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ABSTRACT
When analyzing temporal networks, a fundamental task is the

identification of dense structures (i.e., groups of vertices that exhibit

a large number of links), together with their temporal span (i.e.,

the period of time for which the high density holds). We tackle this

task by introducing a notion of temporal core decomposition where

each core is associated with its span: we call such cores span-cores.

As the total number of time intervals is quadratic in the size of the

temporal domain T under analysis, the total number of span-cores

is quadratic in |T | as well. Our first contribution is an algorithm

that, by exploiting containment properties among span-cores, com-

putes all the span-cores efficiently. Then, we focus on the problem

of finding only the maximal span-cores, i.e., span-cores that are not

dominated by any other span-core by both the coreness property

and the span. We devise a very efficient algorithm that exploits the-

oretical findings on the maximality condition to directly compute

the maximal ones without computing all span-cores.

Experimentation on several real-world temporal networks con-

firms the efficiency and scalability of our methods. Applications

on temporal networks, gathered by a proximity-sensing infrastruc-

ture recording face-to-face interactions in schools, highlight the

relevance of the notion of (maximal) span-core in analyzing social

dynamics and detecting/correcting anomalies in the data.

1 INTRODUCTION
A temporal network is a representation of entities (vertices), their

relations (links), and how these relations are established/broken

along time. Extracting dense structures (i.e., groups of vertices ex-

hibiting a large number of links among each other), together with

their temporal span (i.e., the period of time for which the high

density is observed) is a key mining primitive. This type of pat-

terns enables fine-grain analysis of the network dynamics and can

be a building block towards more complex tasks (such as finding

temporally recurring subgraphs or anomalously dense ones) and

applications. For instance, they can help in studying the contact

networks among individuals to quantify the transmission oppor-

tunities of respiratory infections, modeling situations where the
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risk of transmission is higher, with the goal of designing mitiga-

tion strategies [20]. Anomalously dense temporal patterns among

entities in a co-occurrence graph (e.g., extracted from the Twit-

ter stream) have also been used to identify, in real-time, events

and buzzing stories [2, 7]. In scientific collaboration and citation

networks these patterns can help understand the dynamics of col-

laboration in successful professional teams, study the evolution of

scientific topics, and detect emerging technologies [15].

In this paper we adopt as measure of density of a pattern the

minimum degree holding among the vertices in the subgraph during

the pattern’s span. The problem of extracting all these patterns

is tackled by introducing a notion of temporal core decomposition

in which each core is associated with its span, i.e., an interval of

contiguous timestamps, for which the coreness property holds.

To the best of our knowledge, this type of core, which we call

span-core, has never been studied so far.

Challenges and contributions.As the total number of time inter-

vals is quadratic in the size of the temporal domainT under analysis,

also the total number of span-cores is, in the worst case, quadratic in

T . Nevertheless, exploiting nice containment properties we devise

an efficient algorithm for computing all the span-cores. Then, we

shift our attention to the problem of finding only themaximal span-

cores, i.e., span-cores that are not dominated by any other span-core

by both the coreness property and the span. A straightforward way

of approaching the maximal-span-core-mining problem is to filter

out non-maximal span-cores during the execution of an algorithm

for computing the whole span-core decomposition. However, as

the maximal ones are usually much less than the overall span-cores,

it would be desirable to have a method that effectively exploits

the maximality property and extracts maximal span-cores directly,

without computing a complete decomposition. The design of an

algorithm of this kind is an interesting challenge, as it contrasts

the intrinsic conceptual properties of core decomposition, based

on which a core of order k can be efficiently computed from the

core of order k−1, of which it is a subset. For this reason, at first

glance, the computation of the core of the highest order would seem

as hard as computing the overall core decomposition. Instead, in

this work we derive a number of theoretical properties about the

relationship among span-cores of different temporal intervals and,

based on these findings, we show how such a challenging goal may

be achieved.

The contributions of this paper can be summarized as follows:

• We introduce the notion of span-core decomposition and maxi-

mal span-core in temporal networks.We characterize structure

and size of the search space, and prove important containment

properties (Section 3).
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• We devise an algorithm for computing all span-cores that

exploits the aforementioned containment properties and is

orders of magnitude faster than a naïve method based on

traditional core decomposition (Section 4).

• We study the problem of finding only the maximal span-cores.

We derive a number of theoretical findings about the relation-

ship among maximal span-cores and exploit them to devise an

algorithm that is more efficient than computing all span-cores

and discarding the non-maximal ones (Section 5).

• We provide a comprehensive experimentation on several real-

world temporal networks, with millions of vertices, tens of

millions of edges, and hundreds of timestamps, which attests

efficiency and scalability of our methods (Section 6).

• We present applications on face-to-face interaction networks,

that illustrate the relevance of the notion of (maximal) span-

core in real-life analyses (Section 7).

The next section overviews the related literature, while Section 8

discusses future work and concludes the paper.

2 BACKGROUND AND RELATEDWORK
Core decomposition. In standard graphs, among the many def-

initions of dense structures, core decomposition plays a central

role as it can be computed in linear time [5, 31], and can speed-

up/approximate dense-subgraph extraction according to various

other definitions. For instance, core decomposition allows for find-

ing cliques more efficiently [14], it can be used to approximate the

densest-subgraph problem [27], and betweenness centrality [22].

Given a simple graph G = (V ,E), let d (S,u) denote the degree
of vertex u ∈ V in the subgraph induced by vertex set S ⊆ V , i.e.,
d (S,u) = |{v ∈ S | (u,v ) ∈ E}|.

