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Introduction

Many propulsion devices, such as liquid rocket engines (during ignition) or Diesel engines (during compression) operate over a wide range of chamber pressure. As a consequence, they are likely to involve thermodynamic states that can range from subcritical to supercritical conditions. In particular, transition from one regime to the other is encountered. The question of supercritical flows in combustion chambers has been and still is widely studied [1,2,3,4]. Such flows require a description of the non-idealities in the molecular interactions, adressed by the Real-Gas (RG) thermodynamics. Among RG closures, cubic Equations of States (EoS), such as Van der Waals [5], Peng-Robinson [6] or Soave Redlich Kwong [7], have been deeply studied and prove to be relevant for supercritical simulations [8,9,10,11,12,13]. However, in the subcritical domain, phase transitions occur and models are needed to handle both liquidgas interfaces and atomization. Interface models can be split in two classes: Sharp Interface Methods (e.g. Level-Set [14,15], Front-Tracking [16,17] or Volume of Fluid [18]), representing the interface as a discontinuity and Di use Interface Methods (e.g. Multifluid Methods [19,20,21]), for which the interface is numerically represented as a di use region between pure phases. In the following, a di use interface approach is chosen as it o ers a convenient framework for multicomponent compressible flows on unstructured grids. Also, as the interface is not explicitely tracked, the extension from subcritical two-phase flows to supercritical flows is expected to be more natural. The challenge here is then to blend the subcritical di use interface model with the supercritical-adapted cubic EoS to provide a description of the flow in the whole range of thermodynamic states encountered in industrial devices.

The objective of this work is to extend the use of cubic EoS to the subcritical regime. This is done by computing homogeneous equilibrium in the binodal region. This paper describes the extended thermodynamics in detail and its integration in a compressible solver.

The present paper is structured as follows: section 2 presents the flow model and the thermodynamic closure. In section 3, the derivation of important thermo-mechanical quantities will be presented, that allow the use of Taylor-Galerkin [22] numerical methods and Navier-Stokes Characteristic Boundary Conditions [23]. Eventually, in section 4, a two-dimensional test case is proposed to demonstrate the behavior of the method.
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Di use Interface Model

The di use interface model considered here can be derived from the Baer and Nunziato's model [19] by assuming equilibria of velocity, temperature, pressure and chemical potentials. This allows to retrieve a 3-equation model, similar to Euler equations. A homogeneous equilibrium model is then obtained. It can be written as:

ˆU ˆt + ˆF (U ) ˆx = 0, (1) 
where U and F (U ) represent respectively the vector of conserved variables and their fluxes, given by:

U = # flu, fle tot , flY 1 , • • • flY N $ T (2)
F (U ) = # flu 2 + P, (fle tot + P )u, flY 1 u, • • • flY N u $ T . ( 3 
)
The usual notations are used here, with fl the density, Y i the mass fraction of the i th species, u the velocity, P the pressure and total specific energy e tot = e s + e c , e s being the sensible energy and e c = u 2 2 the kinetic energy. This system of equations must be closed by an EoS.

Thermodynamic Closure

Among the possible choices, cubic EoS have proven to o er a good trade-o between simplicity, accuracy and ability to describe multicomponent mixtures [3,[START_REF] Poling | the Properties of Gases and Liquids[END_REF]. Such equations can be expressed as:

P = flrT 1 ≠ flb m (Y ) ≠ a m (T, Y )fl 2 1 + Á 1 b m (Y ) fl + Á 2 b 2 m (Y ) fl 2 , (4) 
with T the temperature, Y = {Y i } i=1..N the mixture composition, a m and b m the EoS mixture coe cients computed from Van der Waals mixing laws [START_REF] Poling | the Properties of Gases and Liquids[END_REF]. r = R W denotes the specific gas constant of the mixture, R being the perfect gas constant, W =

1 q N i=1 Yi Wi 2 ≠1
the mixture molar mass and (Á 1 , Á 2 ) the EoS parameters.

Here, a unique EoS is used for the description of liquid, vapour and supercritical states, similarly as [4]. Howevers, the formulation of the equilibrium problem is simplified assuming equality of species mass fraction in liquid and vapour phases (one-fluid hypothesis). This idea is motivated considering that the interface region in Di use Interface Models is an artificial mixture. The actual physical state of such region is locally not representative of the proper physical interface. The strategy considered here is then to avoid the full computation of the physical multicomponent equilibrium but rather compute the one-fluid equilibrium described hereafter, ensuring the preservation of the convexity of the EoS. One-Fluid hypothesis: The equilibrium computation is performed assuming that the mixture species composition Y is frozen and identical for both liquid and gas phases, following a one-fluid hypothesis. Although the one-fluid treatment is widely used for cubic EoS in the one-phase or supercritical domain, it is used here in the case of two-phase flows, allowing to ensure the convexity of the EoS.

In the binodal region, as the one-phase fluid state is either metastable or unstable, the two-phase stable mixture is computed so that both phase have the same temperature, pressure and Gibbs free energy g, that is:

P ¸= P v = P, T ¸= T v = T, g ¸= g v = g, (5) 
respecting mixture density and specific sensible energy. Subscripts ¸and v indicate respectively the liquid and vapour phases. The one-fluid hypothesis used here writes

Y = Y ¸= Y v .
The density and sensible energy of the fluid represent in this case mixture properties, with mixture defined using the liquid volume fraction -

¸: fl = -¸fl¸+ (1 ≠ -¸)fl v ( 6 
)
fle s = -¸fl¸es,¸+ (1 ≠ -¸)fl v e s,v (7) 
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Practical implementation

Let fl p and e p s be the density and energy predicted by the numerical scheme. In the first place, the one-phase temperature T m is determined finding the zero of function ◊ defined by:

◊(fl p , T ) = e p s ≠ e EoS s (fl p , T ) e p s , (8) 
where e EoS s is the sensible energy computed from the EoS. Once this temperature is obtained, one-phase pressure is computed as P m = P EoS (fl p , T m ). The densities that satisfy the cubic EoS for the obtained (P m , T m ) are computed from the EoS. If multiple roots are found, their fugacity is compared. The minimal fugacity solution being the stable one, the flow state is kept as single-phase if the predicted density is the one of minimal fugacity. Otherwise, a two-phase equilibrium must be computed. The computation of the one-fluid equilibrium is similar to that described in [START_REF] Pelletier | INCA Conference[END_REF].

Mathematical Properties

This section aims at providing the derivation of the important mathematical properties of the Homogeneous Equilibrium Model. This is particularly interesting towards the implementation into the solver Avbp (see for example [START_REF] Moureau | [END_REF], for more details). Avbp is an unstructured compressible unsteady multicomponent solver jointly developed by cerfacs and ifpen.

Jacobian Matrices 3.1.1 General Form

Among the numerical methods available in this solver, Two-Step Taylor-Galerkin methods (TTGC, TTG4A [22]) are particularly interesting as they provide a third-order convergence in space and time for a limited computational cost and a local stencil. Their derivation uses the so-called Cauchy-Kowalevski process, which requires to compute the Jacobian matrix of the flux (3), given by:

J F (U ) = ˆF (U ) i ˆU j - - - - - U k, k" =j = S W W W U (2≠b)u b ≠u 2 +b(ec≠a1) ••• ≠u 2 +b(ec≠a N ) htot≠u 2 b u(1+b) [(ec≠a1)b≠htot]u ••• [(ec≠aN )b≠htot]u Y1 0 ( 1 
≠Y1)u ••• ≠Y N u . . . . . . Y N 0 ≠Y1u ••• (1≠Y N )u T X X X V (9) 
with coe cients a i = ˆfles .

Expression ( 9) is valid for any thermodynamic closure. In the supercritical or one-phase domain, the usual form of the Jacobian matrix for cubic EoS naturally applies [23]. For points lying in the binodal region, as phase separation is considered by the equilibrium model, the derivation of di erential relations at saturation is necessary.

