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BAYESIAN QUADRATURE, ENERGY MINIMIZATION
AND SPACE-FILLING DESIGN

LUC PRONZATO† AND ANATOLY ZHIGLJAVSKY∗

Abstract. A standard objective in computer experiments is to approximate the behavior of an
unknown function on a compact domain from a few evaluations inside the domain. When little is
known about the function, space-�lling design is advisable: typically, points of evaluation spread out
across the available space are obtained by minimizing a geometrical (for instance, covering radius)
or a discrepancy criterion measuring distance to uniformity. The paper investigates connections
between design for integration (quadrature design), construction of the (continuous) BLUE for the
location model, space-�lling design, and minimization of energy (kernel discrepancy) for signed mea-
sures. Integrally strictly positive de�nite kernels de�ne strictly convex energy functionals, with an
equivalence between the notions of potential and directional derivative, showing the strong relation
between discrepancy minimization and more traditional design of optimal experiments. In particular,
kernel herding algorithms, which are special instances of vertex-direction methods used in optimal
design, can be applied to the construction of point sequences with suitable space-�lling properties.

Keywords: Bayesian quadrature, BLUE, energy minimization, potential, discrep-
ancy, space-�lling design
AMS subject classi�cations: 62K99, 65D30, 65D99.

1. Introduction. The design of computer experiments, where observations of
a real physical phenomenon are replaced by simulations of a complex mathematical
model (e.g., based on PDEs), has emerged as a full discipline, central to uncertainty
quanti�cation. The �nal objective of the simulations is often goal-oriented and pre-
cisely de�ned. It may correspond for example to the optimization of the response of
a system with respect to its input factors, or to the estimation of the probability that
the response will exceed a given threshold when input factors have a given probability
distribution. Achieving this objective generally requires sequential learning of the be-
havior of the response in a particular domain of interest for input factors: the region
where the response is close to its optimum, or is close to the given threshold; see, e.g.,
the references in [38]. When simulations are computationally expensive, sequential
inference based on the direct use of the mathematical model is unfeasible due to the
large number of simulations required and simpli�ed prediction models, approximating
the simulated response, have to be used. A most popular approach relies on Gaussian
process modelling, where the response (unknown prior to simulation) is considered
as the realization of a Gaussian Random Field (RF), with parameterized mean and
covariance, and Bayesian inference gives access to the posterior distribution of the
RF (after simulation). Typically, in a goal-oriented approach based on stepwise un-
certainty reduction [7, 8], the prediction model is used to select the input factors to
be used for the next simulation, the selection being optimal in terms of predicted un-
certainty on the target. The construction of a �rst, possibly crude, prediction model
is necessary to initialize the procedure. This amounts to approximating the behavior
of an unknown function f (the model response) on a compact domain X ⊂ Rd (the
feasible set for d input factors) from a few evaluations inside the domain. That is
the basic design objective we shall keep in mind throughout the paper, although we
may use diverted paths where approximation/prediction will be shadowed by other
objectives, integration in particular.
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In general, little is known about the function a priori, and it seems intuitively
reasonable to spread out points of evaluation across the available space; see [10]. Such
space-�lling designs can be obtained by optimizing a geometrical measure of dispersion
or a discrepancy criterion measuring distance to uniformity. When using a Gaussian
RF model, minimizing the Integrated Mean-Squared Prediction Error (IMSPE) is also
a popular approach, although not very much used due to its apparent complexity, see,
e.g., [36, 41]. The paper promotes the use of designs optimized for integration with
respect to the uniform measure for their good space-�lling properties. It gives a sur-
vey of recent results on energy functionals that measure distance to uniformity and
places recent approaches proposed for space-�lling design, such as [64], in a general
framework and perspective encompassing design for integration, construction of the
(continuous) Best Linear Unbiased Estimator (BLUE) in a location model with cor-
related errors, and minimization of energy (kernel discrepancy) for signed measures.
Our objective is to foster the use of designs obtained by minimizing a quadratic mea-
sure of discrepancy, which can be easily computed, for function approximation at the
initial exploratory stage of computer experiments. In particular, we believe that such
constructions are especially useful when the number of function evaluations is not
�xed in advance, and one wishes to have an ordered sequence of points such that any
�rst n points have suitable space-�lling properties.

We start by a quick introduction to Bayesian function approximation and integra-
tion (Section 2), where the function is considered as the realization of a Gaussian RF
with covariance structure de�ned by some kernel K; see in particular [57, 58, 72, 16]
for Bayesian integration. Section 3 summarizes recent results on the minimization
of energy functionals [21, 88, 89] and extends some to kernels with singularities,
which we believe have great potential for the construction of space-�lling designs.
Integrally strictly positive de�nite kernels de�ne strictly convex energy functionals
(Lemmas 3.1 and 3.2), which yields an equivalence between the notions of potential
and directional derivative that reveals the strong relation between discrepancy min-
imization and more traditional design of optimal experiments. Further connections
are discussed: Bayesian integration is equivalent to the construction of the BLUE in a
model with modi�ed correlation structure (Section 3.5.2), so that the two associated
design problems coincide; the posterior variance in Bayesian integration corresponds
to the minimum of a squared kernel discrepancy for signed measures with total mass
one (Theorem 4.3) and to the minimum of an energy functional for a reduced kernel
(Theorem 4.4). Since the posterior variance criterion in Bayesian integration takes a
very simple form, its minimization constitutes an attractive alternative to the min-
imization of the IMSPE. This is considered in Section 4, which starts by exploring
relations between discrepancy and covering radius. In particular, kernel herding algo-
rithms from machine learning, which are special instances of vertex-direction methods
used in optimal design and can be used for the construction of point sequences with
suitable space-�lling properties, are considered in Section 4.4. Section 5 provides a
few numerical examples. The main results are stated as theorems or lemmas; links
to related work, or comments on speci�c aspects, are isolated in a few remarks; sev-
eral illustrative examples are given to help keeping track of technical developments.
Several auxiliary results are given in appendices. Appendix A describes convergence
properties of the algorithms used in Section 4; it adapts some known results in the
community of optimal design theory to the particular case of a quadratic criterion.
Extension to design for the simultaneous estimation of several integrals is consid-
ered in Appendix B. Appendix C contains technical details for computing energy and
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potential for a particular kernel.

2. Random-�eld models for function approximation and integration.

2.1. Space-�lling design and kernel choice for function approximation.
Let K(·, ·) denote a symmetric positive de�nite kernel on X ×X , with associated
Reproducing Kernel Hilbert Space (RKHS) HK . Denote Kx(·) = K(x, ·) and 〈·, ·〉K
the scalar product in HK , so that the reproducing property gives 〈f,Kx〉K = f(x)
for any f ∈ HK .

Consider �rst the common framework where the function f to be approximated is
supposed to belong to HK . Let ηn(x) =

∑n
i=1 wif(xi) = w>n yn be a linear predictor

of f(x) based on evaluations of f at the n-point design Xn = {x1, . . . ,xn}, with
xi ∈ X for all i. Throughout the paper we denote wn = (w1, . . . , wn)>, yn =
[f(x1), . . . , f(xn)]>, kn(·) = [Kx1

(·), . . . ,Kxn(·)]> and {Kn}i,j = K(xi,xj), i, j =
1, . . . , n. The Cauchy-Schwarz inequality gives the classical result

|f(x)− ηn(x)| =

∣∣∣∣∣f(x)−
n∑
i=1

wif(xi)

∣∣∣∣∣ =

∣∣∣∣∣〈f,Kx −
n∑
i=1

wiKxi〉K

∣∣∣∣∣
≤ ‖f‖HK

∥∥∥∥∥Kx −
n∑
i=1

wiKxi

∥∥∥∥∥
HK

,

where ‖f‖HK depends on f but not on Xn, and ρn(x,w) = ‖Kx −
∑n
i=1 wiKxi‖HK

depends on Xn (and wn) but not on f . Suppose that Kn has full rank. For a
given Xn, the Best Linear Predictor (BLP) minimizes ρn(x,w) and corresponds to
η∗n(x) = (w∗n)>yn, with w∗n = w∗n(x) = K−1

n kn(x), which gives ρ∗n
2(x) = ρ2

n(x,w∗n) =
K(x,x)− k>n (x)K−1

n kn(x).

A less restrictive assumption on f is to suppose that it corresponds to a realization
of a RF Zx, with zero mean (E{Zx} = 0) and covariance E{ZxZx′} = σ2K(x,x′)
for all x, x′ in X , σ2 > 0. Then, straightforward calculation shows that η∗n(x) is
still the BLP (the posterior mean if Zx is Gaussian), and σ2 ρ∗n

2(x) is the Mean-
Squared Prediction Error (MSPE) at x. This construction corresponds to simple
kriging; see, e.g., [4, 94]. IMSPE-optimal designs minimize the integrated squared
error IMSPE(Xn) = σ2

∫
X ρ∗n

2(x)dµ(x), with µ generally taken as the uniform prob-
ability measure on X , see, e.g., [36, 41, 83].

IMSPE-optimal designs X∗n depend on the chosen K. It is well known that the
asymptotic rate of decrease of IMSPE(X∗n) as n increases depends on the smoothness
of K (the same is true for the integration problem); see for instance [82]. It is rather
usual to take K stationary (translation invariant), i.e., satisfying K(x,x′) = Ψ(x −
x′) for all x and x′, with Ψ in some parametric class selected according to prior
knowledge on the smoothness properties of f . A typical example is the Matérn class
of covariances, see [90, Chap. 2]. On the other hand, for reasons explained in Section 1,
computer experiments often use small values of n, and the asymptotic behavior of the
approximation error is hardly observed. Its behavior on a short horizon is much
more important and strongly depends on the correlation lengths in K, which are
di�cult to choose a priori. Robustness with respect to the choice of K favours space-
�lling designs, where the xi are suitably spread over X . Noticeably, it is shown in
[85] that for translation invariant and isotropic kernels (i.e., such that K(x,x′) =
Ψ(‖x − x′‖), with ‖ · ‖ the Euclidean distance in Rd), one has ρ2

n(x) ≤ SK [hr(x)]
for some increasing function SK(·). Here hr(x) = max‖x−x′‖≤r min1≤i≤n ‖x′ − xi‖
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measures the density of design points xi around x, with r a �xed positive constant.
It satis�es, maxx∈X hr(x) ≥ maxx∈X h0(x) = CR(Xn), with

CR(Xn) = max
x∈X

min
1≤i≤n

‖x− xi‖ ,

the covering radius of Xn: CR(Xn) de�nes the smallest r such that the n closed balls
of radius r centred at the xi cover X . CR(Xn) is also called the dispersion of Xn [69,
Chap. 6] and corresponds to the minimax-distance criterion [49] used in space-�lling
design. Loosely speaking, the property ρ2

n(x) ≤ SK [hr(x)] quanti�es the intuition
that designs with a small value of CR provide precise predictions over X since for
any x in X there always exists a design point xi at proximity where f(xi) has been
evaluated. Another standard geometrical criterion of spreadness is the packing (or
separating) radius

PR(Xn) =
1

2
min
i 6=j
‖xi − xj‖ .

It corresponds to the largest r such that the n open balls of radius r centred at the
xi do not intersect; 2PR(·) corresponds to the maximin-distance criterion [49] often
used in computer experiments. The packing radius PR(Xn) is a simpler characteristic
than the covering radius CR(Xn), in terms of evaluation and optimization, see, e.g.,
[74]. Regularized versions of PR(Xn) are well-known, see Example 3.5; regularization
of CR(Xn) is considered in [78].

In this paper, we shall adopt the following point of view. We do not intend to
construct designs adapted to a particular K chosen from a priori knowledge on f .
Neither shall we estimate the parameters in K (such as correlation lengths) when K
is taken from a parametric class. We shall rather consider the kernel K as a tool for
constructing a space-�lling design, the quality of which will be measured in particular
through the value of CR. The motivation is twofold: (i) the construction will be much
easier than the direct minimization of CR, (ii) it will facilitate the construction of
sequences of points suitably spread over X .

2.2. Bayesian quadrature. Denote by M = M [X ] the set of �nite signed
Borel measures on a nonempty set X , and by M (q), q ∈ R, the set of signed measures
with total mass q: M (q) = {µ ∈ M : µ(X ) = q}. The set of Borel probability
measures on X is denoted by M +(1), M + is the set of �nite positive measures
on X . Typical applications correspond to X being a compact subset of Rd for
some d.

Suppose we wish to integrate a real function de�ned on X with respect to µ ∈
M +(1). Assume that Eµ{|f(X)|} < +∞ and denote

Iµ(f) = Eµ{f(X)} =

∫
X

f(x) dµ(x) .

We set a prior on f , and assume that f is a realization of a Gaussian RF, with
covariance σ2K(·, ·), σ2 > 0, and unknown mean β0; that is, we consider the location
model with correlated errors

f(x) = β0 + Zx , (2.1)

where E{Zx} = 0 and E{ZxZx′} = σ2K(x,x′) for all x,x′ ∈ X . Regression models
more general than (2.1) are considered in Appendix B; one may refer to [16] for an
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extensive review of Bayesian quadrature. Here K is a symmetric Positive De�nite
(PD) kernel; that is, K(x,x′) = K(x′,x), and for all n ∈ N and all pairwise di�erent
x1, . . . ,xn ∈X , the matrixKn is non-negative de�nite; ifKn is positive de�nite, then
K is called Strictly Positive De�nite (SPD). Note thatK2(x,x′) ≤ K(x,x)K(x′,x′) <
+∞ for all x,x′ ∈ X since K corresponds to a covariance. We will call a general
kernel K bounded when K(x,x) < ∞ for all x ∈ X , and uniformly bounded when
there is a constant C such that K(x,x) ≤ C for all x ∈ X . Any PD kernel is
bounded.

Similarly to Section 2.1, we denote by HK the associated RKHS and by 〈·, ·〉K
the scalar product in HK . The assumption that K is bounded will be relaxed in
Section 3.2 where we shall also consider singular kernels, but throughout the paper
we assume that K is symmetric, K(x,x′) = K(x′,x) for all x,x′ ∈ X . Also, we
always assume, as in [34, Sect. 2.1], that either K is non-negative on X ×X , or X
is compact.

We set a vague prior on β0 and assume that β0 ∼ N (β̂0
0 , σ

2A) with A → +∞.

This amounts to setting 1/A = 0 in all Bayesian calculations; the choice of β̂0
0 is

then irrelevant. Suppose that f has been evaluated at an n-point design Xn =
{x1, . . . ,xn} ∈X n with pairwise di�erent points. We assume that Kn has full rank.
For any x ∈ X , the posterior distribution of f(x) (conditional on σ2 and K) is
normal, with mean

η̂n(x) = β̂n0 + k>n (x)K−1
n (yn − β̂n0 1n)

and variance (mean-squared error)

σ2ρ2
n(x) = σ2

[
K(x,x)− k>n (x)K−1

n kn(x) +
(1− k>n (x)K−1

n 1n)2

1>nK
−1
n 1n

]
, (2.2)

where

β̂n0 =
1>nK

−1
n yn

1>nK
−1
n 1n

(2.3)

and 1n is the n-dimensional vector (1, . . . , 1)>, see for instance [84, Chap. 4]. The
posterior mean of Iµ(f) is thus

În =

∫
X

η̂n(x) dµ(x) = Eµ{η̂n(X)} = β̂n0 + pn(µ)>K−1
n (yn − β̂n0 1n) , (2.4)

with

pn(µ) = (Pµ(x1), . . . , Pµ(xn))> , (2.5)

where, for any ν ∈M and x ∈X , we denote

Pν(x) =

∫
X

K(x,x′) dν(x′) . (2.6)

Pν(·) is called the kernel imbedding of ν into HK , see [88, Def. 9]; Pν(x) is well-de�ned
and �nite for any ν ∈ M and x ∈ X when K is uniformly bounded. On the other
hand, there always exists ν ∈ M such that Pν(x) is in�nite for all x ∈ X when K
is not uniformly bounded on X . The function Pν(·) is called a potential in potential
theory, see Section 3.2.
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Similarly to (2.2), we obtain that the posterior variance of Iµ(f) is

σ2s2
n = σ2

[
EK(µ)− p>n (µ)K−1

n pn(µ) +
(1− p>n (µ)K−1

n 1n)2

1>nK
−1
n 1n

]
, (2.7)

where, for any ν ∈M , we denote

EK(ν) =

∫
X 2

K(x,x′) dν(x)dν(x′) . (2.8)

This is one of the key notions in potential theory, called the energy of ν; see Sec-
tion 3.2. For µ in M +(1), we have EK(µ) = Eµ{K(X,X′)} where X and X′ are
independently identically distributed (i.i.d.) with µ. The quantity −EK(µ) corre-
sponds to the quadratic entropy introduced by C.R. Rao [80]; see also Remark 3.1.
De�ne

M α
K =

{
ν ∈M :

∫
X

Kα(x,x) d|ν|(x) < +∞
}
, α > 0 . (2.9)

When µ ∈M
1/2
K , the reproducing property and the Cauchy-Schwarz inequality imply

that

EK(µ) =

∫
X 2

〈K(·,x),K(·,x′)〉K dµ(x)dµ(x′)

≤
[∫

X

K1/2(x,x) d|µ|(x)

]2

< +∞ . (2.10)

When β0 is assumed to be known (equal to zero for instance), we simply substitute

β0 for β̂n0 in (2.4) and the posterior variance is

σ2s2
n,0 = σ2

[
EK(µ)− p>n (µ)K−1

n pn(µ)
]
. (2.11)

Bayesian quadrature relies on the estimation of Iµ(f) by În. An optimal design
for estimating Iµ(f) should minimize s2

n given by (2.7). One may refer to [24] for
a historical perspective and to [45] for a recent exposition on Bayesian numerical
computation. The framework presented above is similar to that considered in [72]
(where an improper prior density p(β0, σ

2) ∝ σ−2 is set on β0 and σ2), restricted to
the case (recommended in that paper) where the known trend function is simply the
constant 1 (which corresponds to the presence of an unknown mean β0 in the model
(2.1)). In Section 4, we shall see that s2

n,0 is equal to the minimum value of a (squared)
kernel discrepancy between the measure µ and a signed measure supported on Xn,
and that s2

n corresponds to the minimum of a squared discrepancy for signed measures
that are constrained to have total mass one, and also corresponds to the minimum
of an energy functional for a modi�ed kernel Kµ. Note that σ2s2

n ≤ IMSPE(Xn) =

σ2
∫

X ρ2
n(x) dµ(x) (which requires µ ∈M 1

K ⊂M
1/2
K to be well-de�ned); we show in

Theorem 4.5 that IMSPE(Xn) ≤ σ2s2
n + σ2

[∫
X K(x,x) dµ(x)− EK(µ)

]
. One of the

key ideas of the paper is that space-�lling design may be based on the minimization
of s2

n rather than the minimization of the IMSPE.
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3. Kernel discrepancy, energy and potentials.

