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J. J. Moreau 

Application of convex analysis to 
some problems of dry friction 

1 Introduction 

The core of what is meant today by 'convex analysis' consists in studying 
convex subsets of linear spaces, convex real fonctions defined on such 
spaces, the extremal problems involving them and their minimax counter
part. This subject has received considerable attention during recent 
decades, stimulated by the frequent occurrence of convexity assumptions 
in optimization, economics and the related numerical analysis. Such 
modern developments as variational inequalities or monotone operators 
are closely interrelated with convex analysis. 

To the author's historical knowledge, mechanics was the first domain of 
science to make a precise use of the concept of a convex set (17th 
century): the equilibrium positions of a solid body lying on a horizontal 
plane and subject to gravity are characterized by the condition that the 
vertical line drawn through its centre of mass meets the convex bull of the 
point.s of support. Investigating the statics or the dynamics of systems with 
unilateral constraints in this spirit constituted the author's primary moti
vation for taking some part in the recent development of convex analysis 
(see, for example, Moreau [1, 2]). 

On the other hand, the importance of convexity assumptions regarding 
the potential function of a force law has been repeatedly stressed, mainly 
after Hill [3], in relation to stability, sometimes with hints at ther
modynamics. 

The concepts of the subdifferential of a convex function, now of general 
use in many domains, and of the superpotential of a force law, were 
defined by the author in order to include classical force laws and perfect 
(possibly unilateral) constraints in a unified treatment (see, for example, 
Moreau [4-6]). 

The duality of Jinear spaces plays a prominent role in modern convex 
analysis. Regarding this concept also, mechanist:, acted as forerunners; in 
fact, the mathematical structure of a pair of linear spaces, placed in 



duality by a bilinear form, constitutes the essence of the traditional 
method of virtual work or virtual power. 

The present paper, attemptedly self-consistent, develops an example of 
the application of modern convex analysis to dry friction and ends with 
two general theorems. This theme was first presented at a small sym
posium on convexity in 1970 (Moreau [7]); subsequently, modern convex 
analysis has been widely applied to resistance laws of various sorts 
(Moreau [8]), mainly to plasticity theory (Moreau [9-11], Nayroles [12-
15], Debordes and Nayroles [16]) possibly with strain hardening (Nguyen 
and Halphen [17], Nguyen [18]). The concrete and elementary situation 
taken as an example in what follows may be studied as an introduction to 
these more elaborate topics. 

2 The classical formulation of Coulomb's law 

Let 9'0 denote a perfectly rigid body, assumed to be fixed; another 
perfectly rigid body 9'1 moves in contact with 9'0 • This means that the
respective boundary surfaces !0 and ! 1 , supposed geometrically smooth, 
remain tangent at a point M, a priori moving in both of them. All the 
following is relative to some definite instant; in the corresponding config
uration, let v denote the unit normal vector to !0 and ! 1 at the point M. 
By definition, the sliding velocity V of 9'1 on 9'0 

is the velocity vector 
relative to 9'0 of the element M1 of 9'1 which happens to be in Mat the 
instant under consideration. Under the usual geometrical and kinematical 
smoothness assumptions, it is elementarily proved that v ·V= 0, i.e., V 
belongs to the two-dimensional linear spaces II consisting of the vectors 
tangent at M to !0 and ! 1 • 

The contact forces exerted by 9'
0 on 9'1 are supposed to reduce to a 

single force R acting on the element M1 ; let us decompose this vector into 

R=F+Nv with FEII. 

The Coulomb law of dry friction, when the normal component N-;;,; 0 is 
treated as known, states a relation between F and V traditionally formu
lated as follows. 

There exists f-;;,; 0, the friction coefficient, s uch that 

if V= 0: \F\:,;; fN, 

if V ;é O : \F\ = fN 

(1) 

(2) 

and the vectors F and V are parallel with opposite dir. ::tians. (Here \ \ 
represents the Euclidean norm.) 

Such a juxtaposition of two apparently heterogeneous statements con
cernîng the events V= 0 and V� 0 might look purely empirical. Actually, 



the use of some elementary concepts of convex analysis will emphasize 
their strong consistency. 

