ated with the k smallest eigenvalues of the generalized eigenvalue problem:

LGiϕ = λDGiϕ (2)

where LGi is the Laplacian matrix of Gi and DGi is the diagonal matrix of vertex
weights. We choose this basis because the eigenfunctions of the Laplacian natu-
rally have a multi-scale property, which intuitively corresponds to the equivalent
of Fourier bases and which has been used extensively in the context of signal pro-
cessing on graphs [26]. In our context, remark that each ϕ j is associated with a
non-negative eigenvalue λ j ≥ 0 (since LGi and DGi are symmetric positive semi-
definite). Moreover, a simple calculation shows that for any f = ∑

k
j=1 a jϕ j

f T LGi f
f T DGi f

=
∑u,v(f (u)− f (v))2wi(u,v)

∑u f (u)2di(u)
≤ λk (3)

Now, the quantity ∑u,v(f (u)− f (v))2wi(u,v) can naturally be interpreted as the
smoothness of the function, since it captures the sum of the squared differences
of f along the edges of the graph. This means that if a function f lies in the span
of the eigenfunctions corresponding to the k smallest eigenvalues of the problem in
Eq. (2), then the smoothness of f , as defined in Eq. (3), is bounded by λk.

Note that for a connected graph, when k = 1, then f must be a constant function,
since λ1 = 0, and ϕ1 must be constant. Conversely, if k = n then f can be an arbi-
trary function, since ϕ are linearly independent. Thus, we interpret k as controlling
the scale of the solution, where small k corresponds to global scale (very smooth
functions), and large k corresponds to local scale (possibly arbitrarily irregular, or
concentrated functions).

2.3 An Algorithm to Compute the Spectral Distortion

We can now design a simple procedure for computing the optimal distortion func-
tion, where all steps can be expressed in terms of linear algebraic computations.
Assuming we want to maximize the energy Er(Gi,Gi+1, f), we compute the opti-
mal distortion function fopt with the following three steps:

1. Choose the value for the parameter k and compute the family F at that scale.
For example, when using the Laplacian basis, compute the k smallest eigenval-
ues λ1, . . . ,λk and the corresponding eigenfunctions ϕ1, . . . ,ϕk of the problem
LGiϕ = λDGiϕ . Store these functions as columns of the matrix Φk.

2. Given the matrix Φk and an energy Er, compute the optimum function fopt :=
argmax f∈span(Φk)Er(Gi,Gi+1, f). For this, we solve the eigenproblem: maxσ Si+1ξ =

Spectral Measures of Distortion for Change Detection in Dynamic Graphs 7

σξ where the matrix Si+1 (of size k× k) is given as:

Evertex diff : Si+1 := (Φk)T (DGi −DGi+1)
2Φk

Eedge diff : Si+1 := (Φk)T L−Gi,Gi+1
Φk (4)

Here the diagonal matrices D and the Laplacian matrices L follow the defini-
tions given in the beginning of Section 2, and the matrix L− is defined such that
L−(u,v) =−(wi(u,v)−wi+1(u,v))2, and L−(u,u) = ∑v(wi(u,v)−wi+1(u,v))2.

3. Finally, the optimal distortion function corresponds to the eigenvector ξmax (hav-
ing size k) associated with the largest eigenvalue σmax of the eigenproblem from
step 2. The function f on the vertices of Gi can be computed via the matrix
product: fopt = Φkξmax.

The correctness of the algorithm above for computing the optimal distortion func-
tion is ensured by the following Lemma (see the Appendix for the proof):

Lemma 1. The algorithm described in the three steps above is guaranteed to result
in a distortion function that maximizes the given energy, while remaining within the
subspace spanned by the eigenfunctions Φk.

Note that the pipeline above is designed to compute a single optimal distortion
function fopt at the given scale k. In practice, this typically corresponds to detecting
a single most distorted area or region of the graph. In order to compute the top p
most distorted regions, it can be convenient to consider more than one eigenvector
of Si+1 in step 3 above. In this case we take the linear combination of the squares
of eigenvectors corresponding to the p largest eigenvalues of Si+1 described in step
2. In other words we compute: fopt = ∑ j≤p σ j(f j[u])2, where we define f j = Φkξ j

and σ j is the jth largest eigenvalue of Si+1. Finally we normalize fopt to have values
between 0 and 1.

Key parameters: The key parameters in our framework include: the choice of the
basis, the distortion energy function, the choice of scale or smoothness parameter k,
and the choice of p corresponding to the number of largest eigenvalues, related to
the number of highest-distorted parts that are considered.

3 Experimental evaluation

We provide an experimental evaluation of our spectral distortion (denoted δSP) and
compare it to other approaches proposed in the visualization of dynamic graphs.

