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A standard objective in computer experiments is to approximate the behavior of an unknown function on a compact domain from a few evaluations inside the domain. When little is known about the function, space-lling design is advisable: typically, points of evaluation spread out across the available space are obtained by minimizing a geometrical (for instance, covering radius) or a discrepancy criterion measuring distance to uniformity. The paper investigates connections between design for integration (quadrature design), construction of the (continuous) BLUE for the location model, space-lling design, and minimization of energy (kernel discrepancy) for signed measures. Integrally strictly positive denite kernels dene strictly convex energy functionals, with an equivalence between the notions of potential and directional derivative, showing the strong relation between discrepancy minimization and more traditional design of optimal experiments. In particular, kernel herding algorithms, which are special instances of vertex-direction methods used in optimal design, can be applied to the construction of point sequences with suitable space-lling properties.

Introduction. The design of computer experiments

, where observations of a real physical phenomenon are replaced by simulations of a complex mathematical model (e.g., based on PDEs), has emerged as a full discipline, central to uncertainty quantication. The nal objective of the simulations is often goal-oriented and precisely dened. It may correspond for example to the optimization of the response of a system with respect to its input factors, or to the estimation of the probability that the response will exceed a given threshold when input factors have a given probability distribution. Achieving this objective generally requires sequential learning of the behavior of the response in a particular domain of interest for input factors: the region where the response is close to its optimum, or is close to the given threshold; see, e.g., the references in [START_REF] Ginsbourger | Sequential design of computer experiments[END_REF]. When simulations are computationally expensive, sequential inference based on the direct use of the mathematical model is unfeasible due to the large number of simulations required and simplied prediction models, approximating the simulated response, have to be used. A most popular approach relies on Gaussian process modelling, where the response (unknown prior to simulation) is considered as the realization of a Gaussian Random Field (RF), with parameterized mean and covariance, and Bayesian inference gives access to the posterior distribution of the RF (after simulation). Typically, in a goal-oriented approach based on stepwise uncertainty reduction [START_REF] Bect | A supermartingale approach to Gaussian process based sequential design of experiments[END_REF][START_REF] Bect | Sequential design of computer experiments for the estimation of a probability of failure[END_REF], the prediction model is used to select the input factors to be used for the next simulation, the selection being optimal in terms of predicted uncertainty on the target. The construction of a rst, possibly crude, prediction model is necessary to initialize the procedure. This amounts to approximating the behavior of an unknown function f (the model response) on a compact domain X ⊂ R d (the feasible set for d input factors) from a few evaluations inside the domain. That is the basic design objective we shall keep in mind throughout the paper, although we may use diverted paths where approximation/prediction will be shadowed by other objectives, integration in particular.
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In general, little is known about the function a priori, and it seems intuitively reasonable to spread out points of evaluation across the available space; see [START_REF] Biedermann | Minimax optimal designs for nonparametric regression a further optimality property of the uniform distribution[END_REF]. Such space-lling designs can be obtained by optimizing a geometrical measure of dispersion or a discrepancy criterion measuring distance to uniformity. When using a Gaussian RF model, minimizing the Integrated Mean-Squared Prediction Error (IMSPE) is also a popular approach, although not very much used due to its apparent complexity, see, e.g., [START_REF] Gauthier | Spectral approximation of the IMSE criterion for optimal designs in kernel-based interpolation models[END_REF][START_REF] Gorodetsky | Mercer kernels and integrated variance experimental design: connections between Gaussian process regression and polynomial approximation[END_REF]. The paper promotes the use of designs optimized for integration with respect to the uniform measure for their good space-lling properties. It gives a survey of recent results on energy functionals that measure distance to uniformity and places recent approaches proposed for space-lling design, such as [START_REF] Mak | Support points[END_REF], in a general framework and perspective encompassing design for integration, construction of the (continuous) Best Linear Unbiased Estimator (BLUE) in a location model with correlated errors, and minimization of energy (kernel discrepancy) for signed measures.

Our objective is to foster the use of designs obtained by minimizing a quadratic measure of discrepancy, which can be easily computed, for function approximation at the initial exploratory stage of computer experiments. In particular, we believe that such constructions are especially useful when the number of function evaluations is not xed in advance, and one wishes to have an ordered sequence of points such that any rst n points have suitable space-lling properties.

We start by a quick introduction to Bayesian function approximation and integration (Section 2), where the function is considered as the realization of a Gaussian RF with covariance structure dened by some kernel K; see in particular [START_REF] Larkin | Gaussian measure in Hilbert space and applications in numerical analysis[END_REF][START_REF] Larkin | Probabilistic error estimates in spline interpolation and quadrature[END_REF][START_REF] O'hagan | Bayes-Hermite quadrature[END_REF][START_REF] Briol | Probabilistic integration: A role in statistical computation[END_REF] for Bayesian integration. Section 3 summarizes recent results on the minimization of energy functionals [START_REF] Damelin | On energy, discrepancy and group invariant measures on measurable subsets of Euclidean space[END_REF][START_REF] Sejdinovic | Equivalence of distance-based and RKHS-based statistics in hypothesis testing[END_REF][START_REF] Sriperumbudur | Hilbert space embeddings and metrics on probability measures[END_REF] and extends some to kernels with singularities, which we believe have great potential for the construction of space-lling designs.

Integrally strictly positive denite kernels dene strictly convex energy functionals (Lemmas 3.1 and 3.2), which yields an equivalence between the notions of potential and directional derivative that reveals the strong relation between discrepancy minimization and more traditional design of optimal experiments. Further connections are discussed: Bayesian integration is equivalent to the construction of the BLUE in a model with modied correlation structure (Section 3.5.2), so that the two associated design problems coincide; the posterior variance in Bayesian integration corresponds to the minimum of a squared kernel discrepancy for signed measures with total mass one (Theorem 4.3) and to the minimum of an energy functional for a reduced kernel (Theorem 4.4). Since the posterior variance criterion in Bayesian integration takes a very simple form, its minimization constitutes an attractive alternative to the minimization of the IMSPE. This is considered in Section 4, which starts by exploring relations between discrepancy and covering radius. In particular, kernel herding algorithms from machine learning, which are special instances of vertex-direction methods used in optimal design and can be used for the construction of point sequences with suitable space-lling properties, are considered in Section 4. [START_REF] Auray | Maximin design on non hypercube domains and kernel interpolation[END_REF]. Section 5 provides a few numerical examples. The main results are stated as theorems or lemmas; links to related work, or comments on specic aspects, are isolated in a few remarks; several illustrative examples are given to help keeping track of technical developments.

Several auxiliary results are given in appendices. Appendix A describes convergence properties of the algorithms used in Section 4; it adapts some known results in the community of optimal design theory to the particular case of a quadratic criterion.

Extension to design for the simultaneous estimation of several integrals is considered in Appendix B. Appendix C contains technical details for computing energy and potential for a particular kernel.

2. Random-eld models for function approximation and integration. 2.1. Space-lling design and kernel choice for function approximation.

Let K(•, •) denote a symmetric positive denite kernel on X × X , with associated Reproducing Kernel Hilbert Space (RKHS) H K . Denote K x (•) = K(x, •) and •, • K the scalar product in H K , so that the reproducing property gives f, K x K = f (x) for any f ∈ H K .

Consider rst the common framework where the function f to be approximated is supposed to belong to H K . Let η n (x) = n i=1 w i f (x i ) = w n y n be a linear predictor of f (x) based on evaluations of f at the n-point design X n = {x 1 , . . . , x n }, with x i ∈ X for all i. Throughout the paper we denote w n = (w 1 , . . . , w n ) , y n = [f (x 1 ), . . . , f (x n )] , k n (•) = [K x1 (•), . . . , K xn (•)] and {K n } i,j = K(x i , x j ), i, j = 1, . . . , n. The Cauchy-Schwarz inequality gives the classical result

|f (x) -η n (x)| = f (x) - n i=1 w i f (x i ) = f, K x - n i=1 w i K xi K ≤ f H K K x - n i=1 w i K xi H K ,
where f H K depends on f but not on X n , and ρ n (x, w) = K x -n i=1 w i K xi H K depends on X n (and w n ) but not on f . Suppose that K n has full rank. For a given X n , the Best Linear Predictor (BLP) minimizes ρ n (x, w) and corresponds to η

* n (x) = (w * n ) y n , with w * n = w * n (x) = K -1 n k n (x), which gives ρ * n 2 (x) = ρ 2 n (x, w * n ) = K(x, x) -k n (x)K -1
n k n (x). A less restrictive assumption on f is to suppose that it corresponds to a realization of a RF Z x , with zero mean (E{Z x } = 0) and covariance E{Z x Z x } = σ 2 K(x, x ) for all x, x in X , σ 2 > 0. Then, straightforward calculation shows that η * n (x) is still the BLP (the posterior mean if Z x is Gaussian), and σ 2 ρ * n 2 (x) is the Mean-Squared Prediction Error (MSPE) at x. This construction corresponds to simple kriging; see, e.g., [START_REF] Auray | Maximin design on non hypercube domains and kernel interpolation[END_REF][START_REF] Vazquez | Sequential search based on kriging: convergence analysis of some algorithms[END_REF]. IMSPE-optimal designs minimize the integrated squared error IMSPE(X n ) = σ 2 X ρ * n 2 (x)dµ(x), with µ generally taken as the uniform probability measure on X , see, e.g., [START_REF] Gauthier | Spectral approximation of the IMSE criterion for optimal designs in kernel-based interpolation models[END_REF][START_REF] Gorodetsky | Mercer kernels and integrated variance experimental design: connections between Gaussian process regression and polynomial approximation[END_REF][START_REF] Sacks | Design and analysis of computer experiments[END_REF]. IMSPE-optimal designs X * n depend on the chosen K. It is well known that the asymptotic rate of decrease of IMSPE(X * n ) as n increases depends on the smoothness of K (the same is true for the integration problem); see for instance [START_REF] Ritter | Multivariate integration and approximation for random elds satisfying Sacks-Ylvisaker conditions[END_REF]. It is rather usual to take K stationary (translation invariant), i.e., satisfying K(x, x ) = Ψ(xx ) for all x and x , with Ψ in some parametric class selected according to prior knowledge on the smoothness properties of f . A typical example is the Matérn class of covariances, see [START_REF] Stein | Interpolation of Spatial Data[END_REF]Chap. 2]. On the other hand, for reasons explained in Section 1, computer experiments often use small values of n, and the asymptotic behavior of the approximation error is hardly observed. Its behavior on a short horizon is much more important and strongly depends on the correlation lengths in K, which are dicult to choose a priori. Robustness with respect to the choice of K favours spacelling designs, where the x i are suitably spread over X . Noticeably, it is shown in [START_REF] Schaback | Error estimates and condition numbers for radial basis function interpolation[END_REF] that for translation invariant and isotropic kernels (i.e., such that K(x, x ) = Ψ( xx ), with • the Euclidean distance in R d ), one has ρ 2 n (x) ≤ S K [h r (x)] for some increasing function S K (•). Here h r (x) = max x-x ≤r min 1≤i≤n xx i measures the density of design points x i around x, with r a xed positive constant.

It satises, max x∈X h r (x) ≥ max x∈X h 0 (x) = CR(X n ), with CR(X n ) = max x∈X min 1≤i≤n x -x i ,
the covering radius of X n : CR(X n ) denes the smallest r such that the n closed balls of radius r centred at the x i cover X . CR(X n ) is also called the dispersion of X n [69, Chap. 6] and corresponds to the minimax-distance criterion [START_REF] Johnson | Minimax and maximin distance designs[END_REF] used in space-lling design. Loosely speaking, the property ρ 2 n (x) ≤ S K [h r (x)] quanties the intuition that designs with a small value of CR provide precise predictions over X since for any x in X there always exists a design point x i at proximity where f (x i ) has been evaluated. Another standard geometrical criterion of spreadness is the packing (or separating) radius

PR(X n ) = 1 2 min i =j x i -x j .
It corresponds to the largest r such that the n open balls of radius r centred at the x i do not intersect; 2 PR(•) corresponds to the maximin-distance criterion [START_REF] Johnson | Minimax and maximin distance designs[END_REF] often used in computer experiments. The packing radius PR(X n ) is a simpler characteristic than the covering radius CR(X n ), in terms of evaluation and optimization, see, e.g., [START_REF] Pronzato | Minimax and maximin space-lling designs: some properties and methods for construction[END_REF]. Regularized versions of PR(X n ) are well-known, see Example 3.5; regularization of CR(X n ) is considered in [START_REF] Pronzato | Measures minimizing regularized dispersion[END_REF].

In this paper, we shall adopt the following point of view. We do not intend to construct designs adapted to a particular K chosen from a priori knowledge on f .

Neither shall we estimate the parameters in K (such as correlation lengths) when K is taken from a parametric class. We shall rather consider the kernel K as a tool for constructing a space-lling design, the quality of which will be measured in particular through the value of CR. The motivation is twofold: (i) the construction will be much easier than the direct minimization of CR, (ii) it will facilitate the construction of sequences of points suitably spread over X . 2.2. Bayesian quadrature. Denote by M = M [X ] the set of nite signed Borel measures on a nonempty set X , and by M (q), q ∈ R, the set of signed measures with total mass q: M (q) = {µ ∈ M : µ(X ) = q}. The set of Borel probability measures on X is denoted by M + (1), M + is the set of nite positive measures on X . Typical applications correspond to X being a compact subset of R d for some d.

Suppose we wish to integrate a real function dened on X with respect to µ ∈ M + (1). Assume that E µ {|f (X)|} < +∞ and denote

I µ (f ) = E µ {f (X)} = X f (x) dµ(x) .
We set a prior on f , and assume that f is a realization of a Gaussian RF, with covariance σ 2 K(•, •), σ 2 > 0, and unknown mean β 0 ; that is, we consider the location model with correlated errors

f (x) = β 0 + Z x , (2.1)
where E{Z x } = 0 and E{Z x Z x } = σ 2 K(x, x ) for all x, x ∈ X . Regression models more general than (2.1) are considered in Appendix B; one may refer to [START_REF] Briol | Probabilistic integration: A role in statistical computation[END_REF] for an extensive review of Bayesian quadrature. Here K is a symmetric Positive Denite (PD) kernel; that is, K(x, x ) = K(x , x), and for all n ∈ N and all pairwise dierent x 1 , . . . , x n ∈ X , the matrix K n is non-negative denite; if K n is positive denite, then K is called Strictly Positive Denite (SPD). Note that K 2 (x, x ) ≤ K(x, x)K(x , x ) < +∞ for all x, x ∈ X since K corresponds to a covariance. We will call a general kernel K bounded when K(x, x) < ∞ for all x ∈ X , and uniformly bounded when there is a constant C such that K(x, x) ≤ C for all x ∈ X . Any PD kernel is bounded.

Similarly to Section 2.1, we denote by H K the associated RKHS and by •, • K the scalar product in H K . The assumption that K is bounded will be relaxed in Section 3.2 where we shall also consider singular kernels, but throughout the paper we assume that K is symmetric, K(x, x ) = K(x , x) for all x, x ∈ X . Also, we always assume, as in [34, Sect. 2.1], that either K is non-negative on X × X , or X is compact.

We set a vague prior on β 0 and assume that β 0 ∼ N ( β0 0 , σ 2 A) with A → +∞. This amounts to setting 1/A = 0 in all Bayesian calculations; the choice of β0 0 is then irrelevant. Suppose that f has been evaluated at an n-point design X n = {x 1 , . . . , x n } ∈ X n with pairwise dierent points. We assume that K n has full rank. For any x ∈ X , the posterior distribution of f (x) (conditional on σ 2 and K) is normal, with mean

ηn (x) = βn 0 + k n (x)K -1 n (y n -βn 0 1 n )
and variance (mean-squared error)

σ 2 ρ 2 n (x) = σ 2 K(x, x) -k n (x)K -1 n k n (x) + (1 -k n (x)K -1 n 1 n ) 2 1 n K -1 n 1 n , (2.2) 
where βn 0 =

1 n K -1 n y n 1 n K -1 n 1 n (2.3)
and 1 n is the n-dimensional vector (1, . . . , 1) , see for instance [START_REF] Santner | The Design and Analysis of Computer Experiments[END_REF]Chap. 4]. The posterior mean of I µ (f ) is thus

I n = X ηn (x) dµ(x) = E µ {η n (X)} = βn 0 + p n (µ) K -1 n (y n -βn 0 1 n ) , (2.4) 
with

p n (µ) = (P µ (x 1 ), . . . , P µ (x n )) , (2.5) 
where, for any ν ∈ M and x ∈ X , we denote

P ν (x) = X K(x, x ) dν(x ) .
(2.6) [START_REF] Sejdinovic | Equivalence of distance-based and RKHS-based statistics in hypothesis testing[END_REF]Def. 9]; P ν (x) is well-dened and nite for any ν ∈ M and x ∈ X when K is uniformly bounded. On the other hand, there always exists ν ∈ M such that P ν (x) is innite for all x ∈ X when K is not uniformly bounded on X . The function P ν (•) is called a potential in potential theory, see Section 3.2.

P ν (•) is called the kernel imbedding of ν into H K , see
Similarly to (2.2), we obtain that the posterior variance of I µ (f ) is

σ 2 s 2 n = σ 2 E K (µ) -p n (µ)K -1 n p n (µ) + (1 -p n (µ)K -1 n 1 n ) 2 1 n K -1 n 1 n , (2.7) 
where, for any ν ∈ M , we denote

E K (ν) = X 2 K(x, x ) dν(x)dν(x ) . (2.8)
This is one of the key notions in potential theory, called the energy of ν; see Section 3.2. For µ in M + (1), we have E K (µ) = E µ {K(X, X )} where X and X are independently identically distributed (i.i.d.) with µ. The quantity -E K (µ) corresponds to the quadratic entropy introduced by C.R. Rao [START_REF] Rao | Diversity and dissimilarity coecients: a unied approach[END_REF]; see also Remark 3.1.

