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Abstract
This study introduces a compressible di�use interface method to simulate multicomponent flows for
regimes ranging from subcritical two-phase flows to transcritical and supercritical flows. In the prospect
of simulating a full cryogenic rocket-engine ignition, the model uses a real gas cubic equation of state to
take advantage of its wide domain of validity. This choice requires a careful treatment in areas where the
fluid state lies into the binodal region for subcritical regimes. In this respect, the model can be related
to the family of multifluid methods such as Baer and Nunziato’s 7-equation model (1986), considering
velocity, pressure, temperature and chemical potential relaxations. Our objective is to restore hyperbol-
icity when an unstable state is encountered. To do so, a thermodynamic equilibrium is computed under a
one-fluid hypothesis based on the Corresponding States Principle, yielding a two-phase stable fluid state.
This relaxation process naturally impacts the dynamics in the areas where it happens and the subse-
quent consequences have been investigated. In particular, Jacobian matrices for the numerical schemes
must be determined and adapted boundary conditions derivation must be provided. The method has
been implemented into the unstructured solver AVBP, developed by CERFACS and IFPEN, and tested
in a multidimensional flow in a subcritical regime. This allowed to observe the behavior of the model,
especially in the two-phase regions.

1 Introduction
Many propulsion devices, such as liquid rocket engines (during ignition) or Diesel engines (during

compression) operate over a wide range of chamber pressure. As a consequence, they are likely to involve
thermodynamic states that can range from subcritical to supercritical conditions. In particular, transition
from one regime to the other is encountered. The question of supercritical flows in combustion chambers
has been and still is widely studied [1, 2, 3, 4]. Such flows require a description of the non-idealities in
the molecular interactions, adressed by the Real-Gas (RG) thermodynamics. Among RG closures, cubic
Equations of States (EoS), such as Van der Waals [5], Peng-Robinson [6] or Soave Redlich Kwong [7],
have been deeply studied and prove to be relevant for supercritical simulations [8, 9, 10, 11, 12, 13].
However, in the subcritical domain, phase transitions occur and models are needed to handle both liquid-
gas interfaces and atomization. Interface models can be split in two classes: Sharp Interface Methods
(e.g. Level-Set [14, 15], Front-Tracking [16, 17] or Volume of Fluid [18]), representing the interface
as a discontinuity and Di�use Interface Methods (e.g. Multifluid Methods [19, 20, 21]), for which the
interface is numerically represented as a di�use region between pure phases. In the following, a di�use
interface approach is chosen as it o�ers a convenient framework for multicomponent compressible flows
on unstructured grids. Also, as the interface is not explicitely tracked, the extension from subcritical
two-phase flows to supercritical flows is expected to be more natural. The challenge here is then to blend
the subcritical di�use interface model with the supercritical-adapted cubic EoS to provide a description
of the flow in the whole range of thermodynamic states encountered in industrial devices.

The objective of this work is to extend the use of cubic EoS to the subcritical regime. This is
done by computing homogeneous equilibrium in the binodal region. This paper describes the extended
thermodynamics in detail and its integration in a compressible solver.

The present paper is structured as follows: section 2 presents the flow model and the thermodynamic
closure. In section 3, the derivation of important thermo-mechanical quantities will be presented, that
allow the use of Taylor-Galerkin [22] numerical methods and Navier-Stokes Characteristic Boundary
Conditions [23]. Eventually, in section 4, a two-dimensional test case is proposed to demonstrate the
behavior of the method.
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2 Flow Model
2.1 Di�use Interface Model

The di�use interface model considered here can be derived from the Baer and Nunziato’s model [19]
by assuming equilibria of velocity, temperature, pressure and chemical potentials. This allows to retrieve
a 3-equation model, similar to Euler equations. A homogeneous equilibrium model is then obtained. It
can be written as:

ˆU

ˆt

+ ˆF (U)
ˆx

= 0, (1)

where U and F (U) represent respectively the vector of conserved variables and their fluxes, given by:

U =
#
flu, fletot, flY1, · · · flYN

$T (2)

F (U) =
#
flu

2 + P, (fletot + P )u, flY1u, · · · flYN u

$T
. (3)

The usual notations are used here, with fl the density, Yi the mass fraction of the i

th species, u the
velocity, P the pressure and total specific energy etot = es + ec, es being the sensible energy and ec = u2

2
the kinetic energy. This system of equations must be closed by an EoS.