3.1. Maximum mean discrepancy: a metric on probability measures
related to integration. Suppose that K is bounded and f belongs to the RKHS

HK . Let µ and ν be two probability measures in M +(1) ∩M
1/2
K . Since f ∈ HK ,

using the reproducing property, we obtain Iµ(f) =
∫

X 〈f,Kx〉K dµ(x), Iν(f) =∫
X 〈f,Kx〉K dν(x) and

|Iµ(f)− Iν(f)| =
∣∣∣∣∫

X

〈f,Kx〉K d(µ− ν)(x)

∣∣∣∣ = |〈f, Pµ − Pν〉K | ,

with Pµ(·) and Pν(·) the kernel imbeddings (2.6). De�ne

γK(µ, ν) = ‖Pµ − Pν‖HK . (3.1)

The Cauchy-Schwarz inequality yields the Koksma-Hlawka type inequality, see, e.g.,
[47], [69, Chap. 2], |Iµ(f)− Iν(f)| ≤ ‖f‖HKγK(µ, ν), and

γK(µ, ν) = sup
‖f‖HK=1

|Iµ(f)− Iν(f)| , (3.2)

see, e.g., [89, Th. 1]. Also, the expansion of ‖Pµ − Pν‖2HK gives

γK(µ, ν) =
(
‖Pµ‖2HK + ‖Pν‖2HK − 2〈Pµ, Pν〉K

)1/2
=

(∫
X 2

K(x,x′)d(ν − µ)(x)d(ν − µ)(x′)

)1/2

. (3.3)

Therefore, γK(·, ·) is at the same time a pseudometric between kernel imbeddings (3.1)
and an integral pseudometric on probability distributions (3.2). It de�nes a kernel
discrepancy between distributions (3.3), γK(·, ·) is also called the Maximum Mean

Discrepancy (MMD) between µ and ν in M +(1) ∩M
1/2
K , see [88, Def. 10].

To de�ne a metric on the whole M +(1), we need Pµ to be well-de�ned and so
that Pµ = Pν for µ and ν in M +(1) implies µ = ν. This corresponds to the notion
of characteristic kernel, see [89, Def. 6], which is closely connected to the following
de�nitions.
De�nition 3.1. A kernel K is Integrally Strictly Positive De�nite (ISPD) on M
when EK(ν) > 0 for any nonzero measure ν ∈M .
De�nition 3.2. A kernel K is Conditionally Integrally Strictly Positive De�nite
(CISPD) on M when it is ISPD on M (0); that is, when EK(ν) > 0 for all nonzero
signed measures ν ∈M such that ν(X ) = 0.

An ISPD kernel is CISPD. A bounded ISPD kernel is SPD and de�nes an RKHS.
In [89, Lemma 8], the authors show that a uniformly bounded kernel is characteristic
if and only if it is CISPD. The proof is a direct consequence of the expression (3.3) for
the MMD γK(µ, ν). They also give (Corollary 4) a spectral interpretation of γK(µ, ν)
and show that a translation-invariant kernel such that K(x,x′) = Ψ(x−x′), with Ψ a
uniformly bounded continuous real-valued positive-de�nite function, satis�es, for any
µ and ν in M +(1),

γK(µ, ν) =

[∫
Rd
|φµ(ω)− φν(ω)|2 dΛ(ω)

]1/2

.
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Here, φµ and φν denote the characteristic functions of µ and ν respectively and Λ is
the spectral Borel measure on Rd, de�ned by

Ψ(x) =

∫
Rd
e−ix

>ω dΛ(ω) . (3.4)

Using this spectral representation, they prove (Theorem 9) that K is characteristic
if and only if the support of the associated Λ coincides with Rd. For example, the
sinc-squared kernel K(x, x′) = sin2[θ(x − x′)]/[θ(x − x′)]2, θ > 0, is SPD but is not
characteristic (and therefore not CISPD) since the support of Λ equals [−2θ, 2θ], and
the triangular kernel Kθ(x, x

′) = Ψθ(x − x′) = max{1 − θ|x − x′|, 0} is SPD and
characteristic since the Fourier transform of Ψθ is the sinc-squared function. When
γK(µ, δx) is well-de�ned for all x ∈ X , with δx the Dirac delta measure at x (and
thus in particular when K is characteristic), we may consider the empirical measure
ξn,e = ξn,e(Xn) = (1/n)

∑n
i=1 δxi associated with a given design Xn = {x1, . . . ,xn},

and γK(µ, ξn,e) of (3.2) gives the worst-case integration error for ξn,e when f has
norm one in HK ; see Section 4.3.1.

Typical examples of uniformly bounded ISPD, and therefore characteristic, ker-
nels are the squared exponential kernel Kt(x,x

′) = exp(−t ‖x− x′‖2), t > 0, and the
isotropic Matérn kernels, in particular

K3/2,θ(x,x
′) = (1 +

√
3θ ‖x− x′‖) exp(−

√
3θ ‖x− x′‖) (Matérn 3/2) , (3.5)

and K5/2,θ(x,x
′) = [1 +

√
5θ ‖x−x′‖+ 5θ2 ‖x−x′‖2/3] exp(−

√
5θ ‖x−x′‖) (Matérn

5/2), see, e.g., [90]. (They are SPD for any d, see [40], and ISPD since the spectral
measure Λ in (3.4) is strictly positive on Rd.) Two other important examples are
given hereafter.
Example 3.1 (generalized multiquadric kernel). The sum of ISPD kernels is ISPD.
Since the squared exponential kernel Kt(x,x

′) is ISPD for any t > 0, the integrated
kernel obtained by setting a probability distribution on t is ISPD too. One may thus
consider K(x,x′) =

∫
Kt(x,x

′)dπ(t) for π bounded and non decreasing on [0,+∞),
which generates the class of continuous isotropic autocovariance functions in arbitrary
dimension, see [87] and [90, p. 44]. In particular, for any ε > 0 and s > 0, we obtain

K(x,x′) =

∫ +∞

0

Kt(x,x
′) ts/2−1 exp(−ε t) dt =

Γ(s/2)

(‖x− x′‖2 + ε)s/2
,

showing that the generalized multiquadric kernel

Ks,ε(x,x
′) = (‖x− x′‖2 + ε)−s/2 , ε > 0 , s > 0 , (3.6)

is ISPD, see also [89, Sect. 3.2]. /

Example 3.2 (distance-induced kernels). Consider the kernels de�ned by

K(s)(x,x′) = −‖x− x′‖s , s > 0 , (3.7)

which are CISPD for s ∈ (0, 2) [93], and the related distance-induced kernels

K ′(s)(x,x′) = ‖x‖s + ‖x′‖s − ‖x− x′‖s , s > 0 .

Note that EK′(s)(µ) = EK(s)(µ) when µ(X ) = 0; in [93] EK′(s) is called energy dis-
tance for s = 1 and generalized energy distance for general s ∈ (0, 2]. For s > 0,
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the set MK′(s) contains all signed measures µ such that
∫

X ‖x− x0‖s d|µ|(x) < +∞
for some x0 ∈ X . This result is a direct consequence of the triangular inequal-
ity when s ∈ (0, 1]; for s > 1 it follows from considerations involving semimetrics
generated by kernels, see [88, Remark 21]. K ′(s) is CISPD for s ∈ (0, 2) (K ′(s)/2
corresponds to the covariance function of the fractional Brownian motion), but is not
SPD (one has in particular, K ′(s)(0,0) = 0); K ′(2) is not CISPD since EK′(2)(µ) =
[
∫

X x> dµ(x)][
∫

X x dµ(x)], µ ∈M . K(x, x′) = 1−K(1)(x, x′) = 1− |x− x′| is ISPD
for X = [0, 1]. /

3.2. Energy and potentials, MMD for signed measures and singular
kernels. In this section we extend the considerations of the previous section to signed
measures and kernels which may have singularity on the diagonal. The expression (3.9)
shows that the squared MMD between two measures µ and ν is the energy EK of the
signed measure ν − µ, hence the importance of considering signed measures besides
probability measures. We believe that singular kernels have great potential interest
for the construction of space-�lling designs, due to their natural repelling property.

De�nitions 3.1 and 3.2 extend to singular kernels, with Riesz kernels as typical
examples.
Example 3.3 (Riesz kernels). These fundamental kernels of potential theory are
de�ned by

K(s)(x,x
′) = ‖x− x′‖−s , s > 0 , and K(0)(x,x

′) = − log ‖x− x′‖ , (3.8)

with x,x′ ∈X ⊂ Rd and ‖ · ‖ the Euclidean norm. When s ≥ d, the energy EK(s)
(µ)

is in�nite for any nonzero signed measure, but for s ∈ (0, d) the kernel K(s) is ISPD.
Since the logarithmic kernel K(0)(x,x

′) has a singularity at zero and tends to −∞
when ‖x−x′‖ tends to +∞, it will only be considered for X compact; K(0) is CISPD,
see [56, p. 80]. /

Consider again EK(µ) given by (2.8), with µ ∈ M . In potential theory, this
quantity is called the energy of the signed measure µ for the kernel K. Denote

MK = {ν ∈M : |EK(ν)| < +∞} .

In the following, we shall only consider kernels that are at least CISPD. When K
is ISPD, EK(µ) is positive for any nonzero µ ∈ M , but when K is only CISPD,
EK(µ) can be negative; this is the reason for the presence of the absolute value in the
de�nition of MK . Note that MK is the set of measures such that EK(µ+), EK(µ−) and
EK(µ+, µ−) =

∫
X 2 K(x,x′) dµ+(x)dµ−(x′) are all �nite, with µ+ and µ− denoting

the positive and negative parts of the Hahn-Jordan decomposition µ = µ+ − µ− of
µ, see [34, Sect. 2.1]. Also note that when K is bounded and de�nes an RKHS,
M α

K ⊂ MK for any α ≥ 1/2, see (2.9) and (2.10); when K is uniformly bounded,
MK = M .

For any µ ∈MK , Pµ(x) given by (2.6) is called the potential at x associated with
EK(µ). It is well-de�ned, with values in R ∪ {−∞,+∞}, when Pµ+(x) and Pµ−(x)
are not both in�nite. Also, Pµ(x) is �nite for µ-almost any x, even if K is singular,

when µ ∈M +(1) ∩M
1/2
K .

When K is ISPD, we can still de�ne MMD through (3.3),

γK(µ, ν) = E
1/2
K (ν − µ) , (3.9)

since EK(ν − µ) is nonnegative whenever de�ned. The set MK forms a pre-Hilbert
space, with scalar product the mutual energy EK(µ, ν) =

∫
X 2 K(x,x′) dµ(x)dν(x′)
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and norm E
1/2
K (µ). Denote by PK the linear space of potential �elds Pµ(·), µ ∈MK ;

when K de�nes an RKHS HK , ‖Pµ‖HK = E
1/2
K (µ), so that PK ⊂ HK , and PK is

dense in HK . For PK to contain all functions Kx(·) = K(·,x), x ∈ X , we need
δx ∈MK for all x, which requires K(x,x) <∞ for all x ∈X .

For µ, ν ∈ MK , EK(µ, ν) de�nes a scalar product 〈Pµ, Pν〉PK
on PK , with

γK(µ, ν) = ‖Pµ − Pν‖PK
. Similarly to Section 3.1, we obtain

γK(µ, ν) = sup
ξ∈MK ,EK(ξ)=1

∣∣∣∣∫
X 2

K(x,x′) dξ(x)d(µ− ν)(x′)

∣∣∣∣ (3.10)

= sup
‖h‖PK

≤1

|Iµ(h)− Iν(h)| ;

that is, a result that extends (3.2) to general ISPD kernels. If K is only CISPD, we
can also de�ne γK(µ, ν) in the same way when considering measures µ, ν ∈M (1); we
then de�ne PK as the linear space of potential �elds Pµ(·), µ ∈MK ∩M (0), and in
(3.10) we restrict ξ to be in M (0).

WhenK is singular, there always exists ν in MK such that Pν(x0) = +∞ for some
x0. Consider for example the Riesz kernel K(s)(x,x

′) with s ∈ (0, d); MK contains
in particular all signed measures with compact support S(µ) whose potential Pµ(x) is
bounded on S(µ), see [56, p. 81]. Take ν as the measure with density c/‖x− x0‖s−d
on X , with x0 ∈ X ; we have EK(s)

(ν) < ∞ for X compact, but Pν(x0) = +∞. As
a consequence, as noted in [21], singular kernels have little interest for integration.

Indeed, take µ, ν ∈ MK and h = Pν ∈ PK , then |Iµ(h)| ≤ ‖h‖PK
E

1/2
K (µ) =

E
1/2
K (ν)E

1/2
K (µ) <∞, whereas |Iξn(h)|may be in�nite for some discrete approximation

ξn of µ as h can be in�nite at some points. Singular kernels may nevertheless be used
for the construction of space-�lling designs, see for instance the example in Section 5.3,
and this is our motivation for considering them in the following.

The key di�culty with singular kernels is the fact that delta measures do not
belong to MK . An expedient solution to circumvent the problem is to replace a
singular kernel with a bounded surrogate. For instance, in space-�lling design we may
replace the Riesz kernel K(s), s > 0, by a generalized inverse multiquadric kernel Ks,ε

given by (3.6), and consider the limiting behavior of the designs obtained when ε→ 0,
see Section 4.3.1; see also [79] for other constructions.

3.3. Minimum energy and equilibrium measures. In this section, we show
that there exist strong connections between results in potential theory and optimal
design theory, where one minimizes a convex functional of µ ∈ M +(1), with the
particularity that here the functional is quadratic. This will be exploited in particular
in Section 4.4 for the construction of nested design sequences.

3.3.1. ISPD kernels and convexity of EK(·).
Lemma 3.1. K is ISPD if and only if MK is convex and EK(·) is strictly convex
on MK .

Proof. For any K, any µ and ν in MK and any α ∈ [0, 1], direct calculation gives

(1− α) EK(µ) + α EK(ν)− EK [(1− α)µ+ αν] = α(1− α) EK(ν − µ) . (3.11)

Assume that K is ISPD. For any µ and ν in MK , the mutual energy EK(µ, ν)
satis�es |EK(µ, ν)| ≤

√
EK(µ)EK(ν) < +∞. Therefore, EK(µ−ν) = EK(µ)+EK(ν)−

2 EK(µ, ν) is �nite and (3.11) implies that EK [(1 − α)µ + αν] is �nite, showing that
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MK is convex. Since K is ISPD, EK(ν − µ) > 0 for µ, ν ∈ M , ν 6= µ, and (3.11)
implies that EK(·) is strictly convex on MK .

Conversely, assume that MK is convex and EK(·) is strictly convex on MK . Any
ξ ∈ MK can be written as ξ = ν − µ with, for instance, ν = 2 ξ and µ = ξ, both in
MK . If EK(·) is strictly convex on MK , (3.11) with α ∈ (0, 1) implies that EK(ξ) > 0
when ν 6= µ, that is, when ξ 6= 0. Therefore, K is ISPD.

Lemma 3.1 also applies to singular kernels. The lemma below concerns CISPD
kernels, which are assumed to be uniformly bounded.
Lemma 3.2. Assume that K is uniformly bounded. Then, K is CISPD if and only
if EK(·) is strictly convex on M (1).
Proof. Since K is uniformly bounded, MK = M . Assume that K is CISPD. Then,
EK(ν −µ) > 0 for any µ 6= ν ∈M (1), and (3.11) implies that EK(·) is strictly convex
on M (1).

Assume now that EK(·) is strictly convex on M (1). Take any non-zero signed
measure ξ in M (0) and consider the Hahn-Jordan decomposition ξ = ξ+ − ξ−, with
ξ+(X ) = ξ−(X ) = c > 0. Denote ν = ξ+/c, µ = ξ−/c, with ν and µ in M +(1) (ν
and µ are in MK since K is uniformly bounded). Then, for any α ∈ (0, 1), (3.11) and
the strict convexity of EK(·) on M (1) gives EK(ξ) = c2 EK(ν − µ) > 0.

Note that one may replace M (1) by M +(1), or by any M (γ) with γ 6= 0, in
Lemma 3.2.

3.3.2. Minimum-energy probability measures. In the remaining part of
Section 3.3, we assume that K is such that EK(·) is strictly convex on M +(1) ∩MK

and M (1) ∩MK , which is true under the conditions of Lemma 3.1 or Lemma 3.2.
For µ, ν ∈MK , denote by FK(µ; ν) the directional derivative of EK(·) at µ in the

direction ν,

FK(µ; ν) = lim
α→0+

EK [(1− α)µ+ αν]− EK(µ)

α
.

Straightforward calculation gives

FK(µ; ν) = 2

[∫
X 2

K(x,x′)dν(x)dµ(x′)− EK(µ)

]
. (3.12)

In particular, for any x ∈X , the potential Pµ(x) associated with µ at x satis�es

Pµ(x) =
1

2
FK(µ; δx) + EK(µ) .

Remark 3.1 (Bregman divergence and Jensen di�erence). The strict convexity of
EK(·) implies that EK(ν) ≥ EK(µ)+FK(µ, ν) for any µ, ν ∈MK , with equality if and
only if ν = µ. This can be used to de�ne a Bregman divergence between measures in
MK (and thus between probability measures in M +(1) ∩MK), as

BK(µ, ν) = EK(ν)− [EK(µ) + FK(µ, ν)] ;

see [81]. Direct calculation gives BK(µ, ν) = EK(ν − µ) (with therefore BK(µ, ν) =
BK(ν, µ)), providing another interpretation for the MMD γK(µ, ν), see (3.9).

The squared MMD is also proportional to the dissimilarity coe�cient, or Jensen
di�erence, ∆J(µ, ν) = (1/2)[EK(µ) + EK(ν)] − EK [(µ + ν)/2] of [80]; indeed, direct
calculation gives γ2

K(µ, ν) = EK(ν − µ) = 4 ∆J(µ, ν). /
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Assume that X is compact. Since EK(·) is strictly convex on M +(1), there
exists a unique minimum-energy probability measure. The measure µ+

K ∈M +(1) is
the minimum-energy measure if and only if FK(µ+

K ; ν) ≥ 0 for all ν ∈ M +(1), or
equivalently, since ν is a probability measure, if and only if FK(µ+

K ; δx) ≥ 0 for all
x ∈ X . We thus obtain the following property, called equivalence theorem in the
optimal design literature.
Theorem 3.1. When EK(·) is strictly convex on M +(1)∩MK , µ

+
K ∈M +(1) is the

minimum-energy probability measure on X if and only if

∀x ∈X , Pµ+
K

(x) ≥ EK(µ+
K) .

Note that, by construction,
∫

X Pµ+
K

(x) dµ+
K(x) = EK(µ+

K), implying Pµ+
K

(x) =

EK(µ+
K) on the support of µ+

K . The quantity C+
K = [infµ∈M+(1) EK(µ)]−1, with K

an ISPD kernel, is called the capacity of X in potential theory; note that C+
K ≥ 0.

The minimizing measure µ+
K ∈ M +(1) is called the equilibrium measure of X (µ+

K

is sometimes renormalized into C+
K µ

+
K , see [56, p. 138]). Theorem 3.1 thus gives a

necessary and su�cient condition for a probability measure µ to be the equilibrium
measure of X .
Example 3.4 (continuation of Example 3.2). Properties of minimum-energy prob-
ability measures µ+ = µ+

K(s) for K(s) given by (3.7) with X a compact subset of

Rd, d ≥ 2, are investigated in [11] and [76]. The mass of µ+ is concentrated on the
boundary of X , and its support only comprises extreme points of the convex hull
of X when s > 1; for 0 < s < 2, µ+ is unique; it is supported on no more than d+ 1
points when s > 2.