Definition 1 (Core Decomposition). The k-core (or core of

order k) of G is a maximal set of vertices Ck ⊆ V such that ∀u ∈
Ck : d (Ck ,u) ≥ k . The set of all k-cores V = C0 ⊇ C1 ⊇ · · · ⊇ Ck∗
(k∗ = argmaxk Ck , ∅) is the core decomposition of G.

Core decomposition has been established as an important tool

to analyze and visualize complex networks [1, 4] in several do-

mains, e.g., bioinformatics [3, 42], software engineering [43], and

social networks [18, 26]. It has been studied under various settings,

such as distributed [33], streaming/maintenance [29, 36], and disk-

based [10], and for various types of graph, such as uncertain [8],

directed [21], and weighted graphs [17].

Core decomposition in multilayer networks has been studied

in [16]. As any subset of layers is allowed in this setting, the total

number of cores is intrinsically exponential. Although temporal

networks can be seen as a special case of multilayer networks

(where each timestamp is interpreted as a layer), the sequentiality

of time represents an important structural constraint: in this paper

we are interested in cores that span a temporal interval, and not

simply any subset of (potentially non-contiguous) timestamps. As a

consequence, the search space and the number of cores are no longer

exponential as in the multilayer case. A type of core decomposition

for temporal networks has been proposed by Wu et al. [41], who

define the (k,h)-core as the largest subgraph in which every vertex

has at least k neighbors and at least h temporal connections with

each of them. Therefore, even in the Wu et al.’s definition the

sequentiality of connections is not taken into account and non-

contiguous timestamps can support the same core. Our temporal

cores have instead a clear temporal collocation and continuous

spans, thus the Wu et al.’s definition cannot be reduced to ours (or

vice versa). As we will see in Section 7, such a temporal collocation

is important in applications.

Patterns in temporal networks. Semertzidis et al. [37] intro-

duce the problem of identifying a set of vertices that are densely

connected in all or at least k timestamps of a temporal network.

Similarly, Jethava and Beerenwinkel [25] formulate the densest-

common-subgraph problem on an input that can be interpreted

as a special type of temporal network, i.e., a set of graphs sharing

the same vertex set. The notion of ∆-clique has been proposed

in [23, 40], as a set of vertices in which each pair is in contact at

least every ∆ timestamps. Complementary approaches study the

problem of discovering dense temporal subgraphs whose edges

occur in short time intervals considering the exact timestamp of

the occurrences [34], and the problem of maintaining the densest

subgraph in the dynamic graph model [13]. A slightly different,

but still related body of literature focuses on frequent evolution

patterns in temporal attributed graphs [6, 12, 24], link-formation

rules in temporal networks [9, 28], and the discovery of dynamic

relationships and events [11] or of correlated activity patterns [19].

3 PROBLEM DEFINITION
We are given a temporal graph G = (V ,T ,τ ), where V is a set of

vertices, T = [0, 1, . . . , tmax ] ⊆ N is a discrete time domain, and

τ : V ×V ×T → {0, 1} is a function defining for each pair of vertices

u,v ∈ V and each timestamp t ∈ T whether edge (u,v ) exists in
t . We denote E = {(u,v, t ) | τ (u,v, t ) = 1} the set of all temporal

edges. Given a timestamp t ∈ T , Et = {(u,v ) | τ (u,v, t ) = 1} is

the set of edges existing at time t . A temporal interval ∆ = [ts , te ]
is contained into another temporal interval ∆′ = [t ′s , t

′
e ], denoted

∆ ⊑ ∆′, if t ′s ≤ ts and t
′
e ≥ te . Given an interval ∆ ⊑ T , we denote

E∆ =
⋂
t ∈∆ Et the edges existing in all timestamps of ∆. Given a

subset S ⊆ V of vertices, let E∆[S] = {(u,v ) ∈ E∆ | u ∈ S,v ∈ S }
and G∆[S] = (S,E∆[S]). Finally, the temporal degree of a vertex u
within G∆[S] is denoted d∆ (S,u) = |{v ∈ S | (u,v ) ∈ E∆[S]}|.

Definition 2 ((k,∆)-core). The (k,∆)-core of a temporal graph

G = (V ,T ,τ ) is (when it exists) a maximal and non-empty set of

vertices ∅ , Ck,∆ ⊆ V , such that ∀u ∈ Ck,∆ : d∆ (Ck,∆,u) ≥ k ,
where ∆ ⊑ T is a temporal interval and k ∈ N+.

A (k,∆)-core is a set of vertices implicitly defining a cohesive

subgraph (wherek represents the cohesiveness constraint), together

with its temporal span, i.e., the interval ∆ for which the subgraph

satisfies the cohesiveness constraint. In the remainder of the paper

we refer to this type of temporal pattern as span-core.

The first problem we tackle in this work is to compute the span-

core decomposition of a temporal graph G, i.e., all span-cores of G.

Problem 1 (Span-core decomposition). Given a temporal graph

G, find the set of all (k,∆)-cores of G.

Unlike standard cores of simple graphs, span-cores are not all

nested into each other, due to their spans. However, they still exhibit

containment properties. Indeed, it can be observed that a (k,∆)-
core is contained into any other (k ′,∆′)-core with less restrictive



degree and span conditions, i.e., k ′ ≤ k , and ∆′ ⊑ ∆. This property
is depicted in Figure 1, and formally stated in the next proposition.

Proposition 1 (Span-core containment). For any two span-

cores Ck,∆, Ck ′,∆′ of a temporal graph G it holds that

k ′ ≤ k ∧ ∆′ ⊑ ∆ ⇒ Ck,∆ ⊆ Ck ′,∆′ .