2.2 Thermodynamic Closure

Among the possible choices, cubic EoS have proven to o�er a good trade-o� between simplicity,
accuracy and ability to describe multicomponent mixtures [3, 24]. Such equations can be expressed as:

P = flrT

1 ≠ flbm (Y ) ≠ am(T, Y )fl2

1 + Á1bm (Y ) fl + Á2b

2
m (Y ) fl

2 , (4)

with T the temperature, Y = {Yi}i=1..N the mixture composition, am and bm the EoS mixture coe�cients
computed from Van der Waals mixing laws [24]. r = R

W denotes the specific gas constant of the mixture,

R being the perfect gas constant, W =
1qN

i=1
Yi
Wi

2≠1
the mixture molar mass and (Á1, Á2) the EoS

parameters.
Here, a unique EoS is used for the description of liquid, vapour and supercritical states, similarly

as [4]. Howevers, the formulation of the equilibrium problem is simplified assuming equality of species
mass fraction in liquid and vapour phases (one-fluid hypothesis). This idea is motivated considering that
the interface region in Di�use Interface Models is an artificial mixture. The actual physical state of
such region is locally not representative of the proper physical interface. The strategy considered here is
then to avoid the full computation of the physical multicomponent equilibrium but rather compute the
one-fluid equilibrium described hereafter, ensuring the preservation of the convexity of the EoS.

One-Fluid hypothesis: The equilibrium computation is performed assuming that the mixture species
composition Y is frozen and identical for both liquid and gas phases, following a one-fluid hypothesis.
Although the one-fluid treatment is widely used for cubic EoS in the one-phase or supercritical domain,
it is used here in the case of two-phase flows, allowing to ensure the convexity of the EoS.

In the binodal region, as the one-phase fluid state is either metastable or unstable, the two-phase
stable mixture is computed so that both phase have the same temperature, pressure and Gibbs free
energy g, that is:

P¸ = Pv = P, T¸ = Tv = T, g¸ = gv = g, (5)

respecting mixture density and specific sensible energy. Subscripts ¸ and v indicate respectively the liquid
and vapour phases. The one-fluid hypothesis used here writes Y = Y ¸ = Y v.

The density and sensible energy of the fluid represent in this case mixture properties, with mixture
defined using the liquid volume fraction –¸:

fl = –¸fl¸ + (1 ≠ –¸)flv (6)
fles = –¸fl¸es,¸ + (1 ≠ –¸)flves,v (7)
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2.3 Practical implementation

Let fl

p and e

p
s be the density and energy predicted by the numerical scheme. In the first place, the

one-phase temperature Tm is determined finding the zero of function ◊ defined by:

◊(flp
, T ) = e

p
s ≠ e

EoS
s (flp

, T )
e

p
s

, (8)

where e

EoS
s is the sensible energy computed from the EoS.

Once this temperature is obtained, one-phase pressure is computed as Pm = P

EoS(flp
, Tm). The

densities that satisfy the cubic EoS for the obtained (Pm, Tm) are computed from the EoS. If multiple
roots are found, their fugacity is compared. The minimal fugacity solution being the stable one, the
flow state is kept as single-phase if the predicted density is the one of minimal fugacity. Otherwise, a
two-phase equilibrium must be computed. The computation of the one-fluid equilibrium is similar to
that described in [25].

3 Mathematical Properties
This section aims at providing the derivation of the important mathematical properties of the Ho-

mogeneous Equilibrium Model. This is particularly interesting towards the implementation into the
solver Avbp (see for example [26], for more details). Avbp is an unstructured compressible unsteady
multicomponent solver jointly developed by cerfacs and ifpen.