Choice of the energy. Remark that the choice of energy is application specific. For
example, if the network evolution is primarily controlled by change in vertex degrees
(or weights), then Evertex diff is more appropriate. This happens, in particular, if the
evolution contains only edge additions or removals but not both. We also report
in [8] experimental results for the energy Eedge diff, that is more suitable for graphs
evolving under both edge removals and additions.

8 Castelli Aleardi et al.

(32 deleted edges) Distance-to-modification Vertex age Vertex strength Spectral (Evertex diff)

d
w
t
3
0
7

da
ta

se
t

(a) n = 307, e = 1108 (b) (c) (d) (e) k = 40, p = 10

(114 edges & 109 nodes added)

F
a
c
e
b
o
o
k

(S
ep

.8
th

20
06

)

(f) n = 579, e = 485 (g) (h) (i) (j) k = 110, p = 10
Region based functions

S
G

da
ta

se
t

(f) n = 96, e = 399 (g) (h) (i) (j) k = 48, p = 10
(37 edges & 1 node added) Region based functions

Fig. 2: (Left) Network evolution: the red (resp. green) segments represent the re-
moved (resp. added) edges in a single time step. (Columns 2-5) Qualitative compar-
ison between the distortion measures δDM (distance-to-modification), δVA (vertex
age) and δV S (vertex strength) with our spectral distortion.

Since this is the case for the datasets we consider below, we only present results
using Evertex diff. We also report experimental results for the energy Eedge diff, that is
more suitable for graphs evolving under both edge removals and additions.

3.1 Datasets

We perform tests on dynamic networks having different structural properties and
evolution behavior: as in most existing works [10, 11, 15, 17], all of these graphs
are undirected and unweighted.
Real-world networks. We consider real-world networks from the SuiteSparse Ma-
trix Collection [13] (3elt, dwt307, etc.). The sizes of these graphs range from
hundreds to thousands of nodes. As in [15] we construct a dynamic sequence of
networks with a simple process based on a random edge decimation.

Spectral Measures of Distortion for Change Detection in Dynamic Graphs 9

(12 deleted edges) Distance modification Vertex age Spectral distortion
(14 added edges) (Eedge diff)

N
e
w
c
o
m
b

da
ta

se
t

(a) n = 17, e = 51 (b) (c) (d) k = 12, p = 8

(108 edges & 11 nodes added)
(112 edges & 18 nodes deleted)

B
i
r
d
f
l
o
c
k
i
n
g

(e) n = 165, e = 419 (f) (g) (h) k = 26, p = 20
Region based functions

Fig. 3: Qualitative comparison of distortion functions for the Newcomb and Bird
flocking datasets. We compare different distortion measures δDM (distance-to-
modification) and δVA (vertex age) with our spectral distortion (obtained optimizing
the energy Eedge diff).

Complex networks. We consider a sequence of networks (also evaluated in [11])
extracted from the Facebook-Growth dataset 1: this dataset spans an interval
from Sep. 2006 to Jan. 2009. we extract a sequence of dynamic networks following
the evolution of the largest connected component over the first 15 days (each time
step correspond to the growth during a single day).
Interaction networks. We consider the sequence of aggregated networks analyzed
in [9] (referred to as SG), where nodes are individuals visiting the Science Gallery
in Dublin and edges describe the face-to-face proximity between individuals over a
daily time window: these networks have a few hundreds of nodes and evolve under
an aggregation process (only vertex and edge additions occur).
Newcomb network. We consider the Newcomb’s fraternity dataset (referred to as
newcomb in previous works [10, 15, 17]), whose evolution is driven by a dramatic
and global rewiring process.
Proximity networks. We also evaluate a second dataset whose growth is based on a
dynamic process where new entities and links are added or removed over time. More
precisely we consider a collection of networks (referred to as bird flocking),

1 The raw data is available at https://www.eecs.wsu.edu/˜yyao/StreamingGraphs.html

https://www.eecs.wsu.edu/~yyao/StreamingGraphs.html

10 Castelli Aleardi et al.

describing the collective motion of birds. Given the 3D locations of birds (from
the dataset [14]) we construct a sequence of networks by computing the k-nearest
neighbor graph at each time step (this choice is motivated by the behavior of interac-
tions, which are independent of the distance between birds). This network sequence
is particularly interesting since the evolution is driven by a dramatic edge rewiring
process, including vertex additions and removals (which occur because of occlusion
issues during the tracking phase).