3 .Generalization

In the same situation as above, let us consider the closed dise 

D = {cf> E ll: J<I>I � fN}.

The Coulomb law is equivalently expressed by 

FED,
}

\f<I> ED: V• (<l>-F);;;. O. 

In fact, when V� 0, this means that the set 

{<l>E ll :V· (<l>-F)�O}, 

(3) 

i.e., the closed half-plane having F as a boundary point and V as an
outward normal vector is a supporting half-plane of the set D at the point
F (i.e., this half-plane has only boundary points in common with D and F
is one of them). By the elementary properties of the circle, this is 
equivalent to (2). In the case V= 0, the equivalence of (3) to (1) is trivial. 

From this stage it is quite natural to generalize the formulation into a 
law of anisotropie friction, as it may physically result from the directional 
structure of the material surfaces in contact: the dise D will be replaced 
by some subset C of ll, containing the origin. 

On the other hand, one aim-of this paper is to emphasize the considera
tion of many-dimensional pairs of linear spaces. Generally speaking, a 
linear space of velocities 'V and a linear space of fore es g; will be 
introduced. These spaces are placed in duality by the bilinear form 
'power': for VE'V and FE.<ffe", we shall denote by (V,F)·the power of the 
force F if the motion has the velocity V. In the preceding example, 'V and 
g; were two copies of the same two-dimensional Euclidean space II,

placed in duality with itself by the Euclidean scalar product. 
Similarly to (3), let us define a friction law as the relation between 

VE 'V and FE g; formulated as follows: 

FEC,
}

\f<l>E C: (V, <l>-F);;;. 0, (4) 

where C is a given subset of .<ffe". This subser is assumed to contain the origin
of .<ffe", i.e., zero is a possible value of F, compatible in particular with the
value zero of V. Then, by setting cf>= 0, it turns out that for every pair F,
V satisfying (4), the power (V, F) is non-positive: friction, as described by
relation (4), is a dissipative phenomenon. 



4 The principle of maximum dissipation 

Relation (4) is obviously equivalent to the following statement: the set of
the elements FE g; which the relation associates with a given VE 'Y is
identical with the set of the points of C where the function <I>-(V, <I>) 
attains its infimum relative to C. 

In most of the mechanical situations which a relation of the form (4) is 
meant to describe, it is required that every value of V be feasible, i.e., for 
every VE °V the above set is non-empty. Here is the most usual 
mathematical assumption ensuring that: there exists a topology on the 
space g; relative to which the set C is compact, white the real function 
<P�(V, <I>) is continuous for every V in °V. In the case of finite
dimensional °V and s;, this will naturally be the topology defined by the 
use of components in these linear spaces; then, the continuity of linear 
functions is automatic and we only have to make the assumption that C is 
closed and bounded. For infinite-dimensional cases, such as those arising 
in the mechanics of continua, it is necessary to specify some topology on 
g; among those which are said to be compatible with the duality defined by
the bilinear form (. ,.) or topologies of the dual pair ('Y, s;, (. , .)); in order 
that compactness involve the mildest restriction about C, this should be 
the coarsest of these topologies, i.e., the weak topology usually denoted 
by cr(s;, °V) (see, for example, Robertson and Robertson [23]). 

In the proper friction phenomenon, the non-negative expression 
-(V, F) is equal to the power transformed into heat and is called the 
dissipated power: thus, relation (4) may be entitled 'the principle of 
maximum dissipation'. 

5 lndicator functions and subdifferentials 

. Every subset C of g; may be described by giving its indicator function t/Jc

(<I>) 
= {o if <I> E c, 

t/Jc 
+co if <I>� C.