Take X = Bd(0, 1), the closed unit ball in Rd. For symmetry reasons, µ+ for
0 < s < 2 is uniform on the unit sphere Sd(0, 1) and

EK(s)(µ+) = −
∫

X 2

‖x− x′‖s dµ+(x)dµ+(x′) = −
∫

X

‖x0 − x′‖s dµ+(x′) ,

where x0 = (1, 0, . . . , 0)>. Denote by ψd(·) the density of the �rst component t = x′1
of x′ = (x′1, . . . , x

′
d)
>. We obtain ψd(t) = (d − 1)Vd−1 (1 − t2)(d−3)/2/(d Vd), with

Vd = πd/2/Γ(d/2 + 1) the volume of Bd(0, 1), and

EK(s)(µ+) = −
∫ 1

−1

[(1− t)2 + 1− t2]s/2 ψd(t)dt = −2d−q−2Γ(d/2)Γ[(d+ s− 1)/2]√
πΓ(d+ s/2− 1)

.

In particular, EK(1)(µ+) = −4/π when d = 2 and is a decreasing function of d. When
s = 2, the uniform distribution on the unit sphere is also optimal, and the minimum
energy equals −2 for all d ≥ 1, but µ+ is not unique and the measure allocating equal
weight 1/(d+ 1) at each of the d+ 1 vertices of a d regular simplex with vertices on
the unit sphere is optimal too. /

Example 3.5 (continuation of Example 3.3). Consider Riesz kernels K(s), see (3.8),
for X = Bd(0, 1). When s ≥ d, EK(s)

(ν) is in�nite for any non-zero ν ∈M , but for

0 < s < d there exists a minimum-energy probability measure µ+ = µ+
K(s)

. When

d > 2 and s ∈ (0, d − 2], µ+ is uniform on the unit sphere Sd(0, 1) (the boundary
of X ); the potential at all interior points satis�es Pµ+(x) ≥ EK(s)

(µ+) with strict

inequality when s ∈ (0, d − 2). When s ∈ (d − 2, d), µ+ has a density ϕs(·) in
Bd(0, 1),

ϕs(x) =
π−d/2 Γ(1 + s/2)

Γ[1− (d− s)/2]

1

(1− ‖x‖2)(d−s)/2 ,
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and the potential Pµ+(·) is constant in Bd(0, 1), see, e.g., [56, p. 163].
When d ≤ 2 and s = 0, µ+ has a density in B2(0, 1) and Pµ+(·) = EK(0)

(µ+) in

B2(0, 1). In particular, for d = 1, µ+ has the arcsine density 1/(π
√

1− x2) in [−1, 1]
with potential Pµ+(x) = log(2) − log(||x| +

√
x2 − 1|), x ∈ R (and Pµ+(x) = log(2)

for x ∈ [−1, 1]).
The energy EK(s)

is in�nite for empirical measures associated with n-point designs
Xn. One may nevertheless consider the �physical� energy

ẼK(s)
(Xn) = [2/n(n− 1)]

∑
1≤i<j≤n

‖xi − xj‖−s (3.13)

(ẼK(s)
(Xn) = −[2/n(n − 1)]

∑
1≤i<j≤n log ‖xi − xj‖ when s = 0), which is �nite

provided that all xi are distinct, see [21]. An n-point set X
∗
n minimizing ẼK(s)

(Xn) is

called a set of Fekete points, and the limit limn→∞ Ẽ−1
K(s)

(X∗n) exists and is called the

trans�nite diameter of X . For large s, Ẽ
−1/s
K(s)

(Xn) can be considered as a regularized

version of the packing radius PR(Xn), see [76]. A major result in potential theory, see,
e.g., [44], is that the trans�nite diameter coincides with the capacity C+

K(s)
of X . If

C+
K(s)

> 0, then µ+
K(s)

is the weak limit of a sequence of empirical probability measures

associated with Fekete points in X∗n. In the example considered, ẼK(s)
(X∗n) tends to

in�nity when s ≥ d, but any sequence of Fekete points is asymptotically uniformly
distributed in X ; ẼK(s)

(X∗n) grows like ns/d−1 for s > d (and like log n for s = d). /

Remark 3.2 (Stein variational gradient descent and energy minimization). Varia-
tional inference using smooth transform based on kernelized Stein discrepancy pro-
vides a gradient descent method for the approximation of a target distribution; see
[60] and the references therein; see also [22] for a Newton variational method. The
fact that the construction does not require knowledge of the normalizing constant of
the target distribution makes the method particularly attractive for approximating a
posterior distribution in Bayesian inference. Direct calculation shows that when the
kernel is translation invariant and the target distribution is uniform, then Stein vari-
ational gradient corresponds to steepest descent for the minimization of the energy
EK(ξn,e) of the empirical measure ξn,e = (1/n)

∑n
i=1 δxi ; that is, at iteration k each

design point x
(k)
i is updated into

x
(k+1)
i = x

(k)
i + γ

∑
i<j

∂K(x,x
(k)
j )

∂x

∣∣∣∣
x=x

(k)
i

for some γ > 0. The construction of space-�lling design through energy minimiza-
tion has already been considered in the literature; see, e.g., [50]. In particular, it
is suggested in [3] to construct designs in a compact subset X of Rd by minimiz-

ing ẼK(2)
(Xn) given by (3.13) (note that for d ≥ 3 design points constructed in this

way are not asymptotically uniformly distributed in X ). This approach tends to
push points to the border of X , similarly to the maximization of the packing radius
PR(Xn). /

3.3.3. Minimum-energy signed measures. From (3.9), the squared MMD is
the energy of a signed measure. Also, even if µ is a probability measure, the measure
ν ∈ M (1), with �xed support di�erent from that of µ, that minimizes γK(µ, ν), is
not necessarily a probability measure. Hence the importance of considering energy
minimization for signed measures and not only probability measures.
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The situation is slightly di�erent from that in the previous section when we con-
sider measures in M (1). In that case, µ∗K is the minimum-energy measure in M (1)
if and only if FK(µ∗K ; ν) = 0 for all ν ∈ M (1), this condition being equivalent to
FK(µ∗K ; δx) = 0 for all x ∈X . We thus obtain the following property.
Theorem 3.2. When EK(·) is strictly convex on M (1) ∩MK , µ

∗
K ∈ M (1) is the

minimum-energy signed measure with total mass one on X if and only if

∀x ∈X , Pµ∗K (x) = EK(µ∗K) . (3.14)

If we de�ne now a signed equilibrium measure on X as a measure µ ∈ M (1)
such that Pµ(x) is constant on X , from the de�nition of Pµ(·), when such a mea-
sure exists it necessarily satis�es the condition of Theorem 3.2 and therefore coin-
cides with µ∗K . Similarly to the case where one considers probability measures in
M +(1), we can de�ne the (generalized) capacity of X for measures in M (1) as
C∗K = [infµ∈M (1) EK(µ)]−1, with C∗K = 1/EK(µ∗K) when µ∗K exists, see [21, p. 824]
(note that C∗K may be negative). However, µ∗K may not exist even if X is compact.
Notice in particular that M (1) is not vaguely compact, contrarily to M +(1) (and for
Riesz kernels (3.8) with s < d− 1, MK(s)

is not complete contrarily to MK(s)
∩M +

[56, Th. 1.19]).
Example 3.6 (continuation of Examples 3.2 and 3.4). Take K(x, x′) = K(s)(x, x′) =
−|x − x′|s on X = [0, 1], s ∈ (0, 2), see (3.7). K is CISPD, and there exists a
unique minimum-energy probability measure µ+ = µ+

K(s) in M +(1). On the other
hand, below we show that minimum-energy signed measures in M (1) do not belong
to M +(1) when s ∈ (1, 2) and that there is no minimum-energy signed measure in
M (1) when s ≥ 2.

When s ∈ (0, 1), µ+ has a density ϕ(s)(·) with respect to the Lebesgue measure
on [0, 1],

ϕ(s)(x) =
Γ[1− s/2]

2s
√
π Γ[(1− s)/2]

1

[x(1− x)](1+s)/2
,

and Pµ+(x) = E (µ+) = −
√
π Γ(1 − s/2)/{2s Γ[(1 − s)/2] cos(πs/2)} for all x ∈ X

(and E (µ+) → −1/2 as s → 1−). The fact that Pµ+(x) = E (µ+) for all x ∈ X
indicates that µ+ is the minimum-energy signed measure with total mass one when
s ∈ (0, 1).

When s ∈ [1, 2), µ+ = (δ0 + δ1)/2; the associated potential is Pµ+(x) = −(|x|s +
|1− x|s)/2 ≥ E (µ+) = −1/2, x ∈ X (note that Pµ+(x) = −1/2 for all x ∈ X when
s = 1).

Consider now the signed measure µw = [(1 + w)/2](δ0 + δ1) − wδ1/2, w > 0, so
that µw(X ) = 1 (i.e., µw ∈ M (1)). Direct calculation gives EK(s)(µw) = −(1 +
w)(1 + w − 22−sw), which is minimum for w = w∗(s) = (1 − 21−s)/(22−s − 1)
when s < 2, with EK(s)(µw∗(s)) = 2(1 − 22−s)/(4 − 2s)2. For s ∈ (1, 2) we get
EK(s)(µw∗(s)) < E (µ+) = −1/2, and there exist signed measures in M (1) such that
EK(s)(µw) < E (µ+). Therefore, minimum-energy signed measures with total mass
one are not probability measures. For s ≥ 2, limw→+∞ EK(s)(µw) = −∞, and there is
no minimum-energy signed measure; in particular, EK(s)(µw) = −(w+ 1)/2 for s = 2.

/

Example 3.7 (continuation of Examples 3.3 and 3.5). Consider Riesz kernels K(s),
see (3.8), for X = Bd(0, 1), d > 2 and s ∈ (0, d−2); the minimum-energy probability
measure µ+ is then uniform on the unit sphere Sd(0, 1) and the potential at all interior
points satis�es Pµ+(x) > EK(s)

(µ+). Consider the signed measure µw = (1 + w)µ+ −
14



wµ(r), with µ(r) uniform on the sphere Sd(0, r) with radius r ∈ (0, 1). Calculations
similar to those in the proof of [56, Th. 1.32] show that EK(s)

(µw) < EK(s)
(µ+) for

w small enough, indicating that µ+ is not the minimum-energy signed measure with
total mass one. /

3.3.4. When minimum-energy signed measures are probability mea-
sures. Unlike minimum-energy probability measures, minimum-energy signed mea-
sures do not always exist, but the following property provides a su�cient condition
for their existence. Also, we shall see in Section 3.5.1 that the existence is always
guaranteed after a suitable modi�cation of the kernel.
Theorem 3.3. Assume that K is ISPD and translation invariant, with K(x,x′) =
Ψ(x− x′) and Ψ continuous, twice di�erentiable except at the origin, with Laplacian

∆Ψ(x) =
∑d
i=1 ∂

2Ψ(x)/∂x2
i ≥ 0, x 6= 0. Then there exists a unique minimum-energy

signed measure µ∗K in M (1), and µ∗K is a probability measure.

Proof. The conditions of Theorem 3.1 are satis�ed, and there exists a unique
minimum-energy probability measure µ+ such that Pµ+(x) ≥ EK(µ+) for all x ∈X .
It also satis�es Pµ+(x) = EK(µ+) on the support of µ+. On the other hand, the
conditions on K imply that for any µ in M +(1), Pµ(·) is subharmonic outside the
support of µ, see, e.g., [56, Sect. I.2]. The �rst maximum principle of potential theory
thus holds [56, Th. 1.10]: Pµ(x) ≤ c on the support of µ implies Pµ(x) ≤ c every-
where. Applying this to µ+, we obtain that Pµ+(x) ≤ EK(µ+) everywhere; therefore,
Pµ+(x) = EK(µ+) for all x ∈X . Theorem 3.2 implies that µ+ is the minimum-energy
signed measure with total mass one.

The central argument for the proof of the property above is that Pµ(·) is sub-
harmonic outside the support of µ for any probability measure µ with �nite energy.
The weaker condition Ψ(x− x′) = ψ(|x− x′|) with ψ(·) convex on (0,∞) is su�cient
when d = 1, which corresponds to the result of Hájek (1956). When d ≥ 2 with
Ψ(x− x′) = ψ(‖x− x′‖), ψ(·) must have a singularity at 0 to have ∆Ψ(x) ≥ 0 for all
x 6= 0. For the Riesz kernels K(s) of (3.8), we have ∆(‖x‖−s) = s(s+ 2− d)/‖x‖s+2,

x 6= 0. When d > 2 and s ∈ (0, d − 2], Pµ is superharmonic in Rd, and when
s ∈ [d−2, d), Pµ is subharmonic outside the support of µ, µ+ being then the minimum-
energy signed measure [35, 56]. This is also true for the logarithmic kernel for d ≤ 2,
with ∆(− log ‖x‖) = (2− d)/‖x‖2, x 6= 0. Examples 3.5 and 3.7 give an illustration.

Other examples of kernels satisfying the condition of Theorem 3.3 are given by
K(x,x′) = h[K(s)(x,x

′)] where K(s) is a Riesz kernel with s ∈ [d − 2, d) and h is
a twice-di�erentiable increasing and convex function (in fact, the continuity of h is
su�cient, see [1, p. 13]).

In Theorem 3.3 we can also consider CISPD kernels. For example, for the kernels
K(s) of (3.7), we have ∆(−‖x‖s) = s(2 − s − d)/‖x‖2−s, x 6= 0. Potentials are
superharmonic for d ≥ 2. When d = 1, they are superharmonic for s ∈ [1, 2); they
are subharmonic and satisfy the maximum principle for s ∈ (0, 1), see Example 3.6.

3.4. Best Linear Unbiased Estimator (BLUE) of β0. In Section 3.5.2, we
shall see that Bayesian integration in the model (2.1) corresponds to the construction
of the BLUE of β0 in a model with a suitably modi�ed covariance. Here we consider
the BLUE in the original model, and show that its existence is equivalent to that of
a minimum-energy signed measure for K.

3.4.1. Continuous BLUE. Consider again the situation of Section 2.2 where
σ2K corresponds to the covariance of a random �eld Zx. Suppose that we may
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observe f(·) over X in order to estimate β0 in the regression (location) model with
correlated errors (2.1). Any linear estimator of β0 takes the general form

β̂0 = β̂0(ξ) =

∫
X

f(x) dξ(x) = Iξ(f)

for some ξ ∈M , and β̂0(ξ) is unbiased when ξ ∈M (1). Its variance is

Vξ = E{(β̂0(ξ)− β0)2} = σ2 EK(ξ) ;

see [68, Sect. 4.2]. The existence of a minimum-energy signed measure µ∗K is then

equivalent to the existence of the continuous BLUE β̂∗0 for β0, with β̂∗0 = β̂0(µ∗K);

the variance of β̂∗0 is proportional to the minimum energy EK(µ∗K), and Theorem 3.2
corresponds to Grenander's theorem [43]. Also, from that theorem, the existence of
µ∗K is equivalent to the existence of an equilibrium measure that yields a constant
potential on X . It can be related to a property of the generalized capacity C∗K , as
shown in the following theorem.
Theorem 3.4. When K is ISPD, the constant function 1X equal to 1 on X belongs
to the space PK of potential �elds if and only if there exists a minimum-energy signed
measure µ∗K ∈ M (1), with EK(µ∗K) 6= 0. Moreover, the generalized capacity C∗K is
�nite and nonzero, and satis�es ‖1X ‖2PK

= C∗K .

Proof. Suppose that 1X ∈ PK . There exists µ ∈ MK such that Pµ = 1X ; that is,
Pµ(x) = 1 for all x ∈ X . The de�nition of Pµ yields EK(µ) = µ(X ), which is �nite
and strictly positive since K is ISPD and µ 6= 0. Denote µ′ = µ/µ(X ) ∈M (1). We
obtain Pµ′(x) = 1/µ(X ) = EK(µ′) > 0 for all x ∈ X . Theorem 3.2 implies that
µ′ is the minimum-energy measure µ∗K . Also, C∗K = 1/EK(µ′) = µ(X ) 6= 0, with
‖1X ‖2PK

= EK(µ), see Section 3.2.

Suppose now that there exists a minimum-energy signed measure µ∗K ∈ M (1)
with EK(µ∗K) 6= 0. Theorem 3.2 implies that Pµ∗K (x) = EK(µ∗K) for all x ∈ X .

For µ = µ∗K/EK(µ∗K), we get Pµ(x) = 1 for all x ∈ X , and ‖1X ‖2PK
= EK(µ) =

1/EK(µ∗K).

Under the conditions of Theorem 3.3, the BLUE exists, β̂∗0 = β̂0(µ+
K), with µ+

K the
minimum-energy probability measure, and its variance equals σ2EK(µ+

K). The exis-
tence of a minimum-energy signed measure is not guaranteed in general, in particular
when K(x,x′) = Ψ(x− x′) and Ψ is di�erentiable at 0; see Example 3.8 below.

3.4.2. Discrete BLUE. Consider the framework of Section 2.2, with the same
notation, and suppose that the n design points xi inXn are �xed. Any linear estimator
of β0 in (2.1) has then the form β̃n0 = w>n yn, with wn = (w1, . . . , wn)> ∈ Rn. The
unbiasedness constraint imposes w>n 1n = 1. The variance of β̃n0 equals σ2w>nKnwn,

and the BLUE corresponds to the estimator β̂n0 given by (2.3) (we assume that Kn

is nonsingular). The minimum-energy signed measure in M (1) (here discrete) µ∗K
is de�ned by the weights w∗n = K−1

n 1n/(1
>
nK
−1
n 1n) set on the points in Xn; its

energy is EK(µ∗K) = w∗n
>Knw

∗
n = 1/(1>nK

−1
n 1n) and the variance of the BLUE

equals σ2EK(µ∗K). Note that some components of w∗n may be negative and that the
potential associated with the measure µ∗K/EK(µ∗K) on X = Xn gives the constant
function 1X = 1n, see Theorem 3.4. The optimal design problem for the discrete
BLUE thus corresponds to the determination of the n-point set maximizing 1>nK

−1
n 1n.

Example 3.8. Consider K(x, x′) = exp(−θ|x− x′|), θ > 0, for x, x′ ∈X = [0, 1]. K
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is ISPD and satis�es

1X =
K(·, 0) +K(·, 1)

2
+
θ

2

∫ 1

0

K(·, x)dx ,

so that 1X ∈PK , see [2]. The minimum-energy measure in M (1) is µ∗K = (δ0 + δ1 +
θµL)/(θ + 2), with µL the Lebesgue measure on X , and µ∗K ∈ M +(1). The BLUE

of β0 in (2.1) is β̂∗0 =
∫

X f(x) dµ∗K(x), its variance equals σ2EK(µ∗K) = 2σ2/(θ + 2),
see [68, p. 56]. Note that K ′ = K − 2/(θ + 2) is still positive de�nite, but 1X 6∈ HK′
since c2K ′ − 1 is not positive de�nite for any c 6= 0, see, e.g., [9, p. 30], [73, p. 20].