3.1 Jacobian Matrices

3.1.1 General Form

Among the numerical methods available in this solver, Two-Step Taylor-Galerkin methods (TTGC,
TTG4A [22]) are particularly interesting as they provide a third-order convergence in space and time for
a limited computational cost and a local stencil. Their derivation uses the so-called Cauchy-Kowalevski
process, which requires to compute the Jacobian matrix of the flux (3), given by:

JF (U) = ˆF (U)i

ˆU j

-----
Uk, k ”=j

=

S

WWWU

(2≠b)u b ≠u2+b(ec≠a
1

) ··· ≠u2+b(ec≠aN )
h

tot

≠u2b u(1+b) [(ec≠a
1

)b≠h
tot

]u ··· [(ec≠aN )b≠h
tot

]u
Y

1

0 (1≠Y
1

)u ··· ≠YN u

... . . .
YN 0 ≠Y

1

u ··· (1≠YN )u

T

XXXV
(9)

with coe�cients ai = ˆfles

ˆflYi

---
P,flYj ”=i

and b = ˆP
ˆfles

---
fl,Yj

.
Expression (9) is valid for any thermodynamic closure. In the supercritical or one-phase domain, the

usual form of the Jacobian matrix for cubic EoS naturally applies [23]. For points lying in the binodal
region, as phase separation is considered by the equilibrium model, the derivation of di�erential relations
at saturation is necessary.

3.1.2 Saturation derivatives and Clausius-Clapeyron relation for mixtures

In this respect, it is necessary to introduce saturation derivatives, which, for a thermodynamic quan-
tity Â usually expressed as a function of pressure, temperature and mixture composition, write:

Y
____]

____[

ˆÂ

ˆP

----
sat,Yi

= ˆÂ

ˆP

----
T,Yi

+ ˆÂ

ˆT

----
P

ËP

ˆÂ

ˆYi

----
sat,P,Yj ”=i

= ˆÂ

ˆYi

----
T,Yj ”=i

+ ˆÂ

ˆT

----
P,Yj

Ëi

(10a)

(10b)

where derivatives of temperature with respect to pressure and mixture composition, denoted respec-
tively ËP and Ëi at saturation follow the Clausius-Clapeyron relation [24], which formulation is extended
here to multicomponent mixture under one-fluid equilibrium hypothesis. They read:

ËP = ˆT

ˆP

----
sat,Yj

= T (fl¸ ≠ flv)
flvfl¸(hs,v ≠ hs,¸)

; Ëi = ˆT

ˆYi

----
sat,Yj ”=i

= gv,i ≠ g¸,i

sv ≠ s¸
(11)

with the partial Gibbs free in the vapor and liquid phases defined by gi = ˆmg
ˆmi

---
T,P,mj ”=i

and evaluated
respectively for gv,i at thermodynamic point (T, flv, Y ) and for g¸,i at (T, fl¸, Y ).

3



14

th
ICLASS 2018 Implementation of a di�use interface method in a compressible multicomponent LES solver

3.1.3 Jacobian terms for two-phase equilibrium

Calculation of the terms ai and b can be carried out by expressing the di�erential of the mixture
volume sensible energy defined in (7) as follows:

dfles = –¸ d
!
fl¸es,¸

"
+ (1 ≠ –¸) d

!
flves,v

"
+

!
fl¸es,¸ ≠ flves,v

"
d–¸ (12)

It is then worth mentioning that the single-phase quantities at equilibrium fl¸, flv, es,¸, es,v are function
of the pressure and mixture composition only. For phase „ œ {¸, v}, volume-specific energy di�erential
reads:

d
!
fl„es,„

"
= ˆfl„es,„

ˆP

----
sat,Yj

dP +
Nÿ

i=1

ˆfl„es,„

ˆYi

----
sat,P,Yj ”=i

dYi (13)

