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BAYESIAN QUADRATURE, ENERGY MINIMIZATION
AND SPACE-FILLING DESIGN

LUC PRONZATOT AND ANATOLY ZHIGLJAVSKY*

Abstract. A standard objective in computer experiments is to approximate the behavior of an
unknown function on a compact domain from a few evaluations inside the domain. When little is
known about the function, space-filling design is advisable: typically, points of evaluation spread out
across the available space are obtained by minimizing a geometrical (for instance, covering radius)
or a discrepancy criterion measuring distance to uniformity. The paper investigates connections
between design for integration (quadrature design), construction of the (continuous) BLUE for the
location model, space-filling design, and minimization of energy (kernel discrepancy) for signed mea-
sures. Integrally strictly positive definite kernels define strictly convex energy functionals, with an
equivalence between the notions of potential and directional derivative, showing the strong relation
between discrepancy minimization and more traditional design of optimal experiments. In particular,
kernel herding algorithms, which are special instances of vertex-direction methods used in optimal
design, can be applied to the construction of point sequences with suitable space-filling properties.

Keywords: Bayesian quadrature, BLUE, energy minimization, potential, discrep-
ancy, space-filling design
AMS subject classifications: 62K99, 65D30, 65D99.

1. Introduction. The design of computer experiments, where observations of
a real physical phenomenon are replaced by simulations of a complex mathematical
model (e.g., based on PDEs), has emerged as a full discipline, central to uncertainty
quantification. The final objective of the simulations is often goal-oriented and pre-
cisely defined. It may correspond for example to the optimization of the response of
a system with respect to its input factors, or to the estimation of the probability that
the response will exceed a given threshold when input factors have a given probability
distribution. Achieving this objective generally requires sequential learning of the be-
havior of the response in a particular domain of interest for input factors: the region
where the response is close to its optimum, or is close to the given threshold; see, e.g.,
the references in [38]. When simulations are computationally expensive, sequential
inference based on the direct use of the mathematical model is unfeasible due to the
large number of simulations required and simplified prediction models, approximating
the simulated response, have to be used. A most popular approach relies on Gaussian
process modelling, where the response (unknown prior to simulation) is considered
as the realization of a Gaussian Random Field (RF), with parameterized mean and
covariance, and Bayesian inference gives access to the posterior distribution of the
RF (after simulation). Typically, in a goal-oriented approach based on stepwise un-
certainty reduction [7, 8], the prediction model is used to select the input factors to
be used for the next simulation, the selection being optimal in terms of predicted un-
certainty on the target. The construction of a first, possibly crude, prediction model
is necessary to initialize the procedure. This amounts to approximating the behavior
of an unknown function f (the model response) on a compact domain 2~ C R? (the
feasible set for d input factors) from a few evaluations inside the domain. That is
the basic design objective we shall keep in mind throughout the paper, although we
may use diverted paths where approximation/prediction will be shadowed by other
objectives, integration in particular.
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In general, little is known about the function a priori, and it seems intuitively
reasonable to spread out points of evaluation across the available space; see [10]. Such
space-filling designs can be obtained by optimizing a geometrical measure of dispersion
or a discrepancy criterion measuring distance to uniformity. When using a Gaussian
RF model, minimizing the Integrated Mean-Squared Prediction Error (IMSPE) is also
a popular approach, although not very much used due to its apparent complexity, see,
e.g., [36, 41]. The paper promotes the use of designs optimized for integration with
respect to the uniform measure for their good space-filling properties. It gives a sur-
vey of recent results on energy functionals that measure distance to uniformity and
places recent approaches proposed for space-filling design, such as [64], in a general
framework and perspective encompassing design for integration, construction of the
(continuous) Best Linear Unbiased Estimator (BLUE) in a location model with cor-
related errors, and minimization of energy (kernel discrepancy) for signed measures.
Our objective is to foster the use of designs obtained by minimizing a quadratic mea-
sure of discrepancy, which can be easily computed, for function approximation at the
initial exploratory stage of computer experiments. In particular, we believe that such
constructions are especially useful when the number of function evaluations is not
fixed in advance, and one wishes to have an ordered sequence of points such that any
first n points have suitable space-filling properties.

We start by a quick introduction to Bayesian function approximation and integra-
tion (Section 2), where the function is considered as the realization of a Gaussian RF

with covariance structure defined by some kernel K; see in particular [57, 58, 72, 16]
for Bayesian integration. Section 3 summarizes recent results on the minimization
of energy functionals [21, 88, 89] and extends some to kernels with singularities,

which we believe have great potential for the construction of space-filling designs.
Integrally strictly positive definite kernels define strictly convex energy functionals
(Lemmas 3.1 and 3.2), which yields an equivalence between the notions of potential
and directional derivative that reveals the strong relation between discrepancy min-
imization and more traditional design of optimal experiments. Further connections
are discussed: Bayesian integration is equivalent to the construction of the BLUE in a
model with modified correlation structure (Section 3.5.2), so that the two associated
design problems coincide; the posterior variance in Bayesian integration corresponds
to the minimum of a squared kernel discrepancy for signed measures with total mass
one (Theorem 4.3) and to the minimum of an energy functional for a reduced kernel
(Theorem 4.4). Since the posterior variance criterion in Bayesian integration takes a
very simple form, its minimization constitutes an attractive alternative to the min-
imization of the IMSPE. This is considered in Section 4, which starts by exploring
relations between discrepancy and covering radius. In particular, kernel herding algo-
rithms from machine learning, which are special instances of vertex-direction methods
used in optimal design and can be used for the construction of point sequences with
suitable space-filling properties, are considered in Section 4.4. Section 5 provides a
few numerical examples. The main results are stated as theorems or lemmas; links
to related work, or comments on specific aspects, are isolated in a few remarks; sev-
eral illustrative examples are given to help keeping track of technical developments.
Several auxiliary results are given in appendices. Appendix A describes convergence
properties of the algorithms used in Section 4; it adapts some known results in the
community of optimal design theory to the particular case of a quadratic criterion.
Extension to design for the simultaneous estimation of several integrals is consid-
ered in Appendix B. Appendix C contains technical details for computing energy and
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potential for a particular kernel.
2. Random-field models for function approximation and integration.

2.1. Space-filling design and kernel choice for function approximation.
Let K(-,-) denote a symmetric positive definite kernel on 2" x 2", with associated
Reproducing Kernel Hilbert Space (RKHS) Hg. Denote Ky(-) = K(x,-) and (-, ")k
the scalar product in Hg, so that the reproducing property gives (f, Kx)x = f(x)
for any f € Hg.

Consider first the common framework where the function f to be approximated is
supposed to belong to Hy. Let n,(x) =Y., w; f(x;) = w,  y,, be a linear predictor
of f(x) based on evaluations of f at the n-point design X,, = {x1,...,%x,}, with

x; € Z for all i. Throughout the paper we denote w,, = (wl,...,wn)T, Yn =
[f(X1)7. . ‘7f(xn)]-ra kn() = [KX ()7 .. '7Kvxn(')]—r and {Kn}i,j = K(Xi7xj)7 i,j =
1,...,n. The Cauchy-Schwarz inequality gives the classical result

£ (%) = (x)] = ’f(X) - Zwif(xi)

= ‘<f7 Kx - szKx1>K
i=1

Ky — Y wiKy,

i=1

< s

Hi

where || f||3, depends on f but not on X, and p,(x,w) = [[Kx — 3, wiKx, [l
depends on X,, (and w,) but not on f. Suppose that K, has full rank. For a
given X,,, the Best Linear Predictor (BLP) minimizes p,(x,w) and corresponds to
ni(x) = (W) Ty, with w’ = w(x) = K 'k, (x), which gives p*?(x) = p2 (x, w’) =
K(Xv X) - k;zr (X)Kglkn (X)

A less restrictive assumption on f is to suppose that it corresponds to a realization
of a RF Z,, with zero mean (E{Z,} = 0) and covariance E{Z,Z, } = 02 K(x,x)
for all x, x' in 2, 2 > 0. Then, straightforward calculation shows that n(x) is
still the BLP (the posterior mean if Z, is Gaussian), and o2 p%?(x) is the Mean-
Squared Prediction Error (MSPE) at x. This construction corresponds to simple
kriging; see, e.g., [4, 94]. IMSPE-optimal designs minimize the integrated squared
error IMSPE(X,,) = 02 [, pt2(x)dp(x), with u generally taken as the uniform prob-
ability measure on 2, see, e.g., [30, 41, 83].

IMSPE-optimal designs X} depend on the chosen K. It is well known that the
asymptotic rate of decrease of IMSPE(X) as n increases depends on the smoothness
of K (the same is true for the integration problem); see for instance [32]. It is rather
usual to take K stationary (translation invariant), i.e., satisfying K(x,x’) = ¥(x —
x') for all x and x’, with ¥ in some parametric class selected according to prior
knowledge on the smoothness properties of f. A typical example is the Matérn class
of covariances, see [90, Chap. 2]. On the other hand, for reasons explained in Section 1,
computer experiments often use small values of n, and the asymptotic behavior of the
approximation error is hardly observed. Its behavior on a short horizon is much
more important and strongly depends on the correlation lengths in K, which are
difficult to choose a priori. Robustness with respect to the choice of K favours space-
filling designs, where the x; are suitably spread over Z". Noticeably, it is shown in
[85] that for translation invariant and isotropic kernels (i.e., such that K(x,x’) =
U(|lx — x'||), with || - || the Euclidean distance in R%), one has p?(x) < Sk[h.(x)]
for some increasing function Sk (-). Here h,(x) = max|x—x/|<, Mii<i<qp [|X" — x|
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measures the density of design points x; around x, with r a fixed positive constant.
It satisfies, maxxe 2 h-(X) > maxxe 2 ho(x) = CR(X,,), with

CR(X,) = max min [lx — x|,

the covering radius of X,,: CR(X,,) defines the smallest r such that the n closed balls
of radius r centred at the x; cover 2". CR(X,,) is also called the dispersion of X,, [69,
Chap. 6] and corresponds to the minimax-distance criterion [49] used in space-filling
design. Loosely speaking, the property p2(x) < Skl[h,(x)] quantifies the intuition
that designs with a small value of CR provide precise predictions over 2 since for
any x in 2 there always exists a design point x; at proximity where f(x;) has been
evaluated. Another standard geometrical criterion of spreadness is the packing (or
separating) radius

1
PR(X,.) = 5 min|x; — ;]|

It corresponds to the largest r such that the n open balls of radius r centred at the
x; do not intersect; 2 PR(-) corresponds to the maximin-distance criterion [19] often
used in computer experiments. The packing radius PR(X,,) is a simpler characteristic
than the covering radius CR(X,,), in terms of evaluation and optimization, see, e.g.,
[74]. Regularized versions of PR(X,,) are well-known, see Example 3.5; regularization
of CR(X,,) is considered in [78].

In this paper, we shall adopt the following point of view. We do not intend to
construct designs adapted to a particular K chosen from a priori knowledge on f.
Neither shall we estimate the parameters in K (such as correlation lengths) when K
is taken from a parametric class. We shall rather consider the kernel K as a tool for
constructing a space-filling design, the quality of which will be measured in particular
through the value of CR. The motivation is twofold: (i) the construction will be much
easier than the direct minimization of CR, (ii) it will facilitate the construction of
sequences of points suitably spread over 2.

2.2. Bayesian quadrature. Denote by .# = .#[Z’] the set of finite signed
Borel measures on a nonempty set 2, and by .#(q), g € R, the set of signed measures
with total mass ¢: #(q) = {u € A : pn(Z) = q}. The set of Borel probability
measures on 2 is denoted by .#T(1), .#4™" is the set of finite positive measures
on 2. Typical applications correspond to 2 being a compact subset of R¢ for
some d.

Suppose we wish to integrate a real function defined on 2" with respect to p €
At (1). Assume that E, {|f(X)|} < +o0 and denote

&mzmwmna@ﬂwwm.

We set a prior on f, and assume that f is a realization of a Gaussian RF, with
covariance o2 K (-, ), 2 > 0, and unknown mean (3y; that is, we consider the location
model with correlated errors

f(x)=Bo+Zz, (2.1)

where E{Z,} = 0 and E{Z,Z,/} = 0® K(x,x') for all x,x’ € 2. Regression models
more general than (2.1) are considered in Appendix B; one may refer to [16] for an
4



extensive review of Bayesian quadrature. Here K is a symmetric Positive Definite
(PD) kernel; that is, K(x,x') = K(x/,x), and for all n € IN and all pairwise different
X1,y. .., Xy € 27, the matrix K,, is non-negative definite; if K,, is positive definite, then
K is called Strictly Positive Definite (SPD). Note that K?(x,x’) < K(x,x)K (x/,x') <
+oo for all x,x’ € 2 since K corresponds to a covariance. We will call a general
kernel K bounded when K(x,x) < oo for all x € 2", and uniformly bounded when
there is a constant C' such that K(x,x) < C for all x € Z". Any PD kernel is
bounded.

Similarly to Section 2.1, we denote by Hy the associated RKHS and by (-, )k
the scalar product in Hg. The assumption that K is bounded will be relaxed in
Section 3.2 where we shall also consider singular kernels, but throughout the paper
we assume that K is symmetric, K(x,x') = K(x/,x) for all x,x’ € 2. Also, we
always assume, as in [34, Sect. 2.1], that either K is non-negative on 2" x Z°, or 2
is compact.

We set a vague prior on 3y and assume that Sy ~ .4 (30,02 A) with A — +o0.
This amounts to setting 1/A = 0 in all Bayesian calculations; the choice of Bg is
then irrelevant. Suppose that f has been evaluated at an n-point design X, =
{X1,...,Xp} € 2™ with pairwise different points. We assume that K,, has full rank.
For any x € 2, the posterior distribution of f(x) (conditional on o2 and K) is
normal, with mean

(%) = 5 + kn GOK;, (ya — B3 10)
and variance (mean-squared error)

(1 -k, (0K, '1,)

o) = 0% | Kx,x) — ] (0K ko (x) + a2l (2)
n n n
where
2 1;LFK;IYH
b =" 2.3
g 1K', 23)
and 1, is the n-dimensional vector (1,...,1)T, see for instance [¢4, Chap. 4]. The
posterior mean of I,,(f) is thus
I, = /% ﬁn(x) d/L(X) = Eu{ﬁn(x)} = Bg + pn(ﬂ)TK;I(yn - 33 n) ) (24)
with
P (i) = (Pu(x1), -, Pulxa)) T, (2.5)

where, for any v € .# and x € 27, we denote
P,(x) = / K(x,x')dv(x'). (2.6)
x

P,(+) is called the kernel imbedding of v into H, see [38, Def. 9]; P, (x) is well-defined
and finite for any v € .# and x € 2" when K is uniformly bounded. On the other
hand, there always exists v € .# such that P,(x) is infinite for all x € 2" when K
is not uniformly bounded on 2". The function P,(-) is called a potential in potential
theory, see Section 3.2.



Similarly to (2.2), we obtain that the posterior variance of I,,(f) is

(1-p, (WK, '1,)

st =t ) = Pl (K o) + BRIl | o
where, for any v € .#, we denote
Ex(v) = K(x,x')dv(x)dv(x') . (2.8)

22

This is one of the key notions in potential theory, called the energy of v; see Sec-
tion 3.2. For p in .#*(1), we have &x(n) = E,{K(X,X')} where X and X' are
independently identically distributed (i.i.d.) with p. The quantity —&k (u) corre-
sponds to the quadratic entropy introduced by C.R. Rao [80]; see also Remark 3.1.
Define

///I‘?:{VE%:/%KQ(X,X)d|V|(x)<—|—oo} a0, (2.9)

When p € A 11(/ 2, the reproducing property and the Cauchy-Schwarz inequality imply
that

Sic) = [ (KK ) dndu(x)

< [ [ KR < . (2.10)

When Sy is assumed to be known (equal to zero for instance), we simply substitute
Bo for 5§ in (2.4) and the posterior variance is

0% o= 0" [Ex (1) — Py (WK, Pal)] - (2.11)

Bayesian quadrature relies on the estimation of I,(f) by fn An optimal design
for estimating I,,(f) should minimize s2 given by (2.7). One may refer to [24] for
a historical perspective and to [15] for a recent exposition on Bayesian numerical
computation. The framework presented above is similar to that considered in [72]
(where an improper prior density p(Bo,0?) oc 0=2 is set on 3y and o2), restricted to
the case (recommended in that paper) where the known trend function is simply the
constant 1 (which corresponds to the presence of an unknown mean fj in the model
(2.1)). In Section 4, we shall see that s, , is equal to the minimum value of a (squared)
kernel discrepancy between the measure p and a signed measure supported on X,
and that s2 corresponds to the minimum of a squared discrepancy for signed measures
that are constrained to have total mass one, and also corresponds to the minimum
of an energy functional for a modified kernel K. Note that o%s? < IMSPE(X,,) =
0? [, p2(x) du(x) (which requires p € 4y C 2 to be well-defined); we show in
Theorem 4.5 that IMSPE(X,,) < 0?52 4 02 [ [, K(x,x)du(x) — &k (1)]. One of the
key ideas of the paper is that space-filling design may be based on the minimization
of s2 rather than the minimization of the IMSPE.