Distance-to-modification Vertex age Vertex strength Spectral (Evertex diff) Spectral (Evertex diff)

d
w
t
3
0
7

(ρ
=

0.
1) k = 30

p = 10
k = 110
p = 50

F
a
c
e
b
o
o
k

(ρ
=

0.
2)

(S
ep

.1
1t

h
20

06
)

n = 847
e = 841

153 edges &112 vert. added

k = 110
p = 30

k = 170
p = 60

5 ·10−2 0.1 0.15
1

2

3

4

5

6

ρ

d
w
t
3
0
7

average node degree

5 ·10−2 0.1 0.15

0.2

0.4

0.6

0.8

1

ρ

1/(# connected components)

5 ·10−2 0.1 0.15
2

4

6

8

10

12

14

16

ρ

diameter
δDM
δVA
δV S

δSP,k = 30, p = 10
δSP,k = 110, p = 50

5 ·10−2 0.1 0.15

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ρ

average clustering coefficient

5 ·10−2 0.1 0.15

5

10

15

20

25

30

35

ρ

Region relevance

0.1 0.15 0.2 0.25 0.3
1

1.5

2

ρ

F
a
c
e
b
o
o
k

(S
ep

.1
1

20
06

)

0.1 0.15 0.2 0.25 0.3

0.1

0.2

ρ

δDM
δVA
δV S

δSP,k = 110, p = 30
δSP,k = 170, p = 60

0.1 0.15 0.2 0.25 0.3

4

8

12

16

20

ρ
0.1 0.15 0.2 0.25 0.3

0.1

0.2

ρ
0.1 0.15 0.2 0.25 0.3

40

80

120

160

ρ

Fig. 4: Threshold filtering approach: in the pictures above we highlight a frac-
tion ρ of vertices with highest distortion. In the charts below we plot the structural
properties (average node degree, average clustering coefficient, . . .) and the region
relevance of each filtered graph as a function of ρ .

3.2 Baselines

We compare our approach to three other notions of distortion: distance-to-modification,
vertex age and vertex strength distortions based on the methods proposed in [15],

Spectral Measures of Distortion for Change Detection in Dynamic Graphs 11

Sep. 11 Sep. 12 Sep. 13 Sep. 14
n = 847,e = 841 n = 936,e = 976 n = 1014,e = 1129 n = 1063,e = 1244

ve
rt

ex
st

re
ng

th
δ s

p
(p

=
20

)

1 2 3 4 5 6 7 8 9 10

1

1.5

2

2.5

3

4

time stepF
a
c
e
b
o
o
k

(S
ep

.5
-1

5
20

06
) average node degree

1 2 3 4 5 6 7 8 9 10

0.1

0.2

time step

1/(# connected components)

1 2 3 4 5 6 7 8 9 10

4

6

12

16

20

time step

diameter

1 2 3 4 5 6 7 8 9 10

0.1

0.2

0.3

0.4

time step

average clustering coefficient

1 2 3 4 5 6 7 8 9 10

40

80

120

160

time step

Region relevance

Fig. 5: Dynamic growth of the Facebook network: we compare distortion func-
tions evaluating the evolution of structural properties over the first ten days from
Sep. 5 to Sep. 15 2006. The pictures above show the graph filtered using spectral
distortion over four time steps. All pictures and plots are obtained setting ρ = 0.1.

[17] and [18], respectively.
The distance-to-modification distortion is the function δDM(u) : V → [0,1] defined
by δDM(u) = h(dist(u)) where h is a decreasing function, and dist(u) is the graph
distance between u and the closest modification in the graph. More precisely, fol-

lowing [15] we define δDM(u) = 1−α(1− dist(u)
Rc) where α (scale parameter) and Rc

(cutoff distance) are user-supplied parameters.
To better distinguish between major and minor changes Gorochowski et al. [17] in-
troduced an age function age(u, i) that quantifies the amount of changes for vertex u
at time i . We then take a vertex age distortion δVA(u) = e−βage(u,i), where β ∈ R+

is a user supplied parameter.
Finally, we define the distortion δV S based on the notion of vertex strength following
the approach proposed in [18], that integrates vertex degrees and makes use of an
exponential sliding time-window (we normalize to get values in [0,1]).

For completeness we provide more details in the appendix.