Saturation derivatives and Clausius-Clapeyron relation for mixtures

In this respect, it is necessary to introduce saturation derivatives, which, for a thermodynamic quantity  usually expressed as a function of pressure, temperature and mixture composition, write:

Y _ _ _ _ ] _ _ _ _ [ ˆÂ ˆP - - - - sat,Yi = ˆÂ ˆP - - - - T,Yi + ˆÂ ˆT - - - - P Ë P ˆÂ ˆYi - - - - sat,P,Y j" =i = ˆÂ ˆYi - - - - T,Y j" =i + ˆÂ ˆT - - - - P,Yj Ë i (10a) (10b) 
where derivatives of temperature with respect to pressure and mixture composition, denoted respectively Ë P and Ë i at saturation follow the Clausius-Clapeyron relation [START_REF] Poling | the Properties of Gases and Liquids[END_REF], which formulation is extended here to multicomponent mixture under one-fluid equilibrium hypothesis. They read:

Ë P = ˆT ˆP - - - - sat,Yj = T (fl ¸≠ fl v ) fl v fl ¸(h s,v ≠ h s,¸) ; Ë i = ˆT ˆYi - - - - sat,Y j" =i = g v,i ≠ g ¸,i s v ≠ s ¸(11)
with the partial Gibbs free in the vapor and liquid phases defined by g i = ˆmg ˆmi ---T,P,m j" =i and evaluated respectively for g v,i at thermodynamic point (T, fl v , Y ) and for g ¸,i at (T, fl ¸, Y ).

Jacobian terms for two-phase equilibrium

Calculation of the terms a i and b can be carried out by expressing the di erential of the mixture volume sensible energy defined in (7) as follows:

dfle s = - ¸d! fl ¸es,¸" + (1 ≠ -¸) d ! fl v e s,v " + ! fl ¸es,¸≠ fl v e s,v " d-¸(12)
It is then worth mentioning that the single-phase quantities at equilibrium fl ¸, fl v , e s,¸, e s,v are function of the pressure and mixture composition only. For phase " oe {¸, v}, volume-specific energy di erential reads:

d ! fl " e s," " = ˆfl" e s," ˆP - - - - sat,Yj dP + N ÿ i=1 ˆfl" e s," ˆYi - - - - sat,P,Y j" =i dY i ( 13 
)
This expression can then be developped as:

d ! fl " e s," " = 5 fl " 1 c p," ≠ -T " h s," 2 
Ë P + fl " -" h s," ≠ -T " T 6 dP + fl " fl N ÿ i=1 5 1 c p," ≠ -T " h s," 2 Ë i + e ",i ≠ fl " v ",i e s," 6 d(flY i ) (14) 
where c p," is the specific heat capacity of phase ", -

T " = ≠ 1 fl " ˆfl" ˆT - - - P,Y k
the thermal expansion coe cient,

-" = 1 fl " ˆfl" ˆP - - - T,Y k
the isothermal compressibility coe cient, h s," = e s," + P fl " the sensible enthalpy and v ",i the partial specific volume of species i in phase ".

Besides, the last term in equation ( 12) requires di erentiating the liquid volume fraction, which can be done using (6):

d-¸= d 3 fl ≠ fl v fl ¸≠ fl v 4 = 1 fl ¸≠ fl v # dfl ≠ -¸dfl ¸≠ (1 ≠ -¸) dfl v $ (15) 
which can be developed using (10) into:

d-¸= 1 fl ¸≠flv Ë ! fl-T " mix Ë P ≠ (fl-) mix È dP + 1 fl(fl ¸≠flv ) N ÿ i=1 Ë ! fl-T " mix Ë i + ! fl 2 v i " mix È d(flY i ), (16) 
where the subscript mix for any quantity  denotes the mixture value

 mix = -¸Â¸+ (1 ≠ -¸) v .
Using, at equilibrium, the equality g ¸= g v , one can write:

fl ¸es,¸≠ fl v e s,v fl ¸≠ fl v = h s,¸≠ 1 fl ¸T Ë P = h v ≠ 1 fl v T Ë P = -¸hs,¸+ (1 ≠ -¸)h s,v ≠ - ¸1 fl ¸T Ë P ≠ (1 ≠ - ¸) 1 fl v T Ë P (17) 
Finally, combining ( 17), ( 16) and ( 14), the mixture volume energy di erential reads:

d(fle s ) = 5 
Ë P C p,mix ≠ 2T -T mix + T Ë P -mix 6 dP + 1 fl N ÿ i=1 C 3 C p,mix ≠ T Ë P -T mix 4 Ë i + 3 P ≠ T Ë P 4 (flv i ) mix + (fle i ) mix D d(flY i ). ( 18 
)
Then the calculation can be achieved by di erentiating (7), which eventually yields:

a i = 1 fl C 3 C p,mix ≠ T Ë P -T mix 4 Ë i + (flh i ) mix ≠ T Ë P (flv i ) mix D ( 19 
) et b = 1 Ë P C p,mix ≠ 2T -T mix + T Ë P -mix (20) 
where C p,mix = -¸fl¸cp,¸+ (1 ≠ -¸)fl v c p,v is the mixture volume-specific isobaric heat capacity,