This expression can then be developped as:

d
!
fl„es,„

"
=

5
fl„

1
cp,„ ≠ –

T
„ hs,„

2
ËP + fl„—„hs,„ ≠ –

T
„ T

6
dP

+ fl„

fl

Nÿ

i=1

51
cp,„ ≠ –

T
„ hs,„

2
Ëi + e„,i ≠ fl„v„,ies,„

6
d(flYi)

(14)

where cp,„ is the specific heat capacity of phase „, –

T
„ = ≠ 1

fl„

ˆfl„

ˆT

---
P,Yk

the thermal expansion coe�cient,

—„ = 1
fl„

ˆfl„

ˆP

---
T,Yk

the isothermal compressibility coe�cient, hs,„ = es,„ + P
fl„

the sensible enthalpy and
v„,i the partial specific volume of species i in phase „.

Besides, the last term in equation (12) requires di�erentiating the liquid volume fraction, which can
be done using (6):

d–¸ = d
3

fl ≠ flv

fl¸ ≠ flv

4
= 1

fl¸ ≠ flv

#
dfl ≠ –¸ dfl¸ ≠ (1 ≠ –¸) dflv

$
(15)

which can be developed using (10) into:

d–¸ = 1
fl¸≠flv

Ë!
fl–

T
"

mix ËP ≠ (fl—)mix

È
dP + 1

fl(fl¸≠flv)

Nÿ

i=1

Ë!
fl–

T
"

mix Ëi +
!
fl

2
vi

"
mix

È
d(flYi), (16)

where the subscript mix for any quantity Â denotes the mixture value Âmix = –¸Â¸ + (1 ≠ –¸)Âv.
Using, at equilibrium, the equality g¸ = gv, one can write:
fl¸es,¸ ≠ flves,v

fl¸ ≠ flv
= hs,¸ ≠ 1

fl¸

T

ËP
= hv ≠ 1

flv

T

ËP
= –¸hs,¸ + (1 ≠ –¸)hs,v ≠ –¸

1
fl¸

T

ËP
≠ (1 ≠ –¸)

1
flv

T

ËP
(17)

Finally, combining (17), (16) and (14), the mixture volume energy di�erential reads:

d(fles) =
5
ËP Cp,mix ≠ 2T–

T
mix + T

ËP
—mix

6
dP

+ 1
fl

Nÿ

i=1

C3
Cp,mix ≠ T

ËP
–

T
mix

4
Ëi +

3
P ≠ T

ËP

4
(flvi)mix + (flei)mix

D
d(flYi).

(18)

Then the calculation can be achieved by di�erentiating (7), which eventually yields:

ai = 1
fl

C3
Cp,mix ≠ T

ËP
–

T
mix

4
Ëi + (flhi)mix ≠ T

ËP
(flvi)mix

D
(19)

et

b = 1
ËP Cp,mix ≠ 2T–

T mix + T
ËP

—mix
(20)

where Cp,mix = –¸fl¸cp,¸ + (1 ≠ –¸)flvcp,v is the mixture volume-specific isobaric heat capacity,
–

T
mix = –¸–

T
¸ + (1 ≠ –¸)–T

v is a mixture thermal expansion coe�cient and —mix = –¸—¸ + (1 ≠ –¸)—v

a mixture isothermal compressibility coe�cient. In these expressions, for each phase „ œ {¸, v} appear
the thermal expansion and isothermal compressibility coe�cients and the specific isobaric heat capacity
cp,„ = ˆhs,„

ˆT

---
P

.

4
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3.2 Speed of Sound and Characteristic Boundary Conditions

Once the Jacobian matrix has been calculated, its diagonalization gives access to important mathe-
matical properties of the model. This allows to compute the speed of sound to verify the hyperbolicity
of the PDE and also to derive the so-called Characteristic Boundary Conditions introduced by Poinsot
and Lele [23].