12 Castelli Aleardi et al.

0.1 0.2

2

3

4

5

6

7

ρ

S
G

average node degree

δDM
δVA

δSP,k = 52, p = 20
0.1 0.2

0.2

0.4

0.6

0.8

1

ρ

1/(# connected components)

0.1 0.2

1

2

3

4

5

ρ

diameter

0.1 0.2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ρ

average clustering coefficient

0.1 0.2

5

10

15

20

25

30

ρ

Region relevance

0.1 0.2

2

3

4

5

ρ

B
i
r
d
F
l
o
c
k
i
n
g

average node degree

δDM
δVA

δSP,k = 24, p = 10

0.1 0.2

0.2

0.4

0.6

0.8

1

ρ

1/(# connected components)

0.1

2

4

6

8

10

12

14

16

ρ

diameter

0.1 0.2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ρ

average clustering coefficient

0.1 0.2

10

20

30

40

ρ

Region relevance

Fig. 6: Statistics concerning the threshold filtering approach for the SG and Bird
flocking networks. We plot the structural properties and the region relevance as
a function of ρ (fraction of vertices with highest distortion).

3.3 Evaluation: Region extraction

We evaluate different distortion measures by their ability to highlight relevant re-
gions of the graph that undergo the biggest changes. Thus, we use each measure to
first extract the regions on the graph as follows:
Approach 1: threshold filtering. In the simplest case, we simply keep a small frac-
tion ρ ∈ [0,1] of the vertices having the largest distortion: as suggested in [18], we
compute the subgraph induced by non isolated vertices, containing at most ρ|Vi+1|
vertices (see Figure 4 for an illustration).
Approach 2: BFS traversal. One drawback of the previous approach is that it can
result in many disconnected regions, especially when the network evolution is dra-
matic. To counter this, we also use each distortion function to perform a BFS traver-
sal (vertices with large distortion are visited first) starting from some initial seed
vertex, which guarantees a single connected region (whose size is denoted Nr). This
process is repeated taking as seeds a fraction ρ of vertices with largest distortion.

Spectral Measures of Distortion for Change Detection in Dynamic Graphs 13

δDM δV A δSP (k = 72, p = 20)

SG

δV S

Spectral Measures of Distortion 11

�DM �V A �SP (k = 72, p = 20)

SG

�V S

5 10 15 20 25

4

8

12

16

20

24

Nr

SG network, r = 0.30

dDM
dVA
dV S

dSP (k = 72 p = 20)

Fig. 5: Region extraction approach based on BFS traversal. (left) for each distortion
function (and for a fixed value of Nr), we highlight the average region extracted for
the SG network. (right) plots of the average region relevance (higher is better).

ples we use the heat map color-scale representing distortion values in the range
[0 . . .maxu2V d (u)], from blue to green to red. As can be seen in Fig. 2, previous
methods can be either too sensitive, highlighting a large portion of the graph (e.g.,
in the case of the dDM distortion) or fail to distinguish regions or parts of the graph
that undergo the changes (in the case of the dVA distortion for the SG, for example).
On the other hand, our method is precise and at the same time captures the regions
that undergo the most changes the multi-scale manner.
Threshold filtering. The layouts and plots of Fig. 3 show that the regions detected
with our spectral approach do not lead to dramatic fluctuations of the main struc-
tural properties: the filtered vertices are likely to define connected subgraphs, whose
structural properties vary in a smooth way, even for small values of r . This does not
hold for basic distortion measures (especially dDM and dVA), that lead to highly dis-
connected and sparse sub-graphs, and more drastic fluctuations of structural prop-
erties, not being able to distinguish the most relevant changes from local noise.
Observe that our spectral approach offers to the user the capability of choosing the
parameters k and p in order to reach the right scale (tuning k) and only keep the
highest distorted regions (tuning p). This feature helps the user to select, depending
on the application and desirable goals, the regions with the most relevant evolu-
tion, while discarding local irrelevant noisy changes (see e.g. Fig. 3): even for small
value of r , the spectral distortion allows us to correctly highlight the most relevant
changed regions, while dDM , dVA and dV S lead to much more dispersion, not being

Fig. 7: Region extraction approach based on BFS traversal. (left) for each distortion
function (and for a fixed value of Nr), we highlight the average region extracted for
the SG network. (right) plots of the average region relevance (higher is better).

Region quality. We evaluate the extracted regions according to several measures
of quality: first, as suggested in [18] we measure the structural properties 2 of
the extracted regions: for instance, higher values of the average node degree (or
1/#connected components) are better, as they correspond to filtered regions which
are locally more dense and less fragmented. Second, we evaluate the total number
of edge modifications (additions or deletions) involving vertices that lie in a region,
referred to as region relevance (higher values are better).

3.4 Experimental comparison and discussion

Qualitative comparison

In our first evaluation we plot the distortion functions obtained by different methods
across several datasets in Fig. 2 (for the energy Evertex diff) and Fig. 3 (for the energy
Eedge diff). In all our examples we use the heat map color-scale representing distor-
tion values in the range [0 . . .maxu∈V δ (u)], from blue to green to red. As can be seen
in Fig. 2, previous methods can be either too sensitive, highlighting a large portion
of the graph (e.g., in the case of the δDM distortion) or fail to distinguish regions or
parts of the graph that undergo the changes (in the case of the δVA distortion for the
SG, for example).