Dene

M α K = ν ∈ M : X K α (x, x) d|ν|(x) < +∞ , α > 0 .
(2.9)

When µ ∈ M 1/2 K , the reproducing property and the Cauchy-Schwarz inequality imply that

E K (µ) = X 2 K(•, x), K(•, x ) K dµ(x)dµ(x ) ≤ X K 1/2 (x, x) d|µ|(x) 2 < +∞ . (2.10) 
When β 0 is assumed to be known (equal to zero for instance), we simply substitute β 0 for βn 0 in (2.4) and the posterior variance is

σ 2 s 2 n,0 = σ 2 E K (µ) -p n (µ)K -1 n p n (µ) .
(2.11)

Bayesian quadrature relies on the estimation of I µ (f ) by I n . An optimal design for estimating I µ (f ) should minimize s 2 n given by (2.7). One may refer to [24] for a historical perspective and to [START_REF] Hennig | Probabilistic numerics and uncertainty in computations[END_REF] for a recent exposition on Bayesian numerical computation. The framework presented above is similar to that considered in [START_REF] O'hagan | Bayes-Hermite quadrature[END_REF] (where an improper prior density p(β 0 , σ 2 ) ∝ σ -2 is set on β 0 and σ 2 ), restricted to the case (recommended in that paper) where the known trend function is simply the constant 1 (which corresponds to the presence of an unknown mean β 0 in the model (2.1)). In Section 4, we shall see that s 2 n,0 is equal to the minimum value of a (squared) kernel discrepancy between the measure µ and a signed measure supported on X n , and that s 2 n corresponds to the minimum of a squared discrepancy for signed measures that are constrained to have total mass one, and also corresponds to the minimum of an energy functional for a modied kernel

K µ . Note that σ 2 s 2 n ≤ IMSPE(X n ) = σ 2 X ρ 2 n (x) dµ(x) (which requires µ ∈ M 1 K ⊂ M 1/2 K to be well-dened); we show in Theorem 4.5 that IMSPE(X n ) ≤ σ 2 s 2 n + σ 2 X K(x, x) dµ(x) -E K (µ)
. One of the key ideas of the paper is that space-lling design may be based on the minimization of s 2 n rather than the minimization of the IMSPE.

3. Kernel discrepancy, energy and potentials. 3.1. Maximum mean discrepancy: a metric on probability measures related to integration. Suppose that K is bounded and f belongs to the RKHS H K . Let µ and ν be two probability measures in M + (1) ∩ M 1/2 K . Since f ∈ H K , using the reproducing property, we obtain

I µ (f ) = X f, K x K dµ(x), I ν (f ) = X f, K x K dν(x) and |I µ (f ) -I ν (f )| = X f, K x K d(µ -ν)(x) = | f, P µ -P ν K | , with P µ (•) and P ν (•) the kernel imbeddings (2.6). Dene γ K (µ, ν) = P µ -P ν H K . (3.1)
The Cauchy-Schwarz inequality yields the Koksma-Hlawka type inequality, see, e.g., [START_REF] Hickernell | A generalized discrepancy and quadrature error bound[END_REF]

, [69, Chap. 2], |I µ (f ) -I ν (f )| ≤ f H K γ K (µ, ν), and γ K (µ, ν) = sup f H K =1 |I µ (f ) -I ν (f )| , (3.2)
see, e.g., [START_REF] Sriperumbudur | Hilbert space embeddings and metrics on probability measures[END_REF]Th. 1]. Also, the expansion of P µ -P ν

2 H K gives γ K (µ, ν) = P µ 2 H K + P ν 2 H K -2 P µ , P ν K 1/2 = X 2 K(x, x ) d(ν -µ)(x) d(ν -µ)(x ) 1/2 . (3.3)
Therefore, γ K (•, •) is at the same time a pseudometric between kernel imbeddings (3.1) and an integral pseudometric on probability distributions (3.2). It denes a kernel discrepancy between distributions (3.3), γ K (•, •) is also called the Maximum Mean Discrepancy (MMD) between µ and ν in M + (1) ∩ M 1/2 K , see [88, Def. 10].

To dene a metric on the whole M + (1), we need P µ to be well-dened and so that P µ = P ν for µ and ν in M + (1) implies µ = ν. This corresponds to the notion of characteristic kernel, see [START_REF] Sriperumbudur | Hilbert space embeddings and metrics on probability measures[END_REF]Def. 6], which is closely connected to the following denitions. Denition 3.1. A kernel K is Integrally Strictly Positive Denite (ISPD) on M when E K (ν) > 0 for any nonzero measure ν ∈ M . Denition 3.2. A kernel K is Conditionally Integrally Strictly Positive Denite (CISPD) on M when it is ISPD on M (0); that is, when E K (ν) > 0 for all nonzero signed measures ν ∈ M such that ν(X ) = 0.

An ISPD kernel is CISPD. A bounded ISPD kernel is SPD and denes an RKHS.

In [START_REF] Sriperumbudur | Hilbert space embeddings and metrics on probability measures[END_REF]Lemma 8], the authors show that a uniformly bounded kernel is characteristic if and only if it is CISPD. The proof is a direct consequence of the expression (3.3) for the MMD γ K (µ, ν). They also give (Corollary 4) a spectral interpretation of γ K (µ, ν) and show that a translation-invariant kernel such that K(x, x ) = Ψ(x -x ), with Ψ a uniformly bounded continuous real-valued positive-denite function, satises, for any µ and ν in M + (1),

γ K (µ, ν) = R d |φ µ (ω) -φ ν (ω)| 2 dΛ(ω) 1/2 .
Here, φ µ and φ ν denote the characteristic functions of µ and ν respectively and Λ is the spectral Borel measure on R d , dened by

Ψ(x) = R d e -ix ω dΛ(ω) . (3.4)
Using this spectral representation, they prove (Theorem 9) that K is characteristic if and only if the support of the associated Λ coincides with R d . For example, the sinc-squared kernel K(x, x ) = sin 2 [θ(x -x )]/[θ(x -x )] 2 , θ > 0, is SPD but is not characteristic (and therefore not CISPD) since the support of Λ equals [-2θ, 2θ], and the triangular kernel K θ (x, x ) = Ψ θ (x -x ) = max{1 -θ|x -x |, 0} is SPD and characteristic since the Fourier transform of Ψ θ is the sinc-squared function. When γ K (µ, δ x ) is well-dened for all x ∈ X , with δ x the Dirac delta measure at x (and thus in particular when K is characteristic), we may consider the empirical measure ξ n,e = ξ n,e (X n ) = (1/n) n i=1 δ xi associated with a given design X n = {x 1 , . . . , x n }, and γ K (µ, ξ n,e ) of (3.2) gives the worst-case integration error for ξ n,e when f has norm one in H K ; see Section 4.3.1.

Typical examples of uniformly bounded ISPD, and therefore characteristic, kernels are the squared exponential kernel K t (x, x ) = exp(-t xx 2 ), t > 0, and the isotropic Matérn kernels, in particular

K 3/2,θ (x, x ) = (1 + √ 3θ x -x ) exp(- √ 3θ x -x ) (Matérn 3/2) , (3.5) 
and

K 5/2,θ (x, x ) = [1 + √ 5θ x -x + 5θ 2 x -x 2 /3] exp(- √ 5θ x -x ) (Matérn 5/2)
, see, e.g., [START_REF] Stein | Interpolation of Spatial Data[END_REF]. (They are SPD for any d, see [START_REF] Gneiting | Strictly and non-strictly positive dene functions on spheres[END_REF], and ISPD since the spectral measure Λ in (3.4) is strictly positive on R d .) Two other important examples are given hereafter.

Example 3.1 (generalized multiquadric kernel). The sum of ISPD kernels is ISPD.

Since the squared exponential kernel K t (x, x ) is ISPD for any t > 0, the integrated kernel obtained by setting a probability distribution on t is ISPD too. One may thus consider K(x, x ) = K t (x, x ) dπ(t) for π bounded and non decreasing on [0, +∞), which generates the class of continuous isotropic autocovariance functions in arbitrary dimension, see [START_REF] Schoenberg | Metric spaces and positive denite functions[END_REF] and [90, p. 44]. In particular, for any > 0 and s > 0, we obtain

K(x, x ) = +∞ 0 K t (x, x ) t s/2-1 exp(-t) dt = Γ(s/2) ( x -x 2 + ) s/2 ,
showing that the generalized multiquadric kernel

K s, (x, x ) = ( x -x 2 + ) -s/2 , > 0 , s > 0 , (3.6) is ISPD, see also [89, Sect. 3.2].
Example 3.2 (distance-induced kernels). Consider the kernels dened by

K (s) (x, x ) = -x -x s , s > 0 , (3.7)
which are CISPD for s ∈ (0, 2) [START_REF] Székely | Energy statistics: A class of statistics based on distances[END_REF], and the related distance-induced kernels

K (s) (x, x ) = x s + x s -x -x s , s > 0 . Note that E K (s) (µ) = E K (s) (µ) when µ(X ) = 0; in [93] E K (s)
is called energy distance for s = 1 and generalized energy distance for general s ∈ (0, 2]. For s > 0, the set M K (s) contains all signed measures µ such that X xx 0 s d|µ|(x) < +∞ for some x 0 ∈ X . This result is a direct consequence of the triangular inequality when s ∈ (0, 1]; for s > 1 it follows from considerations involving semimetrics generated by kernels, see [START_REF] Sejdinovic | Equivalence of distance-based and RKHS-based statistics in hypothesis testing[END_REF]Remark 21]. K (s) is CISPD for s ∈ (0, 2) (K (s) /2 corresponds to the covariance function of the fractional Brownian motion), but is not SPD (one has in particular, K (s) (0, 0) = 0); K (2) 

is not CISPD since E K (2) (µ) = [ X x dµ(x)][ X x dµ(x)], µ ∈ M . K(x, x ) = 1 -K (1) (x, x ) = 1 -|x -x | is ISPD for X = [0, 1].
3.2. Energy and potentials, MMD for signed measures and singular kernels. In this section we extend the considerations of the previous section to signed measures and kernels which may have singularity on the diagonal. The expression (3.9) shows that the squared MMD between two measures µ and ν is the energy E K of the signed measure ν -µ, hence the importance of considering signed measures besides probability measures. We believe that singular kernels have great potential interest for the construction of space-lling designs, due to their natural repelling property. 

K (s) (x, x ) = x -x -s , s > 0 , and K (0) (x, x ) = -log x -x , (3.8) with x, x ∈ X ⊂ R d and • the Euclidean norm. When s ≥ d, the energy E K (s) (µ)
is innite for any nonzero signed measure, but for s ∈ (0, d) the kernel K (s) is ISPD. Since the logarithmic kernel K (0) (x, x ) has a singularity at zero and tends to -∞ when x-x tends to +∞, it will only be considered for X compact; K (0) is CISPD, see [56, p. 80].

Consider again E K (µ) given by (2.8), with µ ∈ M . In potential theory, this quantity is called the energy of the signed measure µ for the kernel K. Denote

M K = {ν ∈ M : |E K (ν)| < +∞} .
In the following, we shall only consider kernels that are at least CISPD. When K is ISPD, E K (µ) is positive for any nonzero µ ∈ M , but when K is only CISPD, E K (µ) can be negative; this is the reason for the presence of the absolute value in the denition of M K . Note that M K is the set of measures such that E K (µ + ), E K (µ -) and E K (µ + , µ -) = X 2 K(x, x ) dµ + (x)dµ -(x ) are all nite, with µ + and µ -denoting the positive and negative parts of the Hahn-Jordan decomposition µ = µ + -µ -of µ, see [START_REF] Fuglede | On the theory of potentials in locally compact spaces[END_REF]Sect. 2.1]. Also note that when K is bounded and denes an RKHS, M α K ⊂ M K for any α ≥ 1/2, see (2.9) and (2.10); when K is uniformly bounded, M K = M .

For any µ ∈ M K , P µ (x) given by (2.6) is called the potential at x associated with E K (µ). It is well-dened, with values in R ∪ {-∞, +∞}, when P µ + (x) and P µ -(x) are not both innite. Also, P µ (x) is nite for µ-almost any x, even if K is singular,

when µ ∈ M + (1) ∩ M 1/2 K . When K is ISPD, we can still dene MMD through (3.3), γ K (µ, ν) = E 1/2 K (ν -µ) , (3.9)
since E K (ν -µ) is nonnegative whenever dened. The set M K forms a pre-Hilbert space, with scalar product the mutual energy E K (µ, ν) = X 2 K(x, x ) dµ(x)dν(x )

and norm E 1/2 K (µ). Denote by P K the linear space of potential elds P µ (•), µ ∈ M K ; when K denes an RKHS H K , P µ H K = E 1/2 K (µ), so that P K ⊂ H K , and P K is dense in H K . For P K to contain all functions K x (•) = K(•, x), x ∈ X , we need δ x ∈ M K for all x, which requires K(x, x) < ∞ for all x ∈ X .

For µ, ν ∈ M K , E K (µ, ν) denes a scalar product P µ , P ν P K on P K , with γ K (µ, ν) = P µ -P ν P K . Similarly to Section 3.1, we obtain

γ K (µ, ν) = sup ξ∈M K , E K (ξ)=1 X 2 K(x, x ) dξ(x)d(µ -ν)(x ) (3.10) 
= sup

h P K ≤1 |I µ (h) -I ν (h)| ;
that is, a result that extends (3.2) to general ISPD kernels. If K is only CISPD, we can also dene γ K (µ, ν) in the same way when considering measures µ, ν ∈ M (1); we then dene P K as the linear space of potential elds P µ (•), µ ∈ M K ∩ M (0), and in (3.10) we restrict ξ to be in M (0). When K is singular, there always exists ν in M K such that P ν (x 0 ) = +∞ for some x 0 . Consider for example the Riesz kernel K (s) (x, x ) with s ∈ (0, d); M K contains in particular all signed measures with compact support S(µ) whose potential P µ (x) is bounded on S(µ), see [56, p. 81]. Take ν as the measure with density c/ xx 0 s-d on X , with x 0 ∈ X ; we have E K (s) (ν) < ∞ for X compact, but P ν (x 0 ) = +∞. As a consequence, as noted in [START_REF] Damelin | On energy, discrepancy and group invariant measures on measurable subsets of Euclidean space[END_REF], singular kernels have little interest for integration. Indeed, take µ, ν ∈ M K and h

= P ν ∈ P K , then |I µ (h)| ≤ h P K E 1/2 K (µ) = E 1/2 K (ν)E 1/2 K (µ) < ∞, whereas |I ξn (h)
| may be innite for some discrete approximation ξ n of µ as h can be innite at some points. Singular kernels may nevertheless be used for the construction of space-lling designs, see for instance the example in Section 5.3, and this is our motivation for considering them in the following.

The key diculty with singular kernels is the fact that delta measures do not belong to M K . An expedient solution to circumvent the problem is to replace a singular kernel with a bounded surrogate. For instance, in space-lling design we may replace the Riesz kernel K (s) , s > 0, by a generalized inverse multiquadric kernel K s, given by (3.6), and consider the limiting behavior of the designs obtained when → 0, see Section 4.3.1; see also [START_REF] Pronzato | Minimum-energy measures for singular kernels[END_REF] for other constructions.

Minimum energy and equilibrium measures.

In this section, we show that there exist strong connections between results in potential theory and optimal design theory, where one minimizes a convex functional of µ ∈ M + (1), with the particularity that here the functional is quadratic. This will be exploited in particular in Section 4.4 for the construction of nested design sequences.

ISPD kernels and convexity of E

K (•). Lemma 3.1. K is ISPD if and only if M K is convex and E K (•) is strictly convex on M K .
Proof. For any K, any µ and ν in M K and any α ∈ [0, 1], direct calculation gives

(1 -α) E K (µ) + α E K (ν) -E K [(1 -α)µ + αν] = α(1 -α) E K (ν -µ) . (3.11) Assume that K is ISPD. For any µ and ν in M K , the mutual energy E K (µ, ν) satises |E K (µ, ν)| ≤ E K (µ)E K (ν) < +∞. Therefore, E K (µ -ν) = E K (µ) + E K (ν) - 2 E K (µ, ν) is nite and (3.11) implies that E K [(1 -α)µ + αν] is nite, showing that M K is convex. Since K is ISPD, E K (ν -µ) > 0 for µ, ν ∈ M , ν = µ, and (3.11) implies that E K (•) is strictly convex on M K . Conversely, assume that M K is convex and E K (•) is strictly convex on M K . Any ξ ∈ M K can be written as ξ = ν -µ with, for instance, ν = 2 ξ and µ = ξ, both in M K . If E K (•) is strictly convex on M K , (3.11) with α ∈ (0, 1) implies that E K (ξ) > 0 when ν = µ, that is, when ξ = 0. Therefore, K is ISPD.
Lemma 3.1 also applies to singular kernels. The lemma below concerns CISPD kernels, which are assumed to be uniformly bounded. Lemma 

3.2. Assume that K is uniformly bounded. Then, K is CISPD if and only if E K (•) is strictly convex on M (1). Proof. Since K is uniformly bounded, M K = M . Assume that K is CISPD. Then, E K (ν -µ) > 0 for any µ = ν ∈ M (1), and (3.11) implies that E K (•) is strictly convex on M (1). Assume now that E K (•) is strictly convex on M (1)
. Take any non-zero signed measure ξ in M (0) and consider the Hahn-Jordan decomposition ξ

= ξ + -ξ -, with ξ + (X ) = ξ -(X ) = c > 0. Denote ν = ξ + /c, µ = ξ -/c
, with ν and µ in M + (1) (ν and µ are in M K since K is uniformly bounded). Then, for any α ∈ (0, 1), (3.11) and the strict convexity of

E K (•) on M (1) gives E K (ξ) = c 2 E K (ν -µ) > 0.
Note that one may replace M (1) by M + (1), or by any M (γ) with γ = 0, in Lemma 3.2.