Consider now the squared exponential kernel K(x, x′) = exp(−θ|x− x′|2), θ > 0.
The constant 1X does not belong to HK [91] and the BLUE of β0 in (2.1) is not
de�ned for that kernel. On the other hand, the discrete BLUE (2.3) is well-de�ned

for any set of n distinct points xi, β̂
n
0 = w∗n

>yn = 1>nK
−1
n yn/(1

>
nK
−1
n 1n). Suppose

that the n points xi are equally spaced in X = [0, 1]. The process Zx in (2.1) has mean
square derivatives of all orders, and, roughly speaking, for large n the construction of
the BLUE mimics the estimation of the derivatives of f and the weights w∗i strongly
oscillate between large positive and negative values. Figure 3.1-Left shows the optimal
weights (w∗i /|w∗i |)(log10(max{|w∗i |, 1}), truncated to absolute values larger than 1 and
in log scale, when xi = (i − 1)/(n − 1), i = 1, . . . , n = 101. In Figure 3.1-Right, the
kernel is K(x, x′) = (1 +

√
5|x−x′|+ 5|x−x′|2/3) exp(−

√
5|x−x′|) (Matérn 5/2), so

that Zx is twice mean-square di�erentiable; the construction of the BLUE mimics the
estimation of the �rst and second order derivatives of f at 0 and 1: here, 1X 6∈PK

although 1X ∈ HK ; see [30, 46] and [23] for more details. /

Figure 3.1: BLUE weights (w∗i /|w∗i |) log10(max{|w∗i |, 1}) for xi = (i − 1)/(n − 1), i =
1, . . . , n = 101. Left: K(x, x′) = exp(−|x− x′|2), Right: K(x, x′) = (1 +

√
5|x− x′|+ 5|x−

x′|2/3) exp(−
√
5|x− x′|) (Matérn 5/2).

Although a minimum-energy signed measure may not exist, in the next section
we shall see how, for any measure µ ∈M (1) and any CISPD kernel K, we can modify
K in such a way that the minimum-energy signed measure for the modi�ed kernel
exists (and coincides with µ).

3.5. Equilibrium measure and kernel reduction: MMD is equivalent to
energy minimization for a reduced kernel. Minimum-energy signed measures,
when they exist, satisfy the following property.
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Lemma 3.3. If K is CISPD and if a minimum-energy signed measure µ∗K exists in
M (1), we have EK(ξ) = EK [ξ − ξ(X )µ∗K ] + [ξ(X )]2 EK(µ∗K) , ∀ ξ ∈MK .
Proof. For any ξ ∈MK , direct calculation gives

EK [ξ − ξ(X )µ∗K ] = EK(ξ) + [ξ(X )]2 EK(µ∗K)− 2ξ(X )

∫
X 2

K(x,x′) dµ∗K(x)dξ(x′)

= EK(ξ)− [ξ(X )]2 EK(µ∗K) ,

where the second equality follows from (3.14).

Under the conditions of Lemma 3.3, any ξ ∈M (1) satis�es

EK(ξ) = EK(ξ − µ∗K) + EK(µ∗K) ,

where the �rst term on the right-hand side equals the squared MMD γ2
K(ξ, µ∗K), see

(3.9), and the second term does not depend on ξ. Minimizing the energy EK(ξ) is
thus equivalent to minimizing the MMD γK(ξ, µ∗K). However, (i) µ∗K may not exist,
(ii) in many situations we wish to select a measure ξ having small MMD γK(ξ, µ) for
a given measure µ ∈MK . This is the case in particular when one aims at evaluating
the integral of a function with respect to some µ ∈M +(1) (Section 2.2), or when we
want to construct a space-�lling design in X , µ being then uniform.

3.5.1. Kernel reduction. Take any µ ∈ MK such that µ(X ) 6= 0. Without
any loss of generality, we assume µ ∈M (1). Following [21], we show how to modify
the kernel K in such a way that minimizing the energy EKµ(ξ), ξ ∈ M (1), for the
new (reduced) kernel Kµ is equivalent to minimizing γKµ(ξ, µ). De�ne

Kµ(x,x′) = K(x,x′)− Pµ(x)− Pµ(x′) + EK(µ) , (3.15)

see [86]. One can readily check that the energy for this new reduced kernelKµ satis�es
EKµ(βµ) = 0 for any real β and that the potential for µ associated with Kµ satis�es

P̃µ(x) =
∫

X Kµ(x,x′) dµ(x′) = 0 for all x.
Next theorem indicates that, for any given µ in M (1) ∩MK , when considering

signed measures ξ with total mass one, minimizing the energy EKµ(ξ) is equivalent to
minimizing the MMD γK(ξ, µ), provided that K is CISPD.
Theorem 3.5. If K is CISPD, then for any µ ∈M (1) ∩MK , we have
(i) the reduced kernel Kµ de�ned by (3.15) is CISPD;
(ii) µ is the minimum-energy measure in M (1) for Kµ, and

∀ ξ ∈MK , EKµ(ξ) = EK [ξ − ξ(X )µ] = EKµ [ξ − ξ(X )µ] .

Proof. For any nonzero ξ ∈MK , direct calculation using (3.15) gives

EKµ(ξ) = EK(ξ)− 2ξ(X )

∫
X 2

K(x,x′) dµ(x)dξ(x′) + [ξ(X )]2 EK(µ)

= EK [ξ − ξ(X )µ] . (3.16)

(i) When ξ(X ) = 0 we get EKµ(ξ) = EK(ξ), which is strictly positive when ξ 6= 0,
showing thatKµ is CISPD. (ii) Since [ξ−ξ(X )µ](X ) = 0 andK is CISPD, EKµ(ξ)>0
for ξ 6= ξ(X )µ, showing that µ is the (unique) minimum-energy signed measure in
M (1) for Kµ. Since EKµ(µ) = 0, Lemma 3.3 with Kµ substituted for K implies that
EKµ(ξ) = EKµ [ξ − ξ(X )µ] for any ξ ∈ MK , which, together with (3.16), concludes
the proof.
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3.5.2. Kernel reduction, BLUE and Bayesian integration. Consider again
the situation of Section 3.4, and de�ne P1 as the orthogonal projection of L2(X , µ)
onto the linear space spanned by the constant 1; see [37]. The model (2.1) can then
be written as

f(x) = β0 + P1Zx + (IdL2 −P1)Zx = β′0 + Z̃x , (3.17)

where β′0 = β0 + P1Zx and Z̃x = (IdL2 −P1)Zx, with Z̃x having zero mean and

covariance E{Z̃xZ̃x′} = σ2Kµ(x,x′). The extension to a model with a more general
linear trend is considered in Appendix B. We have seen in Section 3.4 that the variance
of the continuous BLUE of β0 equals σ2EK(µ∗K) provided that the minimum-energy
signed measure µ∗K exists. (Note that the prior on β′0 remains non-informative when
the prior on β0 is non-informative.) On the other hand, we obtain now that the
continuous BLUE of β′0 always exists: it coincides with Iµ(f) and its variance is
σ2EKµ(µ) = 0. Therefore, as mentioned in introduction, Bayesian integration for the
model (2.1) with correlated errors is equivalent to parameter estimation in a location
model with di�erent correlation structure.
Remark 3.3 (other kernels with zero potential). The approach via kernel reduction,
based on a L2(X , µ) orthogonal projection, has the merit of simplicity and pleasant
interpretation through the model (3.17), but it is not the only one that can provide
a kernel with zero potential Pµ everywhere. Orthogonal projection for the RKHS
scalar product is considered in [29] in order to construct the RKHS of zero mean
functions; see also [25, Sect. 2.5] and [39] for further developments on ANOVA kernel
decomposition. Another possibility is to consider the image of a kernel under a Stein
operator, as recently considered in details in [18]; see also [71]. /

3.6. Separable kernels. From d kernels Ki respectively de�ned on Xi ×Xi,
i = 1, . . . , d, we can construct a separable (tensor-product) kernel as

K⊗(x,x′) =

d∏
i=1

Ki(xi, x
′
i) , (3.18)

where x = (x1, . . . , xd)
> and x′ = (x′1, . . . , x

′
d)
> belong to the product space X =

X1 × · · · × Xd. The construction is particularly useful when considering product
measures on X , since, in some sense, it allows us to decompose an integration problem
in a high dimensional space into its one-dimensional counterparts. Suppose that each
Ki is uniformly bounded and CISPD on M (i) = M [Xi]; that is, Ki is ISPD on
M (i)(0), see De�nitions 3.1 and 3.2. One can show that this is equivalent to K⊗

being ISPD on ⊗di=1M
(i)(0), see [92, Th. 2]. In the same paper, the authors prove

(Theorem 4) that if each Ki is moreover continuous and translation invariant, then
K⊗ is ISPD on M (0); that is, K⊗ is CISPD on M . Their proof relies on the
equivalence between the CISPD and characteristic properties for uniformly bounded
kernels, and on the characterization of characteristic continuous, uniformly bounded
and translation-invariant kernels through a property of the support of the measure
Λ de�ned in (3.4); see Section 3.1. A further attractive feature of separable kernels
is that K⊗(x,x′) is large when x and x′ are close in some coordinate, which is a
useful feature for the generation of designs having good space-�lling performance in
projections, see Section 5.3; see also Remark 3.4.

An important property of separable kernels K⊗ is that kernel reductions K⊗µ
de�ned by (3.15) are easily obtained explicitly. Indeed, when µ = ⊗di=1µ

(i) is a
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product measure on X , then, for all x ∈X ,

EK⊗(µ) =

d∏
i=1

EKi(µ
(i)) , (3.19)

Pµ(x) =

d∏
i=1

∫
Xi

Ki(xi, x
′
i) dµ

(i)(x′i) =

d∏
i=1

Pµ(i)(xi) , (3.20)

which facilitates the calculation of EK⊗µ (ξ), in particular when ξ is a discrete mea-

sure as considered in Section 4. Table 3.1 gives the expressions of EK(µ) and Pµ(x)
obtained for a few kernels, with µ uniform on X = [0, 1]; the expressions for the
squared exponential and Matérn kernels can be found in [39]. Note that in each
case EKµ(ξ) > 0 for any ξ ∈ M (1), ξ 6= µ. Other more general results are pro-
vided in Table 1 of [16]. Expressions of EK(µ) and Pµ(x) for the triangular kernel
Kθ(x, x

′) = max{1 − θ|x − x′|, 0}, θ > 0 (with µ uniform on [0, 1]) are given in
Appendix C.
Remark 3.4 (Projections in subspaces with smaller dimension). Let ξ and µ be two
measures in M (1) and consider their squared discrepancy γ2

K̂⊗
(ξ, µ) for the kernel

K̂⊗(x,x′) =
∏d
i=1[1 +Ki(xi, x

′
i)]. Direct calculation gives

γ2
K̂⊗

(ξ, µ) =

d∑
m=1

∑
1≤i1<···<im≤d

γ2
Ki1···im

(ξ, µ) ,

where γ2
Ki1···im

(ξ, µ) =
∫

X 2

∏d
j=1Kij (xij , x

′
ij

)d(ξ − µ)(x)d(ξ − µ)(x′) corresponds to

a squared discrepancy in the m-dimensional space X = Xi1 × · · · ×Xim . When µ
is uniform on X = [0, 1]d, by choosing a discrete measure ξn with small γ2

K̂⊗
(ξn, µ)

(see Section 4) we may thus construct a design having suitable space-�lling properties
in all sub-dimensional subspaces. One may refer to [47] for further developments and
precisions, including in particular the derivation of quadrature error bounds and the
introduction of di�erent weights across dimensions. /

Table 3.1: Energy EK(µ) and potential Pµ(x) for di�erent kernels K with µ uniform on
X = [0, 1]; Pµ(x) = Sµ(x) + Sµ(1− x) + Tµ(x); Sµ(·) is continuously di�erentiable in (0, 1],
Tµ = 0 when K is translation invariant. F is the c.d.f. of the standard normal distribution.

K(x, x′) EK(µ) Sµ(x) [and Tµ(x)]

e−θ(x−x
′)2 {e−θ−1+

√
πθ[2F(

√
2θ)−1]}/θ

√
π[F(
√

2θx)− 1/2]/
√
θ

e−θ|x−x
′| 2(θ + e−θ − 1)/θ2 x(1− e−θ|x|)/(θ|x|)

K3/2,θ/
√

3(x, x′) in (3.5) 2[θ(2 + e−θ) + 3(e−θ − 1)]/θ2 x[2− (2 + θ|x|)e−θ|x|]/(θ|x|)
[(x− x′)2 + ε]−1 (ε ≥ 0) (2/

√
ε) arctan(1/

√
ε)− log(1 + 1/ε) (1/

√
ε) arctan(x/

√
ε)

(|x− x′|+ ε)−1 (ε > 0) 2 [(1 + ε) log(1 + 1/ε)− 1] sign(x) log(1 + |x|/ε)
(|x− x′|+ ε)−1/2 (ε > 0) 4ε3/2 [2(1 + 1/ε)3/2 − 2− 3/ε]/3 2

√
ε sign(x)(

√
1 + |x|/ε− 1)

1− θ |x− x′| (0 < θ ≤ 1) 1− θ/3 1/2− θx|x|/2
|x− x′|−s (0 < s < 1) 2/(s2 − 3s+ 2) x/[(1− s)|x|s]
− log |x− x′| 3/2 1/2− x log |x|
|x|+ |x′| − |x− x′| 2/3 1/4− x|x|/2 [Tµ(x) = |x|]√
|x|+

√
|x′| −

√
|x− x′| 4/5 1/3− 2x

√
|x|/3 [Tµ(x) =

√
|x|]

4. Experimental design. From Section 3.3.1, the construction of an optimal
measure ξ∗ minimizing EK(ξ−µ) forms a particular convex problem (quadratic), and
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therefore presents some similarities with optimal experimental design in a paramet-
ric framework; see [54, 32] for early contributions. There is a noticeable di�erence
however: optimal experimental design aims at determining the probability measure
(called design measure) ξ∗ that minimizes a convex functional φ(ξ), usually a function
Φ[M(ξ)] of the information matrix M(ξ) in a parametric model. Here, the optimal
measure is known (ξ∗ = µ), and we wish to construct a discrete measure, with a
limited number n of support points, which is close to µ in the sense of having small
maximum mean discrepancy

√
EK(ξ − µ).

Consider an n-point design Xn = {x1, . . . ,xn}, with xi ∈ X for all i. For
ξn a �nite signed measure supported on Xn, ξn =

∑n
i=1 wi δxi , we denote wn =

(w1, . . . , wn)>. As in Section 2.2, we assume that µ ∈M +(1), with special attention
to space-�lling design for which µ is uniform on a compact subset X of Rd. We
assume that K is a bounded ISPD kernel (and is thus SPD) and that µ has �nite
energy EK(µ), see (2.8). For space-�lling design, we may restrict our attention to
translation-invariant kernels. Direct calculation gives

γ2
K(ξn, µ) = EK(ξn − µ) = w>nKnwn − 2w>n pn(µ) + EK(µ) ,

=
∑
i,j

wiwj K(xi,xj)− 2

n∑
i=1

wi Pµ(xi) + EK(µ) , (4.1)

where {Kn}i,j = K(xi,xj), i, j = 1, . . . , n, and pn(µ) is given by (2.5). Note that
EK(µ) and the Pµ(xi) have simple expressions when K is a separable kernel and
µ = ⊗di=1µ

(i) is a product measure on X = X1 × · · · ×Xd, see (3.19, 3.20). Monte-
Carlo approximation, based on a large i.i.d. sample from µ, or a low-discrepancy
sequence, can always be used instead.

4.1. Discrepancies and covering radius. Since our initial motivation is to
construct designs having good space-�lling properties, in this section we give some
arguments supporting the intuition that designs with small MMD have small covering
radius. We consider the case where X is the d-dimensional hypercube [0, 1]d.

4.1.1. Star-discrepancy. Low discrepancy sequences and point sets have low
dispersion, in the sense that, when Xn is an n-point design in X ,

1√
d
CR(Xn) ≤ CR∞(Xn) = max

x∈X
min

1≤i≤n
‖x− xi‖∞ ≤ D1/d(Xn) ≤ 2D

1/d
∗ (Xn) ,

with D(Xn) and D∗(Xn) respectively the extreme and star discrepancies of Xn; see,
e.g., [69, p. 15 and 152]. Hence, low discrepancy sequences or point sets also have low
dispersion (small covering radii) � the reverse being wrong, as the example of Ruzsa
sequence shows [69, p. 154].

The connection between star discrepancy and covering radius is even stronger
when considering design measures and weighted discrepancies. Consider the case
d = 1, and let ξn be a probability measure supported on Xn with weight wi on
xi. Assume, without any loss of generality, that 0 ≤ x1 < x2 < · · · < xn ≤ 1. The

weighted star discrepancy of ξn is de�ned as D
∗(ξn) = sup0≤t<1

∣∣∣∑i: xi≤t wi − t
∣∣∣. The

covering radius of Xn is CR(Xn) = max {x1, (x2 − x1)/2, . . . , (xn − xn−1)/2, 1− xn}.
For simplicity, we restrict our attention to designs with x1 = 0 and xn = 1. We then
have the following result.
Theorem 4.1. For any design ξn such that 0 = x1 < x2 < · · · < xn−1 < xn = 1,
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(i) CR(Xn) = D∗(ξ∗n), where ξ∗n has the weights w∗1 = x2/2, w
∗
n = (1 − xn−1)/2

and w∗i = (xi+1 − xi−1)/2 for i = 2, . . . , n− 1;
(ii) D∗(ξn) > CR(Xn) for any other probability measure ξn supported on Xn.

Proof. One can check that, for any design ξn supported on Xn,

D∗(ξn) = max
1≤i≤n

{
wi
2

+

∣∣∣∣xi − Wi +Wi−1

2

∣∣∣∣} (4.2)

where W0 = 0 and Wi = w1 + · · · + wi for i = 1, . . . , n. This expression is a gen-
eralization of that in [69, Theorem 2.6] for the classical star discrepancy. It is then
straightforward to check that D∗(ξ∗n) = CR(Xn). Moreover, if we take ξn = ξ∗n, then
all the terms in the right-hand side of (4.2) are equal to CR(Xn):

w∗i
2

+

∣∣∣∣xi − W ∗i +W ∗i−1

2

∣∣∣∣ = CR(Xn), i = 1, . . . , n .

This implies that for any other set of weights w1, . . . , wn we have D∗(ξn) > CR(Xn).

4.1.2. MMD. We have CR(Xn) > n−1/d/Vd and CR∞(Xn) ≥ n−1/d/2, with
Vd the volume of the unit ball Bd(0, 1), since the n balls (respectively, hypercubes)
centred at the xi, with common radius CR(Xn) (respectively, edge length CR∞(Xn))
must cover X . The more precise bound CR∞(Xn) ≥ 1/(2bn1/dc) also holds true [69,
Th. 6.8]. The covering radii of optimal designs of size n decrease at the same rate, with

lim supn→∞ n1/d minXn
CR(Xn) ≤ 2/V

1/d
d , where Vd = πd/2/Γ(d/2+1); see, e.g., [74,

Section 2.2]. The upper bound is slightly worse when considering sequential designs;
the existence of an extensible point sequence such that limn→∞ n1/d CR∞(Xn) =
1/ log(4) is proved in [69, Th. 6.9]. The following property indicates that for suitable
kernels the MMD discrepancy γK(ξn, µ) given by (3.2) also yields an upper bound on
CR∞(Xn).
Theorem 4.2. Let K be a bounded ISPD separable kernel on X = [0, 1]d such that
each Ki in (3.18) is translation invariant, with Ki(x, x

′) = ψ(|x− x′|) and ψ(0) = 1;

denote P0,µ =
∫ 1

0
ψ(r) dr. Let Xn be an n-point design in X and ξn denote any

probability measure supported on Xn, with γK(ξn, µ) its MMD, µ being the uniform
measure on X .