Using this, one writes relation (4) equivalently in the form 

V<I> E ClJi: <-V, <l>- F> + t/lc(F) � lf!c{<l>) 

which st: œs that t/Jc(F) is finite, that the affine function

<I>- <-V,<I>-F>+l/lc(F) 

is a minorant of the function t/Jc and that this minorant is exact at the 
point F, i.e., it takes the same value at this point as l/Jc (namely zero). The 



element -V of 'Y constitutes the slope or gradient of the considered affine 
fonction in the sense of the duality (. , .). According to the terminology 
introduced by the author [ 4] and now usual in the whole field of convex 
analysis, the gradient of an affine minorant of a function g :;!J--]-co, +co]; 
if this minorant is exact at the point F, is called a subgradient of g at the 
point F. The set, denoted by ag(F), of the subgradients of g at the point F
is a (possibly empty) convex subset of "JI' called the subdifferential of g at 
F. 

In this notation, the relation (4) is equivalently written as 

-VEat/fc(F). (5) 

Usually, C is a closed convex set (see section 7 below); (5) means that 
FE C and that V is, in a classical generalized sense, a normal in ward
vector to this set at the point F (in particular, V= 0 if F is internai to C). 

6 Dissipation function 

Let g be a fonction with values in ]-co, +co], defined, for instance, on the 
member g;; of the considered dual pair of linear spaces. The handling of 
the affine minorants of g induces us to construct the fonction g*, with 
values in ]-co, +co ], defined on 'Y by 

g*(W) = .ï��[(W, cl>) - g(cl>)]. (6) 

It is called the conjugate or polar function of g. An affine fonction 
<P-(W,cl>)-a is a minorant of g if and only if the real number a 
satisfies a ;a,, g*(W). 

In the special case, g = t/Jc, the expression (W, cl>)- t/fc(cl>) takes the 
value -co when cl>rt C; therefore, 

t/l�(W) = suo (W, cl>). 
<J>e't: 

This fonction is classically known under the (rather improper) name of 
the support function of the set C, relative to the considered duality. It is 
evidently sublinear, i.e., convex and positively homogeneous of degree l. 

In the present situation, it will prove more convenient to introduce the 
fonction cp 

cp(W) = t/1�(-W) = - inf (W, cl>), 
<l>EC 

(7) 

i.e., the support fonction of the set -C. Using cp yields an equivalent



formulation of the relations (4) or (5) 

FE C, }
-(V, F) = <p(V). 

(8) 

ln othër words, the values of FE ff that the relation associa tes with a 
given VE 'V are the elements of C such that the dissipated power -(V, F) 
is eq ual to cp (V). 

Hence the name of the dissipation function, given to cp. 
For instance, in the case of Coulomb's law (3), 

<p(V) = fN !VI-

7 The convexity of C

Returning to the definition (6) of g*, one immediately finds that the 
relation W E àg(F) is equivalent to 

g*(W) + g(F)-(W, F) = 0 (9)
where the = sign may be replaced by � because the left-hand side is 
essentially non-negative. 

The above does not, in general, involve the symmetry between the 
spaces 'V and ff. ln fact, a polar function is, by construction, the 
supremum of a collection of continuous affine functions; therefore, it is 
convex and lower semi-continuous (l.s.c.) (relative to every topology 
compatible with the considered duality). As we started with an arbitrary 
g: ff-]-oo, +oo ], it cannot be expected, in general, that g would in turn be 
the polar function of g*. However, standard separation arguments (i.e., 
the Hahn-Banach theorem) may be used to prove that g is equal to g* if 
and only if g is convex and lower semi-continuous (for some of the 
topologies of the dual pair ('V, :IF,(.,.)), consequently for all of them). If

such is the case, the symmetry of (9) implies that W E àg(F) is equivalent to 
FEag*(W). 

ln the following, we shall deal with the special case g = 1/Jc; this 
function is convex and l.s.c. if and only if the subset C of ff is convex and 
closed. If such is the case, the friction law, as expressed equivalently by 
(4), (5) or (8), is also equivalent to 

FE ài/1!(-V), 

i.e., in view of the definitior (7) of <p,

(10) 

Remark 1 A relation of this form between some velocity V and some 
force F may be called a resistance law, admitting the (convex and l.s.c.) 



function cp as superpotential or pseudopotential. The more general case, 
where cp is not necessarily sublinear, was studied in Moreau [8], where 
the connection of the superpotential with the dissipated power was also 
investigated. 