Proof. The result can be proved by separating the two condi-

tions in the hypothesis, i.e., by separately showing that (i) k ′ ≤ k ⇒
Ck,∆ ⊆ Ck ′,∆, and (ii) ∆′ ⊑ ∆⇒ Ck,∆ ⊆ Ck,∆′ . The first argument

holds as, keeping the span ∆ fixed, the maximal set of vertices C
for which d∆ (C,u) ≥ k is clearly contained in the maximal set of

verticesC ′ for which d∆ (C
′,u) ≥ k ′, if k ′ ≤ k . As far as the second

argument, it can be noted that ∆′ ⊑ ∆⇒ E∆ ⊆ E∆′ , which implies

that ∀u ∈ Ck,∆ : d∆ (Ck,∆,u) ≤ d∆′ (Ck,∆,u). Therefore, all vertices
within Ck,∆ satisfy the condition to be part of Ck,∆′ too. □

Observation 1. For a fixed temporal interval ∆ ⊑ T , finding all
span-cores that have ∆ as their span is equivalent to computing the

classic core decomposition [5] of the simple graph G∆ = (V ,E∆ ).

As the total number of temporal intervals that are contained

into the whole time domain T is |T |( |T |+1)/2, the total number

of span-cores is O ( |T |2 × kmax ), where kmax is the largest value

of k for which a (k,∆)-core exists. The number of span-cores is

thus quadratic in |T |, which may be too large an output for human

inspection. In this regard, it may be useful to focus only on the

most relevant cores, i.e., the maximal ones, as defined next.

Definition 3 (Maximal Span-core). A span-coreCk,∆ of a tem-

poral graph G is said maximal if there does not exist any other span-

core Ck ′,∆′ of G such that k ≤ k ′ and ∆ ⊑ ∆′.

Hence, a span-core is recognized as maximal if it is not domi-

nated by another span-core both on the order k and the span ∆.
Differently from the innermost core (i.e., the core of the highest

order) in the classic core decomposition, which is unique, in our

temporal setting the number of maximal span-cores is O ( |T |2), as,
in the worst case, there may be one maximal span-core for every

temporal interval. However, as observed experimentally, maximal

span-cores are always much less than the overall span-cores: the

difference is usually one order of magnitude or more. The second

problem we tackle in this work is to compute the maximal span-

cores of a temporal graph.

Problem 2 (Maximal Span-core Mining). Given a temporal

graph G, find the set of all maximal (k,∆)-cores of G.

Clearly, one could solve Problem 2 by solving Problem 1 and fil-

tering out all the non-maximal span-cores. However, an interesting

yet challenging question (Section 5) is whether one can exploit the

maximality condition to develop faster algorithms that can directly

extract the maximal ones, without computing all the span-cores.

4 COMPUTING ALL SPAN-CORES
In this section we devise algorithms for computing a complete

span-core decomposition of a temporal graph (Problem 1).

Anaïve approach.As stated in Observation 1, for a fixed temporal

interval ∆ ⊑ T , mining all span-coresCk,∆ is equivalent to comput-

ing the classic core decomposition of the graph G∆ = (V ,E∆ ). A

2,[1,2]

3,[1,2]

1,[1,2]

2,[1,1]

3,[1,1]

1,[1,1]

2,[0,1]

3,[0,1]

1,[0,1]

2,[0,0]

3,[0,0]

1,[0,0]
2,[2,2]

3,[2,2]

1,[2,2]

2,[2,3]

3,[2,3]

1,[2,3]

2,[3,3]

3,[3,3]

1,[3,3]1,[0,3]

2,[1,3]

3,[1,3]

1,[1,3]

2,[0,2]

3,[0,2]

1,[0,2]

Figure 1: Search space: for a temporal span ∆ = [ts , te ], the
(k,∆)-core is depicted as a node labeled “k, [ts , te ]”. An arrow
C1 → C2 denotes C1 ⊇ C2 (distinction between solid and dot-
ted arrows is for visualization sake only).

naïve strategy is thus to run a core-decomposition subroutine [5]

on graph G∆ for each temporal interval ∆ ⊑ T . Such a method has

time complexity O (
∑

∆⊑T ( |∆| × |E |)), i.e., O ( |T |
2 × |E |).

Amore efficient algorithm. Looking at Figure 1 one can observe

that the naïve algorithm only exploits one dimension of the con-

tainment property: it starts from each point on the top level, i.e.,

from cores of order 1, and goes down vertically with the classic

core decomposition. Based on Proposition 1, it is possible to de-

sign a more efficient algorithm that exploits also the “horizontal

containment” relationships.

Example 1. Consider core C
1,[0,2] in Figure 1: by Proposition 1

it holds that it is a subset of both C
1,[0,1] and C1,[1,2]. Therefore, to

compute C
1,[0,2], instead of starting from the whole V , one can start

from C
1,[0,1] ∩C1,[1,2]. Starting from a much smaller set of vertices

can provide a substantial speed-up to the whole computation.

This observation, although simple, produces a speed-up of orders

of magnitude as we will empirically show in Section 6. The next

straightforward corollary of Proposition 1 states that, not only

C
1,[0,2] ⊆ C

1,[0,1]∩C1,[1,2], but this is the best one can get, meaning

that intersecting these two span-cores is equivalent to intersecting

all span-cores structurally containing C
1,[0,2].

Corollary 1. Given a temporal graph G = (V ,T ,τ ), and a tem-

poral interval ∆ = [ts , te ] ⊑ T , let ∆+ = [min{ts + 1, te }, te ] and
∆− = [ts ,max{te − 1, ts }]. It holds that

C1,∆ ⊆ (C1,∆+ ∩C1,∆− ) =
⋂
∆′⊑∆

C1,∆′ .