(i) If ψ is strictly positive and strictly decreasing on R+, then,

CR∞(Xn) ≤ ψ−1
[
P d0,µ − γK(ξn, µ)

]
. (4.3)

(ii) If ψ = ψθ has bounded support [−1/θ, 1/θ], then,

CR∞(Xn) < 1/θ (4.4)

when γK(ξn, µ) < P d0,µ. In particular, for the triangular kernel de�ned by ψθ(r) =

max{1− θr, 0}, r ≥ 0, with θ > 1, CR∞(Xn) < 1/θ when γK(ξn, µ) < 1/(2θ)d.
Proof. Denote rn = CR∞(Xn) and let x0 be a point in X such that ‖x0−xi‖∞ ≥ rn
for all xi ∈ Xn. We take f = Kx0

in (3.2), so that Iµ(Kx0
) = Pµ(x0), Iξn(Kx0

) =
Pξn(x0), ‖f‖HK = K1/2(x0,x0) = 1, and (3.2) implies Pµ(x0)−Pξn(x0) ≤ γK(ξn, µ).

(i) We have Pξn(x0) =
∑n
i=1 wi

∏d
j=1 ψ(|x0j − xij |) ≤ (

∑n
i=1 wi)ψ(rn) = ψ(rn),

where wi = ξn(xi) for all i. Therefore,

min
x∈X

Pµ(x) = Pµ(0) = P d0,µ ≤ Pµ(x0) ≤ Pξn(x0) + γK(ξn, µ) ≤ ψ(rn) + γK(ξn, µ) ,
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which gives (4.3).
(ii) Suppose that rn ≥ 1/θ. Then, Pξn(x0) = 0 and (3.2) implies P d0,µ ≤ Pµ(x0) ≤

γK(ξn, µ). We obtain (4.4) by contradiction. The triangular kernel with θ > 1 satis�es
P0,µ = 1/(2θ).

When K implicitly de�nes a norm on X , following the same approach as in
the proof of Theorem 4.2 we directly get a bound on the covering radius for the
corresponding norm. In particular, when K is the product of exponential kernels
with ψ(r) = exp(−θr), θ > 0, we obtain for (i)

max
x∈X

min
1≤i≤n

‖x− xi‖1 ≤ −
1

θ
log

[(
1− e−θ

θ

)d
− γK(ξn, µ)

]
,

and when K is the squared exponential kernel Kθ(x,x
′) = exp(−θ‖x− x′‖2), θ > 0,

we obtain

CR(Xn) ≤ r[θ](Xn) =

(
−1

θ
log

{
πd/2

θd/2
[F(
√

2θ)− 1/2]d − γK(ξn, µ)

})1/2

, (4.5)

with F the c.d.f. of the standard normal distribution.
Similarly, for (ii), we may use the spherical covariance model in dimension d

instead of the product of d triangular kernels: K(x,x′) is proportional to the volume
of the intersection of two balls centered at x and x′ with radius ρ/2 and is therefore
zero when ‖x− x′‖ ≥ ρ; see, e.g., [95, Chap. 8].

Example 4.1. Consider the case d = 2 with K = Kθ, the squared exponential
kernel. We suppose that Xn has MMD discrepancy decreasing as

√
8/n (which is the

case when Xn is constructed by kernel herding; see Appendix A). The left panel of
Figure 4.1 presents the upper bound r[θ](Xn) given by (4.5) as a function of θ, for three
di�erent values of n. The red solid line (bottom) corresponds to the limiting case when
n tends to in�nity (that is, when γK(ξn, µ) is set to zero in (4.5)). For each �nite n, the
upper bound is in�nite if θ is larger than the value θmax(n) such that P d0,µ =

√
8/n,

see the right panel of Figure 4.1. Figure 4.2-left shows r∗(Xn) = minθ r[θ](Xn) as a
function of n; the minimum is obtained at θ∗(Xn) shown on the right panel.

The bound r[θ](Xn) (or more generally the bound on CR∞(Xn)) is very pes-
simistic, but Figure 4.1 nevertheless suggests that θ should increase at suitable rate
as n increases, in agreement with common intuition. Using a covariance kernel with
correlation length L = O(n−1/d) seems reasonable; see the examples of Section 5. /

Remark 4.1 (improved bound on CR∞(Xn)). In the proof of Theorem 4.2 we con-
sider that all points xi ∈ Xn can be at `∞ distance rn from x0, whereas some
design points are necessarily further away. This consideration yields a tighter up-
per bound on rn. For instance, when d = 1, if we take ξn = ξn,e, the empiri-

cal measure associated with Xn, we obtain that Pξn(x0) ≤ Pξ̃n(1/2), where ξ̃n =

1
n

[∑krn
k=1 δ(2k−1)rn + δ1−(2k−1)rn + (n− 2krn)δ1/2−rn

]
, with krn = b1/(4rn)c, which

gives the inequality

Pξ̃n(1/2) =

[
1− 2

n
krn

]
ψ(rn) +

2

n

krn∑
k=0

ψ[1/2− (2k − 1)rn] ≥ P0,µ − γK(ξn, µ) ;

compare with (4.3) with d = 1. In practice, however, the improvement is negligible
and the upper bound on CR∞(Xn) remains pessimistic. /
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Figure 4.1: Squared exponential kernel Kθ(x,x
′) = exp(−θ‖x−x′‖2), d = 2. Left: r[θ](Xn)

(4.5) as a function of θ when γK(ξn, µ) =
√

8/n, for n = 500, 1 000 and 2 000. Right: θmax(n)

such that P d0,µ =
√

8/n.

Figure 4.2: Squared exponential kernel Kθ(x,x
′) = exp(−θ‖x − x′‖2), d = 2. Left:

r∗(Xn) = minθ r[θ](Xn) as a function of n. Right: θ∗(Xn) = argminθ r[θ](Xn) as a function
of n.

Remark 4.2. When the triangular kernel de�ned by ψθ(r) = max{1− θr, 0} is used
for kernel herding, we have γK(ξn, µ) <

√
8/n, see Appendix A, and (ii) implies

that for any r0 = 1/θ ≤ 1, CR∞(Xn) < r0 for n > 8(2/r0)2d. This rate of decrease
of CR∞(Xn) is much slower than the best achievable rate n−1/d. The existence of
extensible point sequences achieving the optimal rate n−1/d on a smooth Riemannian
manifold is established in [14]. The construction relies on the consideration of another
function than f = Kx0

in (3.2), having support in Bd(x0, rn) when Xn satis�es
‖xi − x0‖ ≥ rn for all xi, with a large integration error Iµ(f)− Iξn(f) = Iµ(f) and a
small norm ‖f‖H, where H is a particular Sobolev space.

Denote by ep(Xn, µ) = (Eµ{min1≤i≤n ‖X − xi‖p})1/p, p > 0 the Lp mean quan-
tization error induced by Xn. From Zador theorem, limn→∞ n1/d minXn ep(Xn, µ)
exists (and equals the in�mum over n when µ is uniform on [0, 1]d); see [42]. The fact
that the greedy construction of a design X∗n, recursively optimal step by step for the
Lp quantization error, achieves lim supn→∞ n1/dep(X

∗
n, µ) <∞, is proved in [61]. For

�xed n, a design minimizing ep(Xn, µ) can be constructed via clustering (see, e.g.,
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[26]), with the famous k-means algorithm for p = 2 [59], k-medians for p = 1 [17], or
with any general optimization algorithm. A combination of clustering with particle
swarm optimization is used in [63] for arbitrary p ≥ 2; clustering is considered in [74]
for the limiting case p = ∞, with e∞(Xn, µ) = CR(Xn). In general, these construc-
tions are far more complicated than those using the methods of Section 4.3 and 4.4.

/

4.2. Design criteria based on Bayesian quadrature. Since s2
n given by (2.7)

does not depend on the function f considered, a design Xn for Bayesian integration
can in principle be chosen beforehand, by direct minimization of s2

n. This corresponds
to the approach followed in [72] where several quadrature rules are tabulated for
several values of n. The next theorem collects several results from the literature (part
(i) appeared in [48], part (ii) is a particular case in [52] called normalized Bayesian
cubature) and in particular shows the connection between the minimum of EK(ξn−µ)
with respect to weights wn and the posterior variances s2

n and s2
n,0 respectively given

by (2.7) and (2.11). The extension of model (2.1) to models including a linearly
parameterized mean function is considered in [52]; the extension to the estimation of
several integrals is treated in [72]; see also Appendix B. We assume that all points in
Xn are pairwise di�erent and µ is not fully supported on Xn.
Theorem 4.3. Let K be an SPD kernel and let µ ∈M +(1) ∩MK .

(i) The optimal unconstrained weights w∗n that minimize EK(ξn − µ) are w∗n =
K−1
n pn(µ) and the corresponding measure ξ∗n, with weights w∗n, satis�es

EK(ξ∗n − µ) = s2
n,0 , (4.6)

with s2
n,0 given by (2.11).

(ii) The optimal weights ŵn that minimize EK(ξn − µ) under the constraint
w>n 1n =

∑n
i=1 wi = 1 are

ŵn =

(
K−1
n −

K−1
n 1n1

>
nK
−1
n

1>nK
−1
n 1n

)
pn(µ) +

K−1
n 1n

1>nK
−1
n 1n

, (4.7)

and the corresponding measure ξ̂n, with weights ŵn, satis�es

EK(ξ̂n − µ) = s2
n , (4.8)

with s2
n given by (2.7); the estimator (2.4) of the integral Iµ(f) is În = ŵ>n yn.

(iii) For any bounded signed measure ξn =
∑n
i=1 wi δxi we can write

EK(ξn − µ) = (wn −w∗n)>Kn(wn −w∗n) + EK(ξ∗n − µ) , (4.9)

and when the weights wi sum to one, we have

EK(ξn − µ) = (wn − ŵn)>Kn(wn − ŵn) + EK(ξ̂n − µ). (4.10)

Proof. The expression for w∗n, (4.6) and (4.9) directly follow from the fact that
EK(ξn−µ) is quadratic in wn, see (4.1). Since K is SPD, straightforward calculation
using Lagrangian theory indicates that the minimization of EK(ξn − µ) under the
constraintw>n 1n = 1 gives (4.7) and (4.8). Suppose thatw>n 1n = 1, then EK(ξn−µ) =
(wn − ŵn + ŵn − w∗n)>Kn(wn − ŵn + ŵn − w∗n) + EK(ξ∗n − µ) gives (4.10) since
Kn(ŵn −w∗n) is proportional to 1n and (wn − ŵn)>1n = 0.
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Remark 4.3. Equation (4.6) is simply related to the fact that, for f the realization
of a Gaussian RF with zero mean and covariance σ2K(·, ·), we have

E{[Iµ(f)− Iξn(f)]2} = σ2

∫
X 2

K(x,x′) d(ξn − µ)(x)d(ξn − µ)(x′)

= σ2 ‖Pµ − Pξn‖2HK = σ2EK(ξn − µ) ,

the minimum being attained for the Bayes predictor În = pTn (µ)K−1
n yn, that is, for

the weights w∗n. (Note that we cannot use the reproducing property f(x) = 〈f,Kx〉K
since w.p. 1 f does not belong to HK ; compare with [48, Proposition 1].)

It is shown in [53] that polynomial-based quadrature rules can be interpreted as
Bayesian quadrature in a model with zero mean for a suitably chosen (polynomial)
kernel; the optimal n-point set (with n = p+1 for polynomials of degree p) minimizing
the posterior variance (4.6) realizes the cubature rule. One may refer to the discussion
in Remark B.1 of Appendix B for models that include a linearly parameterized mean:
any cubature rules can be interpreted as Bayesian integration; see [52]. /

In the discrete case considered here, the minimum-energy signed measure ξ̂n with
total mass one always exists, but ξ̂n is not necessarily a probability measure; that is,
some weights ŵi may be negative. Theorem 4.3 can be extended to the case where
K is only conditionally SPD, but the computation of optimal weights ŵn is more
involved when Kn is singular; see Remark 4.4.

Denote by K̃n the n × n matrix with elements {K̃n}i,j = Kµ(xi,xj), where Kµ

is the reduced kernel (3.15); the corresponding vector of potential values at the xi is

then p̃n = (P̃µ(x1), . . . , P̃µ(xn))> = 0. For measures ξn in M (1), in complement of
(ii) of Theorem 4.3, we also have the following property. (Similar expressions for the
posterior mean and variance are obtained for a kernel having zero potential (kernel
imbedding); see for instance [70] where the Stein operator is used in a more general
framework; see also Remark 3.3.)
Theorem 4.4. For K an SPD kernel, µ ∈M +(1) ∩MK and ξn ∈M (1), we have

EK(ξn − µ) = EKµ(ξn) = w>n K̃nwn . (4.11)

The posterior mean (2.4) and variance (2.7) of Iµ(f) are respectively given by

În =
1>n K̃

−1
n yn

1>n K̃
−1
n 1n

, (4.12)

σ2s2
n = σ2(1>n K̃

−1
n 1n)−1 . (4.13)

Proof. Equation (4.11) follows from Theorem 3.5. Since we assumed that µ is not fully

supported on Xn and K is SPD, (4.11) gives inf‖wn‖=1 w
>
n K̃nwn > 0 , which implies

that K̃n has full rank. Direct calculation using (3.15) gives K̃n = Kn − pn(µ)1>n −
1np

>
n (µ) + EK(µ)1n1

>
n . The expression for K̃−1

n then yields 1>n K̃
−1
n 1n = 1/s2

n, with

s2
n given by (2.7), proving (4.13). The expansion of (1>n K̃

−1
n yn)/(1>n K̃

−1
n 1n) gives

(2.4), which proves (4.12).

Equations (4.12) and (4.13) indicate that În is the BLUE of β′0 and σ2s2
n is its

variance in the model (3.17), f(x) = β′0 + Z̃x, see Sections 3.4.2 and 3.5.2. The
reason is that predictions are not modi�ed when using the reduced kernel Kµ instead
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of K, that is, when considering the model f(x) = β′0 + Z̃x instead of (2.1); see [37,

Sect. 5.4]. It implies that the expressions (2.4) and (2.7) of În and s2
n are unchanged

when replacing K by Kµ. Since, by construction, p̃n(µ) = 0 and EKµ(µ) = 0 (as
(IdL2 −P1)Zx has no contribution to the integral of f), we directly obtain (4.12) and
(4.13).

A further consequence is that the substitution of Kµ for K leaves the mean-
squared error (2.2) unchanged, which yields a bound on the IMSPE of a design Xn.
Theorem 4.5. For K an SPD kernel and µ ∈ M +(1) ∩MK , the IMSPE of an
n-point design Xn satis�es

σ2 s2
n ≤ IMSPE(Xn) ≤ σ2

[
s2
n +

∫
X

K(x,x) dµ(x)− EK(µ)

]
. (4.14)

Proof. Replacing K by Kµ in (2.2), we get∫
X

ρ2
n(x) dµ(x) =

∫
X

Kµ(x,x) dµ(x) +
1

1>n K̃
−1
n 1n

− trace
[
K̃−1
n Q̃⊥n H̃n(µ)

]
,

where H̃n(µ) =
∫

X k̃n(x)k̃>n (x) dµ(x), with k̃n(x) = (Kµ(x,x1), . . . ,Kµ(x,xn))>,

and where Q̃⊥n = In − 1n1
>
n K̃
−1
n /(1>n K̃

−1
n 1n), with In the n-dimensional identity

matrix, is a projector onto the linear space orthogonal to 1n. Since K̃−1
n , Q̃⊥n and

H̃n(µ) are non-negative de�nite, we obtain

IMSPE(Xn) = σ2

∫
X

ρ2
n(x) dµ(x) ≤ σ2

[∫
X

Kµ(x,x) dµ(x) +
1

1>n K̃
−1
n 1n

]
.

Together with (3.15) and (4.13), this gives the right-hand side inequality in (4.14).
The left-hand side inequality is a simple consequence of the convexity of t→ t2. (Note
that (2.10) implies that

∫
X K(x,x) dµ(x) ≥ EK(µ).)

One should notice that the upper bound in (4.14) may be rather loose for large d.
For instance, when K is separable as in (3.18), with all Ki identical and K1(x, x) = 1
for all x, and µ is uniform on X = [0, 1]d, then

∫
X K(x,x)dµ(x) − EK(µ) = 1 −

E d
K1

(µ(1)), which can be close to one for large d.
Remark 4.4 (optimal weights for CISPD kernels). Lagrangian theory indicates that
the solution ŵn is obtained by solving the linear equation Rn(ŵ>n λ)> = (0> 1)>,
where

Rn =

(
K̃n 1n
1>n 0

)
.

When K is conditionally SPD, Kµ is conditionally SPD too, and the matrix Rn

has full rank n+ 1. Indeed, Rn(z>n z)> = 0 implies 1>n zn = 0 and K̃nzn + z1n = 0.

Multiplying the second equation by z>n , we get z
>
n K̃nzn = 0. SinceKµ is conditionally

SPD, this is incompatible with 1>n zn = 0 unless zn = 0 and z = 0. We obtain

ŵn =
(K̃n + 1n1

>
n )−11n

1>n (K̃n + 1n1
>
n )−11n

,

and s2
n = ŵ>n K̃nŵn = (1>n (K̃n + 1n1

>
n )−11n)−1 − 1. When K is SPD and K̃n has

full rank (Theorem 4.4), we recover ŵn = K̃−1
n 1n/(1

>
n K̃
−1
n 1n) and În = ŵ>n yn given

by (4.12). /
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Remark 4.5 (IMSPE for separable kernels). The use of a separable kernel (3.18) and
a product measure µ = ⊗di=1µ

(i) on X = X1 × · · · ×Xd facilitates the calculations

of K̃n and EK(ξn− µ), see (4.1), since EK(µ) and Pµ(xi) have the simple expressions
(3.19, 3.20). The calculation of the IMSPE is facilitated too, but to a lesser extent.
Indeed, using (2.2) we obtain∫

X

ρ2
n(x) dµ(x) =

∫
X

K(x,x) dµ(x) +
1

1>nK
−1
n 1n

− 2
p>n (µ)K−1

n 1n

1>nK
−1
n 1n

− trace
[
K−1
n Q⊥nHn(µ)

]
,

where Q⊥n = In − 1n1
>
nK
−1
n /(1>nK

−1
n 1n) and

{Hn(µ)}j,k=

∫
X

K(x,xj)K(x,xk)dµ(x)=

d∏
i=1

∫
Xi

Ki(xi, xji)Ki(xi, xki)dµ
(i)(xi) . /

4.3. One-shot designs. We consider two design constructions based on mini-
mization of the posterior variance σ2 s2

n: in the �st one, the design points are uniformly
weighted; in the second one, they receive the optimal weights (4.7).

4.3.1. n-point empirical measures. Consider the empirical measure ξn,e =
(1/n)

∑n
i=1 δxi associated with a given design Xn = {x1, . . . ,xn}. As indicated here-

after, the literature on space-�lling design provides several examples of constructions
of n-point designs through the minimization of the squared MMD EK(ξn,e − µ) =

EKµ(ξn,e) with respect to Xn. Notice that EK(ξn,e − µ) = (1>n K̃n1n)/n2; see (4.11).
For X = [0, 1]d, separable kernels based on variants of Brownian motion covari-

ance yield L2 discrepancies (symmetric, centred, wrap-around and so on); see, e.g.,
[47], [31, Chap. 3]. For instance, for X = [0, 1] and K(x, x′) = 1− |x− x′| (for which
the expressions of EK(µ) and Pµ(x) are given in Table 3.1), EKµ(ξn,e) is twice the
squared L2 star discrepancy for d = 1.

The ISPD kernel K⊗s,ε(x,x
′) =

∏d
i=1Ks,ε(xi, x

′
i), with Ks,ε given by (3.6) with

s > 0 and ε > 0, is called projection kernel in [62]. For very small ε, the minimization
of EK⊗1,ε

(ξn,e) corresponds to the construction of a maximum-projection design, as

de�ned in [51]. Note that minimizing EK⊗s,ε(ξn,e) is not equivalent to minimizing

EK⊗s,ε(ξn,e − µ): in particular, when µ is uniform on X , which is assumed to be

compact and convex, the former tends to push design points to the boundary of X
whereas the latter keeps all points in the interior of X ; see [62].

In [64], space-�lling designs in a compact set X ⊂ Rd are constructed by minimiz-
ing EK(1)(ξn,e−µ) for µ uniform on X , see (3.7). The authors call support points the
optimal supportX∗n, which they determine via a majorization-minimization algorithm
using the property that the problem can be formulated as a di�erence-of-convex opti-
mization problem. Values of EK(1)(µ) and Pµ(x) are not available even for X = [0, 1]d

and Monte-Carlo approximation is used.

4.3.2. n-point optimal measures. Theorems 4.3 and 4.4 indicate that, if K is
SPD, EK(ξ̂n − µ) = (1>n K̃

−1
n 1n)−1 is the minimum value of EK(ξn − µ) for measures

ξn ∈ M (1). Hence, we can construct space-�lling designs on a compact and convex

subset X of Rd by maximizing 1>n K̃
−1
n 1n with respect to Xn ∈ Rnd, for a suitable K,

taking µ uniform on X . This can be performed using any unconstrained nonlinear
programming algorithm, see the examples in Section 5. Note that, from the Cauchy-
Schwarz inequality, EK(ξ̂n − µ) = (1>n K̃

−1
n 1n)−1 ≤ (1>n K̃n1n)/n2 = EK(ξn,e − µ).
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4.4. Sequences of nested designs. There exist situations where the number
n of design points ultimately used (for integration, or function approximation) dif-
fers from that initially planned, say N . It is the case in particular when function
evaluations are computationally more expensive than expected, and numerical exper-
imentation is stopped after n < N simulations, or when simulations fail at some design
points and testing at more than N points is required to obtain N valid evaluations
in total. In such circumstances, it is convenient to have sequences of nested designs
(extensible point sequences) at one's disposal. The objective is then to construct or-
dered sequences x1,x2, . . . of designs points such that any design Xn = {x1, . . . ,xn}
made of the �rst n points of the sequence has good space-�lling properties. A typical
example is given by Low Discrepancy Sequences (LDS) in [0, 1]d, see [69].

When K is SPD, we may exploit expression (4.13) of the conditional variance of
Iµ(f) in a greedy sequential construction: at step n we choose xn+1 that minimizes
s2
n+1. This sequential construction, called Sequential Bayesian Quadrature in [15],
is straightforward to implement compared with global minimization of s2

n, see (2.7).
Direct calculation, using formulae for the inversion of the block matrix

K̃n+1 =

(
K̃n k̃n(xn+1)

k̃>n (xn+1) Kµ(xn+1,xn+1)

)
,

where {K̃n}i,j = Kµ(xi,xj) and {k̃n(x)}i = Kµ(x,xi), i, j = 1, . . . , n, x ∈X , gives

s2
n+1 =

[
1>n K̃

−1
n 1n +

(1− k̃n(xn+1)>K̃−1
n 1n)2

Kµ(xn+1,xn+1)− k̃>n (xn+1)K̃−1
n k̃n(xn+1)

]−1

. (4.15)

The sequential construction is thus

xn+1 ∈ Arg max
x∈X

(1− k̃n(x)>K̃−1
n 1n)2

Kµ(x,x)− k̃>n (x)K̃−1
n k̃n(x)

. (4.16)

The conditional gradient algorithm of [33] yields a simpler construction, particu-
larly well adapted to the situation (and also applicable whenK is unbounded). It relies
on the sequential selection of points that minimize the current directional derivative
of EK(ξ − µ) = EKµ(ξ), with ξ supported on design points previously selected. The

algorithm is initialized at a measure ξ(n0) supported on Xn0
∈X n0 (with for instance

n0 = 1 and ξ(1) = δx1 for some x1 ∈ X ). Let ξ(n) denote the measure associated

with the current designXn of iteration n, with weights w
(n)
i , i.e., ξ(n) =

∑n
i=1 w

(n)
i δxi .

The next design point is chosen in Arg minx∈X FKµ(ξ(n), δx), with FKµ the directional
derivative (3.12) (any minimizer can be selected in case there are several). Straight-
forward calculation using (3.12) gives xn+1 ∈ Arg mins∈X [Pξ(n)(x) − Pµ(x)], that
is,

xn+1 ∈ Arg min
x∈X

[
n∑
i=1

w
(n)
i K(x,xi)− Pµ(x)

]
. (4.17)

After choosing xn+1, the measure ξ(n) is updated into

ξ(n+1) = (1− αn)ξ(n) + αnδxn+1 (4.18)
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for some αn ∈ [0, 1], so that ξ(n+1) ∈ M +(1) when ξ(n) ∈ M +(1). When ξ(n0) is
the empirical (uniform) measure on Xn0

, the choice αn = 1/(n + 1) implies that
ξ(n) remains uniform on its support Xn for all n, see [96] for an early contribution
in the design context. The method is called kernel herding in the machine-learning
literature, see [5, 19, 48]. It is shown in [19] that EK(ξ(n)−µ) = O(1/n2) when HK is
�nite dimensional, but we only have the weaker result EK(ξ(n) − µ) = O(1/n) when
HK is in�nite dimensional, see [5]; see also Appendix A.

Remark 4.6. If we take xn+1 ∈ Arg minx∈X
∑n
i=1 w

(n)
i K(x,xi) instead of (4.17),

then the algorithm minimizes EK(ξ); see Example 3.5 and Remark 3.2. The presence
of Pµ(x) in (4.17) permits to keep the design points xi in the interior of X ; see also
[62]. The �rst point x1 can be chosen as a minimizer of Pµ(x) (that is, 1d/2 when
µ is uniform on [0, 1]d). The construction (4.17) is well-de�ned even if K is singular:
in that case, it guarantees that all design points are di�erent (xi 6= xj for all i, j);
the same is true for all one-dimensional canonical projections when K is the prod-
uct of singular kernels. More generally, the addition of δxn+1

to the current design

measure creates a local maximum of the function
∑n+1
i=1 w

(n)
i K(x,xi)− Pµ(x) in the

neighborhood of xn+1, so that the next point xn+2 is chosen at some distance from
all previous ones. The choice of an adequate kernel has therefore some importance:
its decrease should be fast enough to ensure that points are well spread apart (the
correlation length should be small enough when K corresponds to a correlation func-
tion); a translation-invariant kernel with bounded support leaves some arbitrariness
in the choice of Xn until the union of the supports of the K(xi, ·) covers X , and is
not necessarily suitable. We thus recommend using a (translation-invariant) kernel
with unbounded support; if nmax is the maximum design size considered, a correlation

function with correlation length L ≈ n−1/d
max is appropriate. Choosing K di�erentiable

facilitates the minimization of EK(ξn,e − µ) = 1>n K̃n1n/n
2 (Section 4.3.1), or the

maximization of 1>n K̃
−1
n 1n (Section 4.3.2). /

Remark 4.7 (greedy MMD minimization). Denote ξ(n+)(x) = [n/(n + 1)]ξ(n) +
[1/(n+ 1)]δx. The direct minimization of EK(ξ(n+)(x)− µ) with respect to x yields

x(n+1) ∈ Arg min
x∈X

[
1

n+ 1

n∑
i=1

K(x,xi)− Pµ(x) +
1

2(n+ 1)
K(x,x)

]
, (4.19)

that is, a selection very close to (4.17) when K(x,x) is constant (Matérn kernel for
instance). Note that this construction requires K(x,x) <∞ for all x ∈ X , contrary
to (4.17). /

In practice n is always smaller than some given nmax, and to facilitate the con-
struction we can restrict the choice of the xi to a �nite subset XΩ = {s1, . . . , sΩ} of X ,
with Ω� nmax (when X = [0, 1]d, XΩ can be given by a regular grid, or by the �rst Ω
points of a LDS). For any n ≤ nmax, we can write Xn = {x1, . . . ,xn} = {si1 , . . . , sin},
the construction being initialized at some n0-point design Xn0

⊂ XΩ. A measure

ξ supported on Xn can thus be written as ξ =
∑Ω
i=1 ωiδsi , with ωi = 0 when

si 6∈ Xn. Therefore, for all n, ξ(n) is fully characterized by a Ω-dimensional vector

ω(n) = (ω
(n)
1 , . . . , ω

(n)
Ω )>, with ω(n) in the probability simplex PΩ when ξ(n) ∈M +(1).

The updating equations (4.17, 4.18) then imply that ω(n+1) is obtained by moving
ω(n) in the direction of a vertex of PΩ, hence the name vertex-direction given to
methods based on (4.18) in the literature on optimal design, see, e.g., [75, Chap. 9]
and the references therein. The cost of the determination of xn+1 in (4.17) is O(Ω):
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we compute K(x,xn) for all x ∈XΩ and update the sum
∑n−1
i=1 K(x,xi); the cost for

n iterations scales as O(nΩ), including the initial cost for the computation of Pµ(x)
for all x ∈XΩ.

The measure ξ(n) constructed by (4.18) with αn = 1/(n + 1) is uniform on its
support. The minimum-norm-point algorithm of [5] replaces ξ(n) by the measure
having the same support but optimal weights in PΩ. The strategy that consists in
optimizing the weights on the current support of the design measure at each iteration
is known to be e�cient also in other design contexts, see Algorithm 1 in [77]. Here
the weights are solution of a convex quadratic programming problem, which facilitates
their determination. In the examples of Section 5, we consider a still simpli�ed version

where ξ(n) is replaced by ξ̂(n) having weights ŵ
(n)
i given by (4.7). This modi�cation of

ξ(n) at each iteration induces an additional computational cost of O(n3) at iteration
n (O(n2) if rank-one updating is used to compute K−1

n ) and requires the storage of

all K(x,xi), i = 1, . . . , n, x ∈XΩ, in order to compute
∑n
i=1 ŵ

(n)
i K(x,xi). When K

is a correlation function with small correlation length L and PR(Xn)� L, all design

points have similar in�uence on EK(ξn − µ) and the associated optimal weights ŵ
(n)
i

are nearly identical: for n small enough, the resulting design is then similar to that
obtained when ξ(n) is forced to be uniform.

We have also considered several variants of (4.18), where the step-size αn is
optimized instead of being �xed to 1/(n+1), or using a vertex-exchange method based
on the true steepest�descent direction; see Appendix A for details: the performances,
in terms of decrease of EK(ξ(n)−µ) or in terms of space-�lling properties of its support,
CR(Xn) and PR(Xn), were not signi�cantly better than those obtained with (4.18).
The same observation holds for the Sequential Bayesian Quadrature (4.16) and the
greedy MMD minimization (4.19).

Finally, note that the n-th design in a sequence of nested designs can be used
as initialization for the (unconstrained) minimization of EK(ξn,e − µ) = 1>n K̃n1n/n

2

(Section 4.3.1), or the maximization of 1>n K̃
−1
n 1n (Section 4.3.2), with respect to Xn.

5. Illustrative examples.

5.1. Nested designs, d = 2. We take X = [0, 1]2, µ is uniform on X and
the candidate set XΩ is given by a regular 64 × 64 grid in X ; K is the product
of uni-dimensional Matérn 3/2 covariance functions K3/2,θ, see (3.5). We consider
nested designs of size up to nmax = 140 and compare designs XVD

n generated by
the vertex-direction method (4.17, 4.18) with more classical design sequences: XS

n,
given by the �rst n points of Sobol' LDS; XsS

n obtained by application of a random
linear scramble, see [65]; and an extensible lattice sequence XEL

n , where the n-th
point is given by {ng}, with g having irrational components independent over the
rationals and {t} denoting the fractional part, applied componentwise. Choosing a
suitable generator g is a delicate matter; see, e.g., [55], [69, Chap. 5] and the references
therein. We use the construction suggested in http://extremelearning.com.au/, with
g = (1/ϕd, 1/ϕ

2
d, . . . , 1/ϕ

d
d)
> and ϕd the unique positive root of x

d+1 = x+ 1, which
seems quite e�ective for small enough d. We initialize (4.17, 4.18) byX1 = {(0.5, 0.5)}
(n0 = 1) and take θ = 10. We also consider a variant of the minimum-norm-point

algorithm of [5], where ξ̂(n) having the optimal weights (4.7) is substituted for ξ(n) in
(4.17, 4.18); we denote by XMN

n the corresponding designs. The choice nmax = 140 is
arbitrary; we take nmax > 27 = 128 to be more fair with Sn which is known to have
appealing properties when n is a power of two.

The four designsXVD
140, X

MN
140 , X

sS
140 andXEL

140 are presented in Figure 5.1. Visually,
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they are all reasonably space �lling, with a slightly better behavior forXMN
140 (top right)

and XEL
140 (bottom right); XS

140 (not shown) has a few nearly coincident points that
appear after n = 110 (this will be revealed by Figure 5.2-right).

Figure 5.1: Top left: XVD
140 = Supp(ξ(140)) generated by (4.17, 4.18) with αn = 1/(n + 1)

and θ = 10 in K3/2,θ. Top right: XMN
140 = Supp(ξ̂(140)) (minimum-norm-point variant where

ξ̂(n) with optimal weights is substituted for ξ(n) at each iteration). Bottom left: XsS
140 (�rst

140 points of a scrambled Sobol' LDS). Bottom right: XEL
140 (extensible lattice sequence).

Figure 5.2 shows the scaled values n1/d CR(Xn) (left, small values are preferred)
and n1/d PR(Xn) (right, large values are preferred) for the �ve sequences of nested
designs considered, XVD

n , XMN
n , XS

n, X
sS
n and XEL

n , for n = 2, . . . , nmax = 140. The
behavior of CR(XS

n) on the left panel illustrates the fact that Sobol' sequence has suit-
able space-�lling properties for n equal to a power of two (notice the jump downwards
at n = 128) but may perform rather poorly otherwise (and the situation deteriorates
as d increases); PR(XS

n) on the right panel reveals the inclusion of nearly coincident
points after n = 110. Overall, the scrambled sequence XsS

n performs better than XS
n

but signi�cantly worse than XVD
n and XMN

n , both in terms of covering and packing
radius. The extensible lattice sequence XEL

n performs slightly better than XMN
n in

terms of packing radius, but CR(XEL
n ) is signi�cantly larger than CR(XMN

n ) all along
the sequence; XMN

n performs consistently better than XVD
n for both criteria.

The evolution of EK(ξn,e − µ) as a function of n, with ξn,e the empirical measure

associated with Xn, is shown in Figure 5.3 for XVD
n , XMN

n and XS
n; EK(ξ̂n − µ), with

ξ̂n having optimal weights (4.7), is shown on the right panel, for the same designs

(note that EK(ξ̂n − µ) ≤ EK(ξn,e − µ)). XVD
n performs slightly better than XMN

n in
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Figure 5.2: n1/d CR(Xn) (left) and n1/d PR(Xn) (right) for the designs XVD
n (red, dia-

monds), XMN
n (blue, stars), XS

n (black, pluses), XsS
n (black, x-marks) and XEL

n (magenta,
triangles).

terms of EK(ξn,e − µ) but slightly worse in terms of EK(ξ̂n − µ); both perform better
than XS

n for the two criteria. XsS
n (not shown) performs similarly to XS

n; X
EL
n (not

shown) is between XS
n and XVD

n . An important observation here is that designs may
have signi�cantly distinct space-�lling properties (Figure 5.2) although they perform
almost similarly in terms of MMD (Figure 5.3), in particular in terms of decrease
rate. Figure 5.4 illustrates the fact that a faster decrease of MMD does not mean
that the design points have a better distribution: there, θ = 1 in K3/2,θ, so that
MMD considers the integration of functions much smoother than previously when we
had θ = 10. The left panel shows EK(ξn,e − µ) for XVD

n and XS
n. On the one hand,

both constructions yield a much faster decrease of MMD than on the left panel of
Figure 5.3, with a signi�cantly smaller MMD for XVD

n than for XS
n. On the other

hand, the designXVD
140 shown on the right panel of the �gure has very poor space-�lling

properties; compare with the top-left panel of Figure 5.2.

Figure 5.3: EK(ξn,e − µ) (left) and EK(ξ̂n − µ) (right) as functions of n (log scale), with
ξn,e the empirical measure associated with Xn and ξ̂n the measure with optimal weights ŵn

(4.7), for XVD
n (red solid line), XMN

n (blue dashed line) and XS
n (black dotted line); θ = 10

in K3/2,θ.
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Figure 5.4: Left: EK(ξn,e−µ) as a function of n (log scale), with ξn,e the empirical measure
associated with XVD

n (red solid line) and XS
n (black dotted line); right: XVD

140; θ = 1 in K3/2,θ.

We construct now designs XVD
n and XMN

n for di�erent values of θ in K3/2,θ.
Figure 5.5 top-left (respectively, top-right) shows CR(XVD

n ) (respectively, PR(XVD
n ))

for θ = 1 (dashed line), θ = 1/n
1/d
max ' 11.8 (black dash-dotted line) and θ = 50

(solid line); the coloured region is the envelope of the curves obtained when θ =
1, 5, 10, 15, . . . , 50. The second row gives the same information for the design XMN

n .
One may notice that the curves in solid line coincide on the two rows: when K3/2,θ

has a small correlation length (θ is large), the two constructions give similar designs

since the optimal weights in ξ̂(n) are nearly all equal to 1/n at each n (maxi{ŵ(n)
i }−

mini{ŵ(n)
i } < 3 × 10−4 for n = 140 and θ = 50). Weight optimization makes the

construction less sensitive to the choice of θ: in some sense it permits to compensate
for the loss in space-�lling performance incurred by choosing a kernel with excessively
large correlation length (θ is too small) and forcing all weights to be equal during the

construction. The choice θ = n
1/d
max ' 11.8 appears to yield good performance, with

larger θ leading to larger packing radii but worse covering behavior.

5.2. One-shot designs, d = 2, 3. Here we use the n-th design in a sequence of
nested designs to initialize the search for an MMD design. In [64], the MMD associated
with energy distance (kernel (3.7)) is minimized with a Majorization-Minimization
(MM) algorithm; the corresponding optimal designs are called support points, de-
noted by Xsupp

n is what follows. Using the explicit form of the kernel K3/2,θ(·, ·) and
potential Pµ(·), we can also construct a convex majorant for the (squared) MMD (4.1),
for any set of weights wn. An MM algorithm can then be used to directly minimize
EK(ξn,e − µ) (ξn,e having all weights equal to 1/n), or EK(ξ̂n − µ) = (1>n K̃

−1
n 1n)−1,

with respect to Xn. In the second case, we alternate MM steps for the minimization
with respect to Xn with �xed weights, and (explicit) weight optimization through
(4.7). We denote by XMM−MMD

n the corresponding designs. Alternatively, we can

also directly minimize EK(ξn,e−µ), or maximize 1>n K̃
−1
n 1n, with respect to Xn using

any nonlinear programming algorithm. Note that we do not need to impose the con-
straints xi ∈X for all i thanks to the presence of potentials Pµ(xi) in (4.1) acting as
penalty functions. Since derivatives are available, we use Conjugate Gradient (CG);
the corresponding designs are denoted XCG−MMD

n . MM and CG only give locally
optimal solutions, which therefore depend on the initialization. Table 5.1 gives an il-
lustration for n = 100, d = 2, 3 and K the product of Matérn 3/2 covariance functions
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Figure 5.5: n1/d CR(Xn) (left column) and n1/d PR(Xn) (right column) as functions of n,
for XVD

n (top row) and XMN
n (bottom row), when θ varies between 1 and 50 in K3/2,θ: θ = 1

in dashed line, θ = 1/n
1/d
max in dashed-dotted line, θ = 50 in solid line.

K3/2,θ with θ = n1/d. XsS
100 corresponds to the �rst 100 points of a scrambled Sobol'

sequence, XVD
100 is obtained with (4.17, 4.18) and is used to initialize the optimization

for the other designs in the table: the minimization of EK(ξn,e−µ) yields XMM−MMD
100,e

and XCG−MMD
100,e , the maximization of 1>n K̃

−1
n 1n yields XMM−MMD

100 and XCG−MMD
100 . Ini-

tialization at XsS
100 gives designs with worse covering and packing performances for

all constructions considered. Table 5.1 shows the very good space-�lling performance
of designs based on MMD minimization for the energy distance (the support points
of [64]), but the construction is computationally more demanding in high dimensions
due to the necessity to approximate µ by a discrete measure (we use a 64 × 64 and
a 16 × 16 × 16 regular grid for d = 2, 3 respectively, with thus 4,096 points in both
cases).

Table 5.1: Covering and packing performances of various �xed-size designs (d=2,3; n=100).

XsS
100 XVD

100 Xsupp
100 XMM−MMD

100,e XMM−MMD
100 XCG−MMD

100,e XCG−MMD
100

d = 2 CR 0.1377 0.0925 0.0839 0.0889 0.0874 0.0889 0.0845
PR 0.0204 0.0262 0.0419 0.0365 0.0238 0.0369 0.0302

d = 3 CR 0.3054 0.2645 0.2032 0.2673 0.2624 0.2681 0.2886
PR 0.0415 0.0751 0.1042 0.0886 0.0896 0.0938 0.0922
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5.3. d = 10. In this section, we replace CR(Xn) by its under approximation
maxx∈XQ

min1≤i≤n ‖x−xi‖, where XQ corresponds to the �rst 219 points of a scram-
bled Sobol' sequence complemented with a 3d full factorial design. On purpose, we
choose a candidate set for kernel herding having the same size as above, despite
d = 10: XΩ is given by 4,096 points of a scrambled Sobol' sequence in [0, 1]d. In
general, enlarging Ω improves the performance of MMD-based designs.

Figure 5.6 is similar to Figure 5.2 and shows the scaled values n1/d CR(Xn) (left)
and n1/d PR(Xn) (right) for a scrambled Sobol' sequence XsS

n and three sequences of
nested designs for n = 1, . . . , nmax = 100: XVD−log

n , XVD−M
n and XMN−M

n . XVD−log
n

is generated by (4.17, 4.18) with K the product of the uni-dimensional (singular)
logarithmic kernel K(0) in (3.8); XVD−M

n is generated by the same vertex-direction

method but for the product of Matérn kernels K3/2,θ, with θ = n
1/d
max, XMN−M

n is for
the minimum-norm-point algorithm with the same kernel.

The three MMD related nested designs perform signi�cantly better than the
scrambled Sobol' sequence; like we observed in smaller dimensions,XMN−M

n is perform-
ing consistently better thanXVD−M

n ; XVD−log
n performs slightly worse thanXVD−M

n but
has the advantage of not requiring the tuning of a length-scale parameter θ. Note
that, since the computational cost only scales as O(nΩ), one can easily generate many
designs, for di�erent kernels, di�erent correlation length parameters, or di�erent can-
didate sets XΩ, and then select the best one according to the values of a particular
criterion of interest over a particular range of design sizes.

Figure 5.6: n1/d CR(Xn) (left) and n
1/d PR(Xn) (right) for the designsX

sS
n (black, x-marks),

XVD−log
n (magenta, triangles), XVD−M

n (red, diamonds) and XMN−M
n (blue, stars).

Table 5.2 presents the covering and packing radii for di�erent designs with n =
100. XsS

100, XVD−log
100 and XVD−M

100 are like in Figure 5.6; Xsupp
100 correspond to sup-

port points obtained by minimizing the MMD associated with energy distance (µ is
approximated by the uniform measure on a 4d full-factorial design), XCG−MMD

100,e and

XCG−MMD
100 respectively minimize EK(ξn,e − µ) and maximize 1>n K̃

−1
n 1n; these three

optimizations are initialized at XVD−M
100 . XLh

100 is a maximin-optimal Latin hypercube

design (downloaded from https://space�llingdesigns.nl/) and XLh−supp
100 is obtained by

minimizing the MMD associated with energy distance, with initialization at XLh
100.

The three designs Xsupp
100 , XCG−MMD

100,e and XCG−MMD
100 improve XVD−M

100 both in terms

of covering and packing radius. The much better performance of XLh−supp
100 compared

with Xsupp
100 illustrates the importance of a good initialization for MMD minimization.
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Notice that CR(XLh−supp
100 ) > CR(XLh

100), whereas PR(XLh−supp
100 ) > PR(XLh

100).

Table 5.2: Covering and packing performances of various �xed-size designs (d=10; n=100).

XsS
100 XVD−log

100 XVD−M
100 Xsupp

100 XCG−MMD
100,e XCG−MMD

100 XLh
100 XLh−supp

100

CR 1.3684 1.2990 1.3168 1.3083 1.2594 1.2893 1.2515 1.2762
PR 0.2456 0.2921 0.3004 0.5332 0.3993 0.4109 0.5109 0.6337

For any d′ ∈ {1, . . . , d} and any r ∈ {1, . . . ,
(
d
d′

)
}, let Pd′,r denote one of the(

d
d′

)
distinct projections on an axis-aligned d′ dimensional sub-space. The following

criteria measure the worst-case projection performance of a design in terms of its
covering and packing radii in dimension d′:

CRd′(Xn) = max
r=1,...,( dd′)

max
x∈[−1,1]d′

‖x, Pd′,r(Xn)‖ ,

PRd′(Xn) =
1

2
min

r=1,...,( dd′)
min
i 6=j
‖Pd′,r(xi)− Pd′,r(xj)‖ .

Figure 5.7 shows the ratios CRd′(X100)/CRd′(X
Lh
100) and PRd′(X100)/PRd′(X

Lh
100) for

X100 = XsS
100, X

VD−log
100 , Xsupp

100 , XCG−MMD
100,e , XLh−supp

100 and d′ = 2, . . . , 10.

Figure 5.7: Relative performances CRd′(X100)/CRd′(X
Lh
100) (left) and

PRd′(X100)/PRd′(X
Lh
100) (right) for XsS

100 (black, x-marks), XVD−log
100 (magenta, trian-

gles), Xsupp
100 (red, pluses), XCG−MMD

100,e (blue, diamonds) and XLh−supp
100 (green, stars).

Although the size of the candidate set used for the construction of XVD−log
100 is

very small (Ω = 4, 096) relative to the dimension (d = 10), this sequentially con-
structed design performs signi�cantly better than the scrambled Sobol' sequence also
in projections to smaller dimensions. The one-shot designs Xsupp

100 and XCG−MMD
100,e are

only slightly worse than the (best available) Latin hypercube design XLh
100. MMD

minimization for the kernel (3.7) associated with energy-distance, initialized at XLh
100,

yields the overall best design XLh−supp
100 among those considered.

37



6. Conclusion. Optimal designs for Bayesian integration of an unknown func-
tion considered as a realization of a Gaussian RF with covariance K, with respect to a
measure µ, that minimize the posterior integration variance, are also optimal designs
for the BLUE in a location model with correlated errors, with their correlation kernel
depending on K and µ, and minimize the MMD, a kernel discrepancy to µ. The fact
that this squared discrepancy takes the form of a quadratic energy, depending on K,
for the di�erence between µ and the design measure, permits to use all the classical
machinery of optimal design, including theory (convexity, directional derivatives, op-
timality theorems) and algorithms. When µ is uniform, MMD minimization appears
to be a natural way of constructing space-�lling designs: the quadratic form of the
criterion makes the algorithms simple and intuitive; one-step-ahead constructions al-
low the fast generation of sequences of nested designs with good properties for any
size.

For µ uniform, the space-�lling properties of designs obtained by MMD minimiza-
tion depend on the choice of the kernel K. The paper has focused on two classical
space-�lling characteristics, the covering and packing radii. Finding the most suit-
able kernel for any of these characteristics remains an open issue. For instance, the
last two columns of Table 5.2 indicate that the isotropic kernel (3.7) associated with
energy-distance favours packing on expense of covering. On the one hand, separable
translation-invariant kernels peaked enough at the origin ensure that designs points
are well spread in all projections. Singular kernels, which do not de�ne RKHS and
present signi�cant theoretical challenges, also have great potential in this respect
(see [79]). On the other hand, support points that minimize MMD for a particular
isotropic kernel provided best results for the whole d-dimensional set in our numerical
examples.

Our main intention with this paper is to promote the general use of MMD min-
imization for the construction of space-�lling designs. We hope that the stimulating
connections between Bayesian integration and other areas, such as potential theory
and BLUE, will be of general interest and will attract attention to this type of design
approaches.
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Appendix A. Some convergence properties of conditional gradient al-
gorithms.

We consider a conditional gradient algorithm with iterations given by (4.18). K
is a bounded ISPD kernel (and is thus SPD); in contrast with [15], we do not assume
that HK is �nite dimensional. In the context of MMD minimization, the criterion
is quadratic, which facilitates the developments to follow, but the results presented
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are more general than that and rely mainly on convexity. We focus our attention on
the case when X is replaced by a �nite set XΩ = {s1, . . . , sΩ}, so that a probability
measure ξ on XΩ is characterized by a vector of weights ω in the probability simplex
PΩ. However, after the proof of Theorem A.1 we indicate why a similar analysis
applies to the in�nite-dimensional situation.

Denote JK(ω) = ‖ω − ω̂‖2K = (ω − ω̂)>K(ω − ω̂), with K = KΩ a non-negative
de�nite Ω×Ω matrix and ω̂ in PΩ (and ω̂ = 1Ω when the target measure is uniform
on XΩ). Denote by BΩ an upper bound on ‖ω−ω′‖2K for ω and ω′ in PΩ. Denoting
by λmax(K) the largest eigenvalue of K, we can always take BΩ = 2λmax(K), the
bound used in the developments below. When K(x,x) = 1 and K(x,x′) ≥ 0 for all
x,x′, we can take BΩ = 2 (and replace λmax(K) by 1 in Theorems A.1, A.2 and A.3).

For i = 1, . . . ,Ω, we denote by ei the i-th basis vector, with component number
i equal to one. Iteration (4.18) has the form

ω(n+1) = ω(n) + αn∆n

for some step-size αn and direction ∆n = ei+n − ω
(n), with the index i+n taken in

Arg mini=1,...,Ω e>i ∇JK(ω(n)), where the gradient ∇JK(ω) is given by

∇JK(ω) = 2K(ω − ω̂) .

This is equivalent to si+n ∈ Arg mins∈XΩ

[
Pξ(n)(s)− Pµ(s)

]
, see (4.17).

A.1. Vertex-direction, prede�ned step-size. Take αn = 1/(n+1) in (4.18).
We �rst mention a simple result indicating that ‖ω(n) − 1Ω/Ω‖2K = O(1/n) during
the initial n1 ≤ Ω iterations when all i+n are distinct for n ≤ n1.
Lemma A.1. Algorithm (4.18) with αn = 1/(n + 1), initialized at ω(1) = ei0 for
some i0 ∈ {1, . . . ,Ω}, satis�es

‖ω(n) − 1Ω/Ω‖2K ≤
λmax(K)

n
, 1 ≤ n ≤ n1 ≤ Ω ,

where n1 is such that all i+n are distinct for n ≤ n1.
Proof. For n ≤ n1, after a suitable reordering of indices we have ω

(n) = (1/n, . . . , 1/n,
0 . . . , 0)>. Therefore, ‖ω(n) − 1Ω/Ω‖2K ≤ λmax(K)‖ω(n) − 1Ω/Ω‖2 = λmax(K) (Ω −
n)/(nΩ) ≤ λmax(K)/n.

Note that this property is independent of the order in which the vertices of PΩ

(the ein) are selected. It is therefore also valid for MC sampling without replacement
within XΩ. Also note that the optimal step-size α̂n at iteration n for the minimization
of ‖ω(n) − 1Ω/Ω‖2 equals αn = 1/(n+ 1).

The following lemma shows that (4.18) with αn = 1/(n+ 1) ensures that ‖ω(n)−
ω̂‖2K = O(log n/n), independently of Ω and of the positions of ω(1) and ω̂ in PΩ.
Theorem A.1. Algorithm (4.18) with αn = 1/(n+ 1), initialized at any ω(1) in PΩ,
satis�es

‖ω(n) − ω̂‖2K ≤ 2λmax(K)
1 + 2 log(n+ 1)

n
, n ≥ 1 . (A.1)

Proof. The proof follows the same lines as in [20, Sect. 3]. Denote g(ω) = ‖ω − ω̂‖2K
and ω(n+)(α) = ω(n) + α∆n. Notice that ω

(n) ∈ PΩ for all n ≥ 1. We have

g[ω(n+)(α)] = g(ω(n)) + 2α∆>nK(ω(n) − ω̂) + α2‖∆n‖2K
≤ g(ω(n)) + 2α∆>nK(ω(n) − ω̂) + α2λmax(K)‖∆n‖2

≤ g(ω(n)) + 2α∆>nK(ω(n) − ω̂) + 2α2λmax(K) .
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The convexity of g(·) and the de�nition of ∆n imply that

g(ω(n)) ≥ g(ω̂) = 0 ≥ g(ω(n)) + (ω̂ − ω(n))>∇JK(ω(n)) ≥ g(ω(n)) + ∆>n∇JK(ω(n)) .

Therefore, ∆>n∇JK(ω(n)) = 2∆>nK(ω(n) − ω̂) ≤ −g(ω(n)) and

g[ω(n+)(α)] ≤ (1− α)g(ω(n)) + 2α2λmax(K) . (A.2)

The rest of the proof is by induction on n. The bound (A.1) is valid for n = 1
since ‖ω(1) − ω̂‖2K ≤ 2λmax(K). Suppose that it is satis�ed by ω(n); (A.2) gives

‖ω(n+1) − ω̂‖2K ≤ 2λmax(K)

{
1 + 2 log(n+ 2)

n+ 1
− 2(n+ 1) log[1 + 1/(n+ 1)]− 1

(n+ 1)2

}
≤ 2λmax(K)

1 + 2 log(n+ 2)

n+ 1

since log(1 + t) ≥ t/2 for t ∈ [0, 1].

Using α = 2/(n + 3) in (A.2), one can easily prove by induction that g(ω(n)) ≤
8λmax(K)/(n + 3) for all n, see [20], which means that (4.18) with αn = 2/(n + 3)
instead of 1/(n + 1) satis�es ‖ω(n) − ω̂‖2K ≤ 8λmax(K)/(n + 3), n ≥ 1, with thus a
much faster decrease than (A.1). Using a di�erent approach, it is shown in [28] that
a rate of decrease of O(1/n) is also obtained when αn corresponds to the sequence
αn+1 = αn − α2

n/2 with α0 = 1.
Remark A.1 (the in�nite-dimensional situation). A property similar to Theorem A.1
remains valid in the in�nite-dimensional case, when working directly in the set M +(1)
of probability measures on X . For the sake of simplicity, here we only consider the
case when K is uniformly bounded, with moreover K(x,x) = 1 and K(x,x′) ≥ 0 for
all x,x′. One may refer to [18] for a deeper analysis, including in particular results
in the situation where approximate minimization over a �nite set is conducted to
select xn+1 in (4.17). The assumption above on K implies γ2

K(ξ, ν) = EK(ξ − ν) =
‖Pξ − Pν‖2HK ≤ 2 for any ξ, ν in M +(1) and we obtain that Algorithm (4.18) with

αn = 1/(n+ 1), initialized at any ξ(1) in PΩ, satis�es

γ2
K(ξ(n), µ) ≤ 2

1 + 2 log(n+ 1)

n
, n ≥ 1 .

The proof is similar to that of Theorem A.1. Denoting ξ(n+)(α) = ξ(n) + α∆n, with
∆n = δxn+1 − ξ(n), we obtain

γ2
K [ξ(n+)(α), µ] = γ2

K(ξ(n), µ) + 2αEK(∆n, ξ
(n) − µ) + α2EK(∆n)

≤ γ2
K(ξ(n), µ) + 2αEK(∆n, ξ

(n) − µ) + 2α2 .

The convexity of EK(·) implies

EK(ξ(n) − µ) ≥ 0 ≥ EK(ξ(n) − µ) + FK(ξ(n) − µ, µ)

≥ EK(ξ(n) − µ) + min
ν∈M+(1)

FK(ξ(n) − µ, ν)

= EK(ξ(n) − µ) + 2 min
x∈X

[Pξ(n)(x)− Pµ(x)− EK(ξ(n) − µ)]

= EK(ξ(n) − µ) + 2EK(∆n, ξ
(n) − µ) .

Therefore, γ2
K [ξ(n+)(α), µ] ≤ (1 − α) γ2

K(ξ(n), µ) + 2α2, and the rest of the proof is
by induction on n, using ξ(n+1) = ξ(n+)[1/(n + 1)]. Similarly, we get γ2

K(ξ(n), µ) ≤
8/(n+ 3) when αn = 2/(n+ 3). /
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Next lemma, based on [19], shows that ‖ω(n) − ω̂‖2K decreases as C/n2 when ω̂
lies in the interior of PΩ. Here, contrary to [19], we do not assume that H is �nite
dimensional and use instead the �nite dimensionality of ω.
Lemma A.2. When ω̂ is in the interior of PΩ, (4.18) with αn = 1/(n+1), initialized
at any ω(1) in PΩ, satis�es

‖ω(n) − ω̂‖2K ≤ 4R2
∗

(
1 +

R2
∗

α2
∗

)
1

n2
, n ≥ 1 ,

where R∗ = [λmax(K) (1 − 1/Ω)]1/2 and α∗ = w∗/L, with w∗ = mini=1,...,Ω{ŵ}i (so
that w∗ ≤ 1/Ω) and L = (maxi=1,...,Ω{K−1}ii)1/2.
Proof. Denote v(α) = ω̂−α(ω(n)−ω̂)/‖ω(n)−ω̂‖K, α > 0. Then, for any i = 1, . . . ,Ω,

|e>i (ω(n) − ω̂)|
‖ω(n) − ω̂‖K

≤ max
u:u>1Ω=0,u>Ku=1

|e>i u|

≤ max
u:u>Ku=1

|e>i u| =
√
e>i K

−1ei ≤ L = w∗/α∗ ,

so that {v(α)}i ≥ {ω̂}i − w∗ ≥ 0, and v(α) ∈ PΩ, for any α ≤ α∗. The de�nition of
ei+n then implies that

(ei+n − ω̂)>K(ω(n) − ω̂) ≤ [v(α∗)− ω̂)]>K(ω(n) − ω̂) = −α∗‖ω(n) − ω̂‖K . (A.3)

The rest of the proof is based on [19]. Denote e+
i0

= ω(1) and zn =
∑n
i=1(ei+n−1

−
ω̂). We can write ω(n) = (1/n)

∑n
i=1 ei+n−1

, so that zn = n(ω(n)−ω̂), n2‖ω(n)−ω̂‖2K =

‖zn‖2K, and we only need to bound ‖zn‖2K. We have

‖zn‖2K − ‖zn+1‖2K = −2(ei+n − ω̂)>Kzn − ‖ei+n − ω̂‖
2
K ,

where ‖ei+n − ω̂‖K ≤ 2R∗ and (ei+n − ω̂)>Kzn ≤ −α∗‖zn‖K from (A.3). Therefore,

‖zn+1‖2K ≤ ‖zn‖2K − 2α∗
(
‖zn‖K − 2R2

∗/α∗
)
.