Remark 2 In ail the following, the set C is assumed to be convex. As 
far as the contact friction is concerned, the contrary would seem unrealis
tic. In fact, one must keep in mind that the point contact between two 
bodies is only a schematic representation of some contact which takes 
place on a very small area .'/1.. We may imagine, this area to be arbitrarily 
divided into two others, .'/1.1 and .'/1.2, in which the sliding velocity has the 
same value, namely zero in what follows. Let R1 and R2 be the resultant 
forces experiènced by 9\ through .'/1.1 and .'/1.2, respectively. Then 

(11) 

and, concerning the normal components, one has N = N1 + N2 • The values 
of N1 and N2 in the last equation depend on some 'micro-information' 
about the distribution of pressure in .:/1.. In order to obtain a law which 
does not depend on the microscopie pressure distribution in .'/1. for the 
global reaction R, one must admit the followirig as the law of friction in 
every subarea such as .:/1.1 (or .'/1.2, or .'/1. itself): for zero sliding velocity and 
an arbitrary non-negative pressure component, the set of the possible 
values of R1 (or R2 or R) is a conic subset I', with vertex at the origin in 
the space of the three-dimensional vectors. And (11) entails the inclusion 
r + r Cr, which means that r is convex. Returning to the formulation 
(4), one finds that I' is the cone generated in the space of three
dimensional vectors by the set C + Nv; hence, the convexity of C. 

8 Product spaces 

Let ('V 1; fffe1, (., .) i) and ("V2, fffe2, (., .)2) be two dual pairs of linear spaces. 
The two product spaces "V= "V 

1 x "V 2 and ;ffe = fffe 1 x fffe2 are placed in duality 
by the bilinear form (., .), defined as follows: for v = (v 1 , v2) E "V 1 x "V 2 and 
f=(f1,f2)Efffe 1 Xfffe2, set 

(12) 

For instance, if v 1, v2 are some independent velocity parameters of a 
mechanical system and f 1 , f 2 are the associated force parameters such that 
the terms on the right in (12) represent their respective powers, the 
bilinear form (v, f) represents the power of the whole. 

In this framework, the following is easily established. Let g 1 : fffe 1-

]-00, +oo] and g2 : fffe2 -]-oo, +oo] and let g be the function defined for 



every f=(f1 ,f2) in� by 

g<n = g1(f1) + giCf2). 

If gt and g! are the respective polar functions of g1 and g2 , the polar 
function g* in the sense of the duality (12) is defined for every v = (v1

, v2) 
in 'V by 

g*(v) = gi(v1) + g!(v2). 

Concerning the subdifferential sets, on the other hand, one has, in the 
sense of the three respective dualities, the equivalence 

9 An example of composite friction law 

(13) 

Let ;/1 be one of the wheels, with radius a, by which some vehicle ;/2 is 
supported, possibly with skidding, upon the horizontal ground ;/

0 • We 
shall treat this wheel as a perfectly rigid body presenting a single point of 
contact M with the plane surface of the ground. Let us describe the 
friction at this point by means of the notations of section 2. The reaction 
R exerted by the ground on the wheel is written as 

R=F+Nv 

and, in view of (5), the Coulomb law takes the form 

-VE at/f0(F), (14) 

where D denotes the closed dise with radius fN, with centre at the origin 
in the two-dimensional Euclidean linear space II; recall that V is the 
sliding velocity of El 1 relative to ;/0

. 

On the other band a brake is supposed to act on the wheel. Let i 
denote a unit vector of the wheel axis, assumed to be parallel to the 
ground. Let h be the moment, relative to this oriented axis, of the forces 
that the wheel ;/1 experiences from the vehicle body ;/2• Neither the 
driving torque nor the friction in the bearings are taken into account, so 
that h is, in fact, the braking torque. Let w be the angular velocity of ;/1 

relative to El2 • We assume that the operation of the brake involves a dry 
friction with a given normal component. This is expressed IJy a relation 
between the real numbers h and w, namely the one-dime· .sional case of 
the general formalis·'1 'Jresented in the foregoing. Her.: the space of 
velocities and the space of forces are two copies of the real line IR and the 
bilinear form 'power' reduces to the ordinary product. In the sense of this 
duality, the brake law is written as 

(15)



where I denotes a given interval [-b, +b]; this summarizes the familiar 
relations: h=-bsgnw if w;éO and h arbitrary in [-b,+b] if w = O. 