Baseline approaches clearly fail to distinguish between major and negligible
modifications, and are not very informative when dealing with dramatic changes
as the for the Newcomb and bird flocking networks (see Fig. 3).

On the other hand, our method is precise and at the same time captures the regions
that undergo the most changes the multi-scale manner.

Threshold filtering

As done in[18], we compare distortion functions by evaluating the evolution of the
structural properties, performing the extraction of relevant regions with the thresh-
old filtering approach. The layouts and plots of Fig. 4 and Fig. 6 show that the

2 We make use of the GraphStream library [24] for the computation of structural network pa-
rameters.

14 Castelli Aleardi et al.

regions detected with our spectral approach do not lead to dramatic fluctuations of
the main structural properties: the filtered vertices are likely to define connected
subgraphs, whose structural properties vary in a smooth way, even for small values
of ρ . This does not hold for basic distortion measures (especially δDM and δVA), that
lead to highly disconnected and sparse sub-graphs, and more drastic fluctuations of
structural properties, not being able to distinguish the most relevant changes from
local noise. Observe that our spectral approach offers to the user the capability of
choosing the parameters k and p in order to reach the right scale (tuning k) and only
keep the highest distorted regions (tuning p). This feature helps the user to select,
depending on the application and desirable goals, the regions with the most relevant
evolution, while discarding local irrelevant noisy changes (see layouts and plots of
region relevance in Fig. 4 and Fig. 7): even for small value of ρ , the spectral distor-
tion allows us to correctly highlight the most relevant changed regions, while δDM ,
δVA and δV S lead to much more dispersion, not being able to discarding noisy modi-
fications. Observe that as ρ increases, the capability of δDM , δVA and δV S distortions
to capture modifications also increases (see the plot of region relevance in Fig. 4).
Above a given threshold the total amount of changes captured by spectral distor-
tion does not increase significantly since irrelevant local changes are ignored: this
is the unavoidable price to pay for keeping the filtered graph fragmented as little as
possible.

The plots of Fig. 5 show the evolution of structural properties over the first ten
days of the Facebook network sequence (all results and layouts are obtained set-
ting ρ = 0.1): the spectral distortion always captures a larger amount of modifica-
tions, while leading in overall to a smoother transition of the filtered graphs, which
are more dense and locally connected, between consecutive time steps.

BFS-driven region extraction

For a fixed value of ρ , we plot in Fig. 7 the average relevance Relav, varying the
size Nr. As confirmed by our experiments, the spectral distortion always allows us
to detect regions with higher values of the region relevance. This reflects the ability
of spectral distortion to distinguish between regions, depending on the amount of
local changes: a region strongly highlighted by spectral distortion will be visited
first, leading to a significant contribution to the average energy. While small regions
with a negligible amount of changes will be discarded during the BFS traversal,
since they are unlikely to be detected by the spectral distortion.

3.5 Time Complexity and Runtime Performance

Below we provide a discussion on the theoretical and practical complexity of the
algorithms described in this work. We have developed a pure Java implementation
of all algorithms presented in this work; for the calculation of the Laplacian eigen-

Spectral Measures of Distortion for Change Detection in Dynamic Graphs 15

Distortion Spectral distortion Force-directed layout
vertex age Step 1 (k = 40) Steps 2 and 3 one iteration

Network vertices edges eigen-basis region functions k = 40 FR91 [16] with octrees
SG 96 399 0.0003 0.037 0.002 0.0003 0.002 0.001

dwt307 307 1.1K 0.0015 0.048 0.004 0.0007 0.009 0.003
3elt 4720 13.7K 0.009 0.22 0.075 0.003 0.73 0.11

barth5 15606 61.4K 0.026 0.84 0.32 0.011 15.2 0.57

Table 1: This table reports the average runtime performance of all steps involved in
the computation of graph distortions and force-directed layouts (for a single evolu-
tionary step). The complexity of the vertex age distortion (implemented in Java) is
compared to the computation of spectral distortion setting k = 40. The Laplacian
eigen basis is computed using Matlab 14 (option 2), while the region-based func-
tions (option 1) are computed with a Java implementation of the Louvain algorithm.
The last two columns reports the time required to run a single iteration of a force-
directed layout: we implement the standard FR91 layout, as well as the fast version
with approximate calculation of repulsive forces using octrees. All performances
are expressed in seconds.

basis we use the eigen solver provided by Matlab (version 14). All our tests are run
on a HP EliteBook, equipped with an Intel Core i7 (2.66GHz) and 8GB of RAM,
using Java 1.8.