Minimum-energy probability measures. In the remaining part of

Section 3.3, we assume that K is such that E K (•) is strictly convex on M + (1) ∩ M K and M (1) ∩ M K , which is true under the conditions of Lemma 3.1 or Lemma 3.2. For µ, ν ∈ M K , denote by F K (µ; ν) the directional derivative of E K (•) at µ in the direction ν, F K (µ; ν) = lim α→0 + E K [(1 -α)µ + αν] -E K (µ)
α .

Straightforward calculation gives

F K (µ; ν) = 2 X 2 K(x, x ) dν(x)dµ(x ) -E K (µ) . (3.12) 
In particular, for any x ∈ X , the potential P µ (x) associated with µ at x satises

P µ (x) = 1 2 F K (µ; δ x ) + E K (µ) .
Remark 3.1 (Bregman divergence and Jensen dierence). The strict convexity of

E K (•) implies that E K (ν) ≥ E K (µ) + F K (µ, ν) for any µ, ν ∈ M K , with equality if and only if ν = µ.
This can be used to dene a Bregman divergence between measures in M K (and thus between probability measures in M + (1) ∩ M K ), as

B K (µ, ν) = E K (ν) -[E K (µ) + F K (µ, ν)] ; see [81]. Direct calculation gives B K (µ, ν) = E K (ν -µ) (with therefore B K (µ, ν) = B K (ν, µ)), providing another interpretation for the MMD γ K (µ, ν), see (3.9).
The squared MMD is also proportional to the dissimilarity coecient, or Jensen

dierence, ∆ J (µ, ν) = (1/2)[E K (µ) + E K (ν)] -E K [(µ + ν)/2] of [80]; indeed, direct calculation gives γ 2 K (µ, ν) = E K (ν -µ) = 4 ∆ J (µ, ν). Assume that X is compact. Since E K (•) is strictly convex on M + (1)
, there exists a unique minimum-energy probability measure. The measure µ + K ∈ M + (1) is the minimum-energy measure if and only if F K (µ + K ; ν) ≥ 0 for all ν ∈ M + (1), or equivalently, since ν is a probability measure, if and only if F K (µ + K ; δ x ) ≥ 0 for all x ∈ X . We thus obtain the following property, called equivalence theorem in the optimal design literature.

Theorem 3.1. When E K (•) is strictly convex on M + (1) ∩ M K , µ + K ∈ M + (1)
is the minimum-energy probability measure on X if and only if

∀ x ∈ X , P µ + K (x) ≥ E K (µ + K ) .
Note that, by construction, [56, p. 138]). Theorem 3.1 thus gives a necessary and sucient condition for a probability measure µ to be the equilibrium measure of X .

X P µ + K (x) dµ + K (x) = E K (µ + K ), implying P µ + K (x) = E K (µ + K ) on the support of µ + K . The quantity C + K = [inf µ∈M + (1) E K (µ)] -1 , with K an ISPD kernel, is called the capacity of X in potential theory; note that C + K ≥ 0. The minimizing measure µ + K ∈ M + (1) is called the equilibrium measure of X (µ + K is sometimes renormalized into C + K µ + K , see
Example 3.4 (continuation of Example 3.2). Properties of minimum-energy prob- [START_REF] Björck | Distributions of positive mass, which maximize a certain generalized energy integral[END_REF] and [START_REF] Pronzato | Extremal measures maximizing functionals based on simplicial volumes[END_REF]. The mass of µ + is concentrated on the boundary of X , and its support only comprises extreme points of the convex hull of X when s > 1; for 0 < s < 2, µ + is unique; it is supported on no more than d + 1 points when s > 2.

ability measures µ + = µ + K (s) for K (s) given by (3.7) with X a compact subset of R d , d ≥ 2, are investigated in
Take X = B d (0, 1), the closed unit ball in R d . For symmetry reasons, µ + for 0 < s < 2 is uniform on the unit sphere S d (0, 1) and

E K (s) (µ + ) = - X 2 x -x s dµ + (x)dµ + (x ) = - X x 0 -x s dµ + (x ) , where x 0 = (1, 0, . . . , 0) . Denote by ψ d (•) the density of the rst component t = x 1 of x = (x 1 , . . . , x d ) . We obtain ψ d (t) = (d -1) V d-1 (1 -t 2 ) (d-3)/2 /(d V d ), with V d = π d/2 /Γ(d/2 + 1) the volume of B d (0, 1), and E K (s) (µ + ) = - 1 -1 [(1 -t) 2 + 1 -t 2 ] s/2 ψ d (t)dt = - 2 d-q-2 Γ(d/2)Γ[(d + s -1)/2] √ πΓ(d + s/2 -1)
.

In particular, E K (1) (µ + ) = -4/π when d = 2 and is a decreasing function of d. When s = 2, the uniform distribution on the unit sphere is also optimal, and the minimum energy equals -2 for all d ≥ 1, but µ + is not unique and the measure allocating equal weight 1/(d + 1) at each of the d + 1 vertices of a d regular simplex with vertices on the unit sphere is optimal too.

Example 3.5 (continuation of Example 3.3). Consider Riesz kernels

K (s) , see (3.8), for X = B d (0, 1). When s ≥ d, E K (s) (ν) is innite for any non-zero ν ∈ M , but for 0 < s < d there exists a minimum-energy probability measure µ + = µ + K (s)
. When d > 2 and s ∈ (0, d -2], µ + is uniform on the unit sphere S d (0, 1) (the boundary of X ); the potential at all interior points satises P

µ + (x) ≥ E K (s) (µ + ) with strict inequality when s ∈ (0, d -2). When s ∈ (d -2, d), µ + has a density ϕ s (•) in B d (0, 1), ϕ s (x) = π -d/2 Γ(1 + s/2) Γ[1 -(d -s)/2] 1 (1 -x 2 ) (d-s)/2 ,
and the potential P µ + (•) is constant in B d (0, 1), see, e.g., [56, p. 163].

When d ≤ 2 and s = 0, µ + has a density in B 2 (0, 1) and

P µ + (•) = E K (0) (µ + ) in B 2 (0, 1). In particular, for d = 1, µ + has the arcsine density 1/(π √ 1 -x 2 ) in [-1, 1] with potential P µ + (x) = log(2) -log(||x| + √ x 2 -1|), x ∈ R (and P µ + (x) = log(2) for x ∈ [-1, 1]).
The energy E K (s) is innite for empirical measures associated with n-point designs X n . One may nevertheless consider the physical energy

E K (s) (X n ) = [2/n(n -1)] 1≤i<j≤n x i -x j -s (3.13) ( E K (s) (X n ) = -[2/n(n -1)] 1≤i<j≤n log x i -x j when s = 0), which is nite provided that all x i are distinct, see [21]. An n-point set X * n minimizing E K (s) (X n ) is called a set of
Fekete points, and the limit lim n→∞ E -1 K (s) (X * n ) exists and is called the transnite diameter of X . For large s, E -1/s K (s) (X n ) can be considered as a regularized version of the packing radius PR(X n ), see [START_REF] Pronzato | Extremal measures maximizing functionals based on simplicial volumes[END_REF]. A major result in potential theory, see, e.g., [START_REF] Hardin | Discretizing manifolds via minimum energy points[END_REF], is that the transnite diameter coincides with the capacity

C + K (s) of X . If C + K (s) > 0, then µ + K (s)
is the weak limit of a sequence of empirical probability measures associated with Fekete points in X * n . In the example considered, E K (s) (X * n ) tends to innity when s ≥ d, but any sequence of Fekete points is asymptotically uniformly distributed in X ; E K (s) (X * n ) grows like n s/d-1 for s > d (and like log n for s = d).

Remark 3.2 (Stein variational gradient descent and energy minimization). Variational inference using smooth transform based on kernelized Stein discrepancy provides a gradient descent method for the approximation of a target distribution; see [START_REF] Liu | Stein variational gradient descent: a general purpose Bayesian inference algorithm[END_REF] and the references therein; see also [START_REF] Detommaso | A Stein variational Newton method[END_REF] for a Newton variational method. The fact that the construction does not require knowledge of the normalizing constant of the target distribution makes the method particularly attractive for approximating a posterior distribution in Bayesian inference. Direct calculation shows that when the kernel is translation invariant and the target distribution is uniform, then Stein variational gradient corresponds to steepest descent for the minimization of the energy

E K (ξ n,e ) of the empirical measure ξ n,e = (1/n) n i=1 δ xi ; that is, at iteration k each design point x (k) i is updated into x (k+1) i = x (k) i + γ i<j ∂K(x, x (k) j ) ∂x x=x (k) i
for some γ > 0. The construction of space-lling design through energy minimization has already been considered in the literature; see, e.g., [START_REF] Joseph | Sequential exploration of complex surfaces using minimum energy designs[END_REF]. In particular, it is suggested in [START_REF] Audze | New approach for planning out of experiments[END_REF] to construct designs in a compact subset X of R d by minimizing E K (2) (X n ) given by (3.13) (note that for d ≥ 3 design points constructed in this way are not asymptotically uniformly distributed in X ). This approach tends to push points to the border of X , similarly to the maximization of the packing radius PR(X n ).

3.3.3. Minimum-energy signed measures. From (3.9), the squared MMD is the energy of a signed measure. Also, even if µ is a probability measure, the measure ν ∈ M (1), with xed support dierent from that of µ, that minimizes γ K (µ, ν), is not necessarily a probability measure. Hence the importance of considering energy minimization for signed measures and not only probability measures.

The situation is slightly dierent from that in the previous section when we consider measures in M (1). In that case, µ * K is the minimum-energy measure in M (1) if and only if F K (µ * K ; ν) = 0 for all ν ∈ M (1), this condition being equivalent to F K (µ * K ; δ x ) = 0 for all x ∈ X . We thus obtain the following property.

Theorem 3.2.

When E K (•) is strictly convex on M (1) ∩ M K , µ * K ∈ M (1)
is the minimum-energy signed measure with total mass one on X if and only if

∀ x ∈ X , P µ * K (x) = E K (µ * K ) . (3.14)
If we dene now a signed equilibrium measure on X as a measure µ ∈ M (1)

such that P µ (x) is constant on X , from the denition of P µ (•), when such a measure exists it necessarily satises the condition of Theorem 3.2 and therefore coincides with µ * K . Similarly to the case where one considers probability measures in M + (1), we can dene the (generalized) capacity of X for measures in M (1) as [21, p. 824] (note that C * K may be negative). However, µ * K may not exist even if X is compact. Notice in particular that M (1) is not vaguely compact, contrarily to M + (1) (and for Riesz kernels (3.8) 

C * K = [inf µ∈M ( 1) E K (µ)] -1 , with C * K = 1/E K (µ * K ) when µ * K exists, see
with s < d -1, M K (s) is not complete contrarily to M K (s) ∩ M + [56, Th. 1.19]).
Example 3.6 (continuation of Examples 3.2 and 3.4). Take K(x, x

) = K (s) (x, x ) = -|x -x | s on X = [0, 1], s ∈ (0, 2), see (3.7).
K is CISPD, and there exists a unique minimum-energy probability measure µ + = µ + K (s) in M + (1). On the other hand, below we show that minimum-energy signed measures in M (1) do not belong to M + (1) when s ∈ (1, 2) and that there is no minimum-energy signed measure in M (1) when s ≥ 2.

When s ∈ (0, 1), µ + has a density ϕ (s) (•) with respect to the Lebesgue measure on [0, 1],

ϕ (s) (x) = Γ[1 -s/2] 2 s √ π Γ[(1 -s)/2] 1 [x(1 -x)] (1+s)/2 , and P µ + (x) = E (µ + ) = - √ π Γ(1 -s/2)/{2 s Γ[(1 -s)/2
] cos(πs/2)} for all x ∈ X (and E (µ + ) → -1/2 as s → 1 -). The fact that P µ + (x) = E (µ + ) for all x ∈ X indicates that µ + is the minimum-energy signed measure with total mass one when s ∈ (0, 1).

When s ∈ [1, 2), µ + = (δ 0 + δ 1 )/2; the associated potential is

P µ + (x) = -(|x| s + |1 -x| s )/2 ≥ E (µ + ) = -1/2, x ∈ X (note that P µ + (x) = -1/2 for all x ∈ X when s = 1). Consider now the signed measure µ w = [(1 + w)/2](δ 0 + δ 1 ) -wδ 1/2 , w > 0, so that µ w (X ) = 1 (i.e., µ w ∈ M (1)). Direct calculation gives E K (s) (µ w ) = -(1 + w)(1 + w -2 2-s w), which is minimum for w = w * (s) = (1 -2 1-s )/(2 2-s -1) when s < 2, with E K (s) (µ w * (s) ) = 2(1 -2 2-s )/(4 -2 s ) 2 . For s ∈ (1, 2) we get E K (s) (µ w * (s) ) < E (µ + ) = -1/2,
and there exist signed measures in M (1) such that E K (s) (µ w ) < E (µ + ). Therefore, minimum-energy signed measures with total mass one are not probability measures. For s ≥ 2, lim w→+∞ E K (s) (µ w ) = -∞, and there is no minimum-energy signed measure; in particular, E K (s) (µ w ) = -(w + 1)/2 for s = 2.

Example 3.7 (continuation of Examples 3.3 and 3.5). Consider Riesz kernels K (s) , see (3.8), for X = B d (0, 1), d > 2 and s ∈ (0, d -2); the minimum-energy probability measure µ + is then uniform on the unit sphere S d (0, 1) and the potential at all interior points satises P µ + (x) > E K (s) (µ + ). Consider the signed measure µ w = (1 + w)µ + -wµ (r) , with µ (r) uniform on the sphere S d (0, r) with radius r ∈ (0, 1). Calculations similar to those in the proof of [START_REF] Landkof | Foundations of Modern Potential Theory[END_REF]Th. 1.32] show that E K (s) (µ w ) < E K (s) (µ + ) for w small enough, indicating that µ + is not the minimum-energy signed measure with total mass one.

3.3.4. When minimum-energy signed measures are probability measures. Unlike minimum-energy probability measures, minimum-energy signed measures do not always exist, but the following property provides a sucient condition for their existence. Also, we shall see in Section 3.5.1 that the existence is always guaranteed after a suitable modication of the kernel. Theorem 3.3. Assume that K is ISPD and translation invariant, with K(x, x ) = Ψ(x -x ) and Ψ continuous, twice dierentiable except at the origin, with Laplacian

∆ Ψ (x) = d i=1 ∂ 2 Ψ(x)/∂x 2 i ≥ 0, x = 0.
Then there exists a unique minimum-energy signed measure µ * K in M (1), and µ * K is a probability measure. Proof. The conditions of Theorem 3.1 are satised, and there exists a unique minimum-energy probability measure µ + such that P µ + (x) ≥ E K (µ + ) for all x ∈ X . It also satises P µ + (x) = E K (µ + ) on the support of µ + . On the other hand, the conditions on K imply that for any µ in M + (1), P µ (•) is subharmonic outside the support of µ, see, e.g., [START_REF] Landkof | Foundations of Modern Potential Theory[END_REF]Sect. I.2]. The rst maximum principle of potential theory thus holds [56, Th. 1.10]: P µ (x) ≤ c on the support of µ implies P µ (x) ≤ c everywhere. Applying this to µ + , we obtain that P µ + (x) ≤ E K (µ + ) everywhere; therefore, P µ + (x) = E K (µ + ) for all x ∈ X . Theorem 3.2 implies that µ + is the minimum-energy signed measure with total mass one.

The central argument for the proof of the property above is that P µ (•) is subharmonic outside the support of µ for any probability measure µ with nite energy. The weaker condition Ψ(x -x ) = ψ(|x -x |) with ψ(•) convex on (0, ∞) is sucient when d = 1, which corresponds to the result of Hájek (1956). When d ≥ 2 with Ψ(x -x ) = ψ( xx ), ψ(•) must have a singularity at 0 to have ∆ Ψ (x) ≥ 0 for all x = 0. For the Riesz kernels K (s) of (3.8), we have ∆( x -s ) = s(s + 2 -d)/ x s+2 , x = 0. When d > 2 and s ∈ (0, d -2], P µ is superharmonic in R d , and when s ∈ [d-2, d), P µ is subharmonic outside the support of µ, µ + being then the minimumenergy signed measure [START_REF] Fuglede | Green kernels associated with Riesz kernels[END_REF][START_REF] Landkof | Foundations of Modern Potential Theory[END_REF]. This is also true for the logarithmic kernel for d ≤ 2, with ∆(-log x ) = (2 -d)/ x 2 , x = 0. Examples 3.5 and 3.7 give an illustration.

Other examples of kernels satisfying the condition of Theorem 3.3 are given by d) and h is a twice-dierentiable increasing and convex function (in fact, the continuity of h is sucient, see [1, p. 13]).

K(x, x ) = h[K (s) (x, x )] where K (s) is a Riesz kernel with s ∈ [d -2,
In Theorem 3.3 we can also consider CISPD kernels. For example, for the kernels

K (s) of (3.7), we have ∆(-x s ) = s(2 -s -d)/ x 2-s , x = 0. Potentials are superharmonic for d ≥ 2. When d = 1, they are superharmonic for s ∈ [1,
2); they are subharmonic and satisfy the maximum principle for s ∈ (0, 1), see Example 3.6.