In view of the preceding section, taking into account (14) and (15), we 
note that, equivalently, we have the relation 

-(w, V) E at/;1x
o(h, F) (16) 

in the sense of the duality ("V, fli, (., .)). Here, "V and f!li are two copies of 
the three-dimensional linear space IR x II; by definition, 

((w, V), (h, F)) = wh +V· F (17) 

is the total power of the torque h and of the ground reaction R = F + Nv 
acting simultaneously on the wheel. 

Here is the first problem we are to deal with in the following. The 
w.heel load, i.e., the normal component N of R, will be treated as known.
Let GE II denote the horizontal component of the resultant force experi
enced by the vehicle f/2 from the wheel f/1. Let W E II denote the velocity
of the wheel centre, which is also the velocity of the corresponding point
of f/2 or the velocity of M, the 'geometrical' point of contact with the
ground. Under the assumption that the wheel is sufficiently light and the
motion sufficiently slow for the inertia of the wheel to be negligible, we
are to summarize the combination of possible skidding on the ground and
of possible brake action into a simple relation between W and G. It will
turn out, under the above simplifying assumptions, that the wheel may be
forgotten and the interaction between the vehicle and the ground be
described as the anisotropie friction related to a certain convex set C.

This consists in the elimination of the variables w, V, h, F from the 
following set of relations. 

(i) The kinematical relation

W=V-waj (18) 

expressing the fact that the whee\ is a rigid body; here j is the unit 
vector v xi. 

(ii) The quasi-equilibrium equations of the wheel:

G-F=O,

h+aj·F=O. 

(iii) The composite friction law (16).

(19) 

(20) 

An adequate use of various rules of the 'subdifferential calculus' would
do the job, but it will be more instructive to place the reasoning in a 
general setting. 



10 Subdifferentials and linear mappings 

Let ('V, .'?1-) and ('V', .'?l-') be two dual pairs of linear spaces; both corres
ponding bilinear forms will be denoted by (. , .). Let L: .'?l-'-.'?l- be a linear 
mapping; in infinite-dimensional cases, it will be assumed that L is 
continuous in the weak topologies of the dual pairs. Let g :.'?1--]-oo, +00] 
be convex and l.s.c.; then, the composite function g' = g O L: .'?l-' -]-oo, +oo] 
is convex and l.s.c. A classical rule of the 'subdifferential calculus' is the 
following (Rockafellar [24]): 

If there exists a point in the range of L, where the f unction g is fini te and 
continuous (in some topology of the dual pair ('V, .'?1-)), one has, for every F' 
in .'?l-', 

a(go L)(F') = L *(ag(L(F'))), 

where L * denotes the transpose of L. 

(21) 

Application Returning to our mechanical problem, let us set 'V= .'?l-=

IR x II with the duality defined in (17). Moreover, let 'V'= .'?l-' = II with the 
duality defined by the Euclidean scalar product and define L: .'?l-'-g; by 

L(G) = (-aj · G, G). 

Elementary computation yields the transpose L * :'V-'V', namely 

L *(w, V)= V- waj. 

Then, (18) amounts to 

W= L *(w, V), 

while (19) and (20) are condensed into 

(h, F) = L(G). 

Take g = t/lrxo, so that (16) takes the form 

-(w, V) E ag(h, F). 

The elimination of w, V, h, F from (22), (23), (24) yields 

-W EL *(ag(L(G))).

(22) 

(23) 

(24) 

(25) 

Thi,;, indeec!. is the necessary and sufficient condition to be satisfi' d t; W 
and G in order that there exist w, V, h, F which also satisfy the above 
conditions. 

