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Ly INTRODUCTION.,

The "method of horizontal variations' has been proposed
by the author as a way of characterizing variationally the solutions
to some field equations. It consists in having the investigated
fields (scalar or tensor) transported by an imagined continuous medium,
in motion over the concerned region of the space of independent
variables. The solutions are then characterized as yielding in the
process a zero rate of change for some integral functional.

The imagined continuous medium, called a carrier is
defined by its velocity field ¥ and the parameter ordering its

evolution is denoted by 1 , not to be mistaken for the physical



time ¢t when the latter figures among independent variables.
Associating a transport process with some vector field is well
known in Differential Geometry as generating Lie derivatives
(see e.g. [1]) . The vocabulary and procedures we propose seem
better adapted to applications.

To date, we have only used the device in analyzing the
mathematical structure of the considered equations (see e.g. [2] ,
which tends to explain in that context the preeminence of measures
over other sorts of distributions). Numerical experimentation is
planned : the transport will be approximated by making some finite
element mesh move, with a velocity field 1 possibly dependent on
the formal time <t . This is similar to what is currently done in
the computation of large deformations of materials (see e.g. [3][4])
and also in problems of optimization of domains [5][6] .

Horizontal variations may also be used in constructing
perturbations of known solutions.

In other words, the vector field 0 constitutes a
test field and, when applied to Mechanics, the method may be viewed
as an extension of the traditional procedure of '"virtual work'" or
"virtual power".

Application to the dynamics of compressible fluids is
presented in [7] .

The material of this lecture is extracted from a paper
to appear [8] , devoted to stationary flows of incompressible
inviscid fluids, with possible sharp inhomogeneity hence displaying
free boundaries. Proofs of the statements made in the sequel may

be found in it.



2% THE BASIC DEVICE,

Let & denote an open subset of the space R"  of the
independent variables. Let f’e Dk(Q,an) e [ is a vector
field, with continuous partial derivatives up to the order k at
least and compact support in § . This vector field may also depend
on the real variable <t , in which case continuous differentiability
up to order k 1is supposed to hold in the n+ 1 wvariables jointly.
With t playing the role of time, ¥ may be seen as the Eulerian
velocity field of some n-dimensional fluid A , called a carrier,
in motion over @ . If K is a compact subset of { containing
(for every t) the support of ¥ , clearly the portion of fluid
contained in @ \K remains at rest. For short we shall say that A
is a compact Ck carrier in A .

Standard theorems on the differentiability of solutions
to differential equations with respect to initial data readily yield
the following : the carrier A , the elements of which are naturally
called particles, may be equipped with the structure of a Ck—
differential manifold, in such a way that the placement mapping
A nT(A) is a Tt-dependent Ck—diffeomorphism @i\ @) 9

In view of this structure, A may house various mathema—
tical objects ; every placement T gives of every such object an
image, which is an object of the same nature in Q : as T ranges
through some real interval, the t-dependent thing so obtained in 9}

will be called a moving object transported by the carrier A .



As first example, consider a Tt—dependent Ch feal
function (h integer, O < h < k) , say £l Qr =R L Tiois
classically said convected by A if it equals the image under m
of some T-constant real function in A , i.e. for every X € A\ ,
the real number fT(wT(X)) does not depend on T . Equivalently the
follow-up derivative GW £t exists, with zero value ; this is the
t—derivative of fT(ﬂTEK)) , with fixed A (qbserve that existence
of this derivative does not require of £' to be differentiable
in its proper arguments). When writing in the sequel such expression

as & f' , we shall implicitely refer to some value of T and

v

A

some point x of @ ; then 5¢ £ is precisely the t—-derivative
of fT(wT(A)) L atiga O\ fixeéﬁat the value nzq(x) ; this complies
with common habits in the Mechanics of Continua.

As usual, we equip R" with its natural Euclidean struc-
ture. Suppose now that £% 45 at least C1 in @ , thus possesses
a Euclidean gradient gT = grad £' , a t-dependent vector field
in @ . Equivalently, the function £7 o i P A—R is C1 in A,
thus possesses a gradient (or '"differential), a covector field of
the differential manifold A . Clearly, if £ is convected, the

real function £' o m does not depend on <t ; thus the Euclidean

vector field gT in § equals the image under 7 of some t—constant
it

s
[

covector field of A : 1in such a case we shall say that the moving
Euclidean vector field is transvected by the carrier. Denoting by 8y
the components of gT , one may obtain a characterization of such a

o~

transport in terms of follow-up derivatives :



(2.1) 8§ g. =-¢ . g.

where ¢j are the Cartesian components of ¢ and wj i the partial
oo d ’
derivatives of these components.

Another mode of tramsport of a Euclidean vector by a
moving medium is familiar in Continuum Mechanics : A vector field
xf in @ is said convected by A if, for every A €A, the moving
vector Xf(nT(A)) may be represented, up to the multiplication by
some t-constant infinitely large scalar, as connecting the imaggs
under . of a pair of particles infinitely close to A . If vi

i s :
denote the components of v , this 1s classically expressed by

(2:42) OV = Ay

: 0 i :
Clearly i1f g and v are respectively a transvected

e

and a convected vector field, the Euclidean scalar product gT SR

constitutes a convected real function.

Let us illustrate the above concepts by computational
representations. Suppose n = 2 and the region § of iRz paved
by triangles. In the case of tramsport by a carrier, the‘vertices
A,B,C of such a triangle move . Suppose the vector field 3T
approximated by Ef , a single value for the whole triangle. The
fact that ;HT is a convected vector field is approximated by
making Ef change with t in such a way that this vector equals

a constant linear combination of vectors AB and AC (or, equiva-

lently, of vectors BA and §§ s etcav) i infcontras fwhen



: T : T
a transvected vector field g is approximated by some vector G
on the considered triangle, this vector value has to vary with Tt
: 2 T
in such a way that the Euclidean scalar products G . AB and

e . AC remain constant (hence also gj 5 EE).

——

3. VECTOR MEASURES.

Scalaf, vector or tensor measures on a differential
manifold such as A above, are readily introduced by the duality
procedure, quite similarly to De Rham's theory of currents [9]

For instance, a vector measure g on Ny, lony
definition, a real linear functional (satisfying certain continuity
requirements ; see e.g. [7] , Sect. 4) on the linear space
D°(A,A'*) of the continuous covector fields, with compact support
in A . The value that such a functional assigns to some element
oL D°(A,A'*) may be denoted by f<£,dg> S onrEaliso f<'9,‘g_;>dr
if dr represents some nonnegative real measure on A , relatively
to which g admits a vector density ’g;‘e £1OC(A,dr; S e re
the angle bracket <., .> refers to the duality s9a1ar product
between covectors and vectors at a point of A .

A very usual example is provided by a C1 CURVEeR 1ol
a C1 mapping r —> y(r) of some real interval into A (more

generally, one could assume only that such a mapping has a bounded



variation). For every r , the derivative vy'(r) 1is an element of
the tangent space to A at the point y(r) . By assigning to every
8 € D°(A,A'*) the real number f‘igﬁy(r)) » Y'(r) >dr one defines

a vector measure.

A vector measure 0 will be said divergence-free if it
yields a zero integral for every covector field 6 which equals the
gradient of an element of Dq(A,IO (the C‘1 real functions in A ,
with compact support). For instance, the vector measure defined as
above by a curve is divergence-free in A if and only if the curve
possesses no end point in A , in particular when the curve is a
@ilierebblie ]

As an open subset of R" » § 1is naturally a differential
manifold so that all what precedes applies. In addition, due to
Euclidean structure, the tangent and cotangent spaces at every point
x € @ merge into a single one, the same for every x , with duality
defined by the Euclidean scalar product.

Since every placement ™ is a Ck diffeomorphism of A
onto @ , it induces an isomorphism between the spaces of continuous
covector fields, with compact supports, in A and § respectively ;
hence, by transposition, the image under ™ of a vector measure
in A is defined, a vector measure in @ .

A T—depéndent vector measure in © will be said convected
by the carrier A if it equals for every t the image under e

of some Tt-constant vector measure in A . For instance a moving



:

curve in Q dragged-along by the carrier A equals for every
the image under T of some Tt-constant curve of A . Thus the
vector measure associated with it is convected (for the application
of this remark to a generalization of Kelvin- Helmholtz theory in
Fluid Dynamics, see [10]) .

Clearly, the image of a divergence-free vector measure
under any diffeomorphism is also divergence-free. Hence, for a
convected vector measure, vaniéhing of divergence is a T-independent
property.

The concept of “vanishing divergence, for a vector measure,
is visibly free from any metric structure. Such is not the case, in
classical Vector Analysis, for the divergence of a vector field.

Here is the connection between both concepts : let us denote by ¢

the Lebesgue measure in the open subset @ of the Euclidean space R®
suppose that some vector measure m in @ admits, relatively to ¢ ,
a density, say E'E £1OC(Q,£;IJI) . The vector measure m is
divergence-free if and only if u has a zero divergence in the sense
of Schwartz distributions ; this in turn reduces to the classical
condition div u =0 if u happens to be C1 .

The following will also be of use in the sequel :

suppose that u depends on T thus also the vector measure m U B

e

The latter is found convected by the carrier A if and only if

(EBE15) S e = DR G )

a condition to distinguish from (2.1) .



Computational approximation of vector measuresis quite
feasible. For instance, a divergence-free vector measure may be
approximated by a finite collection of vector measures associated
with curves in the way described in the preceding. Curves in turn
will be approximated by polygones. Having all this convected by a
carrier is easy.

Another way of handling divergence-free vector measures,
numerically, operates through stream functions or vectors potential :

see Sect. 6 below.

b, THE INVESTIGATED EQUATIONS,

In what follows, the dimension n of the considered
Euclidean space equals 2 or 3 . Over the open subset  the
stationary motion of an incompressible inviscid fluid is supposed
to take place.

If u is the velocity field, one classically expresses
incompressibility by div 65 0 and mass conservation by div put==Q
with p denoting the volume mass. As we mean to treat nonsmooth
flows, these conditions have to be understood in a weak sense. Denoting,

by 2 , as in Sect. 3 , the Lebesgue measure, we assume from

LT 1 n o
the beginning u€ £1OC(Q,£,ﬁR G T) (e R £1OC(Q,£{R) < [hen



10.

ut and pul are vector measures in @ ; we require of them to
be divergence-free in the sense of iSecitls3is.

The equations of Dynamics, i.e. the balance of momentum,
will be expressed in the same style, under assumption E.E £foc(9’l;165

We suppose that the pressure p belongs to £ (2,23R) and that

loc
extraneous forces, such as gravity, possess, relatively to the mass

measure, a density of the form grad U , with U a time—independent

smooth real function. Then

(4.1) (p ui u:‘.| ,Q,),j = — (pl),i + p U’il

Subscripts preceded by a comma refer to partial derivation of the
considered measures, in the sense of Distributions. Since coordinates
are essentially orthonormal, no superscript are used to distinguish
between variances.

Such an expression of Classical Dynamics, involving the
Euclidean divergence of tensor measures, should not be seen as a
mere convenience trick. It is in fact the stationary version of a
synthetic formulation in the event space of Classical Dynamics,
which applies, as well as to continua, to such singular systems
as collections of mass—-points. Arguments tending to. explain, in
that connection, the precedence of measures over Distributions of
higher order are presented in [2] . Derivation in the sense of
Distributions is connected, via transposition, to the elementary
derivation applied to test fields such as % in the present paper.
So the above is nothing but an extension of the traditional method

of virtual power (or 'virtual work").



1l

The fields Uu,p,p ‘defining the flow may be discontinuous.
For instance, one may suppose that p vanishes in some open subdomain
Qa (atmosphere) of & , separated from the proper fluid domain Q¢
by a C1—surface S . Then (4.1) readily implies that p equals
a constant in Qa and presents no jump across S . The definition
of u in Qa is immaterial (provided (div (ugf) =0 , for consis-
tency) ; one may take u =0 in Q, - If p and u are smooth
in Qf , with well defined limits on the fluid side of S , condition
div (pu#) = 0 elementarily implies that u is tangential to § .
Hence all classical conditions on the free surface of a liquid are
automatically involved.

Let us end this Section by recalling that, in stationary

hydrodynamics, it often proves convenient to introduce, instead of

the pressure p , the "total head" or "Bernoulli function"

3 1
(4.2) b=p+ > PU; U, —p U

Equations of hydrodynamics are found to imply that the vector measure
btll is divergence free. This vector measure may be seen as the
"energy current' in the considered stationary flow (while the vector
measures uf and puf respectively constitute the "volume current"
and the "mass current'"). In the special case mentioned above, where o
vanishes in the atmosphere Qa , b equals the atmospheric pressure
P, throughout this subdomain.

The sequel will precisely put forward b instead of p
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B MAIN VARIATIONAL STATEMENT.

For simplicity, it will be assumed in the sequel that
f |u| d2 < ® ; otherwise, some covering argument should be associated
é?th the forthcoming.
PROPOSITION. Let a vector field u € £2(Q,2;185 and two scalar
fields b € £1(Q,£;ID yomE £2(2,2; R) be defined in the open
subset O of R" with & denoting as before the Lebesgue measure.
These elements satisfy the dynamical equation (4.1) , with (4.2)
used for expressing p , 1f énd only if, for every compact C1

carrier in § , the 1-derivative of the following functional

vanishes at T = 0
B(t) = f (% pTuz uz + pT[J+bT)d£
Q

where bT 7 pT » reducing to b and p for T =0 , are scalar

L) : T :
fields convected by the carrier and u , reducing to u for T =0,

; ; TS
1s a vector field such that the vector measure 3_8 1s convected.

Prooftmay: betoundsantSE7ES g twalil vt o 4Rt o
be satisfied, it suffices that the above variational property holds
for every carrier whose velocity field [ is a t-constant e
vector field, with compact support in Q .

Conditions div (3}) =0 and div (p:il) = 0 are not
involved in this variational property. They have to be additionnally

imposed to the unknown fields (a practical way of doing this is
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presented in Sect. 6 below). Let us stress that these conditions

do not constitute constraints in the customary sense of the Calculus
of Variations. In fact, the assumptions involve that the vector
measures Hfm and pTifz, are convected by the considered carriers ;
hence (cf. Sect. 3 above) their divergences vanish for every =t ,

as soon as the same is true for t = Q . In other words the zero
divergence condition is automatically satisfied by all competing
elements. The situation may be depicted as follows : starting with
some triplet Q&? ,51 ,pq) verifying div (3?2) = 0 and

div Qégf 2) =0 in § , imagine the totality of the triplets
resulting from this one under the transport, in the way specified by
the Proposition, by arbitrary C/1 (resp. Cw) compact carriers in @ .
This constitutes, roughly speaking, an infinite-dimensional manifold
and the Proposition characterizes the elements of this manifold
satisfying the balance of momentum (if any) as the critical points

of the real functional B .

Proving the existence of such critical points is still
out of sight ; the situation is very similar to the existence problem
in large deformation elasticity, a problem essentially unsolved
to-date, though  numerical methods are effective.

In contrast with the above non constrained variation
procedure, one may alternatively restrict the considered transport
to volume-preserving carriers ; this amounts to impose to their
respective velocity fields the condition div ¢ = 0 . Then the

contribution of b' in B(t) 1is rt-constant ; hence one obtains
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a variational characterization of the pairs (g, p) | compatible with
the balance of momentum, which eliminates the unknown b % 1l.e.
eliminates the pressure p (cf. [£8'] 5« Propn 6L d)s s SOF course,
when the carrier motion preserves volume, the vector measure ey

is convected if and only if the vector field u is convected.

6. STREAM FUNCTIONS AND VECTOR POTENTIALS,

Let us first consider the two-dimensional case. The
classical concept of the stream function of a divergence-free vector
field may be generalized as follows : if a vector measure m is
divergence-free in a simply connected open subset Q) ()it R? , there
exists a scalar distribution ¥ € D'(2,R) such that the scalar
measures m, and m, which constitute the components of o verify

m1=‘£’2 ’ m2=—‘~{”1

b

In the case in view, LI Gl e £foc(9,2; R?) 5 then
one establishes y =y , where Y 1s a scalar field belonging
p !
to £1OC(Q,£; R) for every S |l
For the vector measure m to be convected by a carrier |

1t is found sufficient that VY be a convected scalar field.
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When € 1is multiply connected, some flux conditions
are classically needed for the existence of a single valued stream
function ; they can easily be adapted when divergence—free vector
measures are considered, instead of vector fields.

Let us pass on now to the three-dimensional case, by
considering first a C1 vector field I . Let gf denote the
moving vector field transvected by the carrier A and reducing
to T for T =0 . It is easily checked that the vector measure
(curl gf)z is divergence-free and convected. The vector field ‘ET
is called a vector potential of the vector measure and this can be
extended to cases where 'ET is no more C1 s

If Q@ 1is not topologically simple enough, some flux
conditions are required in order that a divergence-free vector
measure admit a vector potential.

0f course, adding to E? the gradient of some convected
scalar field yields another transvected vector potential of the
same convected vector measure.

It may also be convenient to specialize Eﬁ under the
form wT grad b , where wT and 0" are convected.scalar fields ;
this is a (transvected) vector potential of the divergence-free
convec;ed vector measure (grad ¢T) x (grad,6')g . Since. 8"
appears only through its gradient, this scalar field need not be
single-valued. By taking as 0' the azimutal angle, which in fact
is convected by every axissymmetric carrier one obtains a way of

treating axissymmetric incompressible flows by performing horizontal
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variations in some fixed meridian half-plane. Then wT is nothing

but Stoke's stream function of the flow.

All this generates convenient alternatives to the

variational statement of Sect. 5 .
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