3.4. Best Linear Unbiased Estimator (BLUE) of β 0 . In Section 3.5.2, we shall see that Bayesian integration in the model (2.1) corresponds to the construction of the BLUE of β 0 in a model with a suitably modied covariance. Here we consider the BLUE in the original model, and show that its existence is equivalent to that of a minimum-energy signed measure for K.

Continuous BLUE.

Consider again the situation of Section 2.2 where σ 2 K corresponds to the covariance of a random eld Z x . Suppose that we may observe f (•) over X in order to estimate β 0 in the regression (location) model with correlated errors (2.1). Any linear estimator of β 0 takes the general form

β0 = β0 (ξ) = X f (x) dξ(x) = I ξ (f )
for some ξ ∈ M , and β0 (ξ) is unbiased when ξ ∈ M (1). Its variance is

V ξ = E{( β0 (ξ) -β 0 ) 2 } = σ 2 E K (ξ) ;
see [START_REF] Näther | Eective Observation of Random Fields[END_REF]Sect. 4.2]. The existence of a minimum-energy signed measure µ * K is then equivalent to the existence of the continuous BLUE β * 0 for β 0 , with β * 0 = β0 (µ * K ); the variance of β * 0 is proportional to the minimum energy E K (µ * K ), and Theorem 3.2 corresponds to Grenander's theorem [START_REF] Grenander | Stochastic processes and statistical inference[END_REF]. Also, from that theorem, the existence of µ * K is equivalent to the existence of an equilibrium measure that yields a constant potential on X . It can be related to a property of the generalized capacity C * K , as shown in the following theorem.

Theorem 3.4. When K is ISPD, the constant function 1 X equal to 1 on X belongs to the space P K of potential elds if and only if there exists a minimum-energy signed measure µ * K ∈ M (1), with E K (µ * K ) = 0. Moreover, the generalized capacity C * K is nite and nonzero, and satises 1 X 2

P K = C * K .
Proof. Suppose that 1 X ∈ P K . There exists µ ∈ M K such that P µ = 1 X ; that is, P µ (x) = 1 for all x ∈ X . The denition of P µ yields E K (µ) = µ(X ), which is nite and strictly positive since K is ISPD and µ = 0. Denote µ = µ/µ(X ) ∈ M (1). We obtain P µ (x) = 1/µ(X ) = E K (µ ) > 0 for all x ∈ X . Theorem 3.2 implies that µ is the minimum-energy measure µ * K . Also,

C * K = 1/E K (µ ) = µ(X ) = 0, with 1 X 2 P K = E K (µ), see Section 3.2.
Suppose now that there exists a minimum-energy signed measure µ *

K ∈ M (1) with E K (µ * K ) = 0. Theorem 3.2 implies that P µ * K (x) = E K (µ * K ) for all x ∈ X . For µ = µ * K /E K (µ * K )
, we get P µ (x) = 1 for all x ∈ X , and 1 X 2

P K = E K (µ) = 1/E K (µ * K ).
Under the conditions of Theorem 3.3, the BLUE exists, β * 0 = β0 (µ + K ), with µ + K the minimum-energy probability measure, and its variance equals σ 2 E K (µ + K ). The existence of a minimum-energy signed measure is not guaranteed in general, in particular when K(x, x ) = Ψ(x -x ) and Ψ is dierentiable at 0; see Example 3.8 below.

3.4.2. Discrete BLUE. Consider the framework of Section 2.2, with the same notation, and suppose that the n design points x i in X n are xed. Any linear estimator of β 0 in (2.1) has then the form βn 0 = w n y n , with w n = (w 1 , . . . , w n ) ∈ R n . The unbiasedness constraint imposes w n 1 n = 1. The variance of βn 0 equals σ 2 w n K n w n , and the BLUE corresponds to the estimator βn 0 given by (2.3) (we assume that K n is nonsingular). The minimum-energy signed measure in M (1) (here discrete) µ * K is dened by the weights w

* n = K -1 n 1 n /(1 n K -1 n 1 n ) set on the points in X n ; its energy is E K (µ * K ) = w * n K n w * n = 1/(1 n K -1 n 1 n
) and the variance of the BLUE equals σ 2 E K (µ * K ). Note that some components of w * n may be negative and that the potential associated with the measure µ * K /E K (µ * K ) on X = X n gives the constant function 1 X = 1 n , see Theorem 3.4. The optimal design problem for the discrete BLUE thus corresponds to the determination of the n-point set maximizing

1 n K -1 n 1 n . Example 3.8. Consider K(x, x ) = exp(-θ|x -x |), θ > 0, for x, x ∈ X = [0, 1]. K is ISPD and satises 1 X = K(•, 0) + K(•, 1) 2 + θ 2 1 0 K(•, x)dx ,
so that 1 X ∈ P K , see [START_REF] Antoniadis | Analysis of variance on function spaces[END_REF]. The minimum-energy measure in M (1) is µ * K = (δ 0 + δ 1 + θµ L )/(θ + 2), with µ L the Lebesgue measure on X , and µ * [68, p. 56]. Note that K = K -2/(θ + 2) is still positive denite, but 1 X ∈ H K since c 2 K -1 is not positive denite for any c = 0, see, e.g., [9, p. 30], [73, p. 20].

K ∈ M + (1). The BLUE of β 0 in (2.1) is β * 0 = X f (x) dµ * K (x), its variance equals σ 2 E K (µ * K ) = 2σ 2 /(θ + 2), see
Consider now the squared exponential kernel K(x, x ) = exp(-θ|x -x | 2 ), θ > 0. The constant 1 X does not belong to H K [START_REF] Steinwart | An explicit description of the reproducing kernel Hilbert spaces of Gaussian RBF kernels[END_REF] and the BLUE of β 0 in (2.1) is not dened for that kernel. On the other hand, the discrete BLUE (2.3) is well-dened for any set of n distinct points x i , βn 

0 = w * n y n = 1 n K -1 n y n /(1 n K -1 n 1 n ).
K(x, x ) = (1 + √ 5|x -x | + 5|x -x | 2 /3) exp(- √ 5|x -x |) (Matérn 5/2
), so that Z x is twice mean-square dierentiable; the construction of the BLUE mimics the estimation of the rst and second order derivatives of f at 0 and 1: here, 1 X ∈ P K although 1 X ∈ H K ; see [START_REF] Durrande | Detecting periodicities with Gaussian processes[END_REF][START_REF] Hensman | Variational Fourier features for Gaussian processes[END_REF] and [START_REF] Dette | Best linear unbiased estimators in continuous time regression models[END_REF] for more details. 

K(x, x ) = exp(-|x -x | 2 ), Right: K(x, x ) = (1 + √ 5|x -x | + 5|x - x | 2 /3) exp(- √ 5|x -x |) (Matérn 5/2).
Although a minimum-energy signed measure may not exist, in the next section we shall see how, for any measure µ ∈ M (1) and any CISPD kernel K, we can modify K in such a way that the minimum-energy signed measure for the modied kernel exists (and coincides with µ).

3.5. Equilibrium measure and kernel reduction: MMD is equivalent to energy minimization for a reduced kernel. Minimum-energy signed measures, when they exist, satisfy the following property. Lemma 3.3. If K is CISPD and if a minimum-energy signed measure µ * K exists in M (1), we have

E K (ξ) = E K [ξ -ξ(X )µ * K ] + [ξ(X )] 2 E K (µ * K ) , ∀ ξ ∈ M K . Proof. For any ξ ∈ M K , direct calculation gives E K [ξ -ξ(X )µ * K ] = E K (ξ) + [ξ(X )] 2 E K (µ * K ) -2ξ(X ) X 2 K(x, x ) dµ * K (x)dξ(x ) = E K (ξ) -[ξ(X )] 2 E K (µ * K ) ,
where the second equality follows from (3.14).

Under the conditions of Lemma 3.3, any ξ ∈ M (1) satises

E K (ξ) = E K (ξ -µ * K ) + E K (µ * K ) ,
where the rst term on the right-hand side equals the squared MMD γ 2 K (ξ, µ * K ), see (3.9), and the second term does not depend on ξ. Minimizing the energy E K (ξ) is thus equivalent to minimizing the MMD γ K (ξ, µ * K ). However, (i) µ * K may not exist, (ii) in many situations we wish to select a measure ξ having small MMD γ K (ξ, µ) for a given measure µ ∈ M K . This is the case in particular when one aims at evaluating the integral of a function with respect to some µ ∈ M + (1) (Section 2.2), or when we want to construct a space-lling design in X , µ being then uniform.

3.5.1. Kernel reduction. Take any µ ∈ M K such that µ(X ) = 0. Without any loss of generality, we assume µ ∈ M (1). Following [START_REF] Damelin | On energy, discrepancy and group invariant measures on measurable subsets of Euclidean space[END_REF], we show how to modify the kernel K in such a way that minimizing the energy E Kµ (ξ), ξ ∈ M (1), for the new (reduced) kernel K µ is equivalent to minimizing γ Kµ (ξ, µ). Dene

K µ (x, x ) = K(x, x ) -P µ (x) -P µ (x ) + E K (µ) , (3.15) 
see [START_REF] Schaback | Native Hilbert spaces for radial basis functions I[END_REF]. One can readily check that the energy for this new reduced kernel K µ satises E Kµ (βµ) = 0 for any real β and that the potential for µ associated with K µ satises P µ (x) = X K µ (x, x ) dµ(x ) = 0 for all x.

Next theorem indicates that, for any given µ in M (1) ∩ M K , when considering signed measures ξ with total mass one, minimizing the energy E Kµ (ξ) is equivalent to minimizing the MMD γ K (ξ, µ), provided that K is CISPD. Theorem 3.5. If K is CISPD, then for any µ ∈ M (1) ∩ M K , we have (i) the reduced kernel K µ dened by (3.15) is CISPD; (ii) µ is the minimum-energy measure in M (1) for K µ , and

∀ ξ ∈ M K , E Kµ (ξ) = E K [ξ -ξ(X )µ] = E Kµ [ξ -ξ(X )µ] .
Proof. For any nonzero ξ ∈ M K , direct calculation using (3.15) gives

E Kµ (ξ) = E K (ξ) -2ξ(X ) X 2 K(x, x ) dµ(x)dξ(x ) + [ξ(X )] 2 E K (µ) = E K [ξ -ξ(X )µ] . (3.16) (i) When ξ(X ) = 0 we get E Kµ (ξ) = E K (ξ), which is strictly positive when ξ = 0, showing that K µ is CISPD. (ii) Since [ξ-ξ(X )µ](X ) = 0 and K is CISPD, E Kµ (ξ) > 0 for ξ = ξ(X )µ,
showing that µ is the (unique) minimum-energy signed measure in M (1) for K µ . Since E Kµ (µ) = 0, Lemma 3.3 with K µ substituted for K implies that E Kµ (ξ) = E Kµ [ξ -ξ(X )µ] for any ξ ∈ M K , which, together with (3.16), concludes the proof.

3.5.2. Kernel reduction, BLUE and Bayesian integration. Consider again the situation of Section 3.4, and dene P 1 as the orthogonal projection of L 2 (X , µ) onto the linear space spanned by the constant 1; see [START_REF] Gauthier | Convex relaxation for IMSE optimal design in random eld models[END_REF]. The model (2.1) can then be written as

f (x) = β 0 + P 1 Z x + (Id L 2 -P 1 )Z x = β 0 + Z x , (3.17) 
where β 0 = β 0 + P 1 Z x and Z x = (Id L 2 -P 1 )Z x , with Z x having zero mean and covariance E{ Z x Z x } = σ 2 K µ (x, x ). The extension to a model with a more general linear trend is considered in Appendix B. We have seen in Section 3.4 that the variance of the continuous BLUE of β 0 equals σ 2 E K (µ * K ) provided that the minimum-energy signed measure µ * K exists. (Note that the prior on β 0 remains non-informative when the prior on β 0 is non-informative.) On the other hand, we obtain now that the continuous BLUE of β 0 always exists: it coincides with I µ (f ) and its variance is σ 2 E Kµ (µ) = 0. Therefore, as mentioned in introduction, Bayesian integration for the model (2.1) with correlated errors is equivalent to parameter estimation in a location model with dierent correlation structure.

Remark 3.3 (other kernels with zero potential). The approach via kernel reduction, based on a L 2 (X , µ) orthogonal projection, has the merit of simplicity and pleasant interpretation through the model (3.17), but it is not the only one that can provide a kernel with zero potential P µ everywhere. Orthogonal projection for the RKHS scalar product is considered in [START_REF] Durrande | Anova kernels and RKHS of zero mean functions for model-based sensitivity analysis[END_REF] in order to construct the RKHS of zero mean functions; see also [START_REF] Dick | Digital Nets and Sequences. Discrepancy Theory and Quasi-Monte Carlo Integration[END_REF]Sect. 2.5] and [START_REF] Ginsbourger | On ANOVA decompositions of kernels and Gaussian random eld paths[END_REF] for further developments on ANOVA kernel decomposition. Another possibility is to consider the image of a kernel under a Stein operator, as recently considered in details in [START_REF] Chen | Stein points[END_REF]; see also [START_REF] Oates | Control functionals for Monte Carlo integration[END_REF].

3.6. Separable kernels. From d kernels K i respectively dened on X i × X i , i = 1, . . . , d, we can construct a separable (tensor-product) kernel as

K ⊗ (x, x ) = d i=1 K i (x i , x i ) , (3.18)
where x = (x 1 , . . . , x d ) and x = (x 1 , . . . , x d ) belong to the product space X = X 1 × • • • × X d . The construction is particularly useful when considering product measures on X , since, in some sense, it allows us to decompose an integration problem in a high dimensional space into its one-dimensional counterparts. Suppose that each K i is uniformly bounded and CISPD on

M (i) = M [X i ]; that is, K i is ISPD on M (i) (0), see Denitions 3.1 and 3.2. One can show that this is equivalent to K ⊗ being ISPD on ⊗ d i=1 M (i) (0), see [92, Th. 2].
In the same paper, the authors prove (Theorem 4) that if each K i is moreover continuous and translation invariant, then K ⊗ is ISPD on M (0); that is, K ⊗ is CISPD on M . Their proof relies on the equivalence between the CISPD and characteristic properties for uniformly bounded kernels, and on the characterization of characteristic continuous, uniformly bounded and translation-invariant kernels through a property of the support of the measure Λ dened in (3.4); see Section 3.1. A further attractive feature of separable kernels is that K ⊗ (x, x ) is large when x and x are close in some coordinate, which is a useful feature for the generation of designs having good space-lling performance in projections, see Section 5.3; see also Remark 3.4.

An important property of separable kernels K ⊗ is that kernel reductions K ⊗ µ dened by (3.15) are easily obtained explicitly. Indeed, when µ = ⊗ d i=1 µ (i) is a product measure on X , then, for all x ∈ X ,

E K ⊗ (µ) = d i=1 E Ki (µ (i) ) , (3.19) 
P µ (x) = d i=1 Xi K i (x i , x i ) dµ (i) (x i ) = d i=1 P µ (i) (x i ) , (3.20) 
which facilitates the calculation of E K ⊗ µ (ξ), in particular when ξ is a discrete measure as considered in Section 4. Table 3.1 gives the expressions of E K (µ) and P µ (x) obtained for a few kernels, with µ uniform on X = [0, 1]; the expressions for the squared exponential and Matérn kernels can be found in [START_REF] Ginsbourger | On ANOVA decompositions of kernels and Gaussian random eld paths[END_REF]. Note that in each case E Kµ (ξ) > 0 for any ξ ∈ M (1), ξ = µ. Other more general results are provided in Table 1 of [START_REF] Briol | Probabilistic integration: A role in statistical computation[END_REF]. Expressions of E K (µ) and P µ (x) for the triangular kernel K θ (x, x ) = max{1 -θ|x -x |, 0}, θ > 0 (with µ uniform on [0, 1]) are given in Appendix C. Remark 3.4 (Projections in subspaces with smaller dimension). Let ξ and µ be two measures in M (1) and consider their squared discrepancy γ 2 K ⊗ (ξ, µ) for the kernel

K ⊗ (x, x ) = d i=1 [1 + K i (x i , x i )]. Direct calculation gives γ 2 K ⊗ (ξ, µ) = d m=1 1≤i1<•••<im≤d γ 2 Ki 1 •••im (ξ, µ) , where γ 2 Ki 1 •••im (ξ, µ) = X 2 d j=1 K ij (x ij , x ij )d(ξ -µ)(x)d(ξ -µ)(x ) corresponds to a squared discrepancy in the m-dimensional space X = X i1 × • • • × X im . When µ is uniform on X = [0, 1] d ,
by choosing a discrete measure ξ n with small γ 2 K ⊗ (ξ n , µ)

(see Section 4) we may thus construct a design having suitable space-lling properties in all sub-dimensional subspaces. One may refer to [START_REF] Hickernell | A generalized discrepancy and quadrature error bound[END_REF] for further developments and precisions, including in particular the derivation of quadrature error bounds and the introduction of dierent weights across dimensions.

Table 3.1: Energy EK (µ) and potential Pµ(x) for dierent kernels K with µ uniform on X = [0, 1]; Pµ(x) = Sµ(x) + Sµ(1 -x) + Tµ(x); Sµ(•) is continuously dierentiable in (0, 1], Tµ = 0 when K is translation invariant. F is the c.d.f. of the standard normal distribution.