Example 2. Consider again C
1,[0,2] in Figure 1: Proposition 1

states that it is a subset of C
1,[0,0],C1,[0,1],C1,[1,1],C1,[1,2],C1,[2,2].

Corollary 1 suggests that there is no need to intersect them all, but

only C
1,[0,1] and C1,[1,2]: in fact, C

1,[0,1] ⊆ C
1,[0,0] ∩ C

1,[1,1] and

C
1,[1,2] ⊆ C

1,[1,1] ∩C1,[2,2].

The main idea behind our efficient Span-cores algorithm (whose

pseudocode is given as Algorithm 1) is to generate temporal in-

tervals of increasing size (starting from size one) and, for each ∆
of width larger than one, to start the core decomposition from

(C1,∆+ ∩C1,∆− ), i.e., the smallest intersection of cores containing



Algorithm 1: Span-cores
Input: A temporal graph G = (V , T , τ ).
Output: The set C of all span-cores of G .

1 C← ∅; Q ← ∅; A ← ∅
2 forall t ∈ T do
3 enqueue [t, t ] to Q ; A[t, t ]← V

4 while Q , ∅ do
5 dequeue ∆ = [ts , te ] from Q
6 E∆[A[∆]]← {(u, v ) ∈ E∆ | u ∈ A[∆], v ∈ A[∆]}

7 if |E∆[A[∆]] | > 0 then
8 C∆ ← core-decomposition(A[∆], E∆[A[∆]])

9 C← C ∪ C∆

10 ∆1 = [max{ts − 1, 0}, te ]; ∆2 = [ts , min{te + 1, tmax }]

11 forall ∆′ ∈ {∆1, ∆2 } | ∆
′ , ∆ do

12 if A[∆′] , null then
13 A[∆′]← A[∆′] ∩C1,∆

14 enqueue ∆′ to Q
15 else
16 A[∆′]← C1,∆

C1,∆ (Corollary 1). The intervals to be processed are added to queue

Q , which is initialized with the intervals of size one (Lines 2–3):

these are the only intervals for which no other interval can be used

to reduce the set of vertices from which start the core decomposi-

tion, thus it has to be initialized with the whole vertex set V . The
algorithm utilizes a map A that, given an interval ∆, returns the
set of vertices to be used as a starting set of the core decomposi-

tion on ∆. The algorithm processes all intervals stored in Q , until
Q has become empty (Lines 4–16). For every temporal interval ∆
extracted fromQ , the starting set of vertices is retrieved fromA[∆]
and the corresponding set of edges is identified (Line 6). Unless this

is empty, the classic core-decomposition algorithm [5] is invoked

over (A[∆],E∆[A[∆]]) (Line 8) and its output (a set of span-cores

of span ∆) is added to the ultimate output set C (Line 9).

Afterwards, the two intervals, denoted ∆1 and ∆2, for whichC1,∆

can be used to obtain the smallest intersections of cores containing

them (Corollary 1) are computed at Line 10. For ∆1 (and analogously

∆2), we check whetherA[∆1] has already been initialized (Line 12):

this would mean that previously the other “father” (i.e., smallest

containing core) ofC1,∆1
has been computed, thus we can intersect

C1,∆ with A[∆1] and enqueue ∆1 to be processed (Lines 13–14).

Instead, if A[∆1] was not yet initialized, we initialize it with C1,∆

(Line 16): in this case ∆1 is not enqueued because it still misses one

father to be intersected before being ready for core decomposition.

This procedural update of Q ensures that both fathers of every

interval in Q exist and have been previously computed, thus no

a-posteriori verification is needed.

Example 3. Consider again the search space in Figure 1. Algo-

rithm 1 first processes the intervals [0, 0], [1, 1], [2, 2], and [3, 3]. Then,

it intersectsC
1,[0,0] andC1,[1,1] to initializeC1,[0,1], intersectsC1,[1,1]

and C
1,[2,2] to initialize C1,[1,2], and intersects C

1,[2,2] and C1,[3,3]

to initialize C
1,[2,3]. Then, it continues with the intervals of size 3: it

intersects C
1,[0,1] and C1,[1,2] to initialize C1,[0,2] and so on.

The next theorem formally shows soundness and completeness

of our Span-cores algorithm.

Theorem 1. Algorithm 1 is sound and complete for Problem 1.

Proof. The algorithm generates and processes a subset of tem-

poral intervals X ⊆ {∆ | ∆ ⊑ T }. For every interval ∆ ⊆ X,
it computes all span-cores C∆ = {C1,∆,C2,∆, . . . ,Ck∆,∆} defined
on ∆ by means of the core-decomposition subroutine on the

graph (A[∆],E∆[A[∆]]). The set of verticesA[∆] is equivalent to
(C1,∆+ ∩C1,∆− ) because of Line 13 (Corollary 1) and the fact that ∆
is enqueued (Line 14) only when both fathers have been processed

and the intersection done. The correctness of doing the classic core

decomposition is guaranteed by Observation 1.

As for completeness, it suffices to show that the intervals ∆ < X
that have not been processed by the algorithm do not yield any

span-core. The algorithm generates all temporal intervals size by

size, starting from those of size one and then going to larger sizes.

This is done by maintaining the queueQ . As said above, an interval

∆ is enqueued as soon as bothC1,∆+ andC1,∆− have been processed.