3. Kernel discrepancy, energy and potentials.

3.1. Maximum mean discrepancy: a metric on probability measures
related to integration. Suppose that K is bounded and f belongs to the RKHS
Hi. Let p and v be two probability measures in .27 (1) N //111(/2. Since f € Hg,
using the reproducing property, we obtain I,(f) = [, (f, Kx)x du(x), L(f) =
f%<f, Ky) i dv(x) and

0 = 1 = | [ 0 K= )00 = 07,2 = Pl
X
with P,(-) and P,(-) the kernel imbeddings (2.6). Define

Vi (11 v) = [P = Po e - (3.1)

The Cauchy-Schwarz inequality yields the Koksma-Hlawka type inequality, see, e.g.,
[47], [69, Chap. 2], [1,(f) = L, ()] < I/ 1k VK (), and

Y (pv) = sup |L(f) = L(f), (3.2)

1l e =1

see, e.g., [39, Th. 1]. Also, the expansion of ||, — P, |3, gives
2 2 1/2
Vi (1, v) = (1Pullzese + 1P N7y — 2(Pu, Po)x)

1/2
- ([ xeex)aw - - ) (33)
%2

Therefore, vk (-, -) is at the same time a pseudometric between kernel imbeddings (3.1)
and an integral pseudometric on probability distributions (3.2). It defines a kernel
discrepancy between distributions (3.3), vk (:,) is also called the Mazimum Mean
Discrepancy (MMD) between p and v in .2 (1) N ///;(/2, see [88, Def. 10].

To define a metric on the whole .#Z " (1), we need P, to be well-defined and so
that P, = P, for p and v in .# (1) implies y = v. This corresponds to the notion
of characteristic kernel, see [39, Def. 6], which is closely connected to the following
definitions.

Definition 3.1. A kernel K is Integrally Strictly Positive Definite (ISPD) on .4
when &k (V) > 0 for any nonzero measure v € M .

Definition 3.2. A kernel K is Conditionally Integrally Strictly Positive Definite
(CISPD) on .# when it is ISPD on .#(0); that is, when &x(v) > 0 for all nonzero
signed measures v € .4 such that v(Z) = 0.

An ISPD kernel is CISPD. A bounded ISPD kernel is SPD and defines an RKHS.
In [89, Lemma 8], the authors show that a uniformly bounded kernel is characteristic
if and only if it is CISPD. The proof is a direct consequence of the expression (3.3) for
the MMD 7k (i, v). They also give (Corollary 4) a spectral interpretation of vx (u, v/)
and show that a translation-invariant kernel such that K (x,x’) = U(x—x'), with ¥ a

uniformly bounded continuous real-valued positive-definite function, satisfies, for any
wand vin 2T (1),

1/2
() = | [ o) = oul)® dhw)
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Here, ¢, and ¢, denote the characteristic functions of 1 and v respectively and A is
the spectral Borel measure on RY, defined by

U(x) = /}R ) e ™' @ qA (w). (3.4)

Using this spectral representation, they prove (Theorem 9) that K is characteristic
if and only if the support of the associated A coincides with R¢. For example, the
sinc-squared kernel K (z,z') = sin?[f(z — 2)]/[0(x — 2')]?, # > 0, is SPD but is not
characteristic (and therefore not CISPD) since the support of A equals [—26, 26], and
the triangular kernel Ky(z,2') = Pg(x — 2’) = max{l — 0|z — 2’|,0} is SPD and
characteristic since the Fourier transform of Wy is the sinc-squared function. When
Vi (14, 0x) is well-defined for all x € 2", with 05 the Dirac delta measure at x (and
thus in particular when K is characteristic), we may consider the empirical measure
Cne = Ene(Xy) = (1/n) Y1 0k, associated with a given design X,, = {x1,...,%,},
and i (i, &ne) of (3.2) gives the worst-case integration error for &, . when f has
norm one in Hp; see Section 4.3.1.

Typical examples of uniformly bounded ISPD, and therefore characteristic, ker-
nels are the squared exponential kernel K;(x,x’) = exp(—t ||x — x'[|?), ¢t > 0, and the
isotropic Matérn kernels, in particular

K3 9(x,x") = (1+ V30 ||x — X'||) exp(—V/30 ||x —x'||) (Matérn 3/2), (3.5)

and Kj /s 9(x,x') = [14 /50 [|x —x'|| + 562 || x —x'||?/3] exp(—V/50 |x —x'||) (Matérn
5/2), see, e.g., [90]. (They are SPD for any d, see [40], and ISPD since the spectral
measure A in (3.4) is strictly positive on R?.) Two other important examples are
given hereafter.

Example 3.1 (generalized multiquadric kernel). The sum of ISPD kernels is ISPD.
Since the squared exponential kernel K;(x,x’) is ISPD for any ¢ > 0, the integrated
kernel obtained by setting a probability distribution on ¢ is ISPD too. One may thus
consider K (x,x’) = [ Ki(x,x")dn(t) for 7 bounded and non decreasing on [0, +00),
which generates the class of continuous isotropic autocovariance functions in arbitrary
dimension, see [87] and [90, p. 44]. In particular, for any € > 0 and s > 0, we obtain

+oo I'(s/2)
AN ! 8/271 _ —
K(X,X)— ; Kt(X,X)t exp( Et)dt* (||X—X/||2+E)S/2 ’

showing that the generalized multiquadric kernel
Koc(x,x)=(x=x'||?+¢7%%, >0, s>0, (3.6)

is ISPD, see also [389, Sect. 3.2]. <
Example 3.2 (distance-induced kernels). Consider the kernels defined by

KO (x,x') = —||x —x||*, s>0, (3.7)
which are CISPD for s € (0,2) [93], and the related distance-induced kernels
K" (x,x') = |[x]|* + |x'||* = [|x = x"||*, s > 0.

Note that &k (1) = Ex (1) when p(Z7) = 0; in [93] Exrs) is called energy dis-
tance for s = 1 and generalized energy distance for general s € (0,2]. For s > 0,
8



the set .#/(-) contains all signed measures p such that [, ||x — xol|* d|u|(x) < o0
for some xg € Z°. This result is a direct consequence of the triangular inequal-
ity when s € (0,1]; for s > 1 it follows from considerations involving semimetrics
generated by kernels, see [¢8, Remark 21]. K'(®) is CISPD for s € (0,2) (K'(*)/2
corresponds to the covariance function of the fractional Brownian motion), but is not
SPD (one has in particular, K'¢)(0,0) = 0); K’® is not CISPD since &2 (1) =
[ xT du(x)][[, xdu(x)], p € A . K(z,2") =1-KW(z,2") =1~ |z —2'| is ISPD
for " =[0,1]. N

3.2. Energy and potentials, MMD for signed measures and singular
kernels. In this section we extend the considerations of the previous section to signed
measures and kernels which may have singularity on the diagonal. The expression (3.9)
shows that the squared MMD between two measures ;1 and v is the energy &k of the
signed measure v — p, hence the importance of considering signed measures besides
probability measures. We believe that singular kernels have great potential interest
for the construction of space-filling designs, due to their natural repelling property.

Definitions 3.1 and 3.2 extend to singular kernels, with Riesz kernels as typical
examples.

Example 3.3 (Riesz kernels). These fundamental kernels of potential theory are
defined by

K(S)(X,X/) = ||X - X/H_s7 s>0, and K(O)(X7 X/) = _log HX - XI” ) (38)

with x,x’ € 2 C R? and || - || the Euclidean norm. When s > d, the energy Er sy (1)
is infinite for any nonzero signed measure, but for s € (0, d) the kernel K, is ISPD.
Since the logarithmic kernel K(g)(x,x’) has a singularity at zero and tends to —oo
when ||x —x'|| tends to 4-o0, it will only be considered for 2" compact; K gy is CISPD,
see [56, p. 80]. <

Consider again &k (u) given by (2.8), with p € .#. In potential theory, this
quantity is called the energy of the signed measure p for the kernel K. Denote

M ={veM:|ExV)| <+oo} .

In the following, we shall only consider kernels that are at least CISPD. When K
is ISPD, &k () is positive for any nonzero p € 4, but when K is only CISPD,
&k (1) can be negative; this is the reason for the presence of the absolute value in the
deﬁnition of M. Note that .#k is the set of measures such that &k (ut), &k (u~) and
Ex(pt,pn™) = [4o K(x,x") dpt (x)dp™ (x') are all finite, with 4™ and p~ denoting
the posmve and negative parts of the Hahn-Jordan decomposition y = u™ — p~ of
u, see [34, Sect. 2.1]. Also note that when K is bounded and defines an RKHS,
MF C My for any o > 1/2, see (2.9) and (2.10); when K is uniformly bounded,
My = M.

For any p € A, P,(x) given by (2.6) is called the potential at x associated with
Ex(p). It is well- deﬁned with values in R U {—o0, +00}, when P, (x) and P,- (x)
are not both infinite. Also, P,(x) is finite for py-almost any x, even if K is singular,
when p € .Z%(1) ﬂ///ll(/z.

When K is ISPD, we can still define MMD through (3.3),

(s v) = 67w =), (3.9)
since &x (v — p) is nonnegative whenever defined. The set M forms a pre-Hilbert
space, with scalar product the mutual energy &x (i, v) = [, K(x,x') du(x)dv(x’)
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and norm 5}1{/2 (1). Denote by Pk the linear space of potential fields P, (), p € Ak
when K defines an RKHS Hg, || Pullu, = é’ll{/z(u), so that #x C Hk, and Pk is
dense in Hg. For Pk to contain all functions Ky(-) = K(-,x), x € 27, we need
dx € My for all x, which requires K (x,x) < oo for all x € 2.

For p,v € My, Ex(p,v) defines a scalar product (P,,P,)», on Pg, with
vr (1, V) = || Py — P,|| 2, . Similarly to Section 3.1, we obtain

Te(pv) = sup K (x,x) de(x)d(n — v)(x) (3.10)
fedr, Ex(§)=11J 22

= sup |I,(h)—L(h);

1Pl 2, <1

that is, a result that extends (3.2) to general ISPD kernels. If K is only CISPD, we
can also define yx (i, V) in the same way when considering measures p,v € .#(1); we
then define &k as the linear space of potential fields P, (-), u € .#x N .#(0), and in
(3.10) we restrict £ to be in .Z(0).

When K is singular, there always exists v in .#k such that P, (x¢) = +o0 for some
xo. Consider for example the Riesz kernel K4 (x,x’) with s € (0,d); .#k contains
in particular all signed measures with compact support S(u) whose potential P, (x) is
bounded on S(1), see [36, p. 81]. Take v as the measure with density c/|x — xql|*~¢
on ', with xo € 27; we have &, () < oo for 2" compact, but P, (xp) = +00. As
a consequence, as noted in [21], singular kernels have little interest for integration.
Indeed, take p,v € Mk and h = P, € P, then |I,(h)| < ||h]loy & (1) =
&1(/2@)(53[1(/2 () < oo, whereas |I¢, (h)| may be infinite for some discrete approximation
&, of 4 as h can be infinite at some points. Singular kernels may nevertheless be used
for the construction of space-filling designs, see for instance the example in Section 5.3,
and this is our motivation for considering them in the following.

The key difficulty with singular kernels is the fact that delta measures do not
belong to .#k. An expedient solution to circumvent the problem is to replace a
singular kernel with a bounded surrogate. For instance, in space-filling design we may
replace the Riesz kernel K ), s > 0, by a generalized inverse multiquadric kernel K
given by (3.6), and consider the limiting behavior of the designs obtained when ¢ — 0,
see Section 4.3.1; see also [79] for other constructions.

3.3. Minimum energy and equilibrium measures. In this section, we show
that there exist strong connections between results in potential theory and optimal
design theory, where one minimizes a convex functional of u € .#7(1), with the
particularity that here the functional is quadratic. This will be exploited in particular
in Section 4.4 for the construction of nested design sequences.

3.3.1. ISPD kernels and convexity of &k (-).
Lemma 3.1. K is ISPD if and only if #k is convex and &k (-) is strictly convex
on M.
Proof. For any K, any p and v in .#§ and any « € [0, 1], direct calculation gives

(1-a)ék(p)+aéx(v)—Ex[(l—a)p+av]=a(l —a)éx(v—p). (3.11)

Assume that K is ISPD. For any p and v in .#k, the mutual energy &k (u,v)

satisfies |€x (1, V)| < /Ex (1) Ex (V) < +00. Therefore, Ex (t—v) = Ex (1) +Ex (V) —
2 Ex (u, v) is finite and (3.11) implies that &k [(1 — a)u + av] is finite, showing that
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My is convex. Since K is ISPD, &k (v — p) > 0 for p,v € A, v # pu, and (3.11)
implies that &k (-) is strictly convex on .#k.

Conversely, assume that .# is convex and &k (+) is strictly convex on .#. Any
& € My can be written as £ = v — p with, for instance, v = 2§ and p = &, both in
M. If E(+) is strictly convex on Ak, (3.11) with a € (0,1) implies that &k (£) > 0
when v # pu, that is, when £ # 0. Therefore, K is ISPD. [ |

Lemma 3.1 also applies to singular kernels. The lemma below concerns CISPD
kernels, which are assumed to be uniformly bounded.

Lemma 3.2. Assume that K is uniformly bounded. Then, K is CISPD if and only
if &k (+) is strictly convex on A (1).

Proof. Since K is uniformly bounded, .# = .#. Assume that K is CISPD. Then,
Ex(v—p) > 0for any p # v € #(1), and (3.11) implies that & () is strictly convex
on . (1).

Assume now that &k (+) is strictly convex on .#(1). Take any non-zero signed
measure ¢ in .#(0) and consider the Hahn-Jordan decomposition £ = £* — £~ with
ENZ)=¢(2)=c>0. Denote v =& /e, p =& /e, with v and pin Z+(1) (v
and p are in # since K is uniformly bounded). Then, for any a € (0,1), (3.11) and
the strict convexity of &k () on . (1) gives Ex (&) = 2 Ex (v — p) > 0. [ ]

Note that one may replace .# (1) by .#*(1), or by any .#(v) with v # 0, in
Lemma 3.2.

3.3.2. Minimume-energy probability measures. In the remaining part of
Section 3.3, we assume that K is such that &k (-) is strictly convex on .7 (1) N.#k
and . (1) N A, which is true under the conditions of Lemma 3.1 or Lemma 3.2.

For p,v € M, denote by Fi (u;v) the directional derivative of &k (+) at p in the
direction v,

Sl —a)u+av] - Ex(p)

a—0t o

Straightforward calculation gives

Fr(pv)=2 [ - K(x,x')dv(x)du(x") — Ex(p) | - (3.12)

In particular, for any x € £, the potential P,(x) associated with ;1 at x satisfies

Pa) = 3 Fics ) + ).

Remark 3.1 (Bregman divergence and Jensen difference). The strict convexity of
&x (-) implies that &x (v) > Ex (1) + Fr (i, v) for any p, v € Ak, with equality if and
only if v = p. This can be used to define a Bregman divergence between measures in
My (and thus between probability measures in .+ (1) N .#k), as

Bk (p,v) = Ex(v) — [k (1) + Fr (1, v)];

see [81]. Direct calculation gives By (u,v) = &k (v — u) (with therefore By (u,v) =
Bk (v, 11)), providing another interpretation for the MMD ~g (u, v), see (3.9).

The squared MMD is also proportional to the dissimilarity coefficient, or Jensen
difference, Aj(p,v) = (1/2)[Ex (1) + Ex (V)] — Ex (1 + v)/2] of [80]; indeed, direct
calculation gives v (u,v) = Ex (v — p) = 4 Ay (p,v). <
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Assume that 2 is compact. Since &k (-) is strictly convex on .# 7 (1), there
exists a unique minimum-energy probability measure. The measure u} €. #t(1)is
the minimum-energy measure if and only if Fx(uk;v) > 0 for all v € .#Z*(1), or
equivalently, since v is a probability measure, if and only if FK(;J(; dx) > 0 for all
x € 4. We thus obtain the following property, called equivalence theorem in the
optimal design literature.