First observe that the computation of the spectral distortion in a single evolution-
ary step (recall the procedure in Section 2.3) is expressed in terms of linear algebra
computations, which makes our algorithm very easy to implement and quite efficient
in practice. To simplify the notation and discussion about practical performance, we
assume that the number n of nodes is roughly the same in Gi and Gi+1.

Computation of basis functions.

The most expensive step in our distortion estimation algorithm is the computation
of the basis functions.

When using option 2 (Laplacian eigen-basis) the extraction of the functions ϕ j in-
volves computing the first k eigenvalues of a generalized eigenproblem of size n×n
for a graph with n nodes. In practice we use an iterative Arnoldi-Lanczos algorithm
implemented in Matlab’s eigs function 3. The running time strongly depends on
the sparsity structure of the input matrices and in practice scales approximately lin-
early with respect to the number of edges and quadratically with respect to k for
small values of k.

When using option 1 (region-based functions) the runtime performances are
much better: the timing cost is dominated by the computation of a clustering parti-

3 We also perform tests using several Java libraries for linear algebra (Jama, Colt, Parallel
Colt, MTJ, . . .): as far as we can see there are no Java libraries providing efficient eigen solvers
(for the generalized eigen problem) for processing large sparse linear systems.

16 Castelli Aleardi et al.

tion of the desirable size. For this we make use of the Louvain algorithm based on
modularity optimization, whose complexity is assumed to be O(n logn) in practice,
which allows processing large networks efficiently.

The runtime performances reported in Table 1 (columns 5 and 6) correspond to
the computation of basis functions for k = 40.

Energy optimization.

The steps (2) and (3) of our algorithm are much less expensive, as the matrices
involved have sizes k×k and k×n respectively (k and p being usually much smaller
than n), which leads to approximate complexity of O(k3 +k2n+ pn): in practice the
runtime performance of these steps are negligible and comparable to the ones of the
computation of the vertex age distortion (see Table 1).

Finally, observe that according to the results reported in Table 1 (see last two
columns), the overall computational cost of our spectral distortion is, for sufficiently
large values of n, smaller then the timing cost required to run a single iteration of a
standard force-directed method [16], which requires O(|Ei|+ |Vi|2) time in the basic
setting. When using a fast approximation of repulsive forces (using octrees), the
timing cost of spectral distortion is comparable to the one required to run a single
iteration.

4 Conclusion, Limitations and Future Work

We propose a novel, multi-scale framework for robustly detecting and visualizing
changes in networks across two different time stamps (Gi and Gi+1). However, it
is possible to integrate a time term in the computation of spectral distortion, that
would take into account a full sequence G1,G2, ...,Gi+1 (as done in [17, 18]). Our
framework described in Section 2.1, although illustrated on unweighted graphs, is
rather general and allows to consider graphs with both edge and vertex weights.

References

1. Ahmed, A., Xing, E.P.: Recovering time-varying networks of dependencies in social and bio-
logical studies. PNAS 106(29), 11,878–11,883 (2009)

2. Arbeitman, M.N., Furlong, E.E., Imam, F., Johnson, E., Null, B.H., Baker, B.S., Kras-
now, M.A., Scott, M.P., Davis, R.W., White, K.P.: Gene expression during the life cycle of
drosophila melanogaster. Science 297(5590), 2270–2275 (2002)

3. Archambault, D.W., Purchase, H.C.: The ”map” in the mental map: Experimental results in
dynamic graph drawing. Int. J. Hum.-Comput. Stud. 71(11), 1044–1055 (2013)

4. Beck, F., Burch, M., Diehl, S., Weiskopf, D.: The State of the Art in Visualizing Dynamic
Graphs. In: R. Borgo, R. Maciejewski, I. Viola (eds.) EuroVis - STARs (2014)

5. Blondel, V., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in
large networks. Journal Of Statistical Mechanics: Theory And Experiment (2008)

Spectral Measures of Distortion for Change Detection in Dynamic Graphs 17

6. Brandes, U., Fleischer, D., Puppe, T.: Dynamic spectral layout with an application to small
worlds. J. Graph Algorithms Appl. 11(2), 325–343 (2007)

7. Brandes, U., Wagner, D.: A bayesian paradigm for dynamic graph layout. In: Graph Drawing,
5th Intern. Symp., GD ’97, pp. 236–247 (1997)

8. Castelli Aleardi, L., Salihoglu, S., Singh, G., Ovsjanikov, M.: Spectral Measures of Distor-
tion for Change Detection in Dynamic Graphs (extended version) (2018). URL https:
//hal.archives-ouvertes.fr/hal-01864079. (long version of the extended ab-
stract submitted to Complex Networks 2018)