-T mix = -¸-T ¸+ (1 ≠ -¸)-T
v is a mixture thermal expansion coe cient andmix = -¸-¸+ (1 ≠ -¸)-v a mixture isothermal compressibility coe cient. In these expressions, for each phase " oe {¸, v} appear the thermal expansion and isothermal compressibility coe cients and the specific isobaric heat capacity c p," = ˆhs," ˆT ---P .

14 th

ICLASS 2018

Implementation of a di use interface method in a compressible multicomponent LES solver

Speed of Sound and Characteristic Boundary Conditions

Once the Jacobian matrix has been calculated, its diagonalization gives access to important mathematical properties of the model. This allows to compute the speed of sound to verify the hyperbolicity of the PDE and also to derive the so-called Characteristic Boundary Conditions introduced by Poinsot and Lele [23].

Jacobian Matrix for Primitive variables and Speed of Sound

In the first place, it is helpful to write system (1) in its non-conservative pseudo-linearized form, in terms of primitive variables V = (u, P, flY 1 , ..., flY N )

T . This reads:

ˆV ˆt + J p F (V ) ˆV ˆx = 0, (21) 
with the Jacobian matrix expressed this time in primitive variables:

J p F (V ) = S W W W W W W U u fl ≠1 0 0 ••• 0 flb ! hs≠ q N i=1 Yiai " u 0 0 ••• 0 flY1 0 u 0 ••• 0 flY2 0 0 . . . 0 . . . . . . . . . . . . . . . flY N 0 0 ••• 0 u T X X X X X X V . ( 22 
)
This form once again stands for any thermodynamic closure. h s here indicates the specific sensible enthalpy h s = e s + P/fl. The term

c 2 = b 1 h s ≠ q N i=1 Y i a i 2
, can be expressed under the form:

c 2 = b Q a h s ≠ N ÿ i=1 Y i a i R b = P fl 2 ˆP ˆes - - - - s,Yj ≠ P fl 2 ˆfl ˆes - - - - s,Yj ˆP ˆfl - - - - es,Yj + N ÿ i=1 Y i ˆP ˆflY i - - - - es,flY j" =i , ( 23 
)
where s is the specific entropy of the two-phase mixture. It can be shown that this definition reduces to the classical speed of sound definition for the two-phase one-fluid equilibrium. Finally, the usual form of the Jacobian matrix in primitive variables remains valid for the two-phase mixture:

J p F (V ) = S W W W W U u fl ≠1 0 ••• 0 flc 2 u 0 ••• 0 flY1 0 . . . . . . . . . . . . . . . 0 flY N 0 ••• 0 u T X X X X V ; c = Û ˆP ˆfl - - - - s , (24) 
and the speed of sound appears to have the usual definition, except that fl and s are, in the binodal region, variables of the two-phase mixture at equilibrium. The mixing law for specific entropy is:

fls = -¸fl¸s¸+ (1 ≠ -¸)fl v s v . ( 25 
)
The calculation of the speed of sound in the two-phase case can be achieved by expressing the di erential of specific entropy from density and pressure di erentials. These developments provide the following form for the speed of sound to the square:

c 2 = C fl 3 1 -mix 1 -mix ≠ -T mix Ë P 2 2 + C v,mix T Ë 2 P 4 D ≠1 (26) 
which remains positive as a combination of positive quantities. The system's hyperbolicity is then preserved.