Thus, an interval ∆ is not inX only if eitherC1,∆+ orC1,∆− does not

exist. In this case C1,∆ and all other Ck,∆ do not exist as well. □

Discussion. Algorithm 1 exploits the “horizontal containment”

relationships only at the first level of the search space. For a given

∆, once the restricted starting set of vertices has been defined for

k = 1, the traditional core decomposition is started to produce

all the span-cores of span ∆. In other words, for k > 1 only the

“vertical containment” is exploited. Consider the span-core C
3,[1,2]

in Figure 1: we know that it is a subset ofC
2,[1,2] (“vertical” ) and of

C
3,[1,1] andC3,[2,2] (“horizontal” ). One could consider intersecting

all these three span-cores before computing C
3,[1,2]. We tested this

alternative approach, but concluded that the overhead of computing

intersections and data-structure maintenance was outweighing the

benefit of starting from a smaller vertex set.

The worst-case time complexity of Algorithm 1 is equal to the

naïve approach, however in practice it is orders of magnitude faster,

as shown in Section 6.

5 COMPUTING MAXIMAL SPAN-CORES
In this section we focus on Problem 2: computing the maximal

span-cores of a temporal graph.

A filtering approach. As anticipated above, a straightforward

way of solving this problem consists in filtering the span-cores

computed during the execution of Algorithm 1, so as to ultimately

output only the maximal ones. This can easily be accomplished

by equipping Algorithm 1 with a data structureM that stores the

span-core of the highest order for every temporal interval ∆ ⊑ T
that has been processed by the algorithm. Moreover, at the storage

of a span-core Ck,∆ inM, the span-cores previously stored inM

for subintervals of the temporal interval ∆ and with the same order

k are removed fromM. This removal operation, together with the

order in which span-cores are processed, ensures thatM eventually

contains only the maximal span-cores.

Efficientmaximal-span-core finding.Our next goal is to design
a more efficient algorithm that extracts maximal span-cores directly,

without computing complete core decompositions, passing over

more peripheral ones, and without generating all temporal cores.

This is a quite challenging design principle, as it contrasts the in-

trinsic structural properties of core decomposition, based on which



a core of order k is usually computed from the core of order k−1,
thus making the computation of the core of the highest order as

hard as computing the overall decomposition. Nevertheless, thanks

to theoretical properties that relate the maximal span-cores to each

other, in the temporal context such a challenge can be achieved. In

the following we discuss such properties in detail, by starting from

a result that has already been discussed above, but only informally.

Consider the classic core decomposition in a standard

(non-temporal) graphG (Definition 1) and letCk∗ [G] denote the in-
nermost core ofG , i.e., the non-empty k-core ofG with the largest k .

Lemma 1. Given a temporal graphG = (V ,T ,τ ), let CM be the set

of all maximal span-cores of G, and Cinner = {Ck∗ [G∆] | ∆ ⊑ T } be
the set of innermost cores of all graphsG∆. It holds that CM ⊆ Cinner.

Proof. Every Ck,∆ ∈ CM is the innermost core of the non-

temporal graph G∆: else, there would exist another core Ck ′,∆ , ∅
with k ′ > k , implying that Ck,∆ < CM . □

Lemma 1 states that each maximal span-core is an innermost

core of a G∆, for some temporal interval ∆ ⊑ T . Hence, there can
exist at most one maximal span-core for every ∆ ⊑ T (while an

interval ∆ may not yield any maximal span-core). The key question

to design an efficient maximal-span-core-mining algorithm thus

becomes how to extract innermost cores of the graphs G∆ more

efficiently than by computing the full core decompositions of all

G∆. The answer to this question comes from the result stated in the

next two lemmas (with Lemma 2 being auxiliary to Lemma 3).

Lemma 2. Given a temporal graph G = (V ,T ,τ ), and three tem-

poral intervals ∆ = [ts , te ] ⊑ T , ∆′ = [ts − 1, te ] ⊑ T , and
∆′′ = [ts , te +1] ⊑ T . The innermost core Ck∗ [G∆] is a maximal

span-core of G if and only if k∗ > max{k ′,k ′′} where k ′ and k ′′ are
the orders of the innermost cores of G∆′ and G∆′′ , respectively.

Proof. The “⇒” part comes directly from the definition of maxi-

mal span-core (Definition 3): if k∗ were not larger thanmax{k ′,k ′′},
then Ck∗ [G∆] would be dominated by another span-core both on

the order and on the span (as both ∆′ and ∆′′ are superintervals of
∆). For the “⇐” part, from Lemma 1 and Proposition 1 it follows

that max{k ′,k ′′} is an upper bound on the maximum order of a

span-core of a superinterval of ∆. Therefore, k∗ > max{k ′,k ′′}
implies that there cannot exist any other span-core that dominates

Ck∗ [G∆] both on the order and on the span. □

Lemma 3. Given G , ∆, ∆′, ∆′′, k ′, and k ′′ defined as in Lemma 2,

let Ṽ = {u ∈ V | d∆ (V ,u) > max{k ′,k ′′}}, and let Ck∗ [G∆[Ṽ ]] be

the innermost core of G∆[Ṽ ]. If k∗ > max{k ′,k ′′}, then Ck∗ [G∆[Ṽ ]]

is a maximal span-core; otherwise, no maximal span-core exists for ∆.

Proof. Lemma 2 states that, to be recognized as a maximal

span-core, the innermost core of G∆ should have order larger than

max{k ′,k ′′}. This means that, if the innermost core ofG∆ is a maxi-

mal span-core, all vertices u < Ṽ cannot be part of it. Therefore,G∆

yields a maximal span-core only if the innermost core of subgraph

G∆[Ṽ ] has order k∗ > max{k ′,k ′′}. □

Lemma 3 provides the basis of our efficient method for extracting

maximal span-cores. Basically, it states that, to verify whether a

certain temporal interval ∆ = [ts , te ] yields a maximal span-core

Algorithm 2:Maximal-span-cores
Input: A temporal graph G = (V , T , τ ).
Output: The set CM of all maximal span-cores of G .