Suppose now that the interval 1 and the dise D do not degenerate into 
single points; then the zero of .'?l- constitutes a point in the range of L 
where g is continuous; thus (21) holds, making (25) equivalent to 



J--

Here is the expression for the function g O L: 

(g 0 L)(G) = t/Jrxo(-aj • G, G)

= { 0 if -aj ·GE I and GE D,
+co otherwise. 

In other words g O L is the indicator function of the closed convex subset
C = B n D of II, where· B denotes the strip 

B = {GEII:-�.:;;j · G��}-

Hence, the final form of (25),

-WEàtf;c(G), (26)

which constitutes a friction law in the general sense of section 3. As
announced, this presents the interaction between the vehicle and the
ground by forgetting the wheel. Recall that N, the load supported by the
wheel, is treated as known. 

Let us now discuss. the various cases. 
(i) If b;;;,, afN, the width of the strip B is greater than or equal to the

diameter of the dise D; hence, C = D. This means that the brake is so 
tightly applied that the wheel stays always locked; thus, the interaction
between the vehic\e and the ground amounts to the simple Coulomb
friction. 

(ii) If b < afN the shape of C is shown in Fig. l. Recall that (26)
expresses that GE C and that, in the classical generalized sense, W is an
inward normal vector to C at the point G (in particular, W is necessarily
zero if G is internai to C). The presence of the rectilinear parts in the
boundary of C implies that a value of W parallel to j (i.e., normal to the
wheel plane) corresponds to an infinity of possible values of the force G.
The presence of corner points in the boundary implies that these corner

0 i 

Fig. 1 



values of G correspond to an infinity of values for W, the set of them 
form a closed convex angular region in IT. 

Note that some more refined arguments of convex analysis (see, for 
example, Rockafellar [20], Theorem 23.8) allow us to remove the 
assumption b ,t O made in the foregoing. The case b = 0 is that where no 
brake is applied; then, C reduces to a line segment and (26) describes an 
extreme case of anisotropie friction. Such a side-slipping free wheel is the 
key device of the Amsler planimeter and of some other ancient integrat
ing instruments. 

Remark The above computation involving a pair of mutually transpose 
linear mappings L and L * is more than an occasional mathematical trick. 
It is based on the fact that the rigidity of the wheel constitutes a perfect 

mechanical constraint; in fact, the externat forces applied to the wheel 
may be summarized as: 

(i) the force F applied to the contact point (as the normal component
Nv does not matter here);

(ii) the force -G applied to the wheel centre;
(iii) the axial torque h.

By the definition of a perfect constraint (see more developments and 
examples in Moreau [6, 10]) the (quasi-)equilibrium condition of the 
wheel may be expressed by the fact that the above system of forces 
should yield a zero power for every set of values of the velocity parame
ters V, W, w satisfying the kinematical equations of constraint, namely 
(22). In other words, 

-G · L*(w, V)+F ·V+ hw = 0

must hold for every (w, V); by the definition of transpose mappings, this is 
precisèly (23). 

11 The principle of minimum dissipation 

The purpose of the preceding section was the elimination of V, the sliding 
velocity of the wheel on the ground, and w, the sliding angular velocity in 
the brake. A complementary problem now is t.h.e determinati0n of these 
sliding velocities when the motion of the vehicL: is treated as irnown, i.e., 
when W is �iven. The existence of at least c .1e solution w, V for every 
W E IT results from the preceding section, in view of the compactness of 
C. 

For a given W, the set of the pairs (w, V) satisfying the kinematical 
condition of rigidity of the wheel (22) is an affine subrnanifold i of IR x II, 



namely 

't; = {(w, V) E!RX II :V -waj = W}.

Introducing its indicator function ifJ-'61 , one observes that the subdifferen
tial set atf!'l! (w, V), empty if (w, V)é 'tJ, consists otherwise in the subspace 
of IR x II orthogonal to i; this is precisely the set of the pairs (h, F)

satisfying the quasi-equilibrium condition (23) for some G. Thus, (22) 
and (23) are equivalently condensed into 

(h, F) E atf!'l! (w, V). (27) 

(Regarding such an interpretation of perfect constraints as 'resistance 
laws' with pseudopotentials, see Moreau [8, 10].) 

On the other hand, using section 6, the composite friction law (16) is 
equivalently written as 

(-h, -F)Eacp(w, V),

where cp: IR x II -'>IR de notes the total dissipation function 

cp(w, V)= o/ixo(-w, -V)= t/!i'(-w)+ t/!'b(-V)

= b lwl+fNIVI. 

The elimination of h and F from (27) and (28) yields 

(0, O)Eat/!'l! (w, V)+acp(w, V).

(28) 

(29) 

(30) 

Since the function cp is continuous, the addition rule for subdifferentials
(cf., Moreau [ 4] or the books [19-22]) may be applied so that (30) exactly 
expresses that (w, V) is a point of !RX II, where the function o/'I! + cp attains 
its minimum. Recalling that the function o/ii takes the value zero on 'lJ

and +oo elsewhere, one concludes as follows. 
If W is given, the values of w, V solving the problem minimize the 

dissipation function (29) under the kinematical condition (18). 
Consequently, if one is only interested in the unknown w, it turns out 

that the values of it which salve the problems are exactly the points of 1R 
where the function 

w�fNIW+wajl+b lwl 

attains its minimum. 

Remark The preceding expresses a minimization 'principle' for the 
dissipation fonction restricted to the set of the 'kinematically admissible' 
velocities. The same is a cictssical feature in plasticity theory. (Concerning 
the use of convex analysis in treating the variational properties of 
elastoplastic systems, see Moreau [25].) Another interesting example, 
involving a continuous system, is that of a heavy perfectly flexible 
inextensible rope lying with dry friction on a horizontal plane. Here, the 



velocity distribution entailed in quasistatic evolution by some imposed 
motion of the rope extremities, is characterized by minimizing the dissipa
tion function on the set of the velocity distributions agreeing with these 
end conditions and with inextensibility. 

12 Quotient spaces 

We present now an abstract structure in which the reader will recognize a 
generalization of the foregoing. 

Let us consider a mechanical system in a given configuration. Let 'Y 
denote a linear space, the elements of which constitute, in some general 
sense, the possible values of the velocity of the system if it passes through 
the considered configuration. Let � denote a linear space the elements of 
which are, in a general sense, the possible values of the various forces the 
system may experience in this configuration. These two spaces are placed 
in duality by the bilinear-form 'power' noted (. , . ). 

The spaces 'Y and � may have very diverse functional realizations, 
namely spaces of vector fields, of tensor fields, etc. and the considered 
mathematical procedure can usually be applied to a given mechanical 
situation in several different ways (see, for example Moreau [10], 
Nayroles [14].) 

Let us suppose that the system is subject to a friction force F obeying 
the law 

(31) 

where C is a given convex subset of �
' 

closed in the topologies of the 
dual pair ('Y,�

'
(.,.)). 

In addition, the system experiences a moving constraint or 'driving' 
which implies that its velocity V belongs to a certain affine submanifold 'if; 

of 'Y, a translate of some given linear subspace "W of "V, closed in the 
topologies of the dual pair ('Y,�,(., .)). Specifying 'if; among the various 
translates of 'W amounts to prescribing an element W of the quotient 
space "V/"W: we shall refer to this element as the driving velocity 
(mathematically, 'if; and W are the same thing but using two notations 
seems clearer in mechanical applications ). 

The moving constraint is assumed to be perfect, i.e., the 'force' RE� 
exerted on the system by the driving devic is o, thogona. to the affine 
manifold 'if;, in the sense of the duality ('Y. ffe, (., .)) 

(32) 

The constraint is also assumed to be firm, i.e., the driving device is strong 
enough to provide any value of R satisfying (32). (Concerning the 
concept of the firmness of a mechanical constraint, see Moreau [26].) The 



opposite, G = -R, may be interpreted as the resistance of the system to the 
driving. 