Characteristic Boundary Conditions

Diagonalization of the Jacobian J p F (V ) yields the so-called characteristic form. The characteristic Jacobian Matrix J c F (W ) can be expressed using transformation matrices L U = R ≠1 U as:

J c F (W ) = L U J F (U ) R U , ( 27 
)
these transformation matrices allowing to change basis between conservative and characteristic variables:

; ˆW = L U ˆU , ˆU = R U ˆW . (28a) (28b)
As a consequence of J p F (V ) taking the usual form despite the two phase closure, its diagonalized form remains similar to its one-phase counterpart, as diagonalization yields:

J c F (W ) = S W W W W W U u+c 0 ••• ••• 0 0 u≠c . . . . . . . . . . . . u . . . . . . . . . . . . . . . 0 0 ••• ••• 0 u T X X X X X V (29) 
L U = b flc S W W W W U ≠(u+ c b ) 1 (ec≠a1)+ c b u ••• (ec≠a N )+ c b u ≠(u≠ c b ) 1 (ec≠a1)≠ c b u ••• (ec≠a N )≠ c b u flu c Y1 ≠ fl c flc b ≠ (ec≠a1)flY1 c ••• ≠ (ec≠a1)flY N c . . . . . . . . . . . . . . . flu c Y N ≠ fl c ≠ (ec≠a1)flY N c ••• flc b ≠ (ec≠a N )flY N c T X X X X V , R U = S W W W W W W U fl 2c (u+c) fl 2c (u≠c) u ••• u fl 2c 1 ec+cu+ c 2 b ≠a 2 fl 2c 1 ec≠cu+ c 2 b ≠a 2 ec b ≠a1 ••• ec b ≠a N flY 1 2c flY 1 2c 1 ••• 0 . . . . . . . . . . . . . . . flY N 2c flY N 2c 0 ••• 1 T X X X X X X V . (30a) (30b) 
with a = q N i=1 Y i a i One observes that the modifications needed to write the Characteristic Boundary Conditions in the two-phase case reduce to modifying thermodynamic coe cients a i , b and c (the speed of sound), according to (19), (20) and [START_REF] Moureau | [END_REF]. Several validations for these results may be found in [START_REF] Pelletier | INCA Conference[END_REF]. Here, a demonstrating case is proposed to observe the behaviour of the homogeneous equilibrium model in a realistic case.

Cryogenic Methane/Oxygen Coaxial Injection in 2D

Validations of the derivations given above are described in the one-component case in [START_REF] Pelletier | INCA Conference[END_REF]. Equivalent results are found for the model in the case of multicomponent mixtures. In order to test the model, a cryogenic coaxial injection of liquid oxygen (LOx) and Methane is computed. Numerical Setup: The unstructured mesh contains 50 ◊ 10 3 nodes, as displayed in Figure 1. The solver is Avbp, using the two-step Taylor-Galerkin scheme TTG4A (see [22]) with the adapted Jacobian matrices described previously.

Results: Density field snapshots are shown in Figure 2. The dynamics are similar to supercritical mixing since no surface tension model is used at the moment. Still, the density gradient is noticeably strong and well handled by the solver. Figure 3 displays the two-phase region, which appears to be di used over the domain as no interface sharpening method is used here. 

Conclusion and Future Work

The present article details a simplified version of the Homogeneous Equilibrium Method to extend the use of Cubic EoS to subcritical regimes. The practical implementation of the equilibrium computation has been described and the mathematical properties have been investigated, to provide the flow model's Jacobian matrix together with its corresponding Characteristic Boundary Conditions implementation. In particular, it has been observed that the form of the resulting flow model is similar to the usual one-phase case. In addition, a multicomponent coaxial injection test case is computed, showing encouraging results.

Current developments focus on the implementation of a surface tension model which is the next step towards the development of a solver able to handle the whole range of pressure encountered in industrial combustors such as rocket and Diesel engines. In addition, interface sharpening methods are investigated to prevent unphysical di usion of the interface area.

Case Description:

  In this computation, the central stream is pure LOx with density fl O2 = 1050 kg/m 3 and velocity v O2 = 10 m/s. Peripheral streams are pure vapour CH 4 at fl CH4 = 10 kg/m 3 and velocity v CH4 = 150 m/s. Pressure is set to 10 bar in the chamber.

Figure 1 :

 1 Figure 1: Computation Details

Figure 2 :Figure 3 :

 23 Figure 2: Snapshots of the density field. Values span from 10 kg/m 3 to 1050 kg/m 3

4 Figure 4 :

 44 Figure 4: Snapshots of the methane mass fraction field. Y CH4 oe [0, 1]
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