1 CM ← ∅
2 K ′[t ]← 0, ∀t ∈ T
3 forall ts ∈ [0, 1, . . . , tmax ] do
4 t ∗ ← max{te ∈ [ts , tmax ] | E

[ts ,te ]
, ∅}

5 k ′′ ← 0

6 forall te ∈ [t ∗, t ∗−1, . . . , ts ] do
7 ∆← [ts , te ]
8 lb ← max{K ′[te ], k ′′ }
9 Vlb ← {u ∈ V | d∆ (V , u ) > lb }

10 E∆[Vlb ]← {(u, v ) ∈ E∆ | u ∈ Vlb, v ∈ Vlb }
11 C ← innermost-core(Vlb, E∆[Vlb ])
12 k∗ ← order of C
13 if k∗ > lb then
14 CM ← CM ∪ {C }

15 k ′′ ← max{k ′′, k∗ }; K ′[te ]← max{K ′[te ], k ′′ }

(and, if so, compute it), there is no need to consider the whole

graphG∆, rather it suffices to start from a smaller subgraph, which

is given by all vertices whose temporal degree is larger than the

maximum between the orders of the innermost cores of intervals

∆′ = [ts−1, te ] and ∆
′′ = [ts , te+1]. This finding suggests a strategy

that is opposite to the one used for computing the overall span-core

decomposition: a top-down strategy that processes temporal inter-

vals starting from the larger ones. Indeed, in addition to exploiting

the result in Lemma 3, this way of exploring the temporal-interval

space allows us to skip the computation of complete core decompo-

sitions of the whole “singleton-interval” graphs {G
[t,t ] }t ∈T , which

may easily become a critical bottleneck, as they are the largest ones

among the graphs induced by temporal intervals.

The Maximal-span-cores algorithm. Algorithm 2 iterates over

all timestamps ts ∈ T in increasing order (Line 3), and for each ts
it first finds all the maximal span-cores that have span starting in

ts . This way of proceeding ensures that a span-core that is recog-

nized as maximal will not be later dominated by another span-core.

Indeed, an interval [ts , te ] can never be contained in another inter-

val [t ′s , t
′
e ] with ts < t ′s . For a given ts , all maximal span-cores are

computed as follows. First, the maximum timestamp ≥ ts such that

the corresponding edge set E
[ts ,te ]

is not empty is identified as t∗

(Line 4). Then, all intervals ∆ = [ts , te ] are considered one by one

in decreasing order of te (Lines 6–7): this again guarantees that a

span-core that is recognized as maximal will not be later dominated

by another span-core, as the intervals are processed from the largest

to the smallest. At each iteration of the internal cycle, the algorithm

resorts to Lemma 3 and computes the lower bound lb on the order

of the innermost core ofG∆ to be recognized as maximal, by taking

the maximum between K ′[te ] and k
′′
(Line 8). K ′ is a map that

maintains, for every timestamp t ∈ [ts , t
∗
], the order of the inner-

most core of graph G∆′ , where ∆′ = [ts −1, t] (i.e., K
′
[t] stores

what in Lemmas 2–3 is denoted as k ′). Whereas k ′′ stores the order
of the innermost core of G∆′′ , where ∆

′′ = [ts , te + 1]. Afterwards,
the sets of vertices Vlb and of edges E∆[Vlb ] that comply with this

lower-bound constraint are built (Lines 9–10), and the innermost



core of the subgraph (Vlb ,E∆[Vlb ]) is extracted (Lines 11–12). Ulti-

mately, based again on Lemma 3, such a core is added to the output

set of maximal span-cores only if its order is actually larger than lb
(Lines 13–14), and the values of k ′′ andK ′[te ] are updated (Line 15).
Specifically, note that the order k∗ of coreC may in principle be less

than k ′′, as C is extracted from a subgraph of G∆. If this happens,

it means that the actual order of the innermost core of G∆ is equal

to k ′′. This motivates the update rules (and their order) reported in

Line 15.

Theorem 2. Algorithm 2 is sound and complete for Problem 2.

Proof. The algorithm processes all temporal intervals ∆ ⊑ T
yielding a non-empty edge set E∆, in an order such that no interval

is processed before one of its superintervals: this guarantees that a

span-core recognized as maximal will not be dominated by another

span-core found later on. For every ∆ it extracts a core C that is

used as a proxy of the innermost core of graph G∆. C is added

to the output set CM only if Lemma 3 recognizes it as a maximal

span-core, otherwise it is discarded. This proves the soundness of

the algorithm. Completeness follows from Lemma 1, which states

that to extract all maximal span-cores it suffices to focus on the

innermost cores of graphs {G∆ | ∆ ⊑ T }, and Lemma 3 again,

which states the condition for a proxy coreC to be safely discarded

because it is a non-maximal span-core. □

Discussion. The worst-case time complexity of Algorithm 2 is

the same as the algorithm for computing the overall span-core

decomposition, i.e., O ( |T |2 × |E |). It is worth mentioning that it is

not possible to do better than this, as the output itself is potentially

quadratic in |T |. However, as wewill show in Section 6, the proposed

algorithm is in practice much more efficient than computing the

overall span-core decomposition and filtering out the non-maximal

span-cores as, in this case, we avoid the visit of portions of the span-

core search space and the computations are run over subgraphs of

reduced dimensions.