Theorem 3.1. When &x(-) is strictly convex on A+ (1) N My, pl € T (1) is the
minimum-energy probability measure on 2 if and only if

Vxe X, P“;(x) > Ex (1) -

Note that, by construction, [, Pﬂ; (x)duf (x) = &k (p}), implying P#} (x) =
Ex (ujfz) on the support of pjf. The quantity Cjt = [inf,ec 4+ 1) Ex (1) 7F, with K
an ISPD kernel, is called the capacity of 2" in potential theory; note that Clt > 0.
The minimizing measure uj, € .#*(1) is called the equilibrium measure of 2 (uj;
is sometimes renormalized into C uk, see [36, p. 138]). Theorem 3.1 thus gives a
necessary and sufficient condition for a probability measure p to be the equilibrium
measure of 2.
Example 3.4 (continuation of Example 3.2). Properties of minimum-energy prob-
ability measures put = ,u;r((s) for K(*) given by (3.7) with 2" a compact subset of
R4, d > 2, are investigated in [11] and [76]. The mass of u* is concentrated on the
boundary of 2", and its support only comprises extreme points of the convex hull
of 2" when s > 1; for 0 < s < 2, u™ is unique; it is supported on no more than d + 1
points when s > 2.

Take 2" = %4(0,1), the closed unit ball in R?. For symmetry reasons, u* for
0 < s < 2 is uniform on the unit sphere .#;(0,1) and

Sty == [ =Pt G0t () = = [ = x it (),
2 x
where xg = (1,0,...,0)". Denote by 14(-) the density of the first component ¢ = z

of x' = (24,...,2/) 7. We obtain ¢4(t) = (d — 1) Va_1 (1 — t*)1@=3/2/(dV,), with
Va = n%?/T(d/2 4 1) the volume of %4(0,1), and

! 24=9=21(d/2)T[(d + s — 1) /2]
Evin(ut) = — 1—1)2+1— 272 g(t)dt = —
In particular, &) (ut) = —4/7 when d = 2 and is a decreasing function of d. When

s = 2, the uniform distribution on the unit sphere is also optimal, and the minimum
energy equals —2 for all d > 1, but u* is not unique and the measure allocating equal
weight 1/(d + 1) at each of the d 4 1 vertices of a d regular simplex with vertices on
the unit sphere is optimal too. <
Example 3.5 (continuation of Example 3.3). Consider Riesz kernels K|y, see (3.8),
for 27 = %4(0,1). When s > d, &, (v) is infinite for any non-zero v € ., but for
0 < s < d there exists a minimum-energy probability measure p+ = “}(5)‘ When

d>2and s € (0,d — 2], uT is uniform on the unit sphere .#;(0,1) (the boundary
of Z); the potential at all interior points satisfies P,+(x) > &k, (u") with strict
inequality when s € (0,d — 2). When s € (d — 2,d), u* has a density ¢,(-) in
'@d(07 1)7

72T (1 + 5/2) 1

20 = T —w=9/3 G- W7
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and the potential P, (-) is constant in %,4(0, 1), see, e.g., [56, p. 163].

When d < 2 and s = 0, p* has a density in #»(0,1) and P+ (-) = &k, (#") in
%5(0,1). In particular, for d = 1, 4 has the arcsine density 1/(7mv/1 — 22) in [-1, 1]
with potential P,+(z) = log(2) — log(||z| + V22 — 1), € R (and P,+(z) = log(2)
for z € [-1,1)).

The energy &k ., is infinite for empirical measures associated with n-point designs
X,,- One may nevertheless consider the “physical” energy

Ery (Xn) = [2/n(n—1)] 3 |lxi — x|~ (3.13)

1<i<j<n

(gK(S)(Xn) = —[2/n(n — D] <icj<nlogllxi — x| when s = 0), which is finite
provided that all x; are distinct, see [21]. An n-point set X’ minimizing gK@ (X,) is
called a set of Fekete points, and the limit lim,, é";;(ls) (X*) exists and is called the

transfinite diameter of 2". For large s, @5[;(1{ *(X,,) can be considered as a regularized

version of the packing radius PR(X,,), see [76]. A major result in potential theory, see,
e.g., [11], is that the transfinite diameter coincides with the capacity C;g(;) of Z'. It

C’;g(s) > 0, then u}}(s) is the weak limit of a sequence of empirical probability measures

associated with Fekete points in X} . In the example considered, gK(S) (X*) tends to
infinity when s > d, but any sequence of Fekete points is asymptotically uniformly
distributed in 27; &k, (X},) grows like n*/4=1 for s > d (and like logn for s = d). <
Remark 3.2 (Stein variational gradient descent and energy minimization). Varia-
tional inference using smooth transform based on kernelized Stein discrepancy pro-
vides a gradient descent method for the approximation of a target distribution; see
[60] and the references therein; see also [22] for a Newton variational method. The
fact that the construction does not require knowledge of the normalizing constant of
the target distribution makes the method particularly attractive for approximating a
posterior distribution in Bayesian inference. Direct calculation shows that when the
kernel is translation invariant and the target distribution is uniform, then Stein vari-
ational gradient corresponds to steepest descent for the minimization of the energy
&k (&n,e) of the empirical measure &, . = (1/n) Y ., d,; that is, at iteration k each
(k)

design point x,;’ is updated into

(k+1) _ (k) P
i XY Z ‘ (k)
i<j X=X,

0K (x x(k))
ox

for some v > 0. The construction of space-filling design through energy minimiza-
tion has already been considered in the literature; see, e.g., [50]. In particular, it
is suggested in [3] to construct designs in a compact subset 2~ of R¢ by minimiz-
ing gK@) (X,,) given by (3.13) (note that for d > 3 design points constructed in this
way are not asymptotically uniformly distributed in £7). This approach tends to
push points to the border of 2", similarly to the maximization of the packing radius
PR(X,). <

3.3.3. Minimume-energy signed measures. From (3.9), the squared MMD is
the energy of a signed measure. Also, even if u is a probability measure, the measure
v € (1), with fixed support different from that of u, that minimizes v (u,v), is
not necessarily a probability measure. Hence the importance of considering energy
minimization for signed measures and not only probability measures.

13



The situation is slightly different from that in the previous section when we con-
sider measures in . (1). In that case, u} is the minimum-energy measure in .# (1)
if and only if Fx(pj;v) = 0 for all v € #(1), this condition being equivalent to
Fr(15; 0x) = 0 for all x € 2°. We thus obtain the following property.

Theorem 3.2. When &k () is strictly convex on A (1) N My, 1wy € A (1) is the
minimum-energy signed measure with total mass one on 2 if and only if

Vx € X, P (x) = Ex()- (3.14)

If we define now a signed equilibrium measure on 2 as a measure u € # (1)

such that P,(x) is constant on 2°, from the definition of P,(-), when such a mea-
sure exists it necessarily satisfies the condition of Theorem 3.2 and therefore coin-
cides with puj.. Similarly to the case where one considers probability measures in
AT (1), we can define the (generalized) capacity of 2 for measures in .Z(1) as
Ci = [Inf ey Ex ()] ™1, with Ck = 1/Ex(uf) when pje exists, see [21, p. 824]
(note that C}- may be negative). However, u} may not exist even if 2" is compact.
Notice in particular that .# (1) is not vaguely compact, contrarily to .#*(1) (and for
Riesz kernels (3.8) with s <d — 1, .#k_,, is not complete contrarily to .#x , N MT
[56, Th. 1.19]).
Example 3.6 (continuation of Examples 3.2 and 3.4). Take K (z,2') = K (z,2') =
—lx —2'|° on & = [0,1], s € (0,2), see (3.7). K is CISPD, and there exists a
unique minimum-energy probability measure p™ = ﬂ;m in .#*%(1). On the other
hand, below we show that minimum-energy signed measures in .# (1) do not belong
to .47 (1) when s € (1,2) and that there is no minimum-energy signed measure in
A (1) when s > 2.

When s € (0,1), u* has a density ¢(*)(-) with respect to the Lebesgue measure
on [0,1],

s _ Il —s/2] 1
v (e e ezl
and P+ (z) = E(ut) = —/al(1 —5/2)/{2°T[(1 — s)/2] cos(mws/2)} for all z € 2

(and &(p) — —1/2 as s — 17). The fact that P,+(x) = &(uT) for all z € &
indicates that u™ is the minimum-energy signed measure with total mass one when

s €(0,1).

When s € [1,2), ut = (do + 1)/2; the associated potential is P,+(z) = —(|z|* +
I1—2®)/2> &(pt) = —1/2, x € 2 (note that P,+(z) = —1/2 for all z € 2~ when
s=1).

Consider now the signed measure j,, = [(1 +w)/2](dp + 61) — w1/, w > 0, so
that p,(2) = 1 (i-e., pw € #(1)). Direct calculation gives Exs) () = —(1 +
w)(1 + w — 227%w), which is minimum for w = w.(s) = (1 — 217%)/(2%7% — 1)
when s < 2, with &g (ftw, (5)) = 2(1 — 227%)/(4 — 2°)%. For s € (1,2) we get
Exc(o) (P, (5)) < E(pT) = —1/2, and there exist signed measures in .# (1) such that
Erc») (pw) < E(u™). Therefore, minimum-energy signed measures with total mass
one are not probability measures. For s > 2, lim,, 400 €5 (s) (ftw) = —00, and there is
no minimum-energy signed measure; in particular, &) () = —(w+1)/2 for s = 2.

q

Example 3.7 (continuation of Examples 3.3 and 3.5). Consider Riesz kernels Ky,
see (3.8), for 2" = $4(0,1),d > 2 and s € (0,d—2); the minimum-energy probability
measure 47 is then uniform on the unit sphere .#;(0, 1) and the potential at all interior
points satisfies P+ (x) > &k ., (u"). Consider the signed measure 1, = (1 +w)u™ —
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wp(") | with (") uniform on the sphere .#4(0,r) with radius » € (0,1). Calculations
similar to those in the proof of [56, Th. 1.32] show that &k, (w) < &k, (n") for
w small enough, indicating that p* is not the minimum-energy signed measure with
total mass one. <

3.3.4. When minimume-energy signed measures are probability mea-
sures. Unlike minimum-energy probability measures, minimum-energy signed mea-
sures do not always exist, but the following property provides a sufficient condition
for their existence. Also, we shall see in Section 3.5.1 that the existence is always
guaranteed after a suitable modification of the kernel.

Theorem 3.3. Assume that K is ISPD and translation invariant, with K(x,x') =
U(x —x') and U continuous, twice differentiable except at the origin, with Laplacian
Ag(x) = Z?:l 0?W(x)/0z2 >0, x # 0. Then there exists a unique minimum-energy
signed measure py; in A (1), and uy; is a probability measure.

Proof. The conditions of Theorem 3.1 are satisfied, and there exists a unique
minimum-energy probability measure p* such that P,+(x) > &g (u') for all x € 2.
It also satisfies P,+(x) = &k () on the support of p*. On the other hand, the
conditions on K imply that for any p in .#*(1), P,(-) is subharmonic outside the
support of 4, see, e.g., [56, Sect. 1.2]. The first maximum principle of potential theory
thus holds [56, Th. 1.10]: P,(x) < c on the support of y implies P,(x) < ¢ every-
where. Applying this to u*, we obtain that P,+(x) < &k (uT) everywhere; therefore,
P+ (x) = &k (pT) for all x € 2. Theorem 3.2 implies that x4 is the minimum-energy

w
signed measure with total mass one. [ |

The central argument for the proof of the property above is that P,(-) is sub-
harmonic outside the support of p for any probability measure p with finite energy.
The weaker condition ¥(z — ') = ¢(|x — 2’|) with ¢(-) convex on (0, c0) is sufficient
when d = 1, which corresponds to the result of Hajek (1956). When d > 2 with
U(x —x') = ¢(||lx —x'||]), ¥(-) must have a singularity at 0 to have Ay (x) > 0 for all
x # 0. For the Riesz kernels K4 of (3.8), we have A(|[x[|7*) = s(s +2 —d)/||x[**2,
x # 0. When d > 2 and s € (0,d — 2], P, is superharmonic in R¢, and when
s € [d—2,d), P, is subharmonic outside the support of x4, u* being then the minimum-
energy signed measure [35, 56]. This is also true for the logarithmic kernel for d < 2,
with A(—1log[|x||) = (2 — d)/||x||?, x # 0. Examples 3.5 and 3.7 give an illustration.

Other examples of kernels satisfying the condition of Theorem 3.3 are given by
K(x,x') = h[K(y)(x,x')] where K(, is a Riesz kernel with s € [d —2,d) and h is
a twice-differentiable increasing and convex function (in fact, the continuity of h is
sufficient, see [1, p. 13]).

In Theorem 3.3 we can also consider CISPD kernels. For example, for the kernels
K©) of (3.7), we have A(—||x||*) = s(2 — s — d)/||x]|*"%, x # 0. Potentials are
superharmonic for d > 2. When d = 1, they are superharmonic for s € [1,2); they
are subharmonic and satisfy the maximum principle for s € (0, 1), see Example 3.6.

3.4. Best Linear Unbiased Estimator (BLUE) of (). In Section 3.5.2, we
shall see that Bayesian integration in the model (2.1) corresponds to the construction
of the BLUE of 3y in a model with a suitably modified covariance. Here we consider
the BLUE in the original model, and show that its existence is equivalent to that of
a minimum-energy signed measure for K.

3.4.1. Continuous BLUE. Consider again the situation of Section 2.2 where
0% K corresponds to the covariance of a random field Z,. Suppose that we may
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observe f(-) over 2" in order to estimate Sy in the regression (location) model with
correlated errors (2.1). Any linear estimator of 3 takes the general form

Bo = Bo(€) = /% £(x) dé(x) = Ie(f)

for some & € .4, and fy(€) is unbiased when & € .Z(1). Its variance is

Ve = E{(Bo(€) — Bo)?} = 0% 8k (€) ;

see [68, Sect. 4.2]. The existence of a minimum-energy signed measure u} is then
equivalent to the existence of the continuous BLUE B(’j for By, with B;; = BO(M’;{);
the variance of Bg is proportional to the minimum energy &x (i} ), and Theorem 3.2
corresponds to Grenander’s theorem [13]. Also, from that theorem, the existence of
W is equivalent to the existence of an equilibrium measure that yields a constant
potential on Z". It can be related to a property of the generalized capacity Cj, as
shown in the following theorem.

Theorem 3.4. When K is ISPD, the constant function 14 equal to 1 on 2 belongs
to the space Pk of potential fields if and only if there exists a minimum-enerqgy signed
measure i € A (1), with Ex(py) # 0. Moreover, the generalized capacity C5; is
finite and nonzero, and satisfies ||14°]1%,, = Cjk.

Proof. Suppose that 19~ € Y. There exists u € Ak such that P, = 14-; that is,
P,(x) =1 for all x € 2. The definition of P, yields &x (1) = p(2Z"), which is finite
and strictly positive since K is ISPD and p # 0. Denote p/ = p/u(27) € #(1). We
obtain Py (x) = 1/u(Z") = k(') > 0 for all x € 2. Theorem 3.2 implies that
i is the minimum-energy measure pj,. Also, Cj = 1/8x (1) = u(Z) # 0, with
[1211%, = &k (1), see Section 3.2.

Suppose now that there exists a minimum-energy signed measure uj, € #(1)
with &g (uuf) # 0. Theorem 3.2 implies that P,x (x) = &k (uj) for all x € 2.
For 1 = pj/Ex(nf), we get Pu(x) = 1 for all x € 27, and |12, = &x(n) =
1/ 1) "

Under the conditions of Theorem 3.3, the BLUE exists, 55 = o(u}), with zif; the
minimum-energy probability measure, and its variance equals o2&x (u};). The exis-
tence of a minimum-energy signed measure is not guaranteed in general, in particular
when K(x,x') = ¥(x — x’) and ¥ is differentiable at 0; see Example 3.8 below.

3.4.2. Discrete BLUE. Consider the framework of Section 2.2, with the same
notation, and suppose that the n design points x; in X,, are fixed. Any linear estimator
of By in (2.1) has then the form B{f =w, y,, with w,, = (wy,...,w,)" € R". The
unbiasedness constraint imposes w,! 1,, = 1. The variance of Bg equals o?w, K, w,,
and the BLUE corresponds to the estimator 52 given by (2.3) (we assume that K,
is nonsingular). The minimum-energy signed measure in .# (1) (here discrete) pj,
is defined by the weights w* = K1, /(1) K;'1,) set on the points in X,; its
energy is &x (1) = w K,w: = 1/(1)K;'1,) and the variance of the BLUE
equals o2&k (1} ). Note that some components of w} may be negative and that the
potential associated with the measure p} /Ex (1) on 2 = X,, gives the constant
function 14 = 1,, see Theorem 3.4. The optimal design problem for the discrete
BLUE thus corresponds to the determination of the n-point set maximizing 1, K;;'1,,.
Example 3.8. Consider K (z,2') = exp(—0|z —2'|), 0§ > 0, for z,2’ € 2" =[0,1]. K
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is ISPD and satisfies

. . 1
0

so that 12 € Pk, see [2]. The minimum-energy measure in .# (1) is p = (5o + 1 +
Opr)/ (0 + 2), with pf, the Lebesgue measure on 2", and uj, € .#*(1). The BLUE
of By in (2.1) is 8% = [ f(@) dpie (x), its variance equals o2&k (uj) = 202/(0 + 2),
see [68, p. 56]. Note that K’ = K — 2/(0 + 2) is still positive definite, but 14 & Hx-
since ¢?K’ — 1 is not positive definite for any ¢ # 0, see, e.g., [, p. 30], [73, p. 20].
Consider now the squared exponential kernel K (z, 1) = exp(—0|z — 2'|?), § > 0.
The constant 14 does not belong to Hx [91] and the BLUE of §y in (2.1) is not
defined for that kernel. On the other hand, the discrete BLUE (2.3) is well-defined
for any set of n distinct points z;, 37 = w* "y, = 1) K 'y, /(1] K 11,,). Suppose
that the n points z; are equally spaced in 2"~ = [0, 1]. The process Z, in (2.1) has mean
square derivatives of all orders, and, roughly speaking, for large n the construction of
the BLUE mimics the estimation of the derivatives of f and the weights w} strongly
oscillate between large positive and negative values. Figure 3.1-Left shows the optimal
weights (w} /|w]|)(logyo(max{|w}], 1}), truncated to absolute values larger than 1 and
in log scale, when z; = (i —1)/(n — 1), i = 1,...,n = 101. In Figure 3.1-Right, the
kernel is K (x,2') = (1+/5|z — 2’| + 5|z — 2/|?/3) exp(—v/5|z — 2’|) (Matérn 5/2), so
that Z, is twice mean-square differentiable; the construction of the BLUE mimics the
estimation of the first and second order derivatives of f at 0 and 1: here, 19 ¢ Pk
although 14 € Hg; see [30, 46] and [23] for more details. <

o 01 02 03 04 &‘: 06 o7 08 09 1 ~o 01 02 03 04 &5/, 06 07 08 09 1
[3 (3

Figure 3.1: BLUE weights (w;/|w;]|) log;o(max{|w;]|,1}) for z; = (i — 1)/(n — 1), ¢ =
1,...,n = 101. Left: K(z,2") = exp(—|z — 2’|?), Right: K(z,2') = (14 v/5|z — 2| + 5]z —
2'|?/3) exp(—/5|z — 2'|) (Matérn 5/2).

Although a minimum-energy signed measure may not exist, in the next section
we shall see how, for any measure p € .# (1) and any CISPD kernel K, we can modify
K in such a way that the minimum-energy signed measure for the modified kernel
exists (and coincides with p).

3.5. Equilibrium measure and kernel reduction: MMD is equivalent to
energy minimization for a reduced kernel. Minimum-energy signed measures,
when they exist, satisfy the following property.
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Lemma 3.3. If K is CISPD and if a minimum-energy signed measure |1}, exists in
A (1), we have Ex(§) = Ex[€ — E(2 )i + [E(2))? i (wk) . VE € M.
Proof. For any £ € 4, direct calculation gives

Ex (6 — &(2) k] = Ex (&) + €2 e (i) — 26(2) o K (x,x") dpj (x)dg(x)
= 6k (&) — [E(2))? €k (i) ,
where the second equality follows from (3.14). n

Under the conditions of Lemma 3.3, any £ € .# (1) satisfies

Ex(§) = €k (§ — pk) + €k (W) ,

where the first term on the right-hand side equals the squared MMD ~%-(&, u%;), see
(3.9), and the second term does not depend on £. Minimizing the energy &k (&) is
thus equivalent to minimizing the MMD ~g (&, p). However, (i) pf, may not exist,
(#4) in many situations we wish to select a measure £ having small MMD ~x (&, 1) for
a given measure p € Ay . This is the case in particular when one aims at evaluating
the integral of a function with respect to some p € .# (1) (Section 2.2), or when we
want to construct a space-filling design in 2", i being then uniform.

3.5.1. Kernel reduction. Take any p € .#k such that u(2") # 0. Without
any loss of generality, we assume p € . (1). Following [21], we show how to modify
the kernel K in such a way that minimizing the energy &k, (§), & € .#(1), for the
new (reduced) kernel K, is equivalent to minimizing vx, (£, ). Define

K, (x,x') = K(x,x') — P,(x) — P,(x) + &x (1), (3.15)

see [86]. One can readily check that the energy for this new reduced kernel K, satisfies
6k, (Bp) = 0 for any real 3 and that the potential for p associated with K, satisfies
P,(x) = J o Ku(x,x') dp(x) = 0 for all x.

Next theorem indicates that, for any given p in .# (1) N .#, when considering
signed measures § with total mass one, minimizing the energy &%, () is equivalent to
minimizing the MMD vk (&, 1), provided that K is CISPD.

Theorem 3.5. If K is CISPD, then for any u € .4 (1) N Mk, we have
(i) the reduced kernel K,, defined by (3.15) is CISPD;
(ii) p is the minimum-energy measure in A4 (1) for K,, and

VEe M, Ek,(§) = Ekl§ — (X)) = Ek, [§ = &(2 )] .

Proof. For any nonzero £ € .#, direct calculation using (3.15) gives

61,6 = 669 = 26(2) | Kxx) du(aelx) + 62 ()
= Sl &2 ). (3.16)

(i) When £(27) = 0 we get &k, (§) = €k (&), which is strictly positive when £ # 0,
showing that K, is CISPD. (i7) Since [{—£(2")u|(£7) = 0 and K is CISPD, &k, (§) >0
for £ # &(Z)u, showing that p is the (unique) minimum-energy signed measure in
A (1) for K,,. Since &¥, (1) = 0, Lemma 3.3 with K, substituted for K implies that
6k, () = 6k, [§ — E(2)p] for any § € M, which, together with (3.16), concludes
the proof. [ |
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3.5.2. Kernel reduction, BLUE and Bayesian integration. Consider again
the situation of Section 3.4, and define P; as the orthogonal projection of L?(2", i)
onto the linear space spanned by the constant 1; see [37]. The model (2.1) can then
be written as

F(x) = Bo + P12y + (1dp2 ~P1) Zy = By + Zs, (3.17)

where ) = By + P1Z, and ZE = (Idgz —P1)Z,, with Zc having zero mean and
covariance B{Z, Z,} = 02K, (x,x’). The extension to a model with a more general
linear trend is considered in Appendix B. We have seen in Section 3.4 that the variance
of the continuous BLUE of 3 equals o2&k (u}) provided that the minimum-energy
signed measure p} exists. (Note that the prior on §; remains non-informative when
the prior on Sy is non-informative.) On the other hand, we obtain now that the
continuous BLUE of f always exists: it coincides with I,(f) and its variance is
02&(“ (1) = 0. Therefore, as mentioned in introduction, Bayesian integration for the
model (2.1) with correlated errors is equivalent to parameter estimation in a location
model with different correlation structure.

Remark 3.3 (other kernels with zero potential). The approach via kernel reduction,
based on a L?(2", u) orthogonal projection, has the merit of simplicity and pleasant
interpretation through the model (3.17), but it is not the only one that can provide
a kernel with zero potential P, everywhere. Orthogonal projection for the RKHS
scalar product is considered in [29] in order to construct the RKHS of zero mean
functions; see also [25, Sect. 2.5] and [39] for further developments on ANOVA kernel
decomposition. Another possibility is to consider the image of a kernel under a Stein
operator, as recently considered in details in [18]; see also [71]. <

3.6. Separable kernels. From d kernels K; respectively defined on Z; x %25,

1 =1,...,d, we can construct a separable (tensor-product) kernel as
d
K¥(x,x) = [[ Ki(zi,2}), (3.18)
i=1
where x = (z1,...,24)" and x’ = (z},...,2)) " belong to the product space 2 =
Z1 X -+ x Zy. The construction is particularly useful when considering product

measures on 2, since, in some sense, it allows us to decompose an integration problem
in a high dimensional space into its one-dimensional counterparts. Suppose that each
K; is uniformly bounded and CISPD on .#Y) = .#[2%;]; that is, K; is ISPD on
A (0), see Definitions 3.1 and 3.2. One can show that this is equivalent to K®
being ISPD on ®@%_,.#)(0), see [92, Th. 2]. In the same paper, the authors prove
(Theorem 4) that if each K; is moreover continuous and translation invariant, then
K® is ISPD on .#(0); that is, K® is CISPD on .#. Their proof relies on the
equivalence between the CISPD and characteristic properties for uniformly bounded
kernels, and on the characterization of characteristic continuous, uniformly bounded
and translation-invariant kernels through a property of the support of the measure
A defined in (3.4); see Section 3.1. A further attractive feature of separable kernels
is that K®(x,x’) is large when x and x’ are close in some coordinate, which is a
useful feature for the generation of designs having good space-filling performance in
projections, see Section 5.3; see also Remark 3.4.

An important property of separable kernels K® is that kernel reductions K?
defined by (3.15) are easily obtained explicitly. Indeed, when p = @&, u® is a
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product measure on £, then, for all x € 27,

Exco (1 H Ex, (1 (3.19)

H/ Ki(a, 2h) dp® HP(> , (3.20)

which facilitates the calculation of é"Kﬁg (£), in particular when ¢ is a discrete mea-
sure as considered in Section 4. Table 3.1 gives the expressions of &k (1) and P, (z)
obtained for a few kernels, with p uniform on 2 = [0, 1]; the expressions for the
squared exponential and Matérn kernels can be found in [39]. Note that in each
case &y, (§) > 0 for any & € .#(1), & # p. Other more general results are pro-
vided in Table 1 of [16]. Expressions of &x (1) and P,(x) for the triangular kernel
Ko(z,2') = max{l — 0|z — 2/|,0}, 6 > 0 (with g uniform on [0, 1]) are given in
Appendix C.

Remark 3.4 (Projections in subspaces with smaller dimension). Let £ and u be two
measures in .# (1) and consider their squared discrepancy 7%@ (&, ) for the kernel

K®(x,x') = [1%,[1 + K;(x;,2})]. Direct calculation gives

Voo (& 1) Z > Yk, G,

m=1 1<i; <+ <iym,<d

where vk, (& 1) = o [Ty Ko (@i, 27,)d(€ = ) (x)d(€ — p)(x') corresponds to
a squared discrepancy in the m-dimensional space & = Z;, x --- x Z;,,. When u
is uniform on 2” = [0, 1]¢, by choosing a discrete measure &, with small ’y%@ (&ny )
(see Section 4) we may thus construct a design having suitable space-filling properties
in all sub-dimensional subspaces. One may refer to [47] for further developments and
precisions, including in particular the derivation of quadrature error bounds and the
introduction of different weights across dimensions. <

Table 3.1: Energy &k (1) and potential P,(z) for different kernels K with p uniform on
Z =10,1]; Pu(z) = Su(z) + Sp(1 — ) + Tpu(x); Su(:) is continuously differentiable in (0, 1],
T, = 0 when K is translation invariant. F is the c.d.f. of the standard normal distribution.

K(z,2") Ex (1) Su(w) [and T, ()]

e~ 0e—a")? {e7% —14+V7O[2F(v/20)—1]}/6 VT[F(V20z) — 1/2]/V/0
e~ble—a'| 2(0 +e=? —1)/0? z(1 — e~ %121y /(0]z|)
Ky3.0/v3(@,2') in (3.5) 2[0(2+e7%) +3(c™? - 1)]/0? z[2 = (2+ 0lz|)e1*1)/(0]])
(e—a' )+ " (e20) (2/+/€) arctan(1/y/e) —log(1 +1/€)  (1/+/€)arctan(z/\/¢)

(lz —2'| + €))7 (e >0) 2[(1+¢€) log(1+1/€) — 1] sign(z) log(1 + |z|/€)

(le —a'| + )7 V2 (e >0) 422014 1/¢)%/2 —2-3//3 2/esign(z) (/1 + |z|/e — 1)
1—-0lz—2'| (0<6<1) 1-6/3 1/2 — Oz|z|/2

lz —2'|7° (0<s<1) 2/(s% — 35+ 2) z/[(1 — s)|z|®]

—log |z — 2’| 3/2 1/2 — z log |z|

lz| + |2’ — |z — 2’| 2/3 1/4 —zlzl/2_[Tu(x) = |z]
Vizl + V12l = Ve =2l 4/5 1/3 = 2¢/]z[/3 [Tyu(2) = /el

4. Experimental design. From Section 3.3.1, the construction of an optimal
measure £* minimizing &5 (€ — ) forms a particular convex problem (quadratic), and
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therefore presents some similarities with optimal experimental design in a paramet-
ric framework; see [54, 32] for early contributions. There is a noticeable difference
however: optimal experimental design aims at determining the probability measure
(called design measure) £* that minimizes a convex functional ¢(¢), usually a function
®[M(&)] of the information matrix M(&) in a parametric model. Here, the optimal
measure is known (£* = p), and we wish to construct a discrete measure, with a
limited number n of support points, which is close to p in the sense of having small
maximum mean discrepancy \/&x (£ — ).

Consider an n-point design X,, = {x1,...,%X,}, with x;, € 2 for all i. For
&, a finite signed measure supported on X,,, &, = Z?zl w; dx,, we denote w,, =
(wi,...,w,)". As in Section 2.2, we assume that p € .+ (1), with special attention
to space-filling design for which y is uniform on a compact subset 2~ of R%. We
assume that K is a bounded ISPD kernel (and is thus SPD) and that p has finite
energy &k (1), see (2.8). For space-filling design, we may restrict our attention to
translation-invariant kernels. Direct calculation gives

VicEns 1) = Ex (&n — 1) = W Kpwy — 2w, P (1) + Ex (1)

=D wiw; K(xi,%;) =2 Y wi Pu(xi) + Exc(p), (41)
%, i=1

where {K, };; = K(x;,%;), i,j = 1,...,n, and p,(un) is given by (2.5). Note that
&k (pn) and the P,(x;) have simple expressions when K is a separable kernel and
p=@%  u® is a product measure on 2 = 27 x --- x Ly, see (3.19, 3.20). Monte-
Carlo approximation, based on a large i.i.d. sample from pu, or a low-discrepancy
sequence, can always be used instead.

4.1. Discrepancies and covering radius. Since our initial motivation is to
construct designs having good space-filling properties, in this section we give some
arguments supporting the intuition that designs with small MMD have small covering
radius. We consider the case where 2 is the d-dimensional hypercube [0, 1]%.

4.1.1. Star-discrepancy. Low discrepancy sequences and point sets have low
dispersion, in the sense that, when X, is an n-point design in 2",

1
5 CROG) < CRac(X) = ma i x =il < DY(X0) < 2D1(X,)

with D(X,,) and D.(X,,) respectively the extreme and star discrepancies of X,,; see,
e.g., [69, p. 15 and 152]. Hence, low discrepancy sequences or point sets also have low
dispersion (small covering radii) — the reverse being wrong, as the example of Ruzsa
sequence shows [69, p. 154].

The connection between star discrepancy and covering radius is even stronger
when considering design measures and weighted discrepancies. Consider the case
d = 1, and let &, be a probability measure supported on X, with weight w; on
x;. Assume, without any loss of generality, that 0 < z1 < 29 < -+ < x, < 1. The

weighted star discrepancy of €, is defined as D*(§,) = SUPo<icr | Do 4, <¢ Wi — t‘. The
covering radius of X,, is CR(X,,) = max {x1, (x2 — x1)/2,...,(xn — p—1)/2,1 — z, }.
For simplicity, we restrict our attention to designs with ; = 0 and z,, = 1. We then

have the following result.
Theorem 4.1. For any design &, such that 0 =21 < x5 < - - < Xp_1 < xp, =1,
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(i) CR(X,,) = D*(&), where & has the weights wi = x2/2, w) = (1 — xp_1)/2
and wf = (xiy1 —x-1)/2 fori=2,...,n—1;

(ii) D*(&,) > CR(X,,) for any other probability measure &, supported on X,,.
Proof. One can check that, for any design &, supported on X,

} (4.2)

where Wy = 0 and W; = wy + --- + w; for ¢ = 1,...,n. This expression is a gen-
eralization of that in [69, Theorem 2.6] for the classical star discrepancy. It is then
straightforward to check that D*(£*) = CR(X,,). Moreover, if we take £, = £, then
all the terms in the right-hand side of (4.2) are equal to CR(X,,):

wWr+Wwr,
2

B W+ W;_1
2

D*(&,) = max {wiJr x;

1<i<n | 2

*

w;
— 4+

5 =CR(X,), i=1,...,n.