9. Cattuto, C., Van den Broeck, W., Barrat, A., Colizza, V., Pinton, J., Vespignani, A.: Dynam-
ics of person-to-person interactions from distributed rfid sensor networks. PLOS ONE 5(7),
e11,596 (2010)

10. Che, L., Liang, J., Yuan, X., Shen, J., Xu, J., Li, Y.: Laplacian-based dynamic graph visualiza-
tion. In: IEEE PacificVis, pp. 69–73 (2015)

11. Crnovrsanin, T., Chu, J., Ma, K.: An incremental layout method for visualizing online dynamic
graphs. In: Graph Drawing and Network Visualization, pp. 16–29 (2015)

12. Davidson, R., Harel, D.: Drawing graphs nicely using simulated annealing. ACM Trans.
Graph. 15(4), 301–331 (1996)

13. Davis, T.A., Hu, Y.: The university of florida sparse matrix collection. ACM Trans. Math.
Softw. 38(1), 1 (2011). Http://www.cise.ufl.edu/research/sparse/matrices

14. Evangelista, D., Ray, D., Raja, S., Hedrick, T.: Three-dimensional trajectories and network
analyses of group behaviour within chimney swift flocks during approaches to the roost. Pro-
ceedings of the Royal Society B 284(1849) (2017)

15. Frishman, Y., Tal, A.: Online dynamic graph drawing. IEEE Trans. Vis. Comput. Graph. 14(4),
727–740 (2008)

16. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Softw.,
Pract. Exper. 21(11), 1129–1164 (1991)

17. Gorochowski, T.E., di Bernardo, M., Grierson, C.S.: Using aging to visually uncover evolu-
tionary processes on networks. IEEE Trans. Vis. Comput. Graph. 18(8), 1343–1352 (2012)

18. Grabowicz, P.A., Aiello, L.M., Menczer, F.: Fast filtering and animation of large dynamic
networks. EPJ Data Science 3(1), 27 (2014)

19. Hadlak, S., Schulz, H., Schumann, H.: In situ exploration of large dynamic networks. IEEE
Trans. Vis. Comput. Graph. 17(12), 2334–2343 (2011)

20. Hall, K.M.: An r-Dimensional Quadratic Placement Algorithm. Management Science 17(3)
(1970)

21. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf. Process.
Lett. 31(1), 7–15 (1989)

22. Koren, Y.: Drawing graphs by eigenvectors: theory and practice. Computers and Mathematics
with Applications 49(11), 1867 – 1888 (2005)

23. Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout adjustment and the mental map. J. Vis.
Lang. Comput. 6(2), 183–210 (1995)

24. Pigné, Y., Dutot, A., Guinand, F., Olivier, D.: Graphstream: A tool for bridging the gap be-
tween complex systems and dynamic graphs. Emergent Properties in Natural and Artificial
Complex Systems (2007)

25. Pisanski, T., Shawe-Taylor, J.: Characterizing graph drawing with eigenvectors. J. Chem. Inf.
Comput. Sci. 40(3), 567–571 (2000)

26. Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., Vandergheynst, P.: The emerging field of
signal processing on graphs: Extending high-dimensional data analysis to networks and other
irregular domains. IEEE Signal Processing Magazine 30(3), 83–98 (2013)

27. Tang, J., Scellato, S., Musolesi, M., Mascolo, C., Latora, V.: Small-world behavior in time-
varying graphs. Physical Review E 81(5), 055,101 (2010)

28. Walshaw, C.: A multilevel algorithm for force-directed graph-drawing. J. Graph Algorithms
Appl. 7(3), 253–285 (2003)

29. X. Du, Y.W., Wu, L.: A multi-constraint layout algorithm for dynamic network visualization.
In: IEEE 2nd International Conference on Big Data Analysis (ICBDA), pp. 832–836 (2017)

https://hal.archives-ouvertes.fr/hal-01864079
https://hal.archives-ouvertes.fr/hal-01864079

18 Castelli Aleardi et al.

30. Xu, K.S., Kliger, M., III, A.O.H.: A regularized graph layout framework for dynamic network
visualization. Data Min. Knowl. Discov. 27(1), 84–116 (2013)

31. Yuan, X., Che, L., Hu, Y., Zhang, X.: Intelligent graph layout using many users’ input. IEEE
Trans. Vis. Comput. Graph. 18(12), 2699–2708 (2012)

5 Appendix

5.1 Proof of Lemma 1

The validity of Lemma 1 follows from the following statement:

Lemma 2. The maximizer of Evertex diff and Eedge diff among all functions in the span
of Φk is given by Φkξmax where ξmax is the eigenvector corresponding to the largest
eigenvalue of Si+1, given in Eq. (4) in Section 2.3.

Proof. First note that any function f in the span of Φk can be written as f = Φkf,
where f is some vector of coefficients. Moreover, for any function f , we can write
the energies in matrix-vector form as follows:

Evertex diff(f) =
∑u f (u)2(di(u)−di+1(u))2

∑u f (u)2di(u)

=
f T (DGi −DGi+1)

2 f
f T DGi f

, while

Eedge diff(f) =
∑u,v(f (u)− f (v))2(wi(u,v)−wi+1(u,v))2

∑u f (u)2di(u)

=
f T L−Gi,Gi+1

f

f T DGi f
.

The last equality holds since for any matrix W , s.t., W (u,u) = −∑v 6=u W (u,v), we
have: f TW f = −∑u,v W (u,v)(f (u)− f (v))2. Now note that L−Gi,Gi+1

satisfies this
property and L−(u,v) = −(wi(u,v)−wi+1(u,v))2. This implies that if f = Φkf,
then for both energies we have:

E(f) =
fT Si+1f

fT ΦkDGiΦkf
,

where Si+1 is defined appropriately (as in Eq. (4)). Furthermore since Φk are given
as the eigenvectors corresponding to the generalized eigenproblem LGiφ = λDGi ,
they are orthonormal with respect to the matrix DGi , so that ΦkDGiΦk = Id. There-

fore we have: E(f) = fT Si+1f
fT f . By the standard min-max theorem, the vector that

maximizes this ratio (the Rayleigh-Ritz quotient) must be the eigenvector corre-
sponding to the largest eigenvalue of Si, which implies the result of the lemma.

Spectral Measures of Distortion for Change Detection in Dynamic Graphs 19

5.2 Definition of vertex age and vertex strength

Vertex age.

For the sake of completeness, we provide here the definition of vertex ages as de-
scribed in [17]. In order to quantify the amount of changes involving a vertex u at
time i one can make use of a function age(u, i) : V ×N→R+ whose definition inte-
grates both the degree of the node, as well as the total amount of unchanged incident
edges.

At the beginning all vertices in G1 have the same initial age, so age(u,1) = 1 for
all u ∈ G1. A new node added at time i+1 gets age 1; otherwise for a given vertex
u ∈ Gi+1 at time i+1 we have:

age(u, i+1) =

{
age(u, i)+1, if u has degree 0 in Gi+1

age(u, i)
A rem

i+1 (u)
A tot

i+1(u)
+1, otherwise

where A rem
i+1 (u) (resp. A add

i+1 (u) and A del
i+1(u)) is the sum of vertex ages of all

unchanged (resp. new and removed) edges of vertex u between Gi and Gi+1.
Finally we set A tot

i+1(u) = A rem
i+1 (u)+A add

i+1 (u)+A del
i+1(u).

Vertex strength.

We provide an illustration of the computation of the vertex strength, following the
approach described in [18]. The main idea is to assign to each vertex v a score, called
vertex strength, which quantifies the relevance of the dynamic changes involving v.
Initially each vertex vi has a score corresponding to its degree (we remind that in our
setting we deal with unweighted graphs). The vertices with highest score are saved
in a buffer of fixed size (the size, denoted Nb, is a user-supplied parameter).

Then vertices and edges are processed in chronological order. When a new vertex
that does not belong to the buffer is processed then we insert it the buffer, replacing
the vertex with lowest score (lying in the buffer). Otherwise, when we process ver-
tices already in the buffer, the modification (removal or addition) of an edge (u,v)
leads to increment the score of both u and v by 1. In order to discard inactive nodes
(not involved in recent modifications), the score of all vertices is periodically de-
creased by a multiplicative forgetting factor 0≤ c f ≤ 1.

In our implementation we set c f = 0.25, and we run the forgetting mechanism
when moving from Gi to Gi+1: at that time we also perform an update of the buffer
as done in [18] (nodes are sorted according to their score).

	Spectral Measures of Distortion for Change Detection in Dynamic Graphs
	Luca Castelli Aleardi, Semih Salihoglu, Gurprit Singh Maks Ovsjanikov
	Introduction
	Related Work

	Proposed Framework
	Distortion Energies
	Choice of Scale via Reduced Functional Space
	An Algorithm to Compute the Spectral Distortion

	Experimental evaluation
	Datasets
	Baselines
	Evaluation: Region extraction
	Experimental comparison and discussion
	Time Complexity and Runtime Performance

	Conclusion, Limitations and Future Work
	References
	Appendix
	Proof of Lemma 1
	Definition of vertex age and vertex strength