Suppose that ‖zn‖K > 2R2
∗/α∗. Then, ‖zn+1‖2K ≤ ‖zn‖2K, and ‖zn‖2K decreases until

some n0 when ‖zn0
‖K ≤ 2R2

∗/α∗. But then,

‖zn0+1‖2K ≤ ‖zn0‖2K − 2α∗
(
‖zn0‖K − 2R2

∗/α∗
)
≤ 4R2

∗(1 +R2
∗/α

2
∗) ,

so that ‖zn‖2K ≤ 4R2
∗(1 +R2

∗/α
2
∗) for all n > n0.

Lemma A.2 indicates that ‖ω(n)−ω̂‖2K ≤ C/n2. However, for large Ω the constant
C grows like O(Ω2) (since α∗ ≤ 1/(LΩ)) which makes this result of theoretical interest
only. Note that applications typically concern situations where Ω is very large.

A.2. Vertex-direction, optimal step-size. The choice of a prede�ned step-
size αn = 1/(n+1) in (4.18) does not ensure a monotonic decrease of EK(ξ(n)−µ). An
alternative option is to choose αn that minimizes EK [ξ(n+)(α)−µ] with respect to α ∈
[0, 1], with ξ(n+)(α) = (1−α) ξ(n)+α δxn+1 and xn+1 given by (4.17). Straightforward
calculation gives αn = min{1, α̂n}, with

α̂n =
〈Pξ(n) − Pµ, Pξ(n) − Pδxn+1

〉K
‖Pξ(n) − Pδxn+1

‖2HK

=
EK(ξ(n))− Pξ(n)(xn+1)−

∑n
i=1 w

(n)
i Pµ(xi) + Pµ(xn+1)

EK(ξ(n))− 2Pξ(n)(xn+1) +K(xn+1,xn+1)
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(which requires that EK(ξ(n)) <∞), and α̂n satis�es

α̂n =
(ei+n − ω

(n))>K(ω̂ − ω(n))

‖ei+n − ω
(n)‖2K

. (A.4)

Next Lemma indicates that α̂n ≤ 1 when ŵ ∈ PΩ, so that setting αn = α̂n in (4.18)
ensures that ω(n) remains in PΩ for all n. It should be noticed that the global decrease
of ‖ω(n) − ω̂‖2K over many iterations with this optimal αn is not necessarily better
that with the prede�ned step-size αn = 1/(n+ 1) of Section A.1; see in particular [28]
for such considerations; see also [5]. One may refer to [27] for the in�nite-dimensional
situation.
Lemma A.3. When ω̂ ∈ PΩ, α̂n given by (A.4) is less than or equal to one.
Proof. We can write (ei+n −ω

(n))>K(ω̂−ω(n)) = ‖ei+n −ω
(n)‖2K+(ei+n −ω̂)>K(ω(n)−

ω̂) − ‖ei+n − ω̂‖
2
K. When ω̂ ∈ PΩ, ω̂i ≥ 0 for all i, and

∑Ω
i=1 ω̂i(ei − ω̂) = 0 implies

that
∑Ω
i=1 ω̂i(ei−ω̂)>K(ω(n)−ω̂) = 0. Therefore mini=1,...,Ω(ei−ω̂)>K(ω(n)−ω̂) =

(ei+n − ω̂)>K(ω(n) − ω̂) ≤ 0, which gives α̂n ≤ 1.
Theorem A.2. Algorithm (4.18) with αn = α̂n given by (A.4), initialized at any
ω(1) ∈ PΩ, satis�es

‖ω(n) − ω̂‖2K ≤ 8λmax(K)
1

n+ 3
, n ≥ 1 . (A.5)

Proof. The proof follows [20, Sect. 2] and uses the same notation as in the proof of
Theorem A.1. The right-hand side of (A.2) is minimum for α̂ = g(ω(n))/[4λmax(K)] ≤
1/2. Therefore,

g(ω(n+1)) = min
α∈[0,1]

g[ω(n+)(α)] ≤ (1− α̂)g(ω(n)) + 2 α̂2λmax(K)

= g(ω(n))

[
1− g(ω(n))

8λmax(K)

]
.

Since 1− t ≤ 1/(1 + t) for all t > −1, we obtain

g(ω(n+1))/[8λmax(K)] ≤ 1

1 + {g(ω(n))/[8λmax(K)]}−1

which, by induction, implies that g(ω(n)) ≤ 8λmax(K)/(n+ 3); that is, (A.5).
Lemma A.4. When ω̂ is in the interior of PΩ, (4.18) with αn = α̂n given by (A.4),
initialized at any ω(1) ∈ PΩ, satis�es

‖ω(n+1) − ω̂‖2K ≤ ‖ω(1) − ω̂‖2K exp

(
−α

2
∗ n

4R2
∗

)
, n ≥ 1 , (A.6)

where R∗ = [λmax(K) (1 − 1/Ω)]1/2 and α∗ = w∗/L, with w∗ = mini=1,...,Ω{ŵ}i (so
that w∗ ≤ 1/Ω) and L = (maxi=1,...,Ω{K−1}ii)1/2.
Proof. We use the same approach as in [6] and use the same notation as in the proof
of Theorem A.1. We can write g(ω(n+1)) = g[ω(n+)(α̂n)], with α̂n given by (A.4).
Therefore,

g(ω(n+1)) = g(ω(n)) + 2α̂n∆>nK(ω(n) − ω̂) + α2
n‖∆n‖2K

= g(ω(n))− [∆>nK(ω(n) − ω̂)]2

‖∆n‖2K
.
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Equation (A.3) implies that [∆>nK(ω(n) − ω̂)]2 ≥ α2
∗g(ω(n)), and thus

g(ω(n+1)) ≤ g(ω(n))

[
1− α2

∗
‖∆n‖2K

]
≤ g(ω(n))

[
1− α2

∗
4R2
∗

]
.

This implies g(ω(n+1)) ≤ g(ω(1)) exp[−α2
∗ n/(4R

2
∗)], that is, (A.6).

Similarly to Lemma A.2, the small value of the constant α∗ makes the linear
convergence rate in (A.6) of theoretical interest only.

A.3. Vertex-exchange. Following [66, 67], one may also use a vertex-exchange
method based on the true steepest-descent direction, see also [12, 13]. The iterations
are then

ξ(n+1) = ξ(n) + αn (δxn+1 − δx−n ) , (A.7)

where xn+1 is given by (4.17) and

x−n ∈ Arg max
x∈Supp(ξ(n))

[
Pξ(n)(x)− Pµ(x)

]
, (A.8)

with Supp(ξ(n)) = Xn the support of ξ(n). The step-size αn is then given by
min{α̂n, ξ(n)(x−n )}, where α̂n minimizes EK [{ξ(n)+α (δxn+1−δx−n )}−µ] with respect to

α (the constraint αn ≤ ξ(n)(x−n ) ensures that ξ(n+1) ∈M +(1) when ξ(n) ∈M +(1)).
Direct calculation gives

α̂n =
〈Pξ(n) − Pµ, Pδ

x
−
n

− Pδxn+1
〉K

‖Pδ
x
−
n

− Pδxn+1
‖2HK

=
[Pξ(n)(x−n )− Pµ(x−n )]− [Pξ(n)(xn+1)− Pµ(xn+1)]

K(x−n ,x
−
n ) +K(xn+1,xn+1)− 2K(x−n ,xn+1)

. (A.9)

For the algorithm de�ned by (A.7, A.8), we have ω(n+1) = ω(n) + αn∆n with
now ∆n = ei+n − ei−n , where we take i+n ∈ Arg mini=1,...,Ω e>i K(ω(n) − ω̂) and i−n ∈
Arg maxi: e>i ω(n)>0 e

>
i K(ω(n) − ω̂). The step size (A.9) equals

α̂n =
∆>nK(ω̂ − ω(n))

‖∆n‖2K
. (A.10)

Take αn = min{ω(n)

i−n
, α̂n} in (A.7), so that ω(n) remains in PΩ for all n. Using the

same notation as in the proof of Theorem A.1, we have

g[ω(n+)(α)] ≤ g(ω(n)) + 2α∆>nK(ω(n) − ω̂) + 2α2λmax(K) ,

and, since ω(n) ∈ PΩ, the convexity of g(·) and the de�nition of ∆n imply that

g(ω̂) = 0 ≥ g(ω(n)) + 2(ω̂ − ω(n))>K(ω(n) − ω̂) ≥ g(ω(n)) + 2∆>nK(ω(n) − ω̂) .

We obtain the following property; the proof is identical to that of Theorem A.2.

Theorem A.3. Suppose that ω̂ and K are such that α̂n ≤ ω
(n)

i−n
for any ω(n) ∈ PΩ.

Then, algorithm (A.7, A.8) with αn = α̂n given by (A.10), initialized at any ω(1) ∈
PΩ, satis�es

‖ω(n) − ω̂‖2K ≤
8λmax(K)

n+ 3
, n ≥ 1 .
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There exist situations where the condition α̂n ≤ ω(n)

i−n
is not satis�ed. Take for in-

stance Ω = 3, K the identity matrix and ω̂ = (0, 0, 1)>, ω(n) = (1/3, 1/3, 1/3)>; then

α̂n = 1/2 > ω
(n)

i−n
= 1/3). On the other hand, the condition is satis�ed for instance

for ω̂ = 1Ω/Ω and K the identity matrix (we have in− = Arg max
i:ω

(n)
i >0

(ω
(n)
i − ω̂i),

and
∑Ω
i=1(ω

(n)
i − ω̂i) = 0 implies that ω

(n)

i−n
> ω̂i−n and similarly ω

(n)

i+n
< ω̂i+n ; we get

α̂n = (ω
(n)

i−n
− ω(n)

i+n
)/2 ≤ ω

(n)

i−n
/2 < ω

(n)

i−n
), and numerical experiments indicate that it

holds true in most situations.

Appendix B. Bayesian quadrature: several integrals.
Following [72], consider a generalization of the situation considered in Section 2.2

where one wishes to estimate

Iµ(f) = Eµ{f(X)r(X)} =

∫
X

f(x)r(x)dµ(x) ,

with r(x) = (r0(x), . . . , rp(x))> a vector of p+ 1 known functions of x, such that the
(p+ 1)× (p+ 1) matrix

Mr = Eµ{r(X)r>(X)}

exists and is nonsingular. See also [58]. Without any loss of generality, we may assume
that r0(x) ≡ 1.

We also slightly generalize the model (2.1) by introducing a linear trend h>(x)β;
that is, we consider

f(x) = h>(x)β + Zx , (B.1)

where h(x) = (h0(x), . . . , hp′(x))> is a vector of p′ + 1 known functions of x and

β ∈ Rp′+1 has the normal prior N (β̂
0
, σ2A), non-informative so that we can replace

A−1 by the null matrix 0 in all calculations (the choice of β̂
0
being then irrelevant).

We assume that the matrix Eµ{h(X)h>(X)} is well-de�ned. For reasons that will
become clear below, we shall consider in particular the case where h = r.

The posterior mean and variance of f(x), conditional on σ2 and K, are now,
respectively,

η̂n(x) = h>(x)β̂
n

+ k>n (x)K−1
n (yn −Hnβ̂

n
) ,

σ2ρ2
n(x) = σ2

{
K(x,x)− k>n (x)K−1

n kn(x)

+ [h(x)−H>nK
−1
n kn(x)]>(H>nK

−1
n Hn)−1[h(x)−H>nK

−1
n kn(x)]

}
,

where {Hn(x)}i,j = hj(xi), i = 1, . . . , n, j = 0, . . . , p′, and

β̂
n

= (H>nK
−1
n Hn)−1H>nK

−1
n yn .

The posterior mean and covariance matrix of Iµ(f) are

În = B(µ)β̂
n

+ Pn(µ)K−1
n (yn −Hnβ̂

n
) , (B.2)

σ2 Vn = σ2
{
Ur(µ)−Pn(µ)K−1

n P>n (µ)

+
[
B(µ)−Pn(µ)K−1

n Hn

]
(H>nK

−1
n Hn)−1

[
B(µ)−Pn(µ)K−1

n Hn

]>}
, (B.3)
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where B(µ) = Eµ{r(X)h>(X)}, Pn(µ) = Eµ{r(X)k>n (X)} and

Ur(µ) = Eµ{r(X)r>(X′)K(X,X′)} ,

with X and X′ i.i.d. ∼ µ.
Remark B.1 (Reproduction of cubature rules). Consider the case where p = 1
(r(x) ≡ 1), n = p′ + 1, so that Hn is n × n, and suppose that Xn is such that

Hn is nonsingular. Then, direct calculation shows that În = ŵ>n yn, with w>n =
H>n Eµ{h(X)} and Vn = EK(ξn − µ), where ξn has weights wn. The weights wn

are independent of the choice of the kernel K and every function f in the linear
space spanned by h(·) is integrated exactly (̂In = Iµ(f) when f(x) = γ>h(x) for
some vector γ), see [52, Th. 2.10]. In the same paper, these results are used to show
that for any n-point cubature rule there exists n functions hi(·) such that the rule
corresponds to Bayesian integration for model (B.1). One may also refer to [53] for the
relation between polynomial-based quadrature rules and Bayesian quadrature (for a
suitably chosen polynomial kernel) when β in (B.1) is considered as a vector of known
constants (for instance, zero), so that the posterior variance is given by (2.11). /

Suppose that Mh = Eµ{h(X)h>(X)} is nonsingular. Following Section 3.5.2, we
can write f(x) = h>(x)β + PhZx + (IdL2 −Ph)Zx, where Ph denotes the orthogonal
projection of L2(X , µ) onto the linear space spanned by h(·); that is, Phg(x) =
h>(x)M−1

h

∫
X h(x′)g(x′)dµ(x′) for all g ∈ L2(X , µ). This gives

PhZx = h>(x)M−1
h

∫
X

h(x′)Zx′ dµ(x′) .

In absence of prior information on β (A−1 = 0), the prior on the parameters β′ =
β + M−1

h

∫
X h(x′)Zx′ dµ(x′) remains non-informative, and the covariance kernel of

Z̃x = (IdL2 −Ph)Zx is

Kµ(x,x′) = K(x,x′)− u>µ (x)M−1
h h(x′)− h>(x)M−1

h uµ(x′)

+h>(x)M−1
h Uh(µ)M−1

h h(x′) ,

where Uh(µ) = Eµ{h(X)r>(X′)K(X,X′)} and uµ(x) = Eµ{h(X)K(X,x)} , x ∈X .
Similarly to Section 4.2 (see [37, Sect. 5.4]), this kernel reduction does not modify

predictions, and direct calculation shows that Eµ{h(X)h>(X′)Kµ(X,X′)} = 0 and

Eµ{h(X)k̃>n (X)} = 0, with k̃n(x) = (Kµ(x,x1), . . . ,Kµ(x,xn))>. Taking h = r, we
thus obtain the following property, where Rn is the n× (p+ 1) matrix {Rn(x)}i,j =

rj(xi), i = 1, . . . , n, j = 0, . . . , p, and {K̃n}i,j = Kµ(xi,xj), i, j = 1, . . . , n.

Lemma B.1. When K is SPD and h = r in (B.1), În given by (B.2) satis�es

În = Mr(R
>
n K̃
−1
n Rn)−1(R>n K̃

−1
n yn) ,

and the posterior covariance matrix (B.3) satis�es

Vn = Mr(R
>
n K̃
−1
n Rn)−1Mr . (B.4)

To ensure a precise estimation of Iµ(f), we may select a design Xn that minimizes
J (Vn), with J (·) a Loewner increasing function de�ned on the set of symmetric non-
negative de�ne matrices. Typical choices are J (Vn) = det(Vn) (D-optimality) and
J (Vn) = trace(Vn) (A-optimality). Greedy minimization of J (Vn) corresponds to
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Sequential Bayesian Quadrature, see Section 4.4. Using (B.4) and formulae for the
inversion of a block matrix, we obtain the following expressions for det(Vn+1) and
trace(Vn+1):

det(Vn+1) = det(Vn)
Kµ(x,x)− k̃>n (x)K̃−1

n k̃n(x)

ρ̃2
n(x)

,

trace(Vn+1) = trace(Vn)

− [r(x)−R>n K̃
−1
n k̃n(x)]>(R>n K̃

−1
n Rn)−1M2

r(R
>
n K̃
−1
n Rn)−1[r(x)−R>n K̃

−1
n k̃n(x)]

ρ̃2
n(x)

,

with

ρ̃2
n(x) =

[
Kµ(x,x)− k̃>n (x)K̃−1

n k̃n(x) +
(1− k̃>n (x)K̃−1

n 1n)2

1>n K̃
−1
n 1n

]
.

When p = 0 (r(x) ≡ 1), Vn = s2
n in (4.13) and det(Vn+1) = trace(Vn+1) = s2

n+1

given by (4.15).

Appendix C. Energy and potential for the triangular kernel.
Consider the triangular kernel Kθ(x, x

′) = max{1 − θ|x − x′|, 0}, θ > 0, with µ
uniform on [0, 1]. The expressions of EK(µ) and Pµ(x) vary depending on the range
considered for θ, with in all cases Pµ(x) = 0 when x ≤ −1/θ or 1 + 1/θ ≤ x.

2 ≤ θ. EK(µ) = (3θ − 1)/(3θ2) and

Pµ(x) =


θ(x+ 1/θ)2/2 if − 1/θ ≤ x ≤ 0
1/θ − θ(1/θ − x)2/2 if 0 ≤ x ≤ 1/θ
1/θ if 1/θ ≤ x ≤ 1− 1/θ
1/θ − θ(1/θ + x− 1)2/2 if 1− 1/θ ≤ x ≤ 1
θ(1− x+ 1/θ)2/2 if 1 ≤ x ≤ 1 + 1/θ

1 ≤ θ ≤ 2. EK(µ) = (3θ − 1)/(3θ2) and

Pµ(x) =


θ(x+ 1/θ)2/2 if − 1/θ ≤ x ≤ 0
1/θ − θ(1/θ − x)2/2 if 0 ≤ x ≤ 1− 1/θ
1/θ − θ(1/θ − x)2/2− θ(1/θ + x− 1)2/2 if 1− 1/θ ≤ x ≤ 1/θ
1/θ − θ(1/θ + x− 1)2/2 if 1/θ ≤ x ≤ 1
θ(1− x+ 1/θ)2/2 if 1 ≤ x ≤ 1 + 1/θ

0 < θ ≤ 1. EK(µ) = 1− θ/3 and

Pµ(x) =


θ(x+ 1/θ)2/2 if − 1/θ ≤ x ≤ 1− 1/θ
1− θ/2 + θx if 1− 1/θ ≤ x ≤ 0
1− θ/2 + θx− θx2 if 0 ≤ x ≤ 1
1 + θ/2− θx if 1 ≤ x ≤ 1/θ
θ(1− x+ 1/θ)2/2 if 1/θ ≤ x ≤ 1 + 1/θ
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