Ty

This implies that for any other set of weights wy, ..., w, we have D*(&,) > CR(X,,).
|

4.1.2. MMD. We have CR(X,,) > n~"/4/V; and CR.(X,,) > n~'/4/2, with
Vy the volume of the unit ball %,4(0,1), since the n balls (respectively, hypercubes)
centred at the x;, with common radius CR(X,,) (respectively, edge length CR.(X,,))
must cover .2°. The more precise bound CR(X,,) > 1/(2|n'/¢]) also holds true [69,
Th. 6.8]. The covering radii of optimal designs of size n decrease at the same rate, with
limsup,, .. n*/4minx, CR(X,,) < 2/V,/%, where V; = 7%/2/T'(d/2+1); see, c.g., [74,
Section 2.2]. The upper bound is slightly worse when considering sequential designs;
the existence of an extensible point sequence such that lim, . nl/d CRw(X,) =
1/log(4) is proved in [69, Th. 6.9]. The following property indicates that for suitable
kernels the MMD discrepancy v (&, 1) given by (3.2) also yields an upper bound on
CR (X ).
Theorem 4.2. Let K be a bounded ISPD separable kernel on 2 = [0,1]¢ such that
each K; in (3.18) is translation invariant, with K;(z,z") = ¢ (| — 2'|) and ¥(0) = 1;
denote Py, = fol Y(rydr. Let X,, be an n-point design in 2 and &, denote any
probability measure supported on X,,, with vi (En, 1) its MMD, p being the uniform
measure on 2.

(i) If 4 is strictly positive and strictly decreasing on R, then,

CRoo(Xp) <" [P, — v (6nv )] - (4.3)
(ii) If 1 = 1y has bounded support [—1/6,1/6], then,
CR(X,) < 1/6 (4.4)

when Vi (&n, p) < POd,u' In particular, for the triangular kernel defined by g (r) =
max{1 — 0r,0}, r >0, with § > 1, CR(X,,) < 1/0 when vy (&n, 1) < 1/(20)<.
Proof. Denote r,, = CR»(X,,) and let xo be a point in 2" such that ||xo —X;||cc > x
for all x; € X,,. We take f = Ky, in (3.2), so that I,(Kx,) = P.(x0), I¢, (Kx,) =
Pe, (%0), || fllrc = K'/2(x0,%0) = 1, and (3.2) implies P, (x0) — P, (%0) < Vi (én, p)-

(i) We have Pe, (xo) = iy wi [T v(Jzo; — zi5]) < (7-y wi)v(ra) = (ra),
where w; = £, (x;) for all ¢. Therefore,

min P, (x) = Pu(0) = Py, < Pulxo) < Pe, (x0) + (€ 1) < () + (60 10).
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which gives (4.3).

(i7) Suppose that 7, > 1/6. Then, Pe, (xo) = 0 and (3.2) implies Py, < P,(xq) <
Vi (€, it). We obtain (4.4) by contradiction. The triangular kernel with 6 > 1 satisfies
PO,/,L = 1/(29) |

When K implicitly defines a norm on £, following the same approach as in
the proof of Theorem 4.2 we directly get a bound on the covering radius for the
corresponding norm. In particular, when K is the product of exponential kernels
with 9(r) = exp(—0r), 6 > 0, we obtain for (i)

A N v [LETah
){Iéaxx 12%1” X = Xill1 > 9 0g 9 YE\Sns )|
and when K is the squared exponential kernel Ky(x,x) = exp(—0||x — x'||?), 6§ > 0,
we obtain

1/2

/2
CROX,) <710 (%) = (108 { 5z FVED) ~ /21— ln }) 1 (49)

with F the c.d.f. of the standard normal distribution.

Similarly, for (i7), we may use the spherical covariance model in dimension d
instead of the product of d triangular kernels: K (x,x’) is proportional to the volume
of the intersection of two balls centered at x and x" with radius p/2 and is therefore
zero when ||x — x'|| > p; see, e.g., [95, Chap. 8].

Example 4.1. Consider the case d = 2 with K = Ky, the squared exponential
kernel. We suppose that X,, has MMD discrepancy decreasing as 1/8/n (which is the
case when X,, is constructed by kernel herding; see Appendix A). The left panel of
Figure 4.1 presents the upper bound 75 (X,,) given by (4.5) as a function of 0, for three
different values of n. The red solid line (bottom) corresponds to the limiting case when
n tends to infinity (that is, when vx (&, ) is set to zero in (4.5)). For each finite n, the
upper bound is infinite if 0 is larger than the value 0.4 (n) such that P(‘){ u = V/8/n
see the right panel of Figure 4.1. Figure 4.2-left shows 7.(X,,) = ming 7[g)(X,,) as a
function of n; the minimum is obtained at 6.(X,,) shown on the right panel.

The bound 7 (X,,) (or more generally the bound on CR.(X,)) is very pes-
simistic, but Figure 4.1 nevertheless suggests that 6 should increase at suitable rate
as n increases, in agreement with common intuition. Using a covariance kernel with
correlation length I = O(n~1/4) seems reasonable; see the examples of Section 5. <
Remark 4.1 (improved bound on CR«(X,,)). In the proof of Theorem 4.2 we con-
sider that all points x; € X,, can be at f/,, distance r, from xy, whereas some
design points are necessarily further away. This consideration yields a tighter up-
per bound on r,. For instance, when d = 1, if we take &, = &, ., the empiri-
cal measure associated with X, we obtain that P, (zo) < P (1/2), where €n =

L[Sk Sty + 01k, + (0= 260, )81/2, |, with Ky, = [1/(47,) ], which
gives the inequality

kr,
2 2
P 1/2) = 1= 2k 0t + 2 S0 ul1/2 - (26— D] 2 Po = (6o
k=0
compare with (4.3) with d = 1. In practice, however, the improvement is negligible
and the upper bound on CR4(X,,) remains pessimistic. <
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Figure 4.1: Squared exponential kernel Ko(x,x’) = exp(—0|x—x'||*), d = 2. Left: 7(g(Xn)
(4.5) as a function of 6 when i (&n, 1) = \/8/n, for n = 500, 1000 and 2000. Right: Omax(n)
such that Pg, = \/8/n.
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Figure 4.2: Squared exponential kernel Kp(x,x') = exp(—0|x — x'||*), d = 2. Left:
7« (Xy) = ming (g (Xy) as a function of n. Right: 6.(X,) = argming 7[y(Xy) as a function
of n.

Remark 4.2. When the triangular kernel defined by () = max{l — 6r,0} is used
for kernel herding, we have vx (&n, 1) < /8/n, see Appendix A, and (ii) implies
that for any 79 = 1/0 < 1, CR(X,,) < 7o for n > 8(2/r0)?¢. This rate of decrease
of CRoo(X,,) is much slower than the best achievable rate n~/¢. The existence of
extensible point sequences achieving the optimal rate n~ /¢ on a smooth Riemannian
manifold is established in [14]. The construction relies on the consideration of another
function than f = Ky, in (3.2), having support in B4(xo,r,) when X,, satisfies
||x; — xo|| > 7y for all x;, with a large integration error I,,(f) — I¢, (f) = I.(f) and a
small norm || f||%, where H is a particular Sobolev space.

Denote by e,(X, 1) = (E,{mini<;<, [|X — x;[|"})/?, p > 0 the LP mean quan-
tization error induced by X,. From Zador theorem, lim,_,qo n'/¢ minx, e, (X, )
exists (and equals the infimum over n when p is uniform on [0, 1]9); see [12]. The fact
that the greedy construction of a design X, recursively optimal step by step for the
LP quantization error, achieves limsup,,_,. n'/%e,(X%, 1) < oo, is proved in [61]. For
fixed n, a design minimizing e,(X,,, ;) can be constructed via clustering (see, e.g.,
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[26]), with the famous k-means algorithm for p = 2 [59], k-medians for p =1 [17], or
with any general optimization algorithm. A combination of clustering with particle
swarm optimization is used in [63] for arbitrary p > 2; clustering is considered in [74]
for the limiting case p = oo, with e (X, #) = CR(X,,). In general, these construc-
tions are far more complicated than those using the methods of Section 4.3 and 4.4.

<

4.2. Design criteria based on Bayesian quadrature. Since s2 given by (2.7)
does not depend on the function f considered, a design X,, for Bayesian integration
can in principle be chosen beforehand, by direct minimization of s2. This corresponds
to the approach followed in [72] where several quadrature rules are tabulated for
several values of n. The next theorem collects several results from the literature (part
(i) appeared in [48], part (i7) is a particular case in [52] called normalized Bayesian
cubature) and in particular shows the connection between the minimum of &k (&, — )
with respect to weights w,, and the posterior variances s2 and s%,o respectively given
by (2.7) and (2.11). The extension of model (2.1) to models including a linearly
parameterized mean function is considered in [52]; the extension to the estimation of
several integrals is treated in [72]; see also Appendix B. We assume that all points in
X, are pairwise different and g is not fully supported on X,,.

Theorem 4.3. Let K be an SPD kernel and let p € A4 (1) N Mk .

(i) The optimal unconstrained weights w} that minimize &k (§, — 1) are wi, =

K, 'p.(1) and the corresponding measure &, with weights W, satisfies

n’

Ex(&n — 1) =sn0, (4.6)

with s} o given by (2.11).
(ii) The optimal weights W, that minimize &k (&, — p) under the constraint
whl, =" w; =1 are

K;'1,1,K; ! K 1
W, = K;l_w n +—n - 4.7
( 1K, 'L, ) Prl)F TG, (7
and the corresponding measure én, with weights W,,, satisfies
gK(én - /,L) = Si ’ (48)

with s2 given by (2.7); the estimator (2.4) of the integral I,,(f) is I, = A AR
(iii) For any bounded signed measure &, = > .| w; 0x, we can write

Exc(En — 1) = (Wp — wi) 'K (wy — wi) + Ex (&7 — 1), (4.9)
and when the weights w; sum to one, we have
Er(En — 1) = (W — W) T K (Wy, — W) + Exc(En — o). (4.10)

Proof. The expression for w, (4.6) and (4.9) directly follow from the fact that
Ex (&n, — p) is quadratic in w,, see (4.1). Since K is SPD, straightforward calculation
using Lagrangian theory indicates that the minimization of &k (&, — p) under the
constraint w, 1,, = 1 gives (4.7) and (4.8). Suppose that w,' 1,, = 1, then & (&, —p) =
(W, — W + Wy, — WE) TK (W), — Wy, + W, — W) + Ex (& — p) gives (4.10) since

K, (W, — w?) is proportional to 1,, and (w, —W,) 1, = 0. []
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Remark 4.3. Equation (4.6) is simply related to the fact that, for f the realization
of a Gaussian RF with zero mean and covariance 02K (-, ), we have

E{[Lu(f) = e, (HPP} =0 | K(xx)d(& — m)(x) d(§n — 1) (x)

2
=0? [Py — Pe, I3, = 0*Ek(€n — 1),

the minimum being attained for the Bayes predictor :fn = pl(u)K; 'y,, that is, for
the weights w. (Note that we cannot use the reproducing property f(x) = (f, Kx)k
since w.p. 1 f does not belong to Hx; compare with [18, Proposition 1].)

It is shown in [53] that polynomial-based quadrature rules can be interpreted as
Bayesian quadrature in a model with zero mean for a suitably chosen (polynomial)
kernel; the optimal n-point set (with n = p+1 for polynomials of degree p) minimizing
the posterior variance (4.6) realizes the cubature rule. One may refer to the discussion
in Remark B.1 of Appendix B for models that include a linearly parameterized mean:
any cubature rules can be interpreted as Bayesian integration; see [52]. <

In the discrete case considered here, the minimum-energy signed measure én with
total mass one always exists, but én is not necessarily a probability measure; that is,
some weights w; may be negative. Theorem 4.3 can be extended to the case where
K is only conditionally SPD, but the computation of optimal weights W, is more
involved when K,, is singular; see Remark 4.4. B

Denote by K,, the n x n matrix with elements {K,}; ; = K, (x;,x;), where K,
is the reduced kernel (3.15); the corresponding vector of potential values at the x; is
then p, = (]Su(xl), ce ﬁu(xn))—r = 0. For measures &, in .#(1), in complement of
(7i) of Theorem 4.3, we also have the following property. (Similar expressions for the
posterior mean and variance are obtained for a kernel having zero potential (kernel
imbedding); see for instance [70] where the Stein operator is used in a more general
framework; see also Remark 3.3.)

Theorem 4.4. For K an SPD kernel, p € 4" (1) N My and &, € #(1), we have

Ex(En — 1) = &k, (&n) = W;er{nwn . (4.11)
The posterior mean (2.4) and variance (2.7) of I,,(f) are respectively given by
7 = 1;[12;1)’71
oK,
0?2 =o?(1] K '1,) L. (4.13)

(4.12)

Proof. Equation (4.11) follows from Theorem 3.5. Since we assumed that p is not fully
supported on X,, and K is SPD, (4.11) gives inf |y, =1 WIINC,LW” > 0, which implies
that K,, has full rank. Direct calculation using (3.15) gives K, = K,, — pn (1)1} —
1,0, (1) + €k (1) 1,1, . The expression for K;;! then yields 1] K11, = 1/s2, with
s2 given by (2.7), proving (4.13). The expansion of (17K 'y,)/(1JK;'1,) gives
(2.4), which proves (4.12). |

Equations (4.12) and (4.13) indicate that I,, is the BLUE of Bl and o%s2 is its
variance in the model (3.17), f(x) = B) + Z., see Sections 3.4.2 and 3.5.2. The
reason is that predictions are not modified when using the reduced kernel K, instead
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of K, that is, when considering the model f(x) = 8} + Z. instead of (2.1); see [37,
Sect. 5.4]. It implies that the expressions (2.4) and (2.7) of I, and s2 are unchanged
when replacing K by K. Since, by construction, p,(u) = 0 and &g, (1) = 0 (as
(Idg2 —P1)Z, has no contribution to the integral of f), we directly obtain (4.12) and
(4.13).

A further consequence is that the substitution of K, for K leaves the mean-
squared error (2.2) unchanged, which yields a bound on the IMSPE of a design X,,.
Theorem 4.5. For K an SPD kernel and p € .#% (1) N Mk, the IMSPE of an
n-point design X,, satisfies

< IMSPE(X,,) < ¢? [si +/ K(x,x)du(x) — é(’K(,u)} . (4.14)
x
Proof. Replacing K by K, in (2.2), we get
_ 1L T
/% / K, (x,x)dp(x) + lTK TRl trace [Kn Qan(u)} ,
where H, (1) = [, kny (x) du(x), with k,(x) = (K#(x,xl),...,Kﬂ(x,xn))T,

and where Q,LL =1, - 1n1;Kn1/ 1K '1,), with I, the n-dimensional identity
matrix, is a projector onto the linear space orthogonal to 1,. Since K !, Q;> and
H,, (1) are non-negative definite, we obtain

IMSPE(X.,,) = 0 /%pi(x) V K, (x,x) dp(x) + 1TK o ] .

Together with (3.15) and (4.13), this gives the right-hand side inequality in (4.14).
The left-hand side inequality is a simple consequence of the convexity of t — t2. (Note
that (2.10) implies that [, K(x,x)du(x) > &x(u).) |

One should notice that the upper bound in (4.14) may be rather loose for large d.
For instance, when K is separable as in (3.18), with all K identical and K;(z,z) =1
for all z, and g is uniform on 2" = [0,1]%, then [, K(x,x)du(x) — Ex(n) = 1 —
&t (1), which can be close to one for large d.
Remark 4.4 (optimal weights for CISPD kernels). Lagrangian theory indicates that
the solution W, is obtained by solving the linear equation R, (w,) \)T = (07 1)7,

where
K, 1
R, = L I
(% %)
When K is conditionally SPD, K, is conditionally SPD too, and the matrix R,
has full rank n + 1. Indeed, R, (2, 2)" = 0 implies 1, z,, = 0 and K, z,, + z1,, = 0.
Multiplying the second equation by z, , we get z,) Kz, = 0. Since K, is conditionally
SPD, this is incompatible with 1Izn = 0 unless z,, = 0 and z = 0. We obtain
(K, +1,10)71,
1) (K, +1,1))-11,

and 2 = w, K, W, = (1] (K, +1,17)"'1,))"! — 1. When K is SPD and K,, has

full rank (Theorem 4.4), we recover w,, = K> '1,,/(1TK-11,) and I, = w,! 'y, given

by (4.12). <
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Remark 4.5 (IMSPE for separable kernels). The use of a separable kernel (3.18) and
a product measure = ®@%_ ) on 2 = 27 x --- x Z facilitates the calculations
of K,, and Ex (€n — 1), see (4.1), since Ex (1) and P, (x;) have the simple expressions
(3.19, 3.20). The calculation of the IMSPE is facilitated too, but to a lesser extent.
Indeed, using (2.2) we obtain

1 ) e
2(x)d :/ K(x,x)d + —23n n
[ Ane) = [ Gaue) + b 2P
— trace [K;lQﬁﬂn(,u)] ,

where Q+ =1, — 1,1, K1 /(1) K1, and

{Hy(p }Jk_/ K(x,x;) K(x, x)dp(x H/ Ki(zi, xj,) (:cz,xkz)d,u()( i) . <

4.3. One-shot designs. We consider two design constructions based on mini-
mization of the posterior variance o2 s2: in the fist one, the design points are uniformly

weighted; in the second one, they receive the optimal weights (4.7).