K(x, x ) E K (µ) Sµ(x) [and Tµ(x)] e -θ(x-x ) 2 {e -θ -1+ √ πθ[2F( √ 2θ)-1]}/θ √ π[F( √ 2θx) -1/2]/ √ θ e -θ|x-x | 2(θ + e -θ -1)/θ 2 x(1 -e -θ|x| )/(θ|x|) K 3/2,θ/ √ 3 (x, x ) in (3.5) 2[θ(2 + e -θ ) + 3(e -θ -1)]/θ 2 x[2 -(2 + θ|x|)e -θ|x| ]/(θ|x|) [(x -x ) 2 + ] -1 ( ≥ 0) (2/ √ ) arctan(1/ √ ) -log(1 + 1/ ) (1/ √ ) arctan(x/ √ ) (|x -x | + ) -1 ( > 0) 2 [(1 + ) log(1 + 1/ ) -1] sign(x) log(1 + |x|/ ) (|x -x | + ) -1/2 ( > 0) 4 3/2 [2(1 + 1/ ) 3/2 -2 -3/ ]/3 2 √ sign(x)( 1 + |x|/ -1) 1 -θ |x -x | (0 < θ ≤ 1) 1 -θ/3 1/2 -θx|x|/2 |x -x | -s (0 < s < 1) 2/(s 2 -3s + 2) x/[(1 -s)|x| s ] -log |x -x | 3/2 1/2 -x log |x| |x| + |x | -|x -x | 2/3 1/4 -x|x|/2 [Tµ(x) = |x|] |x| + |x | -|x -x | 4/5 1/3 -2x |x|/3 [Tµ(x) = |x|]
4. Experimental design. From Section 3.3.1, the construction of an optimal measure ξ * minimizing E K (ξ -µ) forms a particular convex problem (quadratic), and 20 therefore presents some similarities with optimal experimental design in a parametric framework; see [START_REF] Kiefer | Optimum designs in regression problems[END_REF][START_REF] Fedorov | Theory of Optimal Experiments[END_REF] for early contributions. There is a noticeable dierence however: optimal experimental design aims at determining the probability measure (called design measure) ξ * that minimizes a convex functional φ(ξ), usually a function Φ[M(ξ)] of the information matrix M(ξ) in a parametric model. Here, the optimal measure is known (ξ * = µ), and we wish to construct a discrete measure, with a limited number n of support points, which is close to µ in the sense of having small maximum mean discrepancy E K (ξ -µ). Consider an n-point design X n = {x 1 , . . . , x n }, with x i ∈ X for all i. For ξ n a nite signed measure supported on X n , ξ n = n i=1 w i δ xi , we denote w n = (w 1 , . . . , w n ) . As in Section 2.2, we assume that µ ∈ M + (1), with special attention to space-lling design for which µ is uniform on a compact subset X of R d . We assume that K is a bounded ISPD kernel (and is thus SPD) and that µ has nite energy E K (µ), see (2.8). For space-lling design, we may restrict our attention to translation-invariant kernels. Direct calculation gives

γ 2 K (ξ n , µ) = E K (ξ n -µ) = w n K n w n -2w n p n (µ) + E K (µ) , = i,j w i w j K(x i , x j ) -2 n i=1 w i P µ (x i ) + E K (µ) , (4.1)
where {K n } i,j = K(x i , x j ), i, j = 1, . . . , n, and p n (µ) is given by (2.5). Note that E K (µ) and the P µ (x i ) have simple expressions when K is a separable kernel and (3.19, 3.20). Monte-Carlo approximation, based on a large i.i.d. sample from µ, or a low-discrepancy sequence, can always be used instead. [START_REF] Auray | Maximin design on non hypercube domains and kernel interpolation[END_REF].1. Discrepancies and covering radius. Since our initial motivation is to construct designs having good space-lling properties, in this section we give some arguments supporting the intuition that designs with small MMD have small covering radius. We consider the case where X is the d-dimensional hypercube [0, 1] d . 4.1.1. Star-discrepancy. Low discrepancy sequences and point sets have low dispersion, in the sense that, when X n is an n-point design in X , The connection between star discrepancy and covering radius is even stronger when considering design measures and weighted discrepancies. Consider the case d = 1, and let ξ n be a probability measure supported on X n with weight w i on x i . Assume, without any loss of generality, that 0 ≤

µ = ⊗ d i=1 µ (i) is a product measure on X = X 1 × • • • × X d , see
1 √ d CR(X n ) ≤ CR ∞ (X n ) = max x∈X min 1≤i≤n x -x i ∞ ≤ D 1/d (X n ) ≤ 2D 1/d * (X n ) ,
x 1 < x 2 < • • • < x n ≤ 1. The weighted star discrepancy of ξ n is dened as D * (ξ n ) = sup 0≤t<1 i: xi≤t w i -t . The covering radius of X n is CR(X n ) = max {x 1 , (x 2 -x 1 )/2, . . . , (x n -x n-1 )/2, 1 -x n }.
For simplicity, we restrict our attention to designs with x 1 = 0 and x n = 1. We then have the following result. Theorem 4.1. For any design ξ n such that 0

= x 1 < x 2 < • • • < x n-1 < x n = 1, (i) CR(X n ) = D * (ξ * n ), where ξ * n has the weights w * 1 = x 2 /2, w * n = (1 -x n-1 )/2
and w * i = (x i+1 -x i-1 )/2 for i = 2, . . . , n -1; (ii) D * (ξ n ) > CR(X n ) for any other probability measure ξ n supported on X n . Proof. One can check that, for any design ξ n supported on X n ,

D * (ξ n ) = max 1≤i≤n w i 2 + x i - W i + W i-1 2 (4.2)
where W 0 = 0 and W i = w 1 + • • • + w i for i = 1, . . . , n. This expression is a generalization of that in [69, Theorem 2.6] for the classical star discrepancy. It is then

straightforward to check that D * (ξ * n ) = CR(X n ). Moreover, if we take ξ n = ξ * n , then
all the terms in the right-hand side of (4.2) are equal to CR(X n ):

w * i 2 + x i - W * i + W * i-1 2 = CR(X n ), i = 1, . . . , n .
This implies that for any other set of weights w 1 , . . . , w n we have D * (ξ n ) > CR(X n ). Theorem 4.2. Let K be a bounded ISPD separable kernel on X = [0, 1] d such that each K i in (3.18) is translation invariant, with K i (x, x ) = ψ(|x -x |) and ψ(0) = 1; denote P 0,µ = 1 0 ψ(r) dr. Let X n be an n-point design in X and ξ n denote any probability measure supported on X n , with γ K (ξ n , µ) its MMD, µ being the uniform measure on X .

MMD. We have CR(X

n ) > n -1/d /V d and CR ∞ (X n ) ≥ n -1/d /
(i) If ψ is strictly positive and strictly decreasing on R + , then,

CR ∞ (X n ) ≤ ψ -1 P d 0,µ -γ K (ξ n , µ) . (4.3) (ii) If ψ = ψ θ has bounded support [-1/θ, 1/θ], then, CR ∞ (X n ) < 1/θ (4.4)
when γ K (ξ n , µ) < P d 0,µ . In particular, for the triangular kernel dened by

ψ θ (r) = max{1 -θr, 0}, r ≥ 0, with θ > 1, CR ∞ (X n ) < 1/θ when γ K (ξ n , µ) < 1/(2θ) d . Proof. Denote r n = CR ∞ (X n ) and let x 0 be a point in X such that x 0 -x i ∞ ≥ r n for all x i ∈ X n . We take f = K x0 in (3.2), so that I µ (K x0 ) = P µ (x 0 ), I ξn (K x0 ) = P ξn (x 0 ), f H K = K 1/2 (x 0 , x 0 ) = 1, and (3.2) implies P µ (x 0 ) -P ξn (x 0 ) ≤ γ K (ξ n , µ). (i) We have P ξn (x 0 ) = n i=1 w i d j=1 ψ(|x 0j -x ij |) ≤ ( n i=1 w i )ψ(r n ) = ψ(r n ),
where w i = ξ n (x i ) for all i. Therefore,

min x∈X P µ (x) = P µ (0) = P d 0,µ ≤ P µ (x 0 ) ≤ P ξn (x 0 ) + γ K (ξ n , µ) ≤ ψ(r n ) + γ K (ξ n , µ) ,
which gives (4.3).

(ii) Suppose that r n ≥ 1/θ. Then, P ξn (x 0 ) = 0 and (3.2) implies P d 0,µ ≤ P µ (x 0 ) ≤ γ K (ξ n , µ). We obtain (4.4) by contradiction. The triangular kernel with θ > 1 satises P 0,µ = 1/(2θ).

When K implicitly denes a norm on X , following the same approach as in the proof of Theorem 4.2 we directly get a bound on the covering radius for the corresponding norm. In particular, when K is the product of exponential kernels with ψ(r) = exp(-θr), θ > 0, we obtain for (i)

max x∈X min 1≤i≤n x -x i 1 ≤ - 1 θ log 1 -e -θ θ d -γ K (ξ n , µ) ,
and when K is the squared exponential kernel

K θ (x, x ) = exp(-θ x -x 2 ), θ > 0, we obtain CR(X n ) ≤ r [θ] (X n ) = - 1 θ log π d/2 θ d/2 [F( √ 2θ) -1/2] d -γ K (ξ n , µ) 1/2 , (4.5)
with F the c.d.f. of the standard normal distribution.

Similarly, for (ii), we may use the spherical covariance model in dimension d instead of the product of d triangular kernels: K(x, x ) is proportional to the volume of the intersection of two balls centered at x and x with radius ρ/2 and is therefore zero when xx ≥ ρ; see, e.g., [START_REF] Wackernagel | Multivariate Geostatistics. An Introduction with Applications[END_REF]Chap. 8].

Example 4.1. Consider the case d = 2 with K = K θ , the squared exponential kernel. We suppose that X n has MMD discrepancy decreasing as 8/n (which is the case when X n is constructed by kernel herding; see Appendix A). The left panel of Figure 4.1 presents the upper bound r [θ] (X n ) given by (4.5) as a function of θ, for three dierent values of n. The red solid line (bottom) corresponds to the limiting case when n tends to innity (that is, when γ K (ξ n , µ) is set to zero in (4.5)). For each nite n, the upper bound is innite if θ is larger than the value θ max (n) such that P d 0,µ = 8/n, see the right panel of Remark 4.1 (improved bound on CR ∞ (X n )). In the proof of Theorem 4.2 we consider that all points x i ∈ X n can be at ∞ distance r n from x 0 , whereas some design points are necessarily further away. This consideration yields a tighter upper bound on r n . For instance, when d = 1, if we take ξ n = ξ n,e , the empirical measure associated with X n , we obtain that P ξn (x 0 ) ≤ P ξn (1/2), where ξn =

1 n kr n k=1 δ (2k-1)rn + δ 1-(2k-1)rn + (n -2k rn )δ 1/2-rn , with k rn = 1/(4r n ) , which
gives the inequality

P ξn (1/2) = 1 - 2 n k rn ψ(r n ) + 2 n kr n k=0 ψ[1/2 -(2k -1)r n ] ≥ P 0,µ -γ K (ξ n , µ) ;
compare with (4.3) with d = 1. In practice, however, the improvement is negligible and the upper bound on CR ∞ (X n ) remains pessimistic. Remark 4.2. When the triangular kernel dened by ψ θ (r) = max{1 -θr, 0} is used for kernel herding, we have γ K (ξ n , µ) < 8/n, see Appendix A, and (ii) implies that for any r 0 = 1/θ ≤ 1, CR ∞ (X n ) < r 0 for n > 8(2/r 0 ) 2d . This rate of decrease of CR ∞ (X n ) is much slower than the best achievable rate n -1/d . The existence of extensible point sequences achieving the optimal rate n -1/d on a smooth Riemannian manifold is established in [START_REF] Breger | Points on manifolds with asymptotically optimal covering radius[END_REF]. The construction relies on the consideration of another

function than f = K x0 in (3.
2), having support in B d (x 0 , r n ) when X n satises x i -x 0 ≥ r n for all x i , with a large integration error I µ (f ) -I ξn (f ) = I µ (f ) and a small norm f H , where H is a particular Sobolev space.

Denote by e p (X n , µ) = (E µ {min 1≤i≤n Xx i p }) 1/p , p > 0 the L p mean quantization error induced by X n . From Zador theorem, lim n→∞ n 1/d min Xn e p (X n , µ) exists (and equals the inmum over n when µ is uniform on [0, 1] d ); see [START_REF] Graf | Foundations of Quantization for Probability Distributions[END_REF]. The fact that the greedy construction of a design X * n , recursively optimal step by step for the L p quantization error, achieves lim sup n→∞ n 1/d e p (X * n , µ) < ∞, is proved in [START_REF] Luschgy | Greedy vector quantization[END_REF]. For xed n, a design minimizing e p (X n , µ) can be constructed via clustering (see, e.g., [START_REF] Du | Centroidal Voronoi tessellations: applications and algorithms[END_REF]), with the famous k-means algorithm for p = 2 [START_REF] Lekivetz | Fast exible space-lling designs for nonrectangular regions[END_REF], k-medians for p = 1 [START_REF] Cardot | A fast and recursive algorithm for clustering large datasets[END_REF], or with any general optimization algorithm. A combination of clustering with particle swarm optimization is used in [START_REF] Mak | Minimax and minimax projection designs using clustering[END_REF] for arbitrary p ≥ 2; clustering is considered in [START_REF] Pronzato | Minimax and maximin space-lling designs: some properties and methods for construction[END_REF] for the limiting case p = ∞, with e ∞ (X n , µ) = CR(X n ). In general, these constructions are far more complicated than those using the methods of Section 4.3 and 4.4.

4.2. Design criteria based on Bayesian quadrature. Since s 2 n given by (2.7) does not depend on the function f considered, a design X n for Bayesian integration can in principle be chosen beforehand, by direct minimization of s 2 n . This corresponds to the approach followed in [START_REF] O'hagan | Bayes-Hermite quadrature[END_REF] where several quadrature rules are tabulated for several values of n. The next theorem collects several results from the literature (part (i) appeared in [START_REF] Huszár | Optimally-weighted herding is Bayesian quadrature[END_REF], part (ii) is a particular case in [START_REF] Karvonen | A Bayes-Sard cubature method[END_REF] called normalized Bayesian cubature) and in particular shows the connection between the minimum of E K (ξ n -µ) with respect to weights w n and the posterior variances s 2 n and s 2 n,0 respectively given by (2.7) and (2.11). The extension of model (2.1) to models including a linearly parameterized mean function is considered in [START_REF] Karvonen | A Bayes-Sard cubature method[END_REF]; the extension to the estimation of several integrals is treated in [START_REF] O'hagan | Bayes-Hermite quadrature[END_REF]; see also Appendix B. We assume that all points in X n are pairwise dierent and µ is not fully supported on X n .

Theorem 4.3. Let K be an SPD kernel and let µ ∈ M + (1) ∩ M K .

(i) The optimal unconstrained weights w * n that minimize

E K (ξ n -µ) are w * n = K -1
n p n (µ) and the corresponding measure ξ * n , with weights w * n , satises

E K (ξ * n -µ) = s 2 n,0 , (4.6) 
with s 2 n,0 given by (2.11). (ii) The optimal weights ŵn that minimize E K (ξ n -µ) under the constraint

w n 1 n = n i=1 w i = 1 are ŵn = K -1 n - K -1 n 1 n 1 n K -1 n 1 n K -1 n 1 n p n (µ) + K -1 n 1 n 1 n K -1 n 1 n , (4.7)
and the corresponding measure ξn , with weights ŵn , satises

E K ( ξn -µ) = s 2 n , (4.8) 
with s 2 n given by (2.7); the estimator (2.4) of the integral I µ (f ) is I n = ŵ n y n . (iii) For any bounded signed measure ξ n = n i=1 w i δ xi we can write

E K (ξ n -µ) = (w n -w * n ) K n (w n -w * n ) + E K (ξ * n -µ) , (4.9) 
and when the weights w i sum to one, we have Proof. The expression for w * n , (4.6) and (4.9) directly follow from the fact that E K (ξ n -µ) is quadratic in w n , see (4.1). Since K is SPD, straightforward calculation using Lagrangian theory indicates that the minimization of E K (ξ n -µ) under the constraint w n 1 n = 1 gives (4.7) and (4.8). Suppose that

E K (ξ n -µ) = (w n -ŵn ) K n (w n -ŵn ) + E K ( ξn -µ).
w n 1 n = 1, then E K (ξ n -µ) = (w n -ŵn + ŵn -w * n ) K n (w n -ŵn + ŵn -w * n ) + E K (ξ * n -µ) gives (4.10) since K n ( ŵn -w * n ) is proportional to 1 n and (w n -ŵn ) 1 n = 0.
Remark 4.3. Equation (4.6) is simply related to the fact that, for f the realization of a Gaussian RF with zero mean and covariance σ 2 K(•, •), we have

E{[I µ (f ) -I ξn (f )] 2 } = σ 2 X 2 K(x, x ) d(ξ n -µ)(x) d(ξ n -µ)(x ) = σ 2 P µ -P ξn 2 H K = σ 2 E K (ξ n -µ) ,
the minimum being attained for the Bayes predictor I n = p T n (µ)K -1 n y n , that is, for the weights w * n . (Note that we cannot use the reproducing property f (x) = f, K x K since w.p. 1 f does not belong to H K ; compare with [48, Proposition 1].)

It is shown in [START_REF] Karvonen | Classical quadrature rules via Gaussian processes[END_REF] that polynomial-based quadrature rules can be interpreted as Bayesian quadrature in a model with zero mean for a suitably chosen (polynomial) kernel; the optimal n-point set (with n = p+1 for polynomials of degree p) minimizing the posterior variance (4.6) realizes the cubature rule. One may refer to the discussion in Remark B.1 of Appendix B for models that include a linearly parameterized mean: any cubature rules can be interpreted as Bayesian integration; see [START_REF] Karvonen | A Bayes-Sard cubature method[END_REF].

In the discrete case considered here, the minimum-energy signed measure ξn with total mass one always exists, but ξn is not necessarily a probability measure; that is, some weights ŵi may be negative. Theorem 4.3 can be extended to the case where K is only conditionally SPD, but the computation of optimal weights ŵn is more involved when K n is singular; see Remark 4.4.

Denote by K n the n × n matrix with elements { K n } i,j = K µ (x i , x j ), where K µ is the reduced kernel (3.15); the corresponding vector of potential values at the x i is then p n = ( P µ (x 1 ), . . . , P µ (x n )) = 0. For measures ξ n in M (1), in complement of (ii) of Theorem 4.3, we also have the following property. (Similar expressions for the posterior mean and variance are obtained for a kernel having zero potential (kernel imbedding); see for instance [START_REF] Oates | Posterior integration on a Riemannian manifold[END_REF] where the Stein operator is used in a more general framework; see also Remark 3.3.) Theorem 4.4. For K an SPD kernel, µ ∈ M + (1) ∩ M K and ξ n ∈ M (1), we have

E K (ξ n -µ) = E Kµ (ξ n ) = w n K n w n . (4.11)
The posterior mean (2.4) and variance (2.7) of I µ (f ) are respectively given by

I n = 1 n K -1 n y n 1 n K -1 n 1 n , (4.12 
)

σ 2 s 2 n = σ 2 (1 n K -1 n 1 n ) -1 . (4.13) 
Proof. Equation (4.11) follows from Theorem 3.5. Since we assumed that µ is not fully supported on X n and K is SPD, (4.11) gives inf wn =1 w n K n w n > 0 , which implies that K n has full rank. Direct calculation using (3.15) gives

K n = K n -p n (µ)1 n - 1 n p n (µ) + E K (µ) 1 n 1 n . The expression for K -1 n then yields 1 n K -1 n 1 n = 1/s 2 n , with
s 2 n given by (2.7), proving (4.13). The expansion of (

1 n K -1 n y n )/(1 n K -1 n 1 n ) gives
(2.4), which proves (4.12).

Equations (4.12) and (4.13) indicate that I n is the BLUE of β 0 and σ 2 s 2 n is its variance in the model (3.17), f (x) = β 0 + Z x , see Sections 3.4.2 and 3.5.2. The reason is that predictions are not modied when using the reduced kernel K µ instead Remark 4.5 (IMSPE for separable kernels). The use of a separable kernel (3.18) and

a product measure µ = ⊗ d i=1 µ (i) on X = X 1 × • • • × X d facilitates the calculations of K n and E K (ξ n -µ), see (4.1)
, since E K (µ) and P µ (x i ) have the simple expressions (3.19, 3.20). The calculation of the IMSPE is facilitated too, but to a lesser extent. Indeed, using (2.2) we obtain

X ρ 2 n (x) dµ(x) = X K(x, x) dµ(x) + 1 1 n K -1 n 1 n -2 p n (µ)K -1 n 1 n 1 n K -1 n 1 n -trace K -1 n Q ⊥ n H n (µ) , where Q ⊥ n = I n -1 n 1 n K -1 n /(1 n K -1 n 1 n ) and {H n (µ)} j,k = X K(x, x j )K(x, x k )dµ(x) = d i=1 Xi K i (x i , x j i )K i (x i , x ki )dµ (i) (x i ) .
4.3. One-shot designs. We consider two design constructions based on minimization of the posterior variance σ 2 s 2 n : in the st one, the design points are uniformly weighted; in the second one, they receive the optimal weights (4.7). 

E K (ξ n,e -µ) = E Kµ (ξ n,e ) with respect to X n . Notice that E K (ξ n,e -µ) = (1 n K n 1 n )/n 2 ; see (4.11).
For X = [0, 1] d , separable kernels based on variants of Brownian motion covariance yield L 2 discrepancies (symmetric, centred, wrap-around and so on); see, e.g., [START_REF] Hickernell | A generalized discrepancy and quadrature error bound[END_REF], [START_REF] Fang | Design and Modeling for Computer Experiments[END_REF]Chap. 3]. For instance, for X = [0, 1] and K(x, x ) = 1 -|x -x | (for which the expressions of E K (µ) and P µ (x) are given in Table 3.1), E Kµ (ξ n,e ) is twice the squared L 2 star discrepancy for d = 1.

The ISPD kernel K ⊗ s, (x, x ) = d i=1 K s, (x i , x i ), with K s, given by (3.6) with s > 0 and > 0, is called projection kernel in [START_REF] Mak | Projected support points, with application to optimal MCMC reduction[END_REF]. For very small , the minimization

of E K ⊗ 1,
(ξ n,e ) corresponds to the construction of a maximum-projection design, as dened in [START_REF] Joseph | Maximum projection designs for computer experiments[END_REF]. Note that minimizing E K ⊗ s, (ξ n,e ) is not equivalent to minimizing E K ⊗ s, (ξ n,e -µ): in particular, when µ is uniform on X , which is assumed to be compact and convex, the former tends to push design points to the boundary of X whereas the latter keeps all points in the interior of X ; see [START_REF] Mak | Projected support points, with application to optimal MCMC reduction[END_REF].

In [START_REF] Mak | Support points[END_REF], space-lling designs in a compact set X ⊂ R d are constructed by minimizing E K (1) (ξ n,e -µ) for µ uniform on X , see (3.7). The authors call support points the optimal support X * n , which they determine via a majorization-minimization algorithm using the property that the problem can be formulated as a dierence-of-convex optimization problem. Values of E K (1) (µ) and P µ (x) are not available even for X = [0, 1] d and Monte-Carlo approximation is used. 

K is SPD, E K ( ξn -µ) = (1 n K -1 n 1 n ) -1 is the minimum value of E K (ξ n -µ) for measures ξ n ∈ M (1)
. Hence, we can construct space-lling designs on a compact and convex subset X of R d by maximizing 1 n K -1 n 1 n with respect to X n ∈ R nd , for a suitable K, taking µ uniform on X . This can be performed using any unconstrained nonlinear programming algorithm, see the examples in Section 5. Note that, from the Cauchy-

Schwarz inequality, E K ( ξn -µ) = (1 n K -1 n 1 n ) -1 ≤ (1 n K n 1 n )/n 2 = E K (ξ n,e -µ).

Sequences of nested designs.

There exist situations where the number n of design points ultimately used (for integration, or function approximation) differs from that initially planned, say N . It is the case in particular when function evaluations are computationally more expensive than expected, and numerical experimentation is stopped after n < N simulations, or when simulations fail at some design points and testing at more than N points is required to obtain N valid evaluations in total. In such circumstances, it is convenient to have sequences of nested designs (extensible point sequences) at one's disposal. The objective is then to construct ordered sequences x 1 , x 2 , . . . of designs points such that any design X n = {x 1 , . . . , x n } made of the rst n points of the sequence has good space-lling properties. A typical example is given by Low Discrepancy Sequences (LDS) in [0, 1] d , see [START_REF] Niederreiter | Random Number Generation and Quasi-Monte Carlo Methods[END_REF].

When K is SPD, we may exploit expression (4.13) of the conditional variance of I µ (f ) in a greedy sequential construction: at step n we choose x n+1 that minimizes s 2 n+1 . This sequential construction, called Sequential Bayesian Quadrature in [15], is straightforward to implement compared with global minimization of s 2 n , see (2.7). Direct calculation, using formulae for the inversion of the block matrix

K n+1 = K n k n (x n+1 ) k n (x n+1 ) K µ (x n+1 , x n+1 ) , where { K n } i,j = K µ (x i , x j ) and { k n (x)} i = K µ (x, x i ), i, j = 1, . . . , n, x ∈ X , gives s 2 n+1 = 1 n K -1 n 1 n + (1 -k n (x n+1 ) K -1 n 1 n ) 2 K µ (x n+1 , x n+1 ) -k n (x n+1 ) K -1 n k n (x n+1 ) -1 . (4.15) 
The sequential construction is thus

x n+1 ∈ Arg max x∈X (1 -k n (x) K -1 n 1 n ) 2 K µ (x, x) -k n (x) K -1 n k n (x) . (4.16) 
The conditional gradient algorithm of [START_REF] Frank | An algorithm for quadratic programming[END_REF] yields a simpler construction, particularly well adapted to the situation (and also applicable when K is unbounded). It relies on the sequential selection of points that minimize the current directional derivative of E K (ξ -µ) = E Kµ (ξ), with ξ supported on design points previously selected. The algorithm is initialized at a measure ξ (n0) supported on X n0 ∈ X n0 (with for instance n 0 = 1 and ξ (1) = δ x1 for some x 1 ∈ X ). Let ξ (n) denote the measure associated with the current design X n of iteration n, with weights w

(n) i , i.e., ξ (n) = n i=1 w (n) i δ xi . The next design point is chosen in Arg min x∈X F Kµ (ξ (n) , δ x ), with F Kµ the directional derivative (3.
12) (any minimizer can be selected in case there are several). Straightforward calculation using (3.12) gives x n+1 ∈ Arg min s∈X [P ξ (n) (x) -P µ (x)], that is, After choosing x n+1 , the measure ξ (n) is updated into

x n+1 ∈ Arg min x∈X n i=1 w (n) i K(x, x i ) -P µ (x) .
ξ (n+1) = (1 -α n )ξ (n) + α n δ xn+1 (4.18)
for some α n ∈ [0, 1], so that ξ (n+1) ∈ M + (1) when ξ (n) ∈ M + (1). When ξ (n0) is the empirical (uniform) measure on X n0 , the choice α n = 1/(n + 1) implies that ξ (n) remains uniform on its support X n for all n, see [START_REF] Wynn | The sequential generation of D-optimum experimental designs[END_REF] for an early contribution in the design context. The method is called kernel herding in the machine-learning literature, see [START_REF] Bach | On the equivalence between herding and conditional gradient algorithms[END_REF][START_REF] Chen | Super-samples from kernel herding[END_REF][START_REF] Huszár | Optimally-weighted herding is Bayesian quadrature[END_REF]. It is shown in [START_REF] Chen | Super-samples from kernel herding[END_REF] that E K (ξ (n) -µ) = O(1/n 2 ) when H K is nite dimensional, but we only have the weaker result E K (ξ (n) -µ) = O(1/n) when H K is innite dimensional, see [START_REF] Bach | On the equivalence between herding and conditional gradient algorithms[END_REF]; see also Appendix A. i K(x, x i ) instead of (4.17), then the algorithm minimizes E K (ξ); see Example 3.5 and Remark 3.2. The presence of P µ (x) in (4.17) permits to keep the design points x i in the interior of X ; see also [START_REF] Mak | Projected support points, with application to optimal MCMC reduction[END_REF]. The rst point x 1 can be chosen as a minimizer of P µ (x) (that is, 1 d /2 when µ is uniform on [0, 1] d ). The construction (4.17) is well-dened even if K is singular: in that case, it guarantees that all design points are dierent (x i = x j for all i, j); the same is true for all one-dimensional canonical projections when K is the product of singular kernels. More generally, the addition of δ xn+1 to the current design measure creates a local maximum of the function n+1 i=1 w

(n)

i K(x, x i ) -P µ (x) in the neighborhood of x n+1 , so that the next point x n+2 is chosen at some distance from all previous ones. The choice of an adequate kernel has therefore some importance: its decrease should be fast enough to ensure that points are well spread apart (the correlation length should be small enough when K corresponds to a correlation function); a translation-invariant kernel with bounded support leaves some arbitrariness in the choice of X n until the union of the supports of the K(x i , •) covers X , and is not necessarily suitable. We thus recommend using a (translation-invariant) kernel with unbounded support; if n max is the maximum design size considered, a correlation function with correlation length L ≈ n x (n+1) ∈ Arg min

x∈X 1 n + 1 n i=1 K(x, x i ) -P µ (x) + 1 2(n + 1) K(x, x) , (4.19)
that is, a selection very close to (4.17) when K(x, x) is constant (Matérn kernel for instance). Note that this construction requires K(x, x) < ∞ for all x ∈ X , contrary to (4.17).

In practice n is always smaller than some given n max , and to facilitate the construction we can restrict the choice of the x i to a nite subset X Ω = {s 1 , . . . , s Ω } of X , with Ω n max (when X = [0, 1] d , X Ω can be given by a regular grid, or by the rst Ω points of a LDS). For any n ≤ n max , we can write X n = {x 1 , . . . , x n } = {s i1 , . . . , s in }, the construction being initialized at some n 0 -point design X n0 ⊂ X Ω . A measure ξ supported on X n can thus be written as ξ = Ω i=1 ω i δ si , with ω i = 0 when s i ∈ X n . Therefore, for all n, ξ (n) is fully characterized by a Ω-dimensional vector ω (n) = (ω

(n) 1 , . . . , ω (n) 
Ω ) , with ω (n) in the probability simplex P Ω when ξ (n) ∈ M + (1). The updating equations (4.17, 4.18) then imply that ω (n+1) is obtained by moving ω (n) in the direction of a vertex of P Ω , hence the name vertex-direction given to methods based on (4.18) in the literature on optimal design, see, e.g., [START_REF] Pronzato | Design of Experiments in Nonlinear Models[END_REF]Chap. 9] and the references therein. The cost of the determination of x n+1 in (4.17) is O(Ω):

we compute K(x, x n ) for all x ∈ X Ω and update the sum n-1 i=1 K(x, x i ); the cost for n iterations scales as O(nΩ), including the initial cost for the computation of P µ (x) for all x ∈ X Ω .

The measure ξ (n) constructed by (4.18) with α n = 1/(n + 1) is uniform on its support. The minimum-norm-point algorithm of [START_REF] Bach | On the equivalence between herding and conditional gradient algorithms[END_REF] replaces ξ (n) by the measure having the same support but optimal weights in P Ω . The strategy that consists in optimizing the weights on the current support of the design measure at each iteration is known to be ecient also in other design contexts, see Algorithm 1 in [START_REF] Pronzato | Algorithmic construction of optimal designs on compact sets for concave and dierentiable criteria[END_REF]. Here the weights are solution of a convex quadratic programming problem, which facilitates their determination. In the examples of Section 5, we consider a still simplied version where ξ (n) is replaced by ξ(n) having weights ŵ(n) i given by (4.7). This modication of ξ (n) at each iteration induces an additional computational cost of O(n 3 ) at iteration n (O(n 2 ) if rank-one updating is used to compute K -1 n ) and requires the storage of all K(x, x i ), i = 1, . . . , n, x ∈ X Ω , in order to compute

n i=1 ŵ(n) i K(x, x i ).
When K is a correlation function with small correlation length L and PR(X n ) L, all design points have similar inuence on E K (ξ n -µ) and the associated optimal weights ŵ(n) i are nearly identical: for n small enough, the resulting design is then similar to that obtained when ξ (n) is forced to be uniform.

We have also considered several variants of (4.18), where the step-size α n is optimized instead of being xed to 1/(n+1), or using a vertex-exchange method based on the true steepestdescent direction; see Appendix A for details: the performances, in terms of decrease of E K (ξ (n) -µ) or in terms of space-lling properties of its support, CR(X n ) and PR(X n ), were not signicantly better than those obtained with (4.18).

The same observation holds for the Sequential Bayesian Quadrature (4.16) and the greedy MMD minimization (4.19).

Finally, note that the n-th design in a sequence of nested designs can be used as initialization for the (unconstrained) minimization of E K (ξ n,e -µ) = 1 n K n 1 n /n 2 (Section 4.3.1), or the maximization of 1 n K -1 n 1 n (Section 4.3.2), with respect to X n .

Illustrative examples.

5.1. Nested designs, d = 2. We take X = [0, 1] 2 , µ is uniform on X and the candidate set X Ω is given by a regular 64 × 64 grid in X ; K is the product of uni-dimensional Matérn 3/2 covariance functions K 3/2,θ , see (3.5). We consider nested designs of size up to n max = 140 and compare designs X VD n generated by the vertex-direction method (4.17, 4.18) with more classical design sequences: X S n ,

given by the rst n points of Sobol' LDS; X sS n obtained by application of a random linear scramble, see [START_REF] Matousek | On the L2-discrepancy for anchored boxes[END_REF]; and an extensible lattice sequence X EL n , where the n-th point is given by {ng}, with g having irrational components independent over the rationals and {t} denoting the fractional part, applied componentwise. Choosing a suitable generator g is a delicate matter; see, e.g., [START_REF] Korobov | Properties and calculation of optimal coecients[END_REF], [START_REF] Niederreiter | Random Number Generation and Quasi-Monte Carlo Methods[END_REF]Chap. 5] and the references therein. We use the construction suggested in http://extremelearning.com.au/, with g = (1/ϕ d , 1/ϕ 2 d , . . . , 1/ϕ d d ) and ϕ d the unique positive root of x d+1 = x + 1, which seems quite eective for small enough d. We initialize (4.17, 4.18) by X 1 = {(0.5, 0.5)} (n 0 = 1) and take θ = 10. We also consider a variant of the minimum-norm-point algorithm of [START_REF] Bach | On the equivalence between herding and conditional gradient algorithms[END_REF], where ξ(n) having the optimal weights (4.7) is substituted for ξ (n) in (4.17, 4.18); we denote by X MN n the corresponding designs. The choice n max = 140 is arbitrary; we take n max > 2 7 = 128 to be more fair with S n which is known to have appealing properties when n is a power of two.