To conclude, we discuss how the crucial operation of building the

subgraph (Vlb ,E∆[Vlb ]) may be carried out efficiently in terms of

both time and space. Consider a fixed timestamp ts ∈ [0, . . . , tmax ].

The following reasoning holds for every ts . Let E
− (te ) = E

[ts ,te ]
\

E
[ts ,te+1]

be the set of edges that are in E
[ts ,te ]

but not in E
[ts ,te+1]

, for

te ∈ [ts , . . . , t
∗− 1]. As a first general step, for each ts , we compute

and store all edge sets {E− (te )}te ∈[ts ,t ∗−1]. These operations can

be accomplished in O ( |T | × |E |) overall time, because every E− (te)
can be computed incrementally from E

[ts ,te ]
as E− (te ) = {(u,v ) ∈

E
[ts ,te ]

| τ (u,v, te +1) = 0}. Moreover, for any timestamp te , we
keep a map D storing all vertices of G

[ts ,te ]
organized by degree.

Specifically, the set D[k] contains all vertices having degree > k
in G

[ts ,te ]
. Every vertex in D is thus replicated a number of times

equal to its degree. This way, the overall space taken byD is O ( |E |),
i.e., as much space as G. D is initialized as empty (when te = t∗)
and repeatedly augmented as te decreases, by a linear scan of the

various E− (te ). The overall filling of D (for all te ) therefore takes
O ( |T |× |E |) time. Then, the desiredVlb can be computed in constant

time simply as Vlb = D[lb].
As for E∆[Vlb ], for any te , we first reconstruct E

[ts ,te ]
as

E
[ts ,te +1]

∪ E− (te ), having previously computed E
[ts ,te +1]

. Note that

storing all E− (te ) takes O ( |E |) space. That is why we store all

Table 1: Temporal graphs used in the experiments.

window

dataset |V | |E | |T | size (days) domain

ProsperLoans 89k 3M 307 7 economic

Last.fm 992 4M 77 21 co-listening

WikiTalk 2M 10M 192 28 communication

DBLP 1M 11M 80 366 co-authorship

StackOverflow 2M 16M 51 56 question answering

Wikipedia 343k 18M 101 56 co-editing

Amazon 2M 22M 115 28 co-rating

Epinions 120k 33M 25 21 co-rating

E− (te ) and reconstruct E
[ts ,te ]

afterward (instead of storing the

latter, which would take O ( |T | × |E |) space). E∆[Vlb ] is ultimately

derived by a linear scan of E
[ts ,te ]

, taking all edges in E
[ts ,te ]

having

both endpoints in Vlb . This way, the step of building E∆[Vlb ] for
all te takes again O ( |T | × |E |) overall time.

6 EXPERIMENTS
In this section we present a performance comparison of our algo-

rithms, as well as a characterization of span-cores extracted.

Datasets.We use eight real-world datasets recording timestamped

interactions between entities.
1
For each dataset we select a window

size to define a discrete time domain, composed of contiguous

timestamps of the same duration, and build the corresponding

temporal graph. If multiple interactions occur between two entities

during the same discrete timestamp, they are counted as one. The

characteristics of the resulting temporal graphs, along with the

selected window sizes (in days), are reported in Table 1.

ProsperLoans represents the network of loans between the users

of Prosper, a marketplace of loans between privates. Last.fm records

the co-listening activity of the Last.fm streaming platform: an edge

exists between two users if they listened to songs of the same band

within the same discrete timestamp.WikiTalk is the communica-

tion network of the English Wikipedia. DBLP is the co-authorship

network of the authors of scientific papers from the DBLP com-

puter science bibliography. StackOverflow includes the answer-

to-question interactions on the stack exchange of the stackover-

flow.comwebsite.Wikipedia connects users of the ItalianWikipedia

that co-edited a page during the same discrete timestamp. Finally,

for both Amazon and Epinions, vertices are users and edges rep-

resent the rating of at least one common item within the same

discrete timestamp.

Implementation. All methods are implemented in Python (v.

2.7.12) and compiled by Cython. The experiments run on a ma-

chine equipped with Intel Xeon CPU at 2.1GHz and 64GB RAM.

Reproducibility. Our code is available at goo.gl/4WmrPc.

6.1 Span-core decomposition
We compare the twomethods to compute a complete decomposition

described in Section 4, i.e., the baseline Naïve-span-cores and the

proposed Span-cores, in terms of execution time, memory, and total

number of vertices input to the core-decomposition subroutine. We

report these measures, together with the numbers of span-cores

and maximal span-cores of each dataset, in Table 2.

1
All datasets are made available by the KONECT Project (http://konect.cc), except for

StackOverflow which is part of the SNAP Repository (http://snap.stanford.edu).

https://goo.gl/4WmrPc
http://konect.cc
http://snap.stanford.edu


Table 2: Evaluation of the proposed algorithms: number of output
span-cores, time, memory, and number of processed vertices.