3.2.1 Jacobian Matrix for Primitive variables and Speed of Sound

In the first place, it is helpful to write system (1) in its non-conservative pseudo-linearized form, in
terms of primitive variables V = (u, P, flY1, ..., flYN )T . This reads:

ˆV

ˆt

+ Jp
F (V ) ˆV

ˆx

= 0, (21)

with the Jacobian matrix expressed this time in primitive variables:

Jp
F (V ) =

S

WWWWWWU

u fl≠1 0 0 ··· 0
flb

!
hs≠

qN

i=1

Yiai

"
u 0 0 ··· 0

flY
1

0 u 0 ··· 0

flY
2

0 0
. . . 0

...
...

... . . . ...
flYN 0 0 ··· 0 u

T

XXXXXXV
. (22)

This form once again stands for any thermodynamic closure. hs here indicates the specific sensible
enthalpy hs = es + P/fl. The term c

2 = b

1
hs ≠

qN
i=1 Yiai

2
, can be expressed under the form:

c

2 = b

Q

a
hs ≠

Nÿ

i=1
Yiai

R

b = P

fl

2
ˆP

ˆes

----
s,Yj

≠ P

fl

2
ˆfl

ˆes

----
s,Yj

ˆP

ˆfl

----
es,Yj

+
Nÿ

i=1
Yi

ˆP

ˆflYi

----
es,flYj ”=i

, (23)

where s is the specific entropy of the two-phase mixture. It can be shown that this definition reduces to
the classical speed of sound definition for the two-phase one-fluid equilibrium. Finally, the usual form of
the Jacobian matrix in primitive variables remains valid for the two-phase mixture:

Jp
F (V ) =

S

WWWWU

u fl≠1 0 ··· 0
flc2 u 0 ··· 0

flY
1

0
. . . ...

...
... . . . 0

flYN 0 ··· 0 u

T

XXXXV
; c =

Û
ˆP

ˆfl

----
s

, (24)

and the speed of sound appears to have the usual definition, except that fl and s are, in the binodal
region, variables of the two-phase mixture at equilibrium. The mixing law for specific entropy is:

fls = –¸fl¸s¸ + (1 ≠ –¸)flvsv. (25)

The calculation of the speed of sound in the two-phase case can be achieved by expressing the
di�erential of specific entropy from density and pressure di�erentials. These developments provide the
following form for the speed of sound to the square:

c

2 =
C

fl

3
1

—mix

1
—mix ≠ –

T
mixËP

22
+ Cv,mix

T

Ë

2
P

4D≠1

(26)

which remains positive as a combination of positive quantities. The system’s hyperbolicity is then pre-
served.

3.2.2 Characteristic Boundary Conditions

Diagonalization of the Jacobian Jp
F (V ) yields the so-called characteristic form. The characteristic

Jacobian Matrix Jc
F (W ) can be expressed using transformation matrices LU = R≠1

U as:

Jc
F (W ) = LU JF (U) RU , (27)

5



14

th
ICLASS 2018 Implementation of a di�use interface method in a compressible multicomponent LES solver

these transformation matrices allowing to change basis between conservative and characteristic variables:;
ˆW = LU ˆU ,

ˆU = RU ˆW .

(28a)
(28b)

As a consequence of Jp
F (V ) taking the usual form despite the two phase closure, its diagonalized form

remains similar to its one-phase counterpart, as diagonalization yields:

Jc
F (W ) =

S

WWWWWU

u+c 0 ··· ··· 0

0 u≠c
. . . ...

... . . . u
. . . ...

... . . . . . . 0
0 ··· ··· 0 u

T

XXXXXV
(29)

LU = b

flc

S

WWWWU

≠(u+ c
b ) 1 (ec≠a

1

)+ c
b u ··· (ec≠aN )+ c

b u
≠(u≠ c

b ) 1 (ec≠a
1

)≠ c
b u ··· (ec≠aN )≠ c

b u

flu
c Y

1

≠ fl
c

flc
b ≠ (ec≠a

1

)flY
1

c ··· ≠ (ec≠a
1

)flYN
c

...
...

... . . . ...
flu
c YN ≠ fl

c ≠ (ec≠a
1

)flYN
c ··· flc

b ≠ (ec≠aN )flYN
c

T

XXXXV
,

RU =

S

WWWWWWU

fl
2c (u+c) fl

2c (u≠c) u ··· u

fl
2c

1
ec+cu+ c2

b ≠a

2
fl

2c

1
ec≠cu+ c2

b ≠a

2
ec
b ≠a

1

··· ec
b ≠aN

flY
1

2c
flY

1

2c 1 ··· 0
...

...
... . . . ...

flYN
2c

flYN
2c 0 ··· 1

T

XXXXXXV
.

(30a)

(30b)

with a =
qN

i=1 Yiai One observes that the modifications needed to write the Characteristic Boundary
Conditions in the two-phase case reduce to modifying thermodynamic coe�cients ai, b and c (the speed
of sound), according to (19), (20) and (26). Several validations for these results may be found in [25].
Here, a demonstrating case is proposed to observe the behaviour of the homogeneous equilibrium model
in a realistic case.

4 Cryogenic Methane/Oxygen Coaxial Injection in 2D
Validations of the derivations given above are described in the one-component case in [25]. Equivalent

results are found for the model in the case of multicomponent mixtures. In order to test the model, a
cryogenic coaxial injection of liquid oxygen (LOx) and Methane is computed.

Case Description: In this computation, the central stream is pure LOx with density flO
2

= 1050 kg/m3

and velocity vO
2

= 10 m/s. Peripheral streams are pure vapour CH4 at flCH
4

= 10 kg/m3 and velocity
vCH

4

= 150 m/s. Pressure is set to 10 bar in the chamber.

CH4
O2

CH4

P = 10 bar

Figure 1: Computation Details

Numerical Setup: The unstructured mesh contains 50 ◊ 103 nodes, as displayed in Figure 1. The
solver is Avbp, using the two-step Taylor-Galerkin scheme TTG4A (see [22]) with the adapted Jacobian
matrices described previously.

Results: Density field snapshots are shown in Figure 2. The dynamics are similar to supercritical
mixing since no surface tension model is used at the moment. Still, the density gradient is noticeably
strong and well handled by the solver. Figure 3 displays the two-phase region, which appears to be
di�used over the domain as no interface sharpening method is used here.
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(a) t = 0 s (b) t = 1.9 ms (c) t = 3.8 ms (d) t = 5.7 ms (e) t = 7.6 ms (f) t = 9.5 ms

fl [kg/m3]

Figure 2: Snapshots of the density field. Values span from 10 kg/m3 to 1050 kg/m3

(a) t = 0 s (b) t = 1.9 ms (c) t = 3.8 ms (d) t = 5.7 ms (e) t = 7.6 ms (f) t = 9.5 ms

‰

Figure 3: two-phase flow marker: ‰ = 4–¸(1 ≠ –¸), so that ‰ œ [0, 1].

(a) t = 0 s (b) t = 1.9 ms (c) t = 3.8 ms (d) t = 5.7 ms (e) t = 7.6 ms (f) t = 9.5 ms

YCH
4

Figure 4: Snapshots of the methane mass fraction field. YCH
4

œ [0, 1]

5 Conclusion and Future Work
The present article details a simplified version of the Homogeneous Equilibrium Method to extend the

use of Cubic EoS to subcritical regimes. The practical implementation of the equilibrium computation
has been described and the mathematical properties have been investigated, to provide the flow model’s
Jacobian matrix together with its corresponding Characteristic Boundary Conditions implementation. In
particular, it has been observed that the form of the resulting flow model is similar to the usual one-phase
case. In addition, a multicomponent coaxial injection test case is computed, showing encouraging results.

Current developments focus on the implementation of a surface tension model which is the next step
towards the development of a solver able to handle the whole range of pressure encountered in industrial
combustors such as rocket and Diesel engines. In addition, interface sharpening methods are investigated
to prevent unphysical di�usion of the interface area.
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