The four designs X VD 140 , X MN 140 , X sS 140 and X EL 140 are presented in Figure 5.1. Visually, terms of E K (ξ n,e -µ) but slightly worse in terms of E K ( ξn -µ); both perform better than X S n for the two criteria. X sS n (not shown) performs similarly to X S n ; X EL n (not shown) is between X S n and X VD

n . An important observation here is that designs may have signicantly distinct space-lling properties (Figure 5.2) although they perform almost similarly in terms of MMD (Figure 5.3), in particular in terms of decrease rate. One may notice that the curves in solid line coincide on the two rows: when K 3/2,θ has a small correlation length (θ is large), the two constructions give similar designs since the optimal weights in ξ(n) are nearly all equal to 1/n at each n

(max i { ŵ(n) i } - min i { ŵ(n) i } < 3 × 10 -4
for n = 140 and θ = 50). Weight optimization makes the construction less sensitive to the choice of θ: in some sense it permits to compensate for the loss in space-lling performance incurred by choosing a kernel with excessively large correlation length (θ is too small) and forcing all weights to be equal during the construction. The choice θ = n 1/d max 11.8 appears to yield good performance, with larger θ leading to larger packing radii but worse covering behavior. 5.2. One-shot designs, d = 2, 3. Here we use the n-th design in a sequence of nested designs to initialize the search for an MMD design. In [START_REF] Mak | Support points[END_REF], the MMD associated with energy distance (kernel (3.7)) is minimized with a Majorization-Minimization (MM) algorithm; the corresponding optimal designs are called support points, denoted by X supp n is what follows. Using the explicit form of the kernel K 3/2,θ (•, •) and potential P µ (•), we can also construct a convex majorant for the (squared) MMD (4.1), for any set of weights w n . An MM algorithm can then be used to directly minimize E K (ξ n,e -µ) (ξ n,e having all weights equal to 1

/n), or E K ( ξn -µ) = (1 n K -1 n 1 n ) -1
, with respect to X n . In the second case, we alternate MM steps for the minimization with respect to X n with xed weights, and (explicit) weight optimization through (4.7). We denote by X MM-MMD n the corresponding designs. Alternatively, we can also directly minimize E K (ξ n,e -µ), or maximize 1 n K -1 n 1 n , with respect to X n using any nonlinear programming algorithm. Note that we do not need to impose the constraints x i ∈ X for all i thanks to the presence of potentials P µ (x i ) in 

CR d (X n ) = max r=1,...,( d d ) max x∈[-1,1] d x, P d ,r (X n ) , PR d (X n ) = 1 

Conclusion.

Optimal designs for Bayesian integration of an unknown function considered as a realization of a Gaussian RF with covariance K, with respect to a measure µ, that minimize the posterior integration variance, are also optimal designs for the BLUE in a location model with correlated errors, with their correlation kernel depending on K and µ, and minimize the MMD, a kernel discrepancy to µ. The fact that this squared discrepancy takes the form of a quadratic energy, depending on K, for the dierence between µ and the design measure, permits to use all the classical machinery of optimal design, including theory (convexity, directional derivatives, optimality theorems) and algorithms. When µ is uniform, MMD minimization appears to be a natural way of constructing space-lling designs: the quadratic form of the criterion makes the algorithms simple and intuitive; one-step-ahead constructions allow the fast generation of sequences of nested designs with good properties for any size.

For µ uniform, the space-lling properties of designs obtained by MMD minimization depend on the choice of the kernel K. The paper has focused on two classical space-lling characteristics, the covering and packing radii. Finding the most suitable kernel for any of these characteristics remains an open issue. For instance, the last two columns of Table 5.2 indicate that the isotropic kernel (3.7) associated with energy-distance favours packing on expense of covering. On the one hand, separable translation-invariant kernels peaked enough at the origin ensure that designs points are well spread in all projections. Singular kernels, which do not dene RKHS and present signicant theoretical challenges, also have great potential in this respect (see [START_REF] Pronzato | Minimum-energy measures for singular kernels[END_REF]). On the other hand, support points that minimize MMD for a particular isotropic kernel provided best results for the whole d-dimensional set in our numerical examples.

Our main intention with this paper is to promote the general use of MMD minimization for the construction of space-lling designs. We hope that the stimulating connections between Bayesian integration and other areas, such as potential theory and BLUE, will be of general interest and will attract attention to this type of design approaches.

are more general than that and rely mainly on convexity. We focus our attention on the case when X is replaced by a nite set X Ω = {s 1 , . . . , s Ω }, so that a probability measure ξ on X Ω is characterized by a vector of weights ω in the probability simplex P Ω . However, after the proof of Theorem A.1 we indicate why a similar analysis applies to the innite-dimensional situation.

Denote J K (ω) = ωω 2 K = (ω -ω) K(ωω), with K = K Ω a non-negative denite Ω × Ω matrix and ω in P Ω (and ω = 1 Ω when the target measure is uniform on X Ω ). Denote by B Ω an upper bound on ωω 2 K for ω and ω in P Ω . Denoting by λ max (K) the largest eigenvalue of K, we can always take B Ω = 2 λ max (K), the bound used in the developments below. When K(x, x) = 1 and K(x, x ) ≥ 0 for all x, x , we can take B Ω = 2 (and replace λ max (K) by 1 in Theorems A.1, A.2 and A.3).

For i = 1, . . . , Ω, we denote by e i the i-th basis vector, with component number i equal to one. Iteration (4.18) has the form ω (n+1) = ω (n) + α n ∆ n for some step-size α n and direction ∆ n = e i + n -ω (n) , with the index i + n taken in Arg min i=1,...,Ω e i ∇J K (ω (n) ), where the gradient ∇J K (ω) is given by ∇J K (ω) = 2K(ω -ω) . This is equivalent to s i + n ∈ Arg min s∈XΩ P ξ (n) (s) -P µ (s) , see (4.17).

A.1. Vertex-direction, predened step-size. Take α n = 1/(n + 1) in (4.18).

We rst mention a simple result indicating that ω (n) -1 Ω /Ω 2 K = O(1/n) during the initial n 1 ≤ Ω iterations when all i + n are distinct for n ≤ n 1 .

Lemma A.1. Algorithm (4.18) with α n = 1/(n + 1), initialized at ω (1) = e i0 for some i 0 ∈ {1, . . . , Ω}, satises

ω (n) -1 Ω /Ω 2 K ≤ λ max (K) n , 1 ≤ n ≤ n 1 ≤ Ω ,
where n 1 is such that all i + n are distinct for n ≤ n 1 . Proof. For n ≤ n 1 , after a suitable reordering of indices we have ω (n) = (1/n, . . . , 1/n, 0 . . . , 0) . Therefore, ω (n) -1 Ω /Ω 2 K ≤ λ max (K) ω (n) -1 Ω /Ω 2 = λ max (K) (Ωn)/(nΩ) ≤ λ max (K)/n.

Note that this property is independent of the order in which the vertices of P Ω (the e in ) are selected. It is therefore also valid for MC sampling without replacement within X Ω . Also note that the optimal step-size αn at iteration n for the minimization of ω (n) -1 Ω /Ω 2 equals α n = 1/(n + 1).

The following lemma shows that (4.18) with α n = 1/(n + 1) ensures that ω (n)ω 2 K = O(log n/n), independently of Ω and of the positions of ω (1) and ω in P Ω .

Theorem A.1. Algorithm (4.18) with α n = 1/(n + 1), initialized at any ω (1) in P Ω , satises

ω (n) -ω 2 K ≤ 2 λ max (K)
1 + 2 log(n + 1) n , n ≥ 1 .

(A.1)

Proof. The proof follows the same lines as in [START_REF] Clarkson | Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm[END_REF]Sect. 3]. Denote g(ω) = ωω 2 K and ω (n+) (α) = ω (n) + α∆ n . Notice that ω (n) ∈ P Ω for all n ≥ 1. We have g[ω (n+) (α)] = g(ω (n) ) + 2α∆ n K(ω (n) -ω) + α 2 ∆ n 2 K

≤ g(ω (n) ) + 2α∆ n K(ω (n) -ω) + α 2 λ max (K) ∆ n 2 ≤ g(ω (n) ) + 2α∆ n K(ω (n) -ω) + 2 α 2 λ max (K) .

A.2. Vertex-direction, optimal step-size. The choice of a predened stepsize α n = 1/(n+1) in (4.18) does not ensure a monotonic decrease of E K (ξ (n) -µ). An alternative option is to choose α n that minimizes E K [ξ (n+) (α)-µ] with respect to α ∈ [0, 1], with ξ (n+) (α) = (1-α) ξ (n) +α δ xn+1 and x n+1 given by (4.17). Straightforward calculation gives α n = min{1, αn }, with αn = P ξ (n) -P µ , P ξ (n) -

P δx n+1 K P ξ (n) -P δx n+1 2 H K = E K (ξ (n) ) -P ξ (n) (x n+1 ) - n i=1 w (n) i P µ (x i ) + P µ (x n+1 ) E K (ξ (n) ) -2P ξ (n) (x n+1 ) + K(x n+1 , x n+1 )
where B(µ) = E µ {r(X)h (X)}, P n (µ) = E µ {r(X)k n (X)} and U r (µ) = E µ {r(X)r (X )K(X, X )} , with X and X i.i.d. ∼ µ.

Remark B.1 (Reproduction of cubature rules). Consider the case where p = 1 (r(x) ≡ 1), n = p + 1, so that H n is n × n, and suppose that X n is such that H n is nonsingular. Then, direct calculation shows that I n = ŵ n y n , with w n = H n E µ {h(X)} and V n = E K (ξ n -µ), where ξ n has weights w n . The weights w n are independent of the choice of the kernel K and every function f in the linear space spanned by h(•) is integrated exactly ( I n = I µ (f ) when f (x) = γ h(x) for some vector γ), see [START_REF] Karvonen | A Bayes-Sard cubature method[END_REF]Th. 2.10]. In the same paper, these results are used to show that for any n-point cubature rule there exists n functions h i (•) such that the rule corresponds to Bayesian integration for model (B.1). One may also refer to [START_REF] Karvonen | Classical quadrature rules via Gaussian processes[END_REF] for the relation between polynomial-based quadrature rules and Bayesian quadrature (for a suitably chosen polynomial kernel) when β in (B.1) is considered as a vector of known constants (for instance, zero), so that the posterior variance is given by (2.11).

Suppose that M h = E µ {h(X)h (X)} is nonsingular. Following Section 3.5.2, we can write f (x) = h (x)β + P h Z x + (Id L 2 -P h )Z x , where P h denotes the orthogonal projection of L 2 (X , µ) onto the linear space spanned by h(•); that is, P h g(x) = h (x)M -1 h X h(x )g(x ) dµ(x ) for all g ∈ L 2 (X , µ). This gives

P h Z x = h (x)M -1 h X h(x )Z x dµ(x )
.

In absence of prior information on β (A -1 = 0), the prior on the parameters β = β + M -1 h X h(x )Z x dµ(x ) remains non-informative, and the covariance kernel of Z x = (Id L 2 -P h )Z x is K µ (x, x ) = K(x, x ) -u µ (x)M -1 h h(x ) -h (x)M -1 h u µ (x ) + h (x)M -1 h U h (µ)M -1 h h(x ) ,

where U h (µ) = E µ {h(X)r (X )K(X, X )} and u µ (x) = E µ {h(X)K(X, x)} , x ∈ X .

Similarly to Section 4.2 (see [START_REF] Gauthier | Convex relaxation for IMSE optimal design in random eld models[END_REF]Sect. 5.4]), this kernel reduction does not modify predictions, and direct calculation shows that E µ {h(X)h (X )K µ (X, X )} = 0 and E µ {h(X) k n (X)} = 0, with k n (x) = (K µ (x, x 1 ), . . . , K µ (x, x n )) . Taking h = r, we thus obtain the following property, where R n is the n × (p + 1) matrix {R n (x)} i,j = r j (x i ), i = 1, . . . , n, j = 0, . . . , p, and { K n } i,j = K µ (x i , x j ), i, j = 1, . . . , n.

Lemma B.1. When K is SPD and h = r in (B.1), I n given by (B.2) satises

I n = M r (R n K -1 n R n ) -1 (R n K -1 n y n ) ,
and the posterior covariance matrix (B.3) satises

V n = M r (R n K -1 n R n ) -1 M r . (B.4)
To ensure a precise estimation of I µ (f ), we may select a design X n that minimizes J (V n ), with J (•) a Loewner increasing function dened on the set of symmetric nonnegative dene matrices. Typical choices are J (V n ) = det(V n ) (D-optimality) and J (V n ) = trace(V n ) (A-optimality). Greedy minimization of J (V n ) corresponds to

Denitions 3 .

 3 1 and 3.2 extend to singular kernels, with Riesz kernels as typical examples. Example 3.3 (Riesz kernels). These fundamental kernels of potential theory are dened by

  Suppose that the n points x i are equally spaced in X = [0, 1]. The process Z x in (2.1) has mean square derivatives of all orders, and, roughly speaking, for large n the construction of the BLUE mimics the estimation of the derivatives of f and the weights w * i strongly oscillate between large positive and negative values.

Figure 3 . 1 -

 31 Left shows the optimal weights (w * i /|w * i |)(log 10 (max{|w * i |, 1}), truncated to absolute values larger than 1 and in log scale, when x i = (i -1)/(n -1), i = 1, . . . , n = 101. In Figure 3.1-Right, the kernel is

Figure 3 . 1 :

 31 Figure 3.1: BLUE weights (w * i /|w * i |) log 10 (max{|w * i |, 1}) for xi = (i -1)/(n -1), i = 1, . . . , n = 101. Left: K(x, x ) = exp(-|x -x | 2 ), Right: K(x, x ) = (1 +

  with D(X n ) and D * (X n ) respectively the extreme and star discrepancies of X n ; see, e.g.,[69, p. 15 and 152]. Hence, low discrepancy sequences or point sets also have low dispersion (small covering radii) the reverse being wrong, as the example of Ruzsa sequence shows[69, p. 154].

  Figure 4.1.

Figure 4 . 2 -

 42 left shows r * (X n ) = min θ r [θ] (X n ) as a function of n; the minimum is obtained at θ * (X n ) shown on the right panel.The bound r [θ] (X n ) (or more generally the bound on CR ∞ (X n )) is very pessimistic, but Figure4.1 nevertheless suggests that θ should increase at suitable rate as n increases, in agreement with common intuition. Using a covariance kernel with correlation length L = O(n -1/d ) seems reasonable; see the examples of Section 5.

Figure 4 . 1 :

 41 Figure 4.1: Squared exponential kernel K θ (x, x ) = exp(-θ xx 2 ), d = 2. Left: r [θ] (Xn) (4.5) as a function of θ when γK (ξn, µ) = 8/n, for n = 500, 1 000 and 2 000. Right: θmax(n) such that P d 0,µ = 8/n.

Figure 4 . 2 :

 42 Figure 4.2: Squared exponential kernel K θ (x, x ) = exp(-θ xx 2 ), d = 2. Left: r * (Xn) = min θ r [θ] (Xn) as a function of n. Right: θ * (Xn) = arg min θ r [θ] (Xn) as a function of n.

4. 3

 3 .1. n-point empirical measures. Consider the empirical measure ξ n,e = (1/n) n i=1 δ xi associated with a given design X n = {x 1 , . . . , x n }. As indicated hereafter, the literature on space-lling design provides several examples of constructions of n-point designs through the minimization of the squared MMD
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Remark 4 . 6 .

 46 If we take x n+1 ∈ Arg min x∈X

- 1

 1 /d max is appropriate. Choosing K dierentiable facilitates the minimization of E K (ξ n,e -µ) = 1 n K n 1 n /n 2 (Section 4.3.1), or the maximization of 1 n K -1 n 1 n (Section 4.3.2).

Remark 4 . 7 (

 47 greedy MMD minimization). Denote ξ (n+) (x) = [n/(n + 1)]ξ (n) + [1/(n + 1)]δ x . The direct minimization of E K (ξ (n+) (x) -µ) with respect to x yields

Figure 5 . 2 :

 52 Figure 5.2: n 1/d CR(Xn) (left) and n 1/d PR(Xn) (right) for the designs X VD n (red, diamonds), X MN n (blue, stars), X S n (black, pluses), X sS n (black, x-marks) and X EL n (magenta, triangles).

Figure 5 .Figure 5 . 3 ,

 553 Figure 5.3, with a signicantly smaller MMD for X VD n than for X S n . On the other

Figure 5 . 3 :

 53 Figure 5.3: EK (ξn,e -µ) (left) and EK ( ξn -µ) (right) as functions of n (log scale), with ξn,e the empirical measure associated with Xn and ξn the measure with optimal weights ŵn (4.7), for X VD n (red solid line), X MN n (blue dashed line) and X S n (black dotted line); θ = 10 in K 3/2,θ .

Figure 5 . 4 :

 54 Figure 5.4: Left: EK (ξn,e -µ) as a function of n (log scale), with ξn,e the empirical measure associated with X VD n (red solid line) and X S n (black dotted line); right: X VD 140 ; θ = 1 in K 3/2,θ .

Figure 5 . 5 :

 55 Figure 5.5: n 1/d CR(Xn) (left column) and n 1/d PR(Xn) (right column) as functions of n, for X VD n (top row) and X MN n (bottom row), when θ varies between 1 and 50 in K 3/2,θ : θ = 1 in dashed line, θ = 1/n 1/d max in dashed-dotted line, θ = 50 in solid line.

K 3 /

 3 2,θ with θ = n 1/d . X sS 100 corresponds to the rst 100 points of a scrambled Sobol' sequence, X VD 100 is obtained with(4.17

  , 4.18) and is used to initialize the optimization for the other designs in the table: the minimization of E K (ξ n,e -µ) yields X MM-MMD 100,e and X CG-MMD 100,e , the maximization of 1 n K -1 n 1 n yields X MM-MMD 100 and X CG-MMD 100 . Initialization at X sS 100 gives designs with worse covering and packing performances for all constructions considered.