4.3.1. n-point empirical measures. Consider the empirical measure &, . =
(1/n) 31, 0, associated with a given design X,, = {x1,...,X,}. As indicated here-
after, the literature on space-filling design provides several examples of constructions
of n-point designs through the minimization of the squared MMD &k (&, — i) =
6k, (§n,e) With respect to X,,. Notice that &k (§n,e — 1) = (17K, 1,)/n2; see (4.11).

For 2~ = [0,1]%, separable kernels based on variants of Brownian motion covari-
ance yield Ly discrepancies (symmetric, centred, wrap-around and so on); see, e.g.,
[47], [31, Chap. 3]. For instance, for 2" = [0,1] and K(z,2') =1 — | — 2'| (for which
the expressions of &k (u) and P, (r) are given in Table 3.1), &k, (§n,e) is twice the
squared Lo star discrepancy for d = 1.

The ISPD kernel K2 (x,x’) = Hl | Ks ez, 7)), with K, given by (3.6) with
s> 0and € > 0, is called projection kernel in [62]. For very small €, the minimization
of é"K® (&ne) corresponds to the construction of a maximum-projection design, as
defined in [5>1]. Note that minimizing &xe (§n,c) is not equivalent to minimizing
Exw. (€n.e — p): in particular, when u is uniform on 2", which is assumed to be
compact and convex, the former tends to push design points to the boundary of 2
whereas the latter keeps all points in the interior of Z; see [62].

In [64], space-filling designs in a compact set 2~ C R are constructed by minimiz-
ing &) (€n,e — 1) for p uniform on 27, see (3.7). The authors call support points the
optimal support X7 , which they determine via a majorization-minimization algorithm
using the property that the problem can be formulated as a difference-of-convex opti-
mization problem. Values of &) (1) and P, (x) are not available even for 2~ = [0, 1]¢
and Monte-Carlo approximation is used.

4.3.2. n-point optimal measures. Theorems 4.3 and 4.4 indicate that, if K is
SPD, &k (€, — p) = (1, K;;'1,,)~ " is the minimum value of &x (&, — ) for measures
&, € #(1). Hence, we can construct space-filling designs on a compact and convex
subset 2 of RY by maximizing 1] K11, with respect to X,, € R, for a suitable K,
taking p uniform on Z°. This can be performed using any unconstrained nonlinear
programming algorithm, see the examples in Section 5. Note that, from the Cauchy-
Schwarz inequality, &x (€, — p) = (11 K;'1,) 7' < (1)K, 1,)/n? = Ex (€n.e — 1)
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4.4. Sequences of nested designs. There exist situations where the number
n of design points ultimately used (for integration, or function approximation) dif-
fers from that initially planned, say N. It is the case in particular when function
evaluations are computationally more expensive than expected, and numerical exper-
imentation is stopped after n < N simulations, or when simulations fail at some design
points and testing at more than N points is required to obtain N valid evaluations
in total. In such circumstances, it is convenient to have sequences of nested designs
(extensible point sequences) at one’s disposal. The objective is then to construct or-
dered sequences Xi,Xa, ... of designs points such that any design X,, = {x1,...,x,}
made of the first n points of the sequence has good space-filling properties. A typical
example is given by Low Discrepancy Sequences (LDS) in [0, 1]%, see [69].

When K is SPD, we may exploit expression (4.13) of the conditional variance of
I,(f) in a greedy sequential construction: at step n we choose x,4; that minimizes
s2, ;. This sequential construction, called Sequential Bayesian Quadrature in [15],
is straightforward to implement compared with global minimization of s2, see (2.7).
Direct calculation, using formulae for the inversion of the block matrix

IAin-i—l = ( T Kn kn(xn+1) ) )

krTL(XnJrl) K, (Xn41,Xn+1)

where {I~{n}” = K, (x;,x;) and {k,(x)}; = K,(x,x;),4,7=1,...,n,x € 2, gives

(1- kn(xn—&-ﬂTKﬁ1111)2

Kp, (Xn-l-la Xn+1) - E;LI' (Xn+1)ﬁr_LlEn (Xn+1

. (4.15
[

5i+1 = [ITTLIN{nlln +

The sequential construction is thus

Tre—11 )2
Xp41 € Arg max 1= kn(i() KTL 1n~) : (4.16)
%7 K (%) — K] (0K K ()
The conditional gradient algorithm of [33] yields a simpler construction, particu-
larly well adapted to the situation (and also applicable when K is unbounded). It relies
on the sequential selection of points that minimize the current directional derivative
of k(£ — ) = &k, (§), with £ supported on design points previously selected. The
algorithm is initialized at a measure £(™) supported on X,,, € 2 ™ (with for instance
no = 1 and €M) = §,, for some x; € 27). Let £ denote the measure associated
with the current design X,, of iteration n, with weights wgn), ie, & =3"" wz(n)dxi.
The next design point is chosen in Arg minye 2~ F,, (€™ 6,), with F, the directional
derivative (3.12) (any minimizer can be selected in case there are several). Straight-
forward calculation using (3.12) gives X, 1 € Argminge 2 [P (X) — Pu(x)], that
is,

)
Xpt1 € Arg mig Zl w; " K(x,%;) — Pu(x)]| . (4.17)
After choosing x,, 41, the measure £ is updated into

0D = (1 - an)é™ + and
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for some a,, € [0,1], so that £tV ¢ .#%(1) when £ € .#%(1). When £("0) is
the empirical (uniform) measure on X,,,, the choice o, = 1/(n + 1) implies that
€ remains uniform on its support X,, for all n, see [96] for an early contribution
in the design context. The method is called kernel herding in the machine-learning
literature, see [5, 19, 48]. Tt is shown in [19] that &x (€™ — p) = O(1/n?) when H is
finite dimensional, but we only have the weaker result &x (£ — p) = O(1/n) when
‘Hx is infinite dimensional, see [5]; see also Appendix A.

Remark 4.6. If we take x,11 € Argmingecg Y ;- wgn)K(x, x;) instead of (4.17),
then the algorithm minimizes &k (§); see Example 3.5 and Remark 3.2. The presence
of P,(x) in (4.17) permits to keep the design points x; in the interior of Z"; see also
[62]. The first point x; can be chosen as a minimizer of P,(x) (that is, 14/2 when
w is uniform on [0, 1]¢). The construction (4.17) is well-defined even if K is singular:
in that case, it guarantees that all design points are different (x; # x; for all i, j);
the same is true for all one-dimensional canonical projections when K is the prod-

uct of singular kernels. More generally, the addition of dy, , to the current design

measure creates a local maximum of the function Z?:ll wE”)K(X, x;) — P,(x) in the
neighborhood of x;,11, so that the next point x,,2 is chosen at some distance from
all previous ones. The choice of an adequate kernel has therefore some importance:
its decrease should be fast enough to ensure that points are well spread apart (the
correlation length should be small enough when K corresponds to a correlation func-
tion); a translation-invariant kernel with bounded support leaves some arbitrariness
in the choice of X,, until the union of the supports of the K(x;,+) covers 2, and is
not necessarily suitable. We thus recommend using a (translation-invariant) kernel
with unbounded support; if nyax is the maximum design size considered, a correlation
function with correlation length L ~ n;é)/(d is appropriate. Choosing K differentiable
facilitates the minimization of &k (&ne — 1) = 1) K,1,/n? (Section 4.3.1), or the
maximization of 1)K 11, (Section 4.3.2). <
Remark 4.7 (greedy MMD minimization). Denote £"1)(x) = [n/(n + 1)} +
[1/(n +1)]6x. The direct minimization of &k (£("+)(x) — ) with respect to x yields

n

1
;K(X, Xi) - P;L(X) + m K(x)x) , (4_19)

x("*1) € Arg min

xeZ [n+1

that is, a selection very close to (4.17) when K (x,x) is constant (Matérn kernel for

instance). Note that this construction requires K(x,x) < oo for all x € £7, contrary
to (4.17). <

In practice n is always smaller than some given n .y, and to facilitate the con-
struction we can restrict the choice of the x; to a finite subset 2 = {s1,...,sq} of 2,
with Q > npax (when 27 = [0,1]¢, 24 can be given by a regular grid, or by the first
points of a LDS). For any n < nyayx, we can write X,, = {x1,...,%xn} = {Siy,-.-,8i, },
the construction being initialized at some ng-point design X,, C Zo. A measure
¢ supported on X, can thus be written as { = Z?zl w;ls;, with w; = 0 when
s; € X,,. Therefore, for all n, £ is fully characterized by a Q-dimensional vector
w = (w%n), . ,wgl))—r, with w(™) in the probability simplex Pg when £ € .t (1).
The updating equations (4.17, 4.18) then imply that w1 is obtained by moving
w( in the direction of a vertex of P, hence the name vertez-direction given to
methods based on (4.18) in the literature on optimal design, see, e.g., [75, Chap. 9]

and the references therein. The cost of the determination of x,41 in (4.17) is O(Q):
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n

we compute K(x,x,) for all x € Z and update the sum Ziz_ll K (x,x;); the cost for
n iterations scales as O(n€2), including the initial cost for the computation of P,(x)
for all x € Zq.

The measure £ constructed by (4.18) with «a,, = 1/(n + 1) is uniform on its
support. The minimum-norm-point algorithm of |3] replaces £ by the measure
having the same support but optimal weights in Pn. The strategy that consists in
optimizing the weights on the current support of the design measure at each iteration
is known to be efficient also in other design contexts, see Algorithm 1 in [77]. Here
the weights are solution of a convex quadratic programming problem, which facilitates
their determination. In the examples of Section 5, we consider a still simplified version
where ¢ is replaced by £(™) having weights 1@5") given by (4.7). This modification of
¢(") at each iteration induces an additional computational cost of O(n?) at iteration
n (O(n?) if rank-one updating is used to compute K !) and requires the storage of
all K(x,%;),i=1,...,n, x € Zg, in order to compute y ., wgn)K(x,xi). When K
is a correlation function with small correlation length L and PR(X,,) > L, all design
points have similar influence on &k (&, — ) and the associated optimal weights w§")
are nearly identical: for n small enough, the resulting design is then similar to that
obtained when £ is forced to be uniform.

We have also considered several variants of (4.18), where the step-size «,, is
optimized instead of being fixed to 1/(n+1), or using a vertex-exchange method based
on the true steepest—descent direction; see Appendix A for details: the performances,
in terms of decrease of &k (€ () — w) or in terms of space-filling properties of its support,
CR(X,,) and PR(X,,), were not significantly better than those obtained with (4.18).
The same observation holds for the Sequential Bayesian Quadrature (4.16) and the
greedy MMD minimization (4.19).

Finally, note that the n-th design in a sequence of nested designs can be used
as initialization for the (unconstrained) minimization of &x (&, — p) = 1,/ K, 1,,/n?
(Section 4.3.1), or the maximization of 1;12;1171 (Section 4.3.2), with respect to X,,.

5. Illustrative examples.

5.1. Nested designs, d = 2. We take 2~ = [0,1]%, p is uniform on 2 and
the candidate set Zq is given by a regular 64 x 64 grid in 27; K is the product
of uni-dimensional Matérn 3/2 covariance functions K3/ 4, see (3.5). We consider
nested designs of size up to nmax = 140 and compare designs XYP generated by
the vertex-direction method (4.17, 4.18) with more classical design sequences: X3,
given by the first n points of Sobol’ LDS; X5 obtained by application of a random
linear scramble, see [65]; and an extensible lattice sequence XEL where the n-th
point is given by {ng}, with g having irrational components independent over the
rationals and {t} denoting the fractional part, applied componentwise. Choosing a
suitable generator g is a delicate matter; see, e.g., [55], [69, Chap. 5] and the references
therein. We use the construction suggested in http://extremelearning.com.au/, with
g=(1/pa,1/¢%, ..., 1/0%) T and ¢4 the unique positive root of 47! = x + 1, which
seems quite effective for small enough d. We initialize (4.17, 4.18) by X; = {(0.5,0.5)}
(np = 1) and take # = 10. We also consider a variant of the minimum-norm-point
algorithm of [5], where £ having the optimal weights (4.7) is substituted for £() in
(4.17, 4.18); we denote by XMN the corresponding designs. The choice nya, = 140 is
arbitrary; we take nmax > 27 = 128 to be more fair with S,, which is known to have
appealing properties when n is a power of two.

The four designs X1, X MY, X353, and XEL are presented in Figure 5.1. Visually,
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they are all reasonably space filling, with a slightly better behavior for X}4¥ (top right)
and XF (bottom right); X3, (not shown) has a few nearly coincident points that
appear after n = 110 (this will be revealed by Figure 5.2-right).
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Figure 5.1: Top left: XY = Supp(6"*?)) generated by (4.17, 4.18) with a, = 1/(n + 1)
and 60 = 10 in K3/ 9. Top right: XMN = Supp(é(l‘m)) (minimum-norm-point variant where
é<"> with optimal weights is substituted for ¢ at each iteration). Bottom left: X550 (first
140 points of a scrambled Sobol’ LDS). Bottom right: X!l (extensible lattice sequence).

Figure 5.2 shows the scaled values n'/? CR(X,,) (left, small values are preferred)
and n'/?PR(X,,) (right, large values are preferred) for the five sequences of nested
designs considered, XYP, XMN X5 X585 and XEL for n = 2,... npax = 140. The
behavior of CR(X5) on the left panel illustrates the fact that Sobol’ sequence has suit-
able space-filling properties for n equal to a power of two (notice the jump downwards
at n = 128) but may perform rather poorly otherwise (and the situation deteriorates
as d increases); PR(X?>) on the right panel reveals the inclusion of nearly coincident
points after n = 110. Overall, the scrambled sequence X$° performs better than X3
but significantly worse than XYP and XMN | both in terms of covering and packing
radius. The extensible lattice sequence XEL performs slightly better than XMN in
terms of packing radius, but CR(XEL) is significantly larger than CR(XMN) all along
the sequence; XMN performs consistently better than XYP for both criteria.

The evolution of &x (£, — 1) as a function of n, with &, . the empirical measure
associated with X,,, is shown in Figure 5.3 for XY, XMN and X8; & (£, — ), with
&, having optimal weights (4.7), is shown on the right panel, for the same designs
(note that &x (&, — 1) < Ex(€ne — ). XVYP performs slightly better than XMN in
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Figure 5.2: n'/?CR(X,) (left) and n'/?PR(X,) (right) for the designs X} (red, dia-
monds), X¥N (blue, stars), X5 (black, pluses), X35 (black, x-marks) and XE" (magenta,
triangles).

terms of &x (&, — p1) but slightly worse in terms of & (€, — u); both perform better
than X3 for the two criteria. X5 (not shown) performs similarly to X3; XEL (not
shown) is between X3 and XYP. An important observation here is that designs may
have significantly distinct space-filling properties (Figure 5.2) although they perform
almost similarly in terms of MMD (Figure 5.3), in particular in terms of decrease
rate. Figure 5.4 illustrates the fact that a faster decrease of MMD does not mean
that the design points have a better distribution: there, § = 1 in K3/5 9, so that
MMD considers the integration of functions much smoother than previously when we
had 6 = 10. The left panel shows &x (£, — p) for XYP and X5. On the one hand,
both constructions yield a much faster decrease of MMD than on the left panel of
Figure 5.3, with a significantly smaller MMD for XYP than for X5. On the other
hand, the design XY} shown on the right panel of the figure has very poor space-filling
properties; compare with the top-left panel of Figure 5.2.

logio(n)

logio(n)

Figure 5.3: &k (Ene — p) (left) and Ex (&, — p) (right) as functions of n (log scale), with
&n,e the empirical measure associated with X,, and &, the measure with optimal weights W,
(4.7), for X¥P (red solid line), XM~ (blue dashed line) and X5 (black dotted line); 6 = 10
in K3/2,9.
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Figure 5.4: Left: &k (&n,e — 1) as a function of n (log scale), with &, . the empirical measure
associated with X,'P (red solid line) and X} (black dotted line); right: XYi; 6 = 1 in K30,

We construct now designs XYP and XM~ for different values of 6 in K)o .
Figure 5.5 top-left (respectively, top-right) shows CR(XYP) (respectively, PR(XYP))
for # = 1 (dashed line), 6 = l/nllm/a‘fX ~ 11.8 (black dash-dotted line) and 6 = 5
(solid line); the coloured region is the envelope of the curves obtained when 6 =
1,5,10,15,...,50. The second row gives the same information for the design XMN,
One may notice that the curves in solid line coincide on the two rows: when Kj/5 9
has a small correlation length (6 is large), the two constructions give similar designs
since the optimal weights in £ are nearly all equal to 1/n at each n (maxi{wl(")} —
min;{#{™} < 3 x 10~* for n = 140 and 6 = 50). Weight optimization makes the
construction less sensitive to the choice of 6: in some sense it permits to compensate
for the loss in space-filling performance incurred by choosing a kernel with excessively
large correlation length (6 is too small) and forcing all weights to be equal during the

construction. The choice 6 = nrln/fx ~ 11.8 appears to yield good performance, with
larger 6 leading to larger packing radii but worse covering behavior.

5.2. Omne-shot designs, d = 2,3. Here we use the n-th design in a sequence of
nested designs to initialize the search for an MMD design. In [64], the MMD associated
with energy distance (kernel (3.7)) is minimized with a Majorization-Minimization
(MM) algorithm; the corresponding optimal designs are called support points, de-
noted by XJ'PP is what follows. Using the explicit form of the kernel K3/94(-,-) and
potential P,(-), we can also construct a convex majorant for the (squared) MMD (4.1),
for any set of weights w,,. An MM algorithm can then be used to directly minimize
Ex (Ene — 1) (En.e having all weights equal to 1/n), or Ex (€, — p) = (1, K;'1,) 7Y,
with respect to X,,. In the second case, we alternate MM steps for the minimization
with respect to X,, with fixed weights, and (explicit) weight optimization through
(4.7). We denote by XMM-MMD the corresponding designs. Alternatively, we can
also directly minimize &x (&5, — 1), or maximize I,TLIN(;lln, with respect to X,, using
any nonlinear programming algorithm. Note that we do not need to impose the con-
straints x; € 2 for all 4 thanks to the presence of potentials P,(x;) in (4.1) acting as
penalty functions. Since derivatives are available, we use Conjugate Gradient (CG);
the corresponding designs are denoted XSG™MMD MM and CG only give locally
optimal solutions, which therefore depend on the initialization. Table 5.1 gives an il-
lustration for n = 100, d = 2,3 and K the product of Matérn 3/2 covariance functions
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Figure 5.5: n'/?CR(X,) (left column) and n'/¢ PR(X,,) (right column) as functions of 7,
for XP (top row) and XY™ (bottom row), when ¢ varies between 1 and 50 in K354 6 = 1

in dashed line, 0 = 1/n3n/;flx in dashed-dotted line, # = 50 in solid line.

K399 with 6 = n'/4. X3 corresponds to the first 100 points of a scrambled Sobol’
sequence, X)) is obtained with (4.17, 4.18) and is used to initialize the optimization
for the other designs in the table: the minimization of &k (&, — i) yields X%%;MMD

and X {35 MP | the maximization of 1] K; 11, yields X 75 ™P and XG5 ™MP. Ini-

tialization at X33, gives designs with worse covering and packing performances for
all constructions considered. Table 5.1 shows the very good space-filling performance
of designs based on MMD minimization for the energy distance (the support points
of [64]), but the construction is computationally more demanding in high dimensions
due to the necessity to approximate u by a discrete measure (we use a 64 x 64 and
a 16 x 16 x 16 regular grid for d = 2,3 respectively, with thus 4,096 points in both
cases).

Table 5.1: Covering and packing performances of various fixed-size designs (d=2,3; n=100).

S VD su MM-MMD MM-MMD CG-MMD CG-MMD
Xi00 X100 X100" X100,e X100 X100, X100
d=2 CR 0.1377 0.0925 0.0839 0.0889 0.0874 0.0889 0.0845
PR 0.0204 0.0262 0.0419 0.0365 0.0238 0.0369 0.0302
d=3 CR 0.3054 0.2645 0.2032  0.2673 0.2624 0.2681 0.2886
PR 0.0415 0.0751 0.1042 0.0886 0.0896 0.0938 0.0922
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5.3. d = 10. In this section, we replace CR(X,,) by its under approximation
maXye 2, Miy<i<n ||X—X;[|, where Zq corresponds to the first 219 points of a scram-
bled Sobol’ sequence complemented with a 3¢ full factorial design. On purpose, we
choose a candidate set for kernel herding having the same size as above, despite
d = 10: Zgq is given by 4,096 points of a scrambled Sobol’ sequence in [0,1]¢. In
general, enlarging €2 improves the performance of MMD-based designs.

Figure 5.6 is similar to Figure 5.2 and shows the scaled values n'/¢ CR(X,,) (left)
and n'/?PR(X,,) (right) for a scrambled Sobol’” sequence X5 and three sequences of
nested designs for n = 1,...,npa = 100: XVYPAoe XVDM ypq XMN-M - xVD-log
is generated by (4.17, 4.18) with K the product of the uni-dimensional (singular)
logarithmic kernel K g) in (3.8); XYP™ is generated by the same vertex-direction
method but for the product of Matérn kernels K35 5, with § = nid. XMN-M
the minimum-norm-point algorithm with the same kernel.

The three MMD related nested designs perform significantly better than the
scrambled Sobol’ sequence; like we observed in smaller dimensions, XMN"M ig perform-
ing consistently better than XYP™M; XVD-og performs slightly worse than XYP™M but
has the advantage of not requiring the tuning of a length-scale parameter 6. Note
that, since the computational cost only scales as O(nf), one can easily generate many
designs, for different kernels, different correlation length parameters, or different can-
didate sets Zq, and then select the best one according to the values of a particular
criterion of interest over a particular range of design sizes.

is for

10 20 0 40 ;h & 70 8 9 100 0 1 20 a0 40 ;h 6 70 8 %0 100

Figure 5.6: n'/% CR(X,,) (left) and n'/¢ PR(X,,) (right) for the designs X5 (black, x-marks),
XYPTog (magenta, triangles), XYP™ (red, diamonds) and XY™ (blue, stars).

Table 5.2 presents the covering and packing radii for different designs with n =
100. X580, X 00 % and XY2™ are like in Figure 5.6; X3P correspond to sup-

port points obtained by minimizing the MMD associated with energy distance (u is

approximated by the uniform measure on a 4¢ full-factorial design), X?OCEQAMD and

Xfo%_MMD respectively minimize &x (£, — i) and maximize 1;';12;11”; these three

optimizations are initialized at X)po . X&) is a maximin-optimal Latin hypercube

design (downloaded from https://spacefillingdesigns.nl/) and X}o5™""" is obtained by

minimizing the MMD associated with energy distance, with initialization at XI&,.
The three designs XjghP, X 2™P and X ™P improve X3 ™ both in terms

of covering and packing radius. The much better performance of X}to*"*P compared

with X707 illustrates the importance of a good initialization for MMD minimization.
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Notice that CR(X 5 5"PP) > CR(XLY)), whereas PR(X ") > PR(XIH).

Table 5.2: Covering and packing performances of various fixed-size designs (d=10; n=100).

S VD-lo VD-M su CG-MMD CG-MMD Lh Lh—su

Xi()() XIOO N XlOO Xlogp XlOO,E XIOO Xl()O XlOO P
CR  1.3684 1.2990  1.3168  1.3083  1.2504 1.2893 12515 1.2762
PR 0.2456 0.2921  0.3004 05332  0.3993 0.4109 0.5109  0.6337

For any d' € {1,...,d} and any r € {1,..., (j,)}, let Py, denote one of the
(j,) distinct projections on an axis-aligned d’ dimensional sub-space. The following
criteria measure the worst-case projection performance of a design in terms of its
covering and packing radii in dimension d’:

CRy(X,) = max max ||x, Py »(Xy)]l,
r=1,...,( %) x€[-1,1]¢

PRd/ (Xn) = min min HPd’,r(Xi) — Pd',r(xj)” .

1
2 r=1,,(3)

Figure 5.7 shows the ratios CRg(X100)/ CRa (X1) and PRy (X100)/ PRa (X18,) for

_ sS VD-og supp CG-MMD Lh—supp ’
X100 = X530, X1 5, XjubP, XGGMMP XLNstP apd ¢ = 2, 10,
26 T T T T 1.6
24 b 1.4}
k3
221 H h
1.2
- o~
O 2y 1 o
L o T
=18l B =
- — H —
= H =
< H o8
— ) —
RS i 1
= % =
S o6
1.4+ ‘-._‘ 4
120 ,‘\"u" 4 0-ar
v‘"’V“V"'V--v::"“'_'_-_-s::&::_"
P I ..Q;&:ﬁ::-@::g" 02}
- "“::g‘:i—F
<
%8, 2 P 6 s 10 %
d/
Figure 5.7: Relative  performances  CRgy(Xio0)/ CRy(X1to)  (left)  and

PRy (Xi100)/ PRy (X18y) (right) for X530 (black, x-marks), X g0 '®® (magenta, trian-
gles), XJ0bP (red, pluses), Xf(%TyMD (blue, diamonds) and X *"PP (green, stars).

Although the size of the candidate set used for the construction of XYO%_IOg is

very small (Q = 4,096) relative to the dimension (d = 10), this sequentially con-
structed design performs significantly better than the scrambled Sobol’ sequence also

in projections to smaller dimensions. The one-shot designs X3ppP and X G MMP are

only slightly worse than the (best available) Latin hypercube design X% . MMD
minimization for the kernel (3.7) associated with energy-distance, initialized at X%,

yields the overall best design XT0-*"PP among those considered.
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6. Conclusion. Optimal designs for Bayesian integration of an unknown func-
tion considered as a realization of a Gaussian RF with covariance K, with respect to a
measure 4, that minimize the posterior integration variance, are also optimal designs
for the BLUE in a location model with correlated errors, with their correlation kernel
depending on K and p, and minimize the MMD, a kernel discrepancy to p. The fact
that this squared discrepancy takes the form of a quadratic energy, depending on K,
for the difference between p and the design measure, permits to use all the classical
machinery of optimal design, including theory (convexity, directional derivatives, op-
timality theorems) and algorithms. When g is uniform, MMD minimization appears
to be a natural way of constructing space-filling designs: the quadratic form of the
criterion makes the algorithms simple and intuitive; one-step-ahead constructions al-
low the fast generation of sequences of nested designs with good properties for any
size.

For i uniform, the space-filling properties of designs obtained by MMD minimiza-
tion depend on the choice of the kernel K. The paper has focused on two classical
space-filling characteristics, the covering and packing radii. Finding the most suit-
able kernel for any of these characteristics remains an open issue. For instance, the
last two columns of Table 5.2 indicate that the isotropic kernel (3.7) associated with
energy-distance favours packing on expense of covering. On the one hand, separable
translation-invariant kernels peaked enough at the origin ensure that designs points
are well spread in all projections. Singular kernels, which do not define RKHS and
present significant theoretical challenges, also have great potential in this respect
(see [79]). On the other hand, support points that minimize MMD for a particular
isotropic kernel provided best results for the whole d-dimensional set in our numerical
examples.

Our main intention with this paper is to promote the general use of MMD min-
imization for the construction of space-filling designs. We hope that the stimulating
connections between Bayesian integration and other areas, such as potential theory
and BLUE, will be of general interest and will attract attention to this type of design
approaches.
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Appendix A. Some convergence properties of conditional gradient al-
gorithms.

We consider a conditional gradient algorithm with iterations given by (4.18). K
is a bounded ISPD kernel (and is thus SPD); in contrast with [15], we do not assume
that Hy is finite dimensional. In the context of MMD minimization, the criterion
is quadratic, which facilitates the developments to follow, but the results presented
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are more general than that and rely mainly on convexity. We focus our attention on
the case when £ is replaced by a finite set Zq = {s1,...,sq}, so that a probability
measure £ on Zq is characterized by a vector of weights w in the probability simplex
Pg. However, after the proof of Theorem A.1 we indicate why a similar analysis
applies to the infinite-dimensional situation.

Denote Ji (w) = [|w — @],k = (w — @) TK(w — @), with K = K a non-negative
definite © x Q2 matrix and @ in Pg (and @ = 1 when the target measure is uniform
on Z4q). Denote by Bg an upper bound on ||w — w’||% for w and w’ in Pg. Denoting
by Amax(K) the largest eigenvalue of K, we can always take Bo = 2 Apax(K), the
bound used in the developments below. When K(x,x) = 1 and K(x,x") > 0 for all
x,x’, we can take Bq = 2 (and replace Apax(K) by 1 in Theorems A.1, A.2 and A.3).

For i =1,...,Q, we denote by e; the i-th basis vector, with component number
i equal to one. Iteration (4.18) has the form

WD = ™M o, A,

for some step-size «, and direction A, = e+ — w™ with the index i taken in
ae] VJg(w™), where the gradient V.Jx (w) is given by

Vig(w) =2K(w - ).

Argmin;—;

.....

This is equivalent to s;+ € Argminge 2;, [Pen (s) — Pu(s)], see (4.17).

A.1. Vertex-direction, predefined step-size. Take a;,, = 1/(n+1) in (4.18).
We first mention a simple result indicating that ||w(™ — 10/Q|% = O(1/n) during
the initial ny < Q iterations when all i) are distinct for n < n;.
Lemma A.1. Algorithm (4.18) with oy, = 1/(n + 1), initialized at V) = e;, for
some ig € {1,...,Q}, satisfies

max K
o — 1g/0)3 < 2@ oy 2y <q)

n
where ny is such that all i are distinct for n < nj.
Proof. For n < ny, after a suitable reordering of indices we have w(™ = (1/n,...,1/n,
0...,0)T. Therefore, [|w™ — 16/Q% < Amax(K)[|w™ — 16/Q(1? = Anax(K) (2 —
n)/(nQ) < Anax(K)/n. [ ]

Note that this property is independent of the order in which the vertices of Pg
(the e;, ) are selected. It is therefore also valid for MC sampling without replacement
within Zgq. Also note that the optimal step-size &,, at iteration n for the minimization
of |w™ —14/Q|? equals a,, = 1/(n +1).

The following lemma shows that (4.18) with a,, = 1/(n+ 1) ensures that ||w) —
@[] = O(logn/n), independently of 2 and of the positions of w") and @ in Pg,.
Theorem A.1. Algorithm (4.18) with o, = 1/(n+ 1), initialized at any w™) in P,
satisfies

14+2log(n+1)

lo™ — @& < 2 Amax(K) -

, n>1. (A1)

Proof. The proof follows the same lines as in [20, Sect. 3|. Denote g(w) = |lw — @||%
and w")(a) = w™ + aA,,. Notice that w(™ € Pg for all n > 1. We have
glw™ ()] = g(@™) + 208, K(w™ — @) +a?[| Ak
< g(w™) + 208, K@ = &) + 0 Anax (K) [ A ||?
< g(w™) 4+ 20ATK(w™ — &) + 202 Anax (K) .
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The convexity of ¢g(-) and the definition of A,, imply that
g(w™) > g(@) = 0> g(w™) + (@ — ™) TVIg (™) > g(w™) + AT VI (w™).
Therefore, A VJg (w™) = 2ATK(w™ — &) < —g(w™) and

glw" ()] < (1 = a)g(w™) + 2 Anax(K) - (A.2)

The rest of the proof is by induction on n. The bound (A.1) is valid for n = 1
since [|w® — @)% < 2 A\nax(K). Suppose that it is satisfied by w(™); (A.2) gives

0™ = 2 < 2 A (K) {1+2 log(n+2) 2(n+1)log[ll+1/(n+1)]— 1}

n+1 (n+1)2
1421 2
< 2 Amax(K) 1+2log(n +2)
n+1
since log(1 +t) > t/2 for t € [0, 1]. ]

Using a = 2/(n + 3) in (A.2), one can easily prove by induction that g(w(™) <
8 Amax(K)/(n + 3) for all n, see [20], which means that (4.18) with «,, = 2/(n + 3)
instead of 1/(n + 1) satisfies [|w™ — ||k < 8 Amax(K)/(n + 3), n > 1, with thus a
much faster decrease than (A.1). Using a different approach, it is shown in [28] that
a rate of decrease of O(1/n) is also obtained when «,, corresponds to the sequence
Qni1 = — a2 /2 with o = 1.
Remark A.1 (the infinite-dimensional situation). A property similar to Theorem A.1
remains valid in the infinite-dimensional case, when working directly in the set .Z (1)
of probability measures on 2. For the sake of simplicity, here we only consider the
case when K is uniformly bounded, with moreover K(x,x) =1 and K(x,x’) > 0 for
all x,x’. One may refer to [18] for a deeper analysis, including in particular results
in the situation where approximate minimization over a finite set is conducted to
select x,,41 in (4.17). The assumption above on K implies 7% (§,v) = k(€ —v) =
[Pe — P35, <2forany &, vin .#"(1) and we obtain that Algorithm (4.18) with
an = 1/(n 4+ 1), initialized at any £(1) in P, satisfies

V(€™ ) < 2%, n>1.

The proof is similar to that of Theorem A.1. Denoting £ (a) = ¢™ 4 aA,,, with
A, = 6x,,, — &M, we obtain

VR IEM (@), 1] = 7R (E™, 1) + 206k (A, €™ — 1) + a2k (A,)
<AZ(E™ 1) + 206k (A, €7 — 1) + 202

The convexity of & (-) implies

Erc (€™ — 1) > 0> Exc (6 — ) + Fre (€™ — p, o)

R

= (€ —p) +2 ){felg}[Pﬂm (%) — Pu(x) — Ex (6™ — )

= &1 (€™ — ) + 26k (An, € — ).
Therefore, v%[¢" ) (a), 1] < (1 — a) 7% (€™, 1) + 202, and the rest of the proof is
by induction on n, using £t = ¢ H)[1/(n + 1)]. Similarly, we get 72 (€0, u) <
8/(n + 3) when a,, = 2/(n + 3). <
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Next lemma, based on [19], shows that [|w™ — &||% decreases as C'/n? when &
lies in the interior of P,. Here, contrary to [19], we do not assume that H is finite
dimensional and use instead the finite dimensionality of w.

Lemma A.2. When & is in the interior of Pq, (4.18) with v, = 1/(n+1), initialized
at any w in Pg, satisfies

"9 =
n2

2
1
w™ — &% < 4R? (1+R;) n>1,
(6%

*

where Ry = Amax(K) (1 — 1/Q)]Y/? and o, = w./L, with w, = minj—,,_o{W}: (so
that w, < 1/Q) and L = (HlaXi:Lm’Q{K_l}ii)1/2.
Proof. Denote v(a) = @—a(w™ &) /||w™ —&||k, @ > 0. Then, forany i =1,...,Q,

e/ (@™ — )| max le] ul
||w(”) — L:JHK T uwuT1g=0,uTKu=1 ¢

<  max |e;ru| = \/ezTKflei < L=w./a.,
wu’Ku=1

so that {v(a)}; > {@&}; — wsx > 0, and v(a) € Pgq, for any «a < a,. The definition of
e+ then implies that

(e — @) ' K(w™ - @) < [v(aw) — @) 'K(w™ - &) = —on[lw™ - @]k . (A3)

The rest of the proof is based on [19]. Denote €], = w(®) and z,, = Z;L:l(eitl -
@). We can write w™ = (1/n) 3" e+ ,s0that z, = n(w™ —&), n?|w™ -&|% =

|lzn||%, and we only need to bound ||z, |%. We have
Iz l& = llZn+1llk = —2(e;s — @) "Kzn — e — @]l ,
where [e;+ —w|lk <2R. and (e;+ — @) 'Kz, < —a.||z,||k from (A.3). Therefore,

1Z041 ]k < llznlli — 20 (2l — 2RZ /o) -
Suppose that ||z,|k > 2R2/a.. Then, ||z,11|% < ||1Zn |k, and ||z, ||%k decreases until
some ng when ||z, ||k < 2R2?/a.. But then,
Zng+1 1k < llzmolli — 200 (2ol — 2R3 /c) < 4RZ(1 + RZ/a2),
so that ||z, ||% < 4R?(1+ R%/a?) for all n > ny. [ |

Lemma A.2 indicates that ||w™ —&||3% < C/n?. However, for large 2 the constant
C grows like O(Q?) (since a., < 1/(LQ)) which makes this result of theoretical interest

only. Note that applications typically concern situations where € is very large.

A.2. Vertex-direction, optimal step-size. The choice of a predefined step-
size a,, = 1/(n+1) in (4.18) does not ensure a monotonic decrease of & (€™ —p). An
alternative option is to choose a;, that minimizes &x [€("1) (a) — p] with respect to a €
[0, 1], with ™) (a) = (1—a) €™ +a by, ., and X,41 given by (4.17). Straightforward
calculation gives o, = min{1, &, }, with

 (Peey = Py Peoy = B, )k
n = 2
[Pecy = Ps, 5,

ER (€M) = Petny (xp41) = S0y w™ Pu(x,) + Pu(Xnt1)
Ex (€M) = 2Peioy (Xny1) + K (Xng1, Xng1)
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(which requires that &x (£™) < 00), and G,, satisfies

(e;+ — W) TK (@ — w™)

”eii _w(n)H%(

Ay =

(A.4)

Next Lemma indicates that &, < 1 when w € Pgq, so that setting «,, = &, in (4.18)
ensures that w( remains in P, for all n. Tt should be noticed that the global decrease
of |w™ — &||% over many iterations with this optimal o, is not necessarily better
that with the predefined step-size o, = 1/(n+1) of Section A.1; see in particular [28]
for such considerations; see also [5]. One may refer to [27] for the infinite-dimensional
situation.

Lemma A.3. When @ € Pq, &, given by (A.4) is less than or equal to one.

Proof. We can write (e, —wMTK(@—w™) = lle;+ —w™ 1%+ (e —@)TK(w™ —
w) — [leq+ — w|%. When @ € Pg, &; > 0 for all i, and Z?:l wi(e; — @) = 0 implies
that Y5, @ (e; —@) TK(w™ —&) = 0. Therefore min,—; __qo(e;—@) TK(w™ —&) =
(e, —w) ' K(w™ — &) <0, which gives &, < 1. ]
Theorem A.2. Algorithm (4.18) with «,, = &, given by (A.4), initialized at any
wl) € Pg, satisfies

1

M — Sl1EF < 8 Apax (K) —— >
o = Gl < 8 Aax(K) —— . >

(A.5)

Proof. The proof follows [20, Sect. 2] and uses the same notation as in the proof of
Theorem A.1. The right-hand side of (A.2) is minimum for & = g(w™)/[4 Amax (K)] <
1/2. Therefore,

9@ V) = min glw"(a)] < (1 -~ )g(@™) +26° Anax(K)

agl0,1]
= g(w™) {1 — 8’;(:51)1)0} :
Since 1 — ¢t < 1/(1+1t) for all ¢ > —1, we obtain
(n+1) !
6018 A ()] € T
which, by induction, implies that g(w(™) < 8 Apax (K)/(n + 3); that is, (A.5). ]

Lemma A.4. When w is in the interior of Pq, (4.18) with «,, = &, given by (A.4),
initialized at any wV) € Pq, satisfies

2
o -l < o -l e (-5 ) 021 (A0)

4R?

where Ry = Amax(K) (1 — 1/Q)]*/? and o, = w./L, with w, = min;—1 . o{W} (so
that w, < 1/Q) and L = (maxi:17___7Q{K_1}ii)1/2.

Proof. We use the same approach as in [6] and use the same notation as in the proof
of Theorem A.1. We can write g(w™1) = g[w™+)(&,)], with &, given by (A.4).
Therefore,

g(@" ) = g(w™) + 284, A K(w™ - &) + o} | Anlik
ATK(w™ — o))?
— gl - BB — )

1A%
42




Equation (A.3) implies that [A] K(w™ — &)]? > a2g(w™), and thus

wrth) w™ ol w™ ol
This implies g(w™ 1) < g(w®) exp[—a2n/(4R?)], that is, (A.6). [ |

Similarly to Lemma A.2, the small value of the constant «, makes the linear
convergence rate in (A.6) of theoretical interest only.

A.3. Vertex-exchange. Following [G6, (7], one may also use a vertex-exchange
method based on the true steepest-descent direction, see also [12, 13]. The iterations
are then

5(n+1) — 5(“) + ay, (5xn+1 — 5x;) , (A7)
where x,,11 is given by (4.17) and
x, € Arg  max  [Pew(x) — Pu(x)] , (A.8)

x€Supp (™))

with Supp(ﬁ(”)) = X, the support of €. The step-size a, is then given by

min{a,, (™ (x;,)}, where &, minimizes & [{¢™ +a (0., —08, )} —p] with respect to

« (the constraint a,, < &0 (x; ) ensures that £V € .Z+(1) when ¢ € .7+ (1)).

Direct calculation gives

R (Peny — Py, P _ —Fs

Oy = =
| Fs__ — Ps

Xn41 >K

S 7
_ Peon (%) = Pu(x)] = [Peen (%n41) = Pu(¥n41)] (A.9)
K(xn,xn) + K(Xpi1,Xni1) — 2K (X5, Xng1) '

For the algorithm defined by (A.7, A.8), we have w™t) = w™ + o, A, with
now A, = e+ —€-, where we take i} € Argmin;—; o eiTK(w(”) —w) and i, €
Argmax;, o7 ,m o €; K(w™ —&). The step size (A.9) equals

CATK(@ —w™)

G = A (4-10)

Take a,, = min{wi(ﬁ),o?n} in (A.7), so that w(™ remains in Pg for all n. Using the
same notation as in the proof of Theorem A.1, we have

glw" P (@)] < g(w™) + 208, K(w™ = &) + 20 Anax(K)
and, since w(™ € Pq, the convexity of g(-) and the definition of A,, imply that
9(@) =0> gw™) +2(0 — w™)TK(w™ — &) > glw™) + 20T K(w™ — &).
We obtain the following property; the proof is identical to that of Theorem A.2.

Theorem A.3. Suppose that & and K are such that &, < wy_l) for any w™ € Pg.
Then, algorithm (A.7, A.8) with o, = G, given by (A.10), initialized at any w™) €
P, satisfies

8 Amax (K)

n+3
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(n) -

There exist situations where the condition &,, < W, is not satisfied. Take for in-

stance Q = 3, K the identity matrix and & = (0,0,1)7, w™ = (1/3,1/3,1/3)T; then
b =1/2 > wgf) = 1/3). On the other hand, the condltlon is satisfied for instance

for w = 1o /Q and K the identity matrix (we have i,- = Arg max, <n)>0(w§n) —w;),
and Y5 (] (") _ &;) = 0 implies that w( DS @;- and similarly w( R < w;+; we get
(wQ_L)

Gy = (”))/2 < w(")/Q < w( )), and numerlcal experlments indicate that it

holds true in most situations.
Appendix B. Bayesian quadrature: several integrals.

Following [72], consider a generalization of the situation considered in Section 2.2
where one wishes to estimate

L,(f) = E{/(X)r(X)} = /f ).

with r(x) = (10(x),...,7(x)) " a vector of p + 1 known functions of x, such that the
(p+1) x (p+ 1) matrix

M, = E, {r(X)r (X)}

exists and is nonsingular. See also [58]. Without any loss of generality, we may assume
that ro(x) = 1.

We also slightly generalize the model (2.1) by introducing a linear trend h' (x)g3;
that is, we consider

fx)=h"(x)B+Z,, (B.1)

where h(x) = (ho(x),...,hy(x))" is a vector of p’ + 1 known functions of x and
/ 50
B € RP ™! has the normal prior 4 (3 ,52A), non-informative so that we can replace

A~! by the null matrix 0 in all calculations (the choice of ,@0 being then irrelevant).
We assume that the matrix E,{h(X)h"(X)} is well-defined. For reasons that will
become clear below, we shall consider in particular the case where h =r.

The posterior mean and variance of f(x), conditional on ¢? and K, are now,
respectively,

in(x) =h" (x)8" + k| (x)K; (y, —H,B"),
o2p? (x) = 02 { K (x,x) — k] (x)K;, 'k, (x)
+h(x) - HK; 'k, (x)] T (H K, 'H,,) "'[h(x) - H, K, 'k, (x)]} ,

where {H,,(x)};; = hj(xi),i=1,...,n,j=0,...,p/, and
A" = (MK, ' H) " H Ky
The posterior mean and covariance matrix of I,,(f) are

/I\n = B(M)Bn + P?L(M)Kgl(}’n - Han) ) (B-2)
o?V, =0’ {UT(N> —Po (0K, 'P, (1)
+ [B(u) — Pu(0)K, " H,] (HTK; T H,) ™! [B) — Pu(0K;, 'Ha] '}, (B3)
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where B(1) = E,, {r(X)hT (X)}, P, (1) = E, {r(X)k] (X)} and
U, () = E, {r(X)rT (X)K(X, X))},

with X and X’ i.i.d. ~ pu.

Remark B.1 (Reproduction of cubature rules). Consider the case where p = 1
(r(x) = 1), n = p’ + 1, so that H,, is n X n, and suppose that X,, is such that
H,, is nonsingular. Then, direct calculation shows that Tn = W)y, with w/ =
HE,{h(X)} and V,, = &k (&, — i), where &, has weights w,. The weights w,
are independent of the choice of the kernel K and every function f in the linear
space spanned by h(-) is integrated exactly (I, = I,(f) when f(x) = v h(x) for
some vector =), see [52, Th. 2.10]. In the same paper, these results are used to show
that for any n-point cubature rule there exists n functions h;(-) such that the rule
corresponds to Bayesian integration for model (B.1). One may also refer to [53] for the
relation between polynomial-based quadrature rules and Bayesian quadrature (for a
suitably chosen polynomial kernel) when 8 in (B.1) is considered as a vector of known
constants (for instance, zero), so that the posterior variance is given by (2.11). <

Suppose that M, = E,{h(X)h' (X)} is nonsingular. Following Section 3.5.2, we
can write f(x) = h'(x)3 4+ PnZ, + (Idz2 —Py)Z,, where P, denotes the orthogonal
projection of L?(2 ,u) onto the linear space spanned by h(-); that is, Prg(x) =
h'(x)M; " [, h(x')g(x') du(x’) for all g € L*(2, y1). This gives

Prnz, = hT(X)Mgl/ h(x')Z, du(x').
x

In absence of prior information on 3 (A~! = 0), the prior on the parameters 3’ =
B+ M;! J o h(x')Z,s dp(x’) remains non-informative, and the covariance kernel of

Zy = (Idp2 —Pp)Zy is

Ku(x,x') = K(x,x') — u,, (x)M; '"h(x') — h" (x)M}, "u,(x)

+h' (x)M; U ()M, 'h(x')

where Uy, (1) = E,{h(X)r " (X')K(X,X")} and u,(x) = E,{h(X)K(X,x)}, x € 2.
Similarly to Section 4.2 (see [37, Sect. 5.4]), this kernel reduction does not modify

predictions, and direct calculation shows that E,{h(X)h™(X")K,(X,X’)} = 0 and

E,{h(X)k, (X)} = 0, with k,(x) = (K.(x,x1), ..., K,(x,%,))T. Taking h = r, we

thus obtain the following property, where R, is the n x (p + 1) matrix {R,(x)};; =

ri(x;),i=1,...,n,7=0,...,p, and {K,}; ;, = KM()fjvxj)> L,ji=1,...,n.

Lemma B.1. When K is SPD and h =r in (B.1), I,, given by (B.2) satisfies

Tn =M, (R;er{;an)_l (RIRT_LIYn) )
and the posterior covariance matriz (B.3) satisfies
V, =M, (R'K'R,)"'M, . (B.4)

To ensure a precise estimation of I,(f), we may select a design X,, that minimizes
J(V,), with 7 () a Loewner increasing function defined on the set of symmetric non-
negative define matrices. Typical choices are J(V,,) = det(V,,) (D-optimality) and
J(V,) = trace(V,,) (A-optimality). Greedy minimization of J(V,,) corresponds to
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Sequential Bayesian Quadrature, see Section 4.4. Using (B.4) and formulae for the
inversion of a block matrix, we obtain the following expressions for det(V,;) and
trace(Vy,41):

K (x, %) -k (0K k()

det )
pr(x)

V7L+1 ) = det (Vn)

—~

trace(V,41) = trace(Vy,,)
() - RyK k(0] (R K, 'R) T ME(RL K 'R, (%) — RIK Tk (%)

pr(x) ’

with

(1— k) (x)K;'1,)
1K',

pr () = | Ku(xx) = ko (x)K;, 'k (x) +

When p = 0 (r(x) = 1), V,, = s2 in (4.13) and det(V,41) = trace(V,41) = s24
given by (4.15).

Appendix C. Energy and potential for the triangular kernel.

Consider the triangular kernel Ky(z,2") = max{1 — 0|z — 2/|,0}, 6 > 0, with u
uniform on [0, 1]. The expressions of &k (u) and P,(x) vary depending on the range
considered for ¢, with in all cases P,(z) =0 when 2 < —1/6 or 14+1/0 < x.

2<0. E(n) = (30—1)/(30%) and

O(x+1/0)%/2 it —1/6<z<0
1/6 —0(1/6 — z)%/2 ifo<xz<1/6
Pu(z)={ 1/0 if1/0<x<1-1/6
1/0-60(1/0+x—1)2/2 if1-1/0<z<1
6(1 —z+1/6)%/2 if1<z<1+1/0

1<60<2. Ex(p)=(30—1)/(30%) and

O(x +1/60)%/2 if —1/6<z2<0

1/0 —0(1/0 — ) /2 fo<x<1-1/6
Pz)=4 1/6 —0(1/0 —2)2/2 —0(1/0 + 2z —1)?/2 if1 -1/ <z <1/6

1/0 —0(1/0 +x —1)%/2 if1/0<x<1

(1 —z+1/6)%/2 if1<z<1+1/0

0<0<1. Ex(u)=1-0/3and

O(x +1/0)%/2 if —1/6<zx<1-1/0

1—-6/2+ 6z ifl1-1/6<z<0
P(z)={ 1-6/240x—0z> if0<z<l1

1+60/2—0x if1<x<1/6

01—z +1/0)%/2 if1/0<x<1+1/0
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