Inertia is neglected, so that the motion is characterized by the quasi
static equation 

G=F. (33) 

The duality ("Il", ;ffe, (., .)) classically induces a duality between the pair 
"11"/'W and 'W 1.. Our purpose is the elimination of V and F, yielding a 
relation between the elements W and G of the latter dual pair. 

Proposition 1 If the above conditions are satisfied, the elements W and 
G satisfy 

(34) 

in the sense of the dual pair of spaces "11"/'W and 'W 1., with D= Cn'W 1.. 
Converse/y, if 'W 1. meets the interior of C (in some topology of the dual 

pair "Il", ;j;), every ( W, G) satisfying (34) corresponds to at least one pair 
( V, F) agreeing with above conditions. 

Under the same topological assumption, the dissipation function 'Y of the 
friction law (34) is defined on "11"/'W by 

-y(W) =min cp(U),
U,s� 

(35) 

where cp denotes the dissipation function of the friction law (31). 

For the proof, we may call L the natural injection of 'W 1. into g; and L * 
its transpose, namely the natural surjection of -:Y onto "V/'W. This allows 
us to write the conditions of the problem in the form 

F= L(G) W= L *(V) 

by which the elimination of V and F from (31) leads to 

-W EL *(at{lc(L( G))). (36) 

Since t/lc O L = t/lo, the computation rule of section 10 yields the 
equivalence of (34) to (36), because the assumption that 'W 1. meets the 
interior of C means the existence of a point of the range of L where t/lc is 
finite and continuous. Without this assumption, however, (36) is easily 
proved to entai! (34); this is the first statement of tliè proposition. 

Finally, (35) results from the computation rule for (t/lcoL)* (see Rock
afellar [24], Theorem 3). 

The above proposition, involving the quotient space "11"/'W, may be 
described as a way of processing some partial information about the 
considered mechanical system. Actually, science is always dealing'with 



partial information about nature; thus, it could be said that similar 
constructions of quotient spaces implicitly underlie every scientific act. 

As in Section 11, let us turn now to the complementary question of 
characterizing the value of V corresponding to a given W, which, inciden
tally, will throw some light on the expression (35) of y. 

Proposition 2 In the affine manifold '€, the set of the elements V 
satisfying the conditions of the problem, if not empty, is equal to the set of 
the points where the restriction <p \" of the dissipation function <p attains a 
finite minimum. 

If moreover, there exists a point in '€ where <p is finite and continuous (in 
some topology of the dual pair 'V, �) the two above sets are equal, even if 
the first one is empty. 

In fact, the conditions VE '8 and FE "W"J. are condensed into 

FE atfi<t:(V), 

while (31) is, by section 7, equivalent to 

-FEa<p(V).

Therefore, the values of V satisfying the conditions of the problem are 
characterized by 

o E atfi�(V)+a<p(V). (37) 

In view of the trivial inclusion 

(38) 

this property implies that the function t/J� + cp (equal to cp on '€ and taking 
the value +oo elsewhere) achieves a finite minimum at the point V. 
Suppose the existence of at least one pair V, F satisfying the conditions of 
the problem; then, in view of (8), 

<p( V)= -(V, F). 

Let V' denote another point where the restriction of <p to '€ attains its 
minimum; then, cp(V)= <p(V'). As V-V'E"W" and FE"W"J., one has 

(V, F) = (V', F); 

thus, 

<p( V')= -(V', F)

which proves that V' satisfie�, with the same F, the condit:Jns of the 
problem. This proves the first part of the proposition. 

Finally the existence of a point in '€ where cp is finite and continuous 
implies that the inclusion (38) is actually an equality of sets (see, for 



example, Moreau [4]; then, the fact that cp Il€ attains a finite minimum at 
the point V is equivalent to (37). 

Remark All the preceding could be adapted to the case where the 
system experiences, in addition, some given constant load, namely GE$. 
This amounts to replacing C by its translate C + G. If this set meets "W.L, 
there may exist, for some given driving velocity W E 'V/"W, a quasi-static 
evolution of the system. 
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