Figure 5 .

 5 6 is similar to Figure 5.2 and shows the scaled values n 1/d CR(X n ) (left) and n 1/d PR(X n ) (right) for a scrambled Sobol' sequence X sS n and three sequences of nested designs for n = 1, . . . , n max = 100: X VD-log n , X VD-M n and X MN-M n . X VD-log n is generated by (4.17, 4.18) with K the product of the uni-dimensional (singular) logarithmic kernel K (0) in (3.8); X VD-M n is generated by the same vertex-direction method but for the product of Matérn kernels K 3/2,θ , with θ = n 1/d max , X MN-M n is for the minimum-norm-point algorithm with the same kernel. The three MMD related nested designs perform signicantly better than the scrambled Sobol' sequence; like we observed in smaller dimensions, X MN-M n is performing consistently better than X VD-M n ; X VD-log n performs slightly worse than X VD-M n but has the advantage of not requiring the tuning of a length-scale parameter θ. Note that, since the computational cost only scales as O(nΩ), one can easily generate many designs, for dierent kernels, dierent correlation length parameters, or dierent candidate sets X Ω , and then select the best one according to the values of a particular criterion of interest over a particular range of design sizes.

Figure 5 . 6 :

 56 Figure 5.6: n 1/d CR(Xn) (left) and n 1/d PR(Xn) (right) for the designs X sS n (black, x-marks), X VD-log n

36

  Notice that CR(X Lh-supp 100 ) > CR(X Lh 100 ), whereas PR(X Lh-supp 100 ) > PR(X Lh 100 ).

  d ,r (x i ) -P d ,r (x j ) .

Figure 5 .

 5 Figure 5.7 shows the ratios CR d (X 100 )/ CR d (X Lh 100 ) and PR d (X 100 )/ PR d (X Lh 100 ) for X 100 = X sS 100 , X VD-log 100 , X supp 100 , X CG-MMD 100,e
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 57 Figure 5.7:

  4.3.2. n-point optimal measures. Theorems 4.3 and 4.4 indicate that, if

Table 5 .

 5 [START_REF] Aikawa | Potential Theory Selected Topics[END_REF] shows the very good space-lling performance of designs based on MMD minimization for the energy distance (the support points of[START_REF] Mak | Support points[END_REF]), but the construction is computationally more demanding in high dimensions due to the necessity to approximate µ by a discrete measure (we use a 64 × 64 and a 16 × 16 × 16 regular grid for d = 2, 3 respectively, with thus 4,096 points in both cases).

Table 5 .

 5 1: Covering and packing performances of various xed-size designs (d=2,3; n = 100). In this section, we replace CR(X n ) by its under approximation max x∈X Q min 1≤i≤n x-x i , where X Q corresponds to the rst 2 19 points of a scrambled Sobol' sequence complemented with a 3 d full factorial design. On purpose, we choose a candidate set for kernel herding having the same size as above, despite d = 10: X Ω is given by 4,096 points of a scrambled Sobol' sequence in [0, 1] d . In general, enlarging Ω improves the performance of MMD-based designs.

			X sS 100	X VD 100	X supp 100	X MM-MMD 100,e	X MM-MMD 100	X CG-MMD 100,e	X CG-MMD 100
	d = 2	CR	0.1377	0.0925	0.0839	0.0889	0.0874	0.0889	0.0845
		PR	0.0204	0.0262	0.0419	0.0365	0.0238	0.0369	0.0302
	d = 3	CR	0.3054	0.2645	0.2032	0.2673	0.2624	0.2681	0.2886
		PR	0.0415	0.0751	0.1042	0.0886	0.0896	0.0938	0.0922

d = 10.

Table 5 .

 5 2: Covering and packing performances of various xed-size designs (d=10; n = 100). ∈ {1, . . . , d} and any r ∈ {1, . . . , d d }, let P d ,r denote one of the d d distinct projections on an axis-aligned d dimensional sub-space. The following criteria measure the worst-case projection performance of a design in terms of its covering and packing radii in dimension d :

		X sS 100	X VD-log 100	X VD-M 100	X supp 100	X CG-MMD 100,e	X CG-MMD 100	X Lh 100	X Lh-supp 100
	CR	1.3684	1.2990	1.3168	1.3083	1.2594	1.2893	1.2515	1.2762
	PR	0.2456	0.2921	0.3004	0.5332	0.3993	0.4109	0.5109	0.6337
	For any d							
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of K, that is, when considering the model f (x) = β 0 + Z x instead of (2.1); see [START_REF] Gauthier | Convex relaxation for IMSE optimal design in random eld models[END_REF]Sect. 5.4]. It implies that the expressions (2.4) and (2.7) of I n and s 2 n are unchanged when replacing K by K µ . Since, by construction, p n (µ) = 0 and E Kµ (µ) = 0 (as (Id L 2 -P 1 )Z x has no contribution to the integral of f ), we directly obtain (4.12) and (4.13).

A further consequence is that the substitution of K µ for K leaves the meansquared error (2.2) unchanged, which yields a bound on the IMSPE of a design X n . Theorem 4.5. For K an SPD kernel and µ ∈ M + (1) ∩ M K , the IMSPE of an n-point design X n satises Proof. Replacing K by K µ in (2.2), we get

where H n (µ) = X k n (x) k n (x) dµ(x), with k n (x) = (K µ (x, x 1 ), . . . , K µ (x, x n )) , and where Q ⊥ n = I n -1 n 1 n K -1 n /(1 n K -1 n 1 n ), with I n the n-dimensional identity matrix, is a projector onto the linear space orthogonal to 1 n . Since K -1 n , Q ⊥ n and

H n (µ) are non-negative denite, we obtain

.

Together with (3.15) and (4.13), this gives the right-hand side inequality in (4.14).

The left-hand side inequality is a simple consequence of the convexity of t → t 2 . (Note that (2.10) implies that X K(x, x) dµ(x) ≥ E K (µ).)

One should notice that the upper bound in (4.14) may be rather loose for large d. For instance, when K is separable as in (3.18), with all K i identical and K 1 (x, x) = 1 for all x, and µ is uniform on X ) ), which can be close to one for large d.

Remark 4.4 (optimal weights for CISPD kernels). Lagrangian theory indicates that the solution ŵn is obtained by solving the linear equation R n ( ŵ n λ) = (0 1) , where

When K is conditionally SPD, K µ is conditionally SPD too, and the matrix R n has full rank n + 1.

Multiplying the second equation by z n , we get z n K n z n = 0. Since K µ is conditionally SPD, this is incompatible with 1 n z n = 0 unless z n = 0 and z = 0. We obtain

When K is SPD and K n has full rank (Theorem 4.4), we recover ŵn = K -1 n 1 n /(1 n K -1 n 1 n ) and I n = ŵ n y n given by (4.12).

they are all reasonably space lling, with a slightly better behavior for X MN 140 (top right) and X EL 140 (bottom right); X S 140 (not shown) has a few nearly coincident points that appear after n = 110 (this will be revealed by Figure 5.2-right). 140) ) (minimum-norm-point variant where ξ(n) with optimal weights is substituted for ξ (n) at each iteration). Bottom left: X sS 140 (rst 140 points of a scrambled Sobol' LDS). Bottom right: X EL 140 (extensible lattice sequence).

Figure 5.2 shows the scaled values n 1/d CR(X n ) (left, small values are preferred) and n 1/d PR(X n ) (right, large values are preferred) for the ve sequences of nested designs considered, X VD n , X MN n , X S n , X sS n and X EL n , for n = 2, . . . , n max = 140. The behavior of CR(X S n ) on the left panel illustrates the fact that Sobol' sequence has suitable space-lling properties for n equal to a power of two (notice the jump downwards at n = 128) but may perform rather poorly otherwise (and the situation deteriorates as d increases); PR(X S n ) on the right panel reveals the inclusion of nearly coincident points after n = 110. Overall, the scrambled sequence X sS n performs better than X S n but signicantly worse than X VD n and X MN n , both in terms of covering and packing radius. The extensible lattice sequence X EL n performs slightly better than X MN n in terms of packing radius, but CR(X EL n ) is signicantly larger than CR(X MN n ) all along the sequence; X MN n performs consistently better than X VD n for both criteria.

The evolution of E K (ξ n,e -µ) as a function of n, with ξ n,e the empirical measure associated with X n , is shown in Figure 5.3 for X VD n , X MN n and X S n ; E K ( ξn -µ), with ξn having optimal weights (4.7), is shown on the right panel, for the same designs (note that E K ( ξn -µ) ≤ E K (ξ n,e -µ)). X VD n performs slightly better than X MN n in Appendix A. Some convergence properties of conditional gradient algorithms.

We consider a conditional gradient algorithm with iterations given by (4.18). K is a bounded ISPD kernel (and is thus SPD); in contrast with [START_REF] Briol | Frank-Wolfe Bayesian quadrature: Probabilistic integration with theoretical guarantees[END_REF], we do not assume that H K is nite dimensional. In the context of MMD minimization, the criterion is quadratic, which facilitates the developments to follow, but the results presented The convexity of g(•) and the denition of ∆ n imply that

The rest of the proof is by induction on n. The bound (A.1) is valid for n

Using α = 2/(n + 3) in (A.2), one can easily prove by induction that g(ω (n) ) ≤ 8 λ max (K)/(n + 3) for all n, see [START_REF] Clarkson | Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm[END_REF], which means that (4.18) with α n = 2/(n + 3)

with thus a much faster decrease than (A.1). Using a dierent approach, it is shown in [START_REF] Dunn | Conditional gradient algorithms with open loop step size rules[END_REF] that a rate of decrease of O(1/n) is also obtained when α n corresponds to the sequence

Remark A.1 (the innite-dimensional situation). A property similar to Theorem A.1 remains valid in the innite-dimensional case, when working directly in the set M + (1) of probability measures on X . For the sake of simplicity, here we only consider the case when K is uniformly bounded, with moreover K(x, x) = 1 and K(x, x ) ≥ 0 for all x, x . One may refer to [START_REF] Chen | Stein points[END_REF] for a deeper analysis, including in particular results in the situation where approximate minimization over a nite set is conducted to select x n+1 in (4.17). The assumption above on

and we obtain that Algorithm (4.18) with α n = 1/(n + 1), initialized at any ξ (1) in P Ω , satises

The proof is similar to that of Theorem A.1. Denoting ξ (n+

, and the rest of the proof is by induction on n, using ξ (n+1) = ξ (n+) [1/(n + 1)]. Similarly, we get γ 2 K (ξ (n) , µ) ≤ 8/(n + 3) when α n = 2/(n + 3).

40

Next lemma, based on [START_REF] Chen | Super-samples from kernel herding[END_REF], shows that ω (n) -ω 2 K decreases as C/n 2 when ω lies in the interior of P Ω . Here, contrary to [START_REF] Chen | Super-samples from kernel herding[END_REF], we do not assume that H is nite dimensional and use instead the nite dimensionality of ω.

Lemma A.2. When ω is in the interior of P Ω , (4.18) with α n = 1/(n+1), initialized at any ω (1) in P Ω , satises

where

Then, for any i = 1, . . . , Ω, 

3) The rest of the proof is based on [START_REF] Chen | Super-samples from kernel herding[END_REF]. Denote e + i0 = ω (1) and

K , and we only need to bound z n 2 K . We have

Next Lemma indicates that αn ≤ 1 when ŵ ∈ P Ω , so that setting α n = αn in (4.18) ensures that ω (n) remains in P Ω for all n. It should be noticed that the global decrease of ω (n) -ω 2 K over many iterations with this optimal α n is not necessarily better that with the predened step-size α n = 1/(n + 1) of Section A.1; see in particular [START_REF] Dunn | Conditional gradient algorithms with open loop step size rules[END_REF] for such considerations; see also [START_REF] Bach | On the equivalence between herding and conditional gradient algorithms[END_REF]. One may refer to [START_REF] Dunn | Convergence rates for conditional gradient sequences generated by implicit step length rules[END_REF] for the innite-dimensional situation.

Lemma A.3. When ω ∈ P Ω , αn given by (A.4) is less than or equal to one. Proof. We can write

When ω ∈ P Ω , ωi ≥ 0 for all i, and

Theorem A.2. Algorithm (4.18) with α n = αn given by (A.4), initialized at any ω (1) ∈ P Ω , satises

Proof. The proof follows [20, Sect. 2] and uses the same notation as in the proof of Theorem A.1. The right-hand side of (A.2) is minimum for α = g(ω

.

Since 1 -t ≤ 1/(1 + t) for all t > -1, we obtain

which, by induction, implies that g(ω (n) ) ≤ 8 λ max (K)/(n + 3); that is, (A.5).

Lemma A.4. When ω is in the interior of P Ω , (4.18) with α n = αn given by (A.4), initialized at any ω (1) ∈ P Ω , satises

where R * = [λ max (K) (1 -1/Ω)] 1/2 and α * = w * /L, with w * = min i=1,...,Ω { ŵ} i (so that w * ≤ 1/Ω) and L = (max i=1,...,Ω {K -1 } ii ) 1/2 . Proof. We use the same approach as in [START_REF] Beck | A conditional gradient method with linear rate of convergence for solving convex linear systems[END_REF] and use the same notation as in the proof of Theorem A.1. We can write g(ω (n+1) ) = g[ω (n+) (α n )], with αn given by (A.4). Therefore,

), and thus

.

This implies g(ω (n+1) ) ≤ g(ω (1) ) exp[-α 2 * n/(4R 2 * )], that is, (A.6).

Similarly to Lemma A.2, the small value of the constant α * makes the linear convergence rate in (A.6) of theoretical interest only.

A.3. Vertex-exchange. Following [START_REF] Molchanov | Variational calculus in the space of measures and optimal design[END_REF][START_REF] Molchanov | Steepest descent algorithm in a space of measures[END_REF], one may also use a vertex-exchange method based on the true steepest-descent direction, see also [START_REF] Böhning | Numerical estimation of a probability measure[END_REF][START_REF] Böhning | A vertex-exchange-method in D-optimal design theory[END_REF]. The iterations are then

where x n+1 is given by (4.17) and

with Supp(ξ (n) ) = X n the support of ξ (n) . The step-size α n is then given by min{α n , ξ

Direct calculation gives

For the algorithm dened by (A.7, A.8), we have ω

, where we take i + n ∈ Arg min i=1,...,Ω e i K(ω (n) -ω) and i - n ∈ Arg max i: e i ω (n) >0 e i K(ω (n) -ω). The step size (A.9) equals

, αn } in (A.7), so that ω (n) remains in P Ω for all n. Using the same notation as in the proof of Theorem A.1, we have

and, since ω (n) ∈ P Ω , the convexity of g(•) and the denition of ∆ n imply that

We obtain the following property; the proof is identical to that of Theorem A.2.

Theorem A.3. Suppose that ω and K are such that αn ≤ ω (n) i - n for any ω (n) ∈ P Ω . Then, algorithm (A.7, A.8) with α n = αn given by (A.10), initialized at any ω (1) ∈ P Ω , satises

There exist situations where the condition αn ≤ ω

is not satised. Take for instance Ω = 3, K the identity matrix and ω = (0, 0, 1) , ω (n) = (1/3, 1/3, 1/3) ; then αn = 1/2 > ω

). On the other hand, the condition is satised for instance for ω = 1 Ω /Ω and K the identity matrix (we have i n -= Arg max i:

and Ω i=1 (ω

), and numerical experiments indicate that it holds true in most situations.

Appendix B. Bayesian quadrature: several integrals.

Following [START_REF] O'hagan | Bayes-Hermite quadrature[END_REF], consider a generalization of the situation considered in Section 2.2

where one wishes to estimate

with r(x) = (r 0 (x), . . . , r p (x)) a vector of p + 1 known functions of x, such that the (p + 1) × (p + 1) matrix M r = E µ {r(X)r (X)} exists and is nonsingular. See also [START_REF] Larkin | Probabilistic error estimates in spline interpolation and quadrature[END_REF]. Without any loss of generality, we may assume that r 0 (x) ≡ 1.

We also slightly generalize the model (2.1) by introducing a linear trend h (x)β;

that is, we consider

where h(x) = (h 0 (x), . . . , h p (x)) is a vector of p + 1 known functions of x and β ∈ R p +1 has the normal prior N ( β0 , σ 2 A), non-informative so that we can replace A -1 by the null matrix 0 in all calculations (the choice of β0

being then irrelevant).

We assume that the matrix E µ {h(X)h (X)} is well-dened. For reasons that will become clear below, we shall consider in particular the case where h = r.

The posterior mean and variance of f (x), conditional on σ 2 and K, are now, respectively,

where {H n (x)} i,j = h j (x i ), i = 1, . . . , n, j = 0, . . . , p , and

The posterior mean and covariance matrix of I µ (f ) are

Sequential Bayesian Quadrature, see Section 4.4. Using (B.4) and formulae for the inversion of a block matrix, we obtain the following expressions for det(V n+1 ) and trace(V n+1 ):

.

When p = 0 (r(x) ≡ 1), V n = s 2 n in (4.13) and det(V n+1 ) = trace(V n+1 ) = s 2 n+1

given by (4.15).

Appendix C. Energy and potential for the triangular kernel.

Consider the triangular kernel K θ (x, x ) = max{1 -θ|x -x |, 0}, θ > 0, with µ uniform on [0, 1]. The expressions of E K (µ) and P µ (x) vary depending on the range considered for θ, with in all cases P µ (x) = 0 when x ≤ -1/θ or 1 + 1/θ ≤ x.

2 ≤ θ. E K (µ) = (3θ -1)/(3θ 2 ) and

1 ≤ θ ≤ 2. E K (µ) = (3θ -1)/(3θ 2 ) and