# output time memory # processed

dataset method span-cores (s) (GB) vertices

ProsperLoans

Naïve-span-cores
4 273

101 2 55M

Span-cores 46 2 27M

Naïve-maximal-span-cores
293

48 2 27M

Maximal-span-cores 8 2 980k

Last.fm

Naïve-span-cores
126 819

707 0.5 2M

Span-cores 199 0.5 531k

Naïve-maximal-span-cores
1 670

202 0.5 531k

Maximal-span-cores 57 0.5 271k

WikiTalk

Naïve-span-cores
19 693

322 302 36 25B

Span-cores 1 084 36 555M

Naïve-maximal-span-cores
632

1 194 36 555M

Maximal-span-cores 126 35 2M

DBLP

Naïve-span-cores
6 135

10 506 11 1B

Span-cores 278 11 150M

Naïve-maximal-span-cores
268

292 11 150M

Maximal-span-cores 116 11 620k

StackOverflow

Naïve-span-cores
1 238

5 360 10 1B

Span-cores 245 10 127M

Naïve-maximal-span-cores
129

245 10 127M

Maximal-span-cores 128 10 3M

Wikipedia

Naïve-span-cores
125 191

17 155 4 1B

Span-cores 522 4 35M

Naïve-maximal-span-cores
2 147

537 4 35M

Maximal-span-cores 201 4 320k

Amazon

Naïve-span-cores
29 318

10 415 18 2B

Span-cores 409 18 247M

Naïve-maximal-span-cores
303

580 18 247M

Maximal-span-cores 123 18 688k

Epinions

Naïve-span-cores
63 111

699 4 39M

Span-cores 186 4 3M

Naïve-maximal-span-cores
320

201 4 3M

Maximal-span-cores 154 5 129k

In terms of execution time, Span-cores considerably outperforms

Naïve-span-cores in all datasets, achieving a speed-up from 2.1 up

to two orders of magnitude. The speed-up is explained by the num-

ber of vertices processed by the core-decomposition subroutine,

which is the most time-consuming step of the algorithms albeit lin-

ear in the size of the input subgraph. The difference of this quantity

between Span-cores and Naïve-span-cores reaches an order of mag-

nitude in theWikiTalk,Wikipedia, and Epinions dataset, confirming

the effectiveness of the “horizontal containment” relationships. The

memory required by the two procedures is comparable in all cases

since the largest structures needed in memory are the temporal

graph itself and the set C of all span-cores.

6.2 Maximal span-cores
We compare our Maximal-span-cores algorithm to the naïve ap-

proach, described ad the beginning of Section 5, based on running

the Span-cores algorithm and filtering out the non-maximal span-

cores, which we refer to as Naïve-maximal-span-cores. The results
are again reported in Table 2.

Naïve-maximal-span-cores behaves very similarly to Span-cores:
they only differ for the filtering mechanismwhich requires a few ad-

ditional seconds in most cases. Maximal-span-cores is much faster

than Naïve-maximal-span-cores for all datasets, with a speed-up

from 1.3 for the Epinions dataset to 9.4 for the WikiTalk dataset.

Except for the datasets Last.fm and Epinions, the difference in terms

of number of processed vertices is between two and three orders

of magnitude, proving the advantages of the top-down strategy

of Maximal-span-cores, which avoids the visit of portions of the

span-core search space and handles the overhead of reconstructing

graphs, i.e., (Vlb ,E∆[Vlb ]), efficiently. Finally, the memory require-

ments of the two methods are comparable for all datasets.
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Figure 2: Top plots: number of all span-cores and maximal span-
cores (y axis) as a function of the order k (x axis). Bottom plots: av-
erage size of all span-cores and maximal span-cores (y axis) as a
function of the order k (x axis).

Characterization.We finally compare and characterize all span-

cores against maximal span-cores. At first, Table 2 shows that span-

cores are at least one order of magnitude more numerous than

maximal span-cores for all datasets, with the maximum difference

of two orders of magnitude for the Epinions dataset.
In Figure 2 we show the number (top) and the average size

(bottom) of span-cores and maximal span-cores as a function of the

order k for the DBLP and Epinions datasets. For both datasets, the

number of maximal span-cores is at least one order of magnitude

lower than the total number of span-cores up to a quarter of the

k domain, where the span-cores are more numerous. Instead, in

the rest of the domain, they mostly coincide due to the maximality

condition over |∆|. The average size is also smaller for maximal

span-cores, difference that wears thin when the gap between the

numbers of span-cores and maximal span-cores starts decreasing

since, for high values of k , most (or all) span-cores are maximal.

Figure 3 shows a different picture when numbers and average

sizes are shown as a function of the size of the span |∆|. For both
datasets, the number of span-cores and maximal span-cores de-

creases with, on average, a constant gap of one and two orders of

magnitude, respectively, since the number of intervals decreases as

|∆| increases. On the other hand, the behavior of the average size

is quite different between the two datasets. For the DBLP dataset,

the average size of span-cores is much higher than the average size

of maximal span-cores for low values of |∆|, then the difference

decreases and vanishes at the end of domain where a maximal

span-core of |∆| = 37 dominates all other span-cores of |∆| ≥ 20.

Instead, for the Epinions dataset, the average size of all span-cores
and maximal span-cores follows the same behavior, with a differ-

ence of less than an order of magnitude, because the maximality

condition over k excludes the largest span-cores from the set of

maximal span-cores.
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Figure 3: Top plots: number of all span-cores and maximal span-
cores (y axis) as a function of the size of the temporal span |∆ | (x
axis). Bottomplots: average size of all span-cores andmaximal span-
cores (y axis) as a function of the size of the temporal span |∆ | (x
axis).

7 APPLICATIONS
In this section we illustrate applications of (maximal) span-cores

in the analysis of face-to-face interaction networks. We use three

datasets gathered by a proximity-sensing infrastructure with a res-

olution of 20 seconds. The first dataset, named PrimarySchool2,
contains the contact events between 242 individuals (232 children

and 10 teachers) in a primary school in Lyon, during two days [39].

The HighSchool2 dataset gives the interactions between students

and teachers (327 individuals overall) of nine classes during five

days in a high school in Marseilles [30]. Finally, the HongKong
dataset describes the interactions of people in a primary school in

Hong Kong for eleven consecutive days [35]. