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Université Montpellier II, 34095 Montpellier Cedex 5, France. 

Abstract. The mutual impenetrability of the parts of a mechanical system and their 
possible confinement by given external obstacles are unilateral constraints, the 
description of which results in joint inequalities arid equalities. The system dynarrùcs 
is thus governed by a set of very nonsmooth relations. The effect of dry friction at 
possible contacts mak:es evolution problems still less regular; velocity jumps may 
occur in this case, even in the absence of collision. In developing time-discretization 
procedures to solve these evolution problems numerically, the authors have chosen 
to face nonsmoothness without resorting to any regularization technique. 

1. Introduction.

Let a mechanical system involve several parts, referred to as bodies. This lecture 
is devoted to computing the motion, when the possible contacts between some of 
these bodies, or between some of them and external obstacles with given motion, are 
subject to discussion at every instant. 

Friction, affecting contacts, is a very intricate phenomenon. By restricting 
ourselves to the "dry" sort, we exclude the consideration of lubricants. Even so, the 
tribological data needed for an accurate description of contact interaction, when 
attempts are made at investigating engineering situations, are practically a:lways 
missing. Recall that, in usual instances, the alteration of contacting surfaces through 
wear and the accumulation of debris in the affected zone play an important role. 
Sorne authors also insist on the pressure-dependent crushing of micro-asperities and 



introduce a specific nonlinear local compliance in the description of contact. An 
extensive discussion of dry friction, with a vast list of references, may be found in 

[l]. By representing friction through the traditional law of Coulomb, or a 
generalization of it to anisotropie situations, we choose to neglect these effects. 
Anyway, in our computing techniques of time-discretization, it is easy to make the 
parameters of the law of Coulomb depend, for each time-step, on some "status" 
variable determined by the past motion. More simply, at the beginning of each step, 
one may have the friction data depend, possibly in discontinuous way, on the 
available values of the system position and velocity. 

Coulomb friction and unilaterality, i.e. the possibility of contact breaking at 
unknown instants, raise problems whose mathematical difficulty has long been 
recognized [2]-[6]. Collisions, i.e. the sudden occurence of new contacts, causes 
still rougher irregularity. 

A very accurate treatment of collisions would require data usually impossible to 
identify and to collect experimentally. The suddenly introduced contacts may persist 
in subsequent motion, or on the contrary, the colliding bodies may bounce against 
each other. The empirical coefficient of restitution bears little consistency beyond 
the special case of the collision of two otherwise unconstrained perfectly rigid 
bodies. An alternative concept has been proposed in [7], avoiding in particular the 
energetical paradoxes pointed out by some authors [8][9]; it is presented in Sec.6 
below. 

The traditional approach to the above problems consists of performing, at the 
first stage, some tentative calculation of the motion under the maximal regularity 
assumptions: persistence of existing contacts, no collisions, no occurence of 
singular points in the differential equations. From this calculation, one tries to 
identify the instants at which some contradiction arises: contact forces with 
inadmissible direction, collision, dynamical locking due to friction, ... At the first 
encountered of such signais, a special analysis of the instant behaviour (possibly 
with the help of infinitesimal time rescaling) is expected to yield the initial conditions 
for a possible subsequent phase of regular motion. Even in the no-friction case, this 
approach has long been recognized as requiring caution: the contacts which get loose 
after some of the critical instants are not necessarily those for which the previously 
calculated reaction exhibits inadmissible sign [10][11]. 

The mathematical tools allowing for a global formulation of the concerned 
evolution problems, not based on the division of time into intervals of smooth 

motion, have been made available only in recent years. The existential study [12]
[15] and the corresponding numerical procedures [16] are still under development.

For deformable bodies, the situation is still more complicated, since the contact 
status may, at every instant, vary from one region to another, delimited by 
unknown moving boundaries. So far, papers devoted to the computation of such 
dynamical problems are not very numerous [17]-[21]. In the event of a collision, 

shock waves are expected to propagate through the system; these are numerically 
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considered in [22]. In the applications we have in view, the time taken by waves to 
travel the whole system is short enough for these to be inapparent in computation. 

Anyway, it should be kept in mind that the presented models can only carry a 
crude representation of physical reality. This is a fact of life in all the applications of 
Science, but in the present topics, the lack of physical information is so patent that, 
however sophisticated the computation methods might be, seeking high precision in 
their implementation could be regarded as a waste of effort. 

2. Analytical setting.

In the first Sections of this lecture, a mechanical system with finite number of
degrees of freedom will be considered. Naturally, the numerical treatment of 
continuous media also relies on fmite sets of variables and we shall corne to this case 
in Sec. 9. 

Let the possible configurations of the system be parametrized, at least locally, 
through generalized coordinates, say q = (q 1, q2, ... , qn). Such a reduction to finite 
freedom is assumed here to result from (bilateral) ideal constraints, namely the 
rigorous internai rigidity of the various parts and the possible operation of 
frictionless linkages. 

After constructing this pararnetrization, one additionally takes into account some 
unilateral constraints whose geometric effect is expressed by a finite set of 
inequalities 

(2.1) fc/q) � 0, ae ( 1, 2, ... , K}, 

where f1, f2, ... ,f
ic 

are given fonctions of q. Usually, such inequalities describe the
mutual impenetrability of some parts of the system or the confinement of some of 
them by given extemal boundaries. Assuming, as we are doing here for simplicity, 
that the fonctions fa are constant in time involves that the possible extemal 
boundaries are fixed relative to the reference frame in use. 

For brevity, parametrization is supposed scleronomic, i.e. time-independent. 
Then, for every imagined motion t�q(t) and for t such that the derivative 
q(t)e Rn exists, the kinetic energy of the systems lets itself be expressed as a 
quadratic form in q , say 

· 1 · i · j · (2.2) 'E/q, q) =2 
Au(q) q q ,  w1th Au(q) = A/q). 

Then, as far as smooth , i.e. twice differentiable, motions are concerned, the 
system Dynamics is governed by Lagrange equations, written as an equality in Rn 

(2.3) A(q) q = F(t, q, q) + r. 

Expression F here comprises the terms of first differential order in Lagrange 
equations and the generalized components, relative to the parametrization (q), of 
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some applied forces supposed given as fonctions of time, position and velocity. The 
element r = (r

1, r2, ... , rn) of Rn is made of the generalized components of the
totality of the contact forces corresponding to unilateral constraints. 

Connecting r with the proper contact forces, which are vectors of physical 
space, resort to the standard machinery of Analytical Dynamics. Suppose that 
inequality f

a.
(q) � 0 expresses the mutual impenetrability of some pair of bodies '13 

and '13'. Let us consider a position q 1 of the system such that equality f
a.

(q1) = 0 
holds, which means that in position q1 

the two bodies touch each other at some point 
of space called M

a.
. This we shall assume to be an isolated contact point, but other 

contacts, corresponding to different values of Cl, may also be effective between the 
same bodies in the considered position. Let t!- denote the contact force that body 
'13 experiences at this contact point from body '13'; then '13' experiences from '13 the 
force -t!-. Defining the covariant components of this pair of forces, relative to the 
parametrization (q), rests on the kinematics of the respective particles of the bodies 
to which they are applied. One imagines a motion (usually qualified as virtual,
nonnecessarily complying with the constraint inequalities)_ t�q(t) such that q(t

1) =

q 1 
. To every value, say ue Rn , that the derivative q(t1) may corne to take,

correspond some values � and o/� of the respective velocity vectors of the 
particles of '13 and '13' passing at point M

a.
. The corresponding power (usually 

said virtual) of the pair of contact forces then equals 

In ail the sequel, Greek indices, when repeated in an expression, shall not be

understood as implying summation. 

'li
a. 

and 'Vd above are velocity vectors relative to the reference frame in use. The 
difference 'll

a 
= 'Va -'Vd equals the relative velocity of body '13 with regard to body

'13' at point M
a.

. In computation, this vector will be represented by its components 
relative to some chosen orthonormal base (n

a.
,ta,t�), depending on q .We shall

assume in the sequel that the unit vector "
a. 

is normal to the contacting bodies at 
point Ma and directed toward '13. Through the geometric investigation of the
system, one expresses 'U

a. 
from u in the form 

(2.4) 

where Gci: Rn � R3 is a q-dependent linear mapping. Such at least are the 
findings under the assumption we have made of a scleronomic parametrization. In 
general, Gci would also depend on t and a complementary term, constant in u, 
should be added to the right-hand side of (2.4). 

By definition, the generalized components of the pair of contact forces make the 
element ra. of Rn such that u.ra. 

= Pa for every u in Rn. Equivalently

(2.5) 
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This expression of ra through the transpose of the linear mapping Gci is known to 
remain valid in the absence of the scleronomy assumption we have made here for 
simplicity. In fact, the definition of generalized components, in Analytical 
Dynamics, rests on virtual motions at fixed time, i.e. chains of positions, say 
't�q('t), depending on a real variable 't in differentiable way, with subsequent 
calculations made at constant t 

Observe that, at the present stage, the considered values of u are not required 
to be compatible with the contact geometry. This will be discussed in Sec. 3. 

What precedes implicitely concerned a pair of bodies '13 and '13' which both 
were parts of the investigated mechanical system. The conclusion remains formally 
the same in the case where only '13 belongs to the system, while '13' denotes an 
external obstacle with prescribed motion. Among the two contact forces, only the 
force '1(:- experienced by '13 has to be kept into account in this case and one makes 
'l.la 

simply stand for the velocity vector � . 

Summing up, under the smoothness assumptions made, the Dynamics of the 
system is governed by the differential equation (2.3) where the element r = I. ra is 
involved in the problem through (2.4), (2.5), u = q, and through a system of contact

laws 

(2.6) law( a, q, 'Ua , 'l(_a) = true. 

The latter describe what, in physical space, happens at every contact a. In 
conditions (2.4) t<_> (2.6), the index a has to take all values such that f

a
(q) = 0 , 

since 'Ua, '1(:, etc. only make sense in the case of effective contact. Actually, in 
existential studies, as well as in computation, it proves convenient to make a range 
through a larger subset of { 1, 2, ... , K} provided the formulation (2.6) is contrived

in such a way that f
a
(q) < 0 => 'i(:= O. In the same context, the matrix Gci which, 

strictly speaking, was only defined for q lying in the hypersurface f
a

(q) = 0 of Rn 

has to be extended (in some smooth arbitrary way) to every q in a neighbourhood 
of this hypersurface. 

One is looking for motions verifying the K inequalities (2.1) for every t. 
Instead of explicitely adjoining these to (2.3)-(2.6), we prefer to rely on some

adequate formulation of the contact laws (2.6) for securing them.

3. Complete contact law.

DEFINITION. A contact law, i.e. a relation of the form (2.6), is said complete if it

involves the three following implications 

(3.1) 

(3.2) 

f
a

(q) < 0 => 'i(:= O.

f
a

(q) � 0 => "a · 'lla �O,
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(3.3) 

The meaning of (3.1) is simply that the reaction force 'J(:' vanishes when contact 
a. is not in effect. Let us comment on the importance of (3.2). Put

(3.4) {
{ 'Ue R3 : n

a.
.'U �O} if f

a.
(q) � 0 

�(q) = 
R 3 if f

a.
(q)  < 0 ,  

called the set of the right-admissible values for the relative velocity of the two 
concemed bodies at point M

a.
. As in previous Section, the definition of n

a. 
is 

assumed extended, so as to keep this notation meaningful for f
a.

(q) > 0, i.e. for 
system positions which violate the impenetrability of the considered bodies. 

The following is easily established [7]. 

PROPOSIDON. Let I be a time-interval with origin to and let a motion q:I�Rn be

defined through a locally integrable velocity function u:I�Rn by

(3.5) t � q(t) = q(to) + r u(s) ds.
to 

If 'll
a.

(t)=G� u(t) belongs to �(q(t)) for almost every t and if inequality

fi q( t) )�O holds at the initial instant t0 , then this inequality holds for every te I.

In other words, provided the initial position is correct, the impenetrability 
condition f

a.
�O is automatically taken care of by (3.2). Observe that this proposition 

is sensitive to the ordering of time. In the symmetric statement, involving instead of 
the initial instant t0 , some final instant, one should replace � by -�, which
may be viewed as the set of the left-admissible values of 'U

a.
. 

The importance of (3.3) will only become apparent in further Sections, devoted 
to numerical algorithms and to the study of collisions. 

From our standpoint, synthetic formulations of contact laws, possessing 
properties (3.1)-(3.3) without a priori statement of them, should be preferred. The 
theoretical or numerical developments based on such formulations offer a securizing 
consistency and should accept with better robustness the further adjustments needed 
to improve the agreement with physical reality. Such a synthetic formulation for the 
frictionless contact law has been presented in [7]. Several ways of doing the same 
for dry frictional contact will be developed in further publications. 

4. Coulomb contact.

In this lecture, the status of complete contact law will be given to Coulomb
contact by asserting from start that properties (3.1) to (3.3) hold. Therefore � can 
be nonzero only if f

a.
(q)�O and n

a.
. 'll

a.
= 0, and there just remains to develop this 

case. 
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In some early publications of one of the authors [23]-[25], the traditional 
statement of Coulomb law, and a plausible extension of it to possible anisotropie
friction, were replaced by equivalent assertions involving some concepts now 
standard in Convex Analysis. These statements are listed below under the title of 
"First formulation". Their advantages were shown to lie in possible handling 
through minimization techniques and in the simplification brought to the treatment of 
mechanical systems combining several frictional contacts. 

In what follows, the data for every contact point consist of a closed convex cone
C, in the linear space of physical vectors, called the Coulomb cone of the considered 
contact. Let us use the base (n, t, t') introduced in Sec. 2, omitting for brevity the 
contact index a . Vectors t and t' generate the two-dimensional linear subspace 
T ,  called the tangent plane at the considered contact. The Coulomb cone is assumed 
to contain n in its interior and to lie in totality on the same side of T. 

Giving the cone C is equivalent to giving its section at unit distance of T or, 
more conveniently, the orthogonal projection of this section onto T, say '1>1 .This is 
a closed convex subset of T, containing the origin as interior point. Giving '1>1 is in 
turn equivalent to giving its supportfunction. One preferably uses the image of this 
function under the symmetry relative to the origin, i.e. 

(4.1) 'U-) <j>1 ('U) = sup{ 'U.'TE R : 'Te-'1>1}. 

It will be seen in a moment that <1> 1 may be called the dissipationfunction at unit
normal component. 

For the traditional isotropie Coulomb friction, '1>1 consists of the disk centered 
at the origin, with radius equal to the friction coefficient y, so <1>1 ( 'U) = y 11 'U Il. 

FIRST FORMULATION OF COULOMB LA W. One decomposes the contact 
force in the form 

(4.2) � = � + p n , with pe R and n.� = O. 

It is first stipulated that the normal component p is nonnegative. As soon as 
this real number is treated as known, one may denote by <l> the sublinear function 
p<J>1 , by '1J the set p'1>1 and by 'l'p the indicator function & this set (namely 'I' =O
in '1JP and 

P
'l'

_p
=+00 elsewhere). Then Coulomb law lets itself be expressed by �y 

of the equivalent following relations between the elements 'U and � of T: 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

-'U E a\j/p(�) 

-� E aq>p('U)

� E '1Jp and -'U.� = <j>p('U)

� e 'DP and V'Te '1JP : -'U.'T� -'U.� .
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Recall that a'I' , the subdifferential of the indicator fonction of the set '1J is 
nothing but the (oufward) normal cone to this convex set at the considered poin�. In 
Convex Analysis, the normal cone to a convex set is defined at any point, say x, of 
the embedding linear space. This cone is empty if and only if x does not belong to 
the set ; otherwise, it contains at least the origine and may reduce to this (in particular 
when x lies in the interior of the set). So (4.3) involves that �E '1JP. 

As a point of vocabulary, one may express (4.4) by saying that, for fixed p, the 
(multivalued) relation between the velocity 'l1 and the frictional force � adroits the 
convex real fonction <l>p as pseudo-potential.

The equivalence of (4.3) to (4.4) is due to the fact that the fonction 'I' (the 
indicator of '1JP) and the fonction 'V� <1> (-'V) (the support fonction of '1J ) Jake a 
pair of FencJiel conjugate functions. 'rhen 1{.T and -'ll are conjuga�e points
relative to this pair of conjugate fonctions, a situation classically expressed by 
Fenchel equality. Conditions (4.5) are merely the special form that Fenchel equality 
takes in the present context; the equality on the right justifies the name of dissipation 
function (for the value p of the normal component) given to <1> . Conditions (4.6) 
amount to rewriting (4.5) in the form of a "principle" of maximafdissipation. 

In short, when p is treated as known, Coulomb law is exactly similar to a law 
of perfect plasticity, well known to generate mathematical problems in the form of 
variational inequalities. In situations involving frictional contact, it is commonly 
found that the determination of p is in turn governed by a variational inequality 
involving 1{.T as parameter, so one is in the presence of two coupled variational
inequalities. 

SECOND FORMULATION OF COULOMB LAW. A formulation avoiding the 
separation of the normal and tangential components of 1{. has more recently been 
proposed [7][26]. It involves the indicator fonction 'If c of the Coulomb cone, a
convex lower semicontinuous fonction defined on the three-dimensional space of 
physical vectors, with values O or + oo. Assuming again that (3.1)-(3.3) hold, 
what precedes is found equivalent to 

(4.7) -'U E projT a'lf /�). 

The precise proof of this equivalence may be based on standard arguments of 
Convex Analysis [7]. Let us only comment on (4.7) by observing that it exhibits the 
expected features. The subdifferential �ç(1Ô is nothing but the normal cone to the
convex set C at point � Since this cone 1s empty for 1{.<l C, relation ( 4. 7) forces 1{. 
to belong to C whichever is 'l1 in T. If 1{. lies in the interior of C, the normal cone 
reduces to the set { 0}; hence it is only for 'U = 0 that 1{. can take values interior to 
C .  The normal cone to C at the origin consists of the totality of the polar cone c0 of 
C. In most usual situations '1J1 is bounded; then through standard propositions of
Convex Analysis, C0 adroits -n as an interior point Consequently, the projection
of C0 onto T equals the whole of T ; in other words, ( 4. 7) lets the value 1{_ = O
compatible with any 'l1 ET. 
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An alternative statement to (4.7) is obtained by defining on the three-dimensional 
space of physical vectors, the fonction 9 with values in [O, + 00) 

(4.8) 

Tuen (4.7) is found equivalent to 

(4.9) o e <hv/'lô + ae('U).

The latter has been successfully used in the numerical treatment of elementary 
three-dimensional contact problems [7). Expressions based on standard Convex 
Analysis and involving, as (4.9) does, two independent "pseudo-potential" 

functions could also be applied to the formulation of other resistance laws, e.g. 
plasticity laws with flow rule "non associated" with the yield criterium. In the same 
line, a new type of numerical procedures of the variational sort has recently been 
proposed by G. De Saxcé and Z. Q. Feng [27) under the name of the "method of 
bipotentials". This method may also lead to alternative statements of Coulomb law. 

5. Collisions.

When the unilateral constraints of impenetrability are taken into account, the 
treatment of dynamical problems cannot in general exclude the possibility of 
collisions. Unfortunately, in practical instances, the physical data required for 
accurately predicting the consequent motion are missing. The assomption of elastic 

shocks is commonly made, which means that the considered collisions involve no 
energy loss. This assumption yields a scalar equation, which anyway is not enough 
to predict the after-shock velocities of all system parts, if several unilateral contacts 
are present at the collision instant. 

Energy preservation can rarely be justified. The concept of a collision between 
bodies which, in the rest of the motion, are treated as perfectly rigid can only be the 
schematic representation of a "very short" interaction involving "very large" contact 
forces. Even if it is safely established that, in spite of the large stresses involved, the 

material of which the system is made behaves elastically, the collision locus is sure 
to be the source of dynamical disturbances which propagate through the whole 
system. If the system is linked to supports, the se disturbances will also affect the 

external world, carrying away an irrecoverable amount of energy. In the case of a 
bounce, various parts of the system will still be vibrating when the colliding bodies 
get loose from each other. By considering all parts as rigid in the subsequent 

evolution one treats vibration amplitudes as "microscopie", but this does not imply 
that the vibrational energy is negligible. 

Of course, the possible inelastic deformation of the colliding bodies, however 

small its amplitude is estimated, may also cause energy loss. 

What precedes holds true even if, during the "very short" duration of the 
collision, the contact of colliding bodies is considered as frictionless. Things become 
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still worse if friction is ta.ken into account. Drawing the momentum balance (or 
performing the equivalent calculation in the setting of Analytical Dynamics) would 
require the knowledge of contact percussions, i.e. the integrals, over the "very 
short" duration of the collision, of "very large" contact forces. Even if one makes the 
hazardous assumption that, under such high contact pressures and rapidly varying 
conditions, friction obeys the same laws as in regular situations, there remains to 
observe that Coulomb law consists of a nonlinear relation between forces and 
velocities. Commuting it with time-integration, so as to obtain a relation between the 
contact percussion and the average contact velocity, is thus illegal. 

A favourable special case should however be mentioned: if during the collision, 
the relative velocity 'l1 of the contacting bodies (see Sec. 4 above) has constant 
direction, i.e. 'll(t) = cr(t) 'l1

0 
, where 'l1

0 
is a constant vector and cr(t)>O, Coulomb 

law yields that the contact force 2«t) remains in a fixed closed convex cone, namely 
the set of values of 1?.. that (4.7) associates with 'l1

0
. Therefore, the contact 

percussion also belongs to this cone, so it appears to be associated with 
'llaverage = cr average 'llo·

An early attempt at analysing the variation of 'l1 during a frictional collision 
through rescaling in time, was made by G. Darboux [28] and later improved by J. 
Pérès [29]; see also [8]. This consisted in deriving from the equations of Dynamics, 
joined with Coulomb law, a system of first order differential equations governing 
the fonction t � u(t) during the collision, while the position q was treated as a 
constant. Sorne assumption had to be added in order to decide the end of the 
process. In this approach, the bodies were considered as perfectly rigid. Physical 
situations likely exist, where the assumptions made are valid. The cruder treatment 
we propose in the sequel may be equally usefol in practice. 

6. The dissipation index.

A collision, occuring at some instant ts , is expected to generate a discontinuity
for the velocity fonction t � u(t). Traditionally, the left-side limit u-(ts) and the
right-side limit u+(ts) are assumed to exist. A consistent mathematical framework
where this existence is secured, is provided by assuming that u is a fonction of 
bounded variation [30]. Theoretical arguments in favour of this assumption are 
developed in [31]. 

Let us apply the usual trick of integrating both members of (2.3) over the "very 
short" duration of the shock. The position q(t) is treated as a constant and the term 
F remains bounded, so it yields a negligible integral. One thus obtains 

(6.1) 

where the element s of R" equals the time-integral of r. Force vectors of physical 
space are connected with their analytical representatives through relations (2.5). Like 
q, the matrices a:t are treated as constant during the shock, so one has 

1 0 



(6.2) 

where .11-, the time-integral of !!(a, may be called the shock percussion at contact 
ex.. During the shock process, the relative velocity 'U

a 
of the contacting bodies 

rapidly varies from � = Gci u-(ts) to � = Gci u+(ts) . 

Now cornes the embarassing question of connecting the unknown vectors S
a with the sought motion. Rather than attempting to calculate the evolution of 'U
aduring the shock, we propose, as a first approximation, to accept that a contact law 

similar to (2.6) holds between S
a 

and a certain weighted mean

m 1-ô _ l+ô(6-3) 'U
a =2 'Ua 

+y�' 
where 8 denotes a real constant, called the dissipation index [7]. 

Sorne confidence in this procedure may be gained by drawing the energy balance
of the collision. From the expression (2.2) of the kinetic energy, orte readily derives 
the jump of this function in the form 

'E+ - 'r = -

2

1 A .. (u� - u-:-)(u� + u-:-). 
C C IJ 1 1 J J 

Here Aij stands for the matrix Ai/q(ts)), so (6.1) yields

'E;- 'Ç = f (u+ + u-).s . 

By making use of (6.1), (6.2) and (6.3), one obtains the signed decrement of 
kinetic energy 

(6.4) 'r - 'E+ 
= -

2

1 ô A.. (u7' - u-:-)(u� - u-:-) - :E ef? . �-c c 11 1 1 J J a a 

As far as �O. the first term on the right-hand member is nonnegative ; we propose 
to call it the structural dissipation. The nonnegativity of 8 may be viewed as 
asserting that no external supply of energy cornes to enhance the possible bounces. 
The last term depends on the adopted contact law and may be called (with the minus 
sign included) the frictional dissipation.

The following shows the importance of including in contact laws the 
"completeness" assertion of Sec.3. In the present context, (3.3) becomes 

��o � "
a

·'U:�o. 

In view of the definition (6.3) of 'U:;, the latter inequality yields 
l+ô + o-1 

(6.5) 2 "
a·'Ua � 2 "

a·'U;.

For an effective collision, "a·� is strictly negative. If ô was strictly greater than 
one, "a· 'U� would therefore be strictly negative, in contradiction with the 
impenetrability constraint. 
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In short, the parameter o must be assigned a value in the interval [0, 1 ]. 

Making now use of (3.2), one concludes that, provided s'1- '# 0, (6.5) actually 
holds as an equality, hence 

+ 1--<> -
na: 'Ua. = - 1 +o "a. · 'Ua.,

which allows one to identify the expression 1--<> /1 +o with the coefficient of
restitution, traditionally introduced for the description of two-body collisions. But 
when studying cases where several contacts are in effect at the collision instant, it is 
essential to observe that this equality does not necessarily hold if s'1- = O. An 
elementary example of such a situation is provided by the rocking oscillations of a 
column in contact with a fixed horizontal plane. 

7. Principle of algorithms.

Let [t1, tF] , tp=t1+h, denote one of the intervals of a time-discretization. Sorne 
approximate values q1 , u1 of the fonctions q and u at instant t1 result from the 
preceding step. In order to calculate an approximate value of u at tF, say uF , one 
discretizes (2.3) into 

(7.1) 

where uL = u1 + A-1Fh , the "loose velocity", is the value one would find for uF in
the absence of contact force. Here, A, F, a;!* denote the values calculated for the 
corresponding fonctions at a point (t, q, u), chosen as typical of the time-step and 
computed in some explicit way. In contrast, the procedure we shall use to calculate 
uF may be qualified as implicit. In harmony whith the notations of the preceding 
Section, s'1- denotes the integral of the contact force '.K!- on [t1, tF]. Therefore the 
algorithm will be able to treat possible shocks on the same footing as smooth 
motions. 

The decision of applying a computing policy of the implicit type, induces to 
invoke the contact law, for every selected a ,  as a relation of the form (2.6) holding 
between s'1- and the final local velocity, namely in view of (2.4) 

(7.2) 

After applying ai to both members of (7.1) and (7.2), one obtains 

(7.3) 'UpF = 'UpL + f ai A-la;!* .s'1-

with 'lipL = ai uL , to be joined to the contact law 

(7.4) law( a, q, 'Ua.
F , .s'1-) = true. 

Of course a and � will be restricted to range in the (possibly empty) subset 
ACT of { 1, 2, ... , K} corresponding to the contacts considered as active in the rime-
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step. The simplest criterium for determining this set is based on the signs that the 
fonctions fa take at point q1 ( or at some other test position).

Solving (7.3)-(7.4) will yield the vectors .s°', then Up through (7.1). After 
that, the computation step may be concluded by taking 

1 qF = ql + 2 h (ul + Up).

As soon as several contacts are active, (7.3)-(7.4) can only be treated by 
successive approximations. Let us stress that, in general, one cannot expect

uniqueness for the solution vectors §1-. Dry friction commonly generates hyperstatic 
problems. In favourable cases, the calculation may however result in a unique uF

The technique we have applied in ail recent experiments is a relaxation method, 
based on the solution of the single contact problem. In particular, for the two
dimensional case, the case of a single contact can readily be solved, yielding for 
every a an easily progràmmedpiecewise affine mapping 'll

a.1., 
�.11-. Starting with 

a tentative set of values for the vectors .s°', ae ACT, one makes a cyclically run 
through ACT. Each time, one updates the corresponding approximate value of .s°'
bX solving a single contact problem, where the previously obtained approximates 
jl, �:;éet, are treated as known forces applied to the system. 

The above computation is valid even if a collision occurs in the rime interval 
[t1, tp], a situation revealed by the appearance in ACT of some contacts which were
not active at the antecedent time-step. Clearly, by invoking 'U

aF 
as value for the 

local velocity in (7.4), we make the procedure treat possible collisions as inelastic,
i.e. the dissipation index equals one. By introducing into (7.4) the same weighted
mean as in (6.3), one could impose a different value of 8. It proves more expedient
to program the algorithm for the case 8 = 1 only, getting a result one may denote by
uF = solver(uL). Due to the fact that relations (7.2)-(7.4) are positively

homogeneous with degree one, the time-step result for arbitrary 8, is found to be 
uF = [2 solver(uL) - (1-8) uL]/(1 +8).

It has long been recognized [2] that in dynamical problems involving Coulomb 
friction, some "catastrophes" may occur, generating velocity jumps in the absence of 
any collision. The above algorithms work all right in such situations [7]. 

In most our applications, the end of the iteration procedure is not decided upon 
the quasi-stationarity of the sequence of approximants, but on testing the precision at 
which the required relations are satisfied. In all experiments, the process has 
behaved properly, even for unrealistically large friction, but we have no proof of its 
convergence. 

8. Deformable bodies.

The deformability of the considered bodies is accounted for through the
introduction of a finite number of additional variables. In some instances these 
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variables may arise from a modal representation. More frequently, the displacement 
fields, with respect to some reference position2 are discretized by means of finite
element meshes. Let the real variables q 1, q , ... , qn refer to the corresponding
degrees of freedom. Then the displacement at time t ,  say Q(t, x) e R3 , of a 
particle x belonging to one of the bodies, admits the approximate representation 

Q(t, x) = qi(t) Ei(x), 

where E1 , ... ,En denote R3-valued functions associated with finite elements. In the
course of a motion t�q(t), the approximate velocity v�ctor of x is obtained by 
time derivation, as a linear expression in the derivatives q1

• 

Let a n denote a material boundary part, that preliminary investigation has 
e 

detected as possibly entering into contact with another body of the system or with 
some external obstacle. For every particle xe a en, one may express the relative 
velocity of x, with regard to its potential antagonist, in the form 

(8.1) U(t, x) = 'LJ.(t) E.(x) = Gq q· j(t) E.(x). 
1 1 lj 1 

Here 'U
i 

and G� have been constructed in such a way that the value Ue R3 

consists of the c6mponents of the said velocity with respect to a x-dependent 
orthonormal base made of vectors normal and tangent to the antagonist body at the 
expected contact point. Index i has only to run through a subset that we shall 
suppose to be { 1, ... , p}, corresponding to the finite elements involved in the 
representation of aen.

In the principle, a contact law of the form (2.6) should be stipulated pointwise 
throughout a en, enforcing a relation between the local relative velocity and the 
density of reaction force R(t,x). Actually, one has to rely on an approximate 
representation of this force density, using an adequate set (F.) of R3-valued base 
functions, in the form . R(t,x) = 2S(t).F/x), with j runriing in ( l , ... ,p} and 
1SE R 3. One constructs the matrix

P .. = fa ,... E.(x).F.(x) da (da= area), 
lj CU 1 j 

so the power of a distribution of reaction forces is expressed as (P Gq q ( t) ).1{{ t) or 
also (P 'U(t)).1{!:t), where 1( and 'U denote two collections of p elements of R3. 

Contact is discussed by introducing, instead of the functions fa' the normal
gap qN(t, x), between particle x and the antagonist boundary. Then the contact 
laws adopted in the preceding Sections yield the classical Signorini condition which, 
for every XE a en, may be written as 

(8.2) RN(t, x)�O and 'v'sNe R+ : 'JN(t, x)(sN- RN(t, x)) �-
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Now �(t, x) lets itself be represented in the form QNi(t) Ei(x). Let us denote by 
PT and PN the blocks of the matrix P referring to tangential and normal
components. By integrating both members of this inequality on êlé2, one obtains 

The same technique may be applied to Coulomb law, invoked in the form (4.6). 
For every j in { l , ... ,p}, a convex subset 'IJ of the tangent plane is introduced as in 
Sec.4. The multiplication of these convex sets by the respective nonnegative normal 
reactions, yields a convex subset of the product space, denoted by �'IJ. Tuen (4.6) 
becomes 

The numerical treatment of the problem is thus quite similar to what has been 
presented in the foregoing for the case of a system of rigid bodies. 

The base vector fonctions F. through which one represents the contact force 
densities are always chosen witfi nonnegative components. If the finite elements 
used in representing displacements are, for instance, of type T3 or Q4 the 
components of fonctions E. are nonnegative, as well as the elements of the matrix 

1 P. In such a case, the approximation of the contact forces distributed on êl é2 by 
forces applied to the nodes proves to be a valid computation technique. On the 
contrary, the use of finite elements of type T6 or Q8 yields components of Ei 
with no definite sign and then the above machinery provides much better results than 
the approximation by forces concentrated at the nodes [32] [33]. 

In the event of a collision, an important differènce should be stressed between 
the treatment of perfectly rigid bodies and that of deformable ones. In the latter case, 
the total mass of the material which direct/y takes part in the contact is zero. Since 
this material has by itself no inertia, any condition distinguishing beween its right
and left-velocities, like those stipulated in Sec. 6 for systems of rigid bodies, is 
dynamically meaningless. Signorini conditions (8.2), joined with friction laws and, 
of course, the dynamical equations satisfied throughout the deformable bodies, are 
all what govems collisions. 

9. Examples.

The first figure presents computed successive positions for a two-dimensional
system of 18 rectangular rigid bodies submitted to gravity. This is meant to model a 
pillar made of blocks superposed without mortar. As a crude simulation of 
earthquake, the horizontal ground is given a motion of sinusoidal horizontal 
translation. The same value 0.3 has been adopted for the Coulomb friction 
coefficient between blocks and with ground. The dissipation index equals 1. 

When two blocks touch each other along a line segment, interaction is treated as 
concentrated at vertices (as if block edges were slightly concave). Even so, the 
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problem of calculating contact forces at every instant is likely to be "hyperstatic" and 
the motion consequent to initial data is not expected to be uniquely determined. 
Calculation is also very sensitive to constants: if the height of some block is slightly 
different from that of its neighbours, the motion is visibly altered. However, all 
simulations agree with a consistent ruin pattern: the lower blocks progressive/y get
apan, creating a gap. 

The second figure shows successive positions of two elastic blocks, the 
deformation of which is accounted for through two-dimensional finite element 
meshes, as developed in Sec. 9 above. The two blocks are made of the same 
material (E = 1300 MPa, v = 0.2, density = 7.8 103 KgJm\ 

The larger block is fixed along its lower edge and initially at rest. Before hitting 
it, the upper block, with natural size of 0.04 mx 0.04 m, has a motion of translation 
with velocity components (-75 m/s, -50 m/s). Friction coefficient equals 0.1. Ten 
successive positions are shown, from t = 0 to t = 0.75 10-3s. After a phase of
sliding contact, the overall motion results in a bounce, with persistent vibrations of 
each body. 

The two series of drawings are extracted from microcomputer animations which 
allow for a more vivid perception of the effect of contacts. 
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Horizontal ground oscillation: period 0.4 s., range 15 cm. Pillar initial size: width 90 cm, height 360 cm. 
Successive states shown at one period intervals. Friction coefficient between blocks and with ground: 0.3 



Il FRICTIONAL COLLISION OF TWO ELASTIC BLOCKS 

Larger block initially at rest and fixed along its lower edge. 

Smallcr block collides wilh zero angular velocity 
and velocity componcnts -75 m/s, -50 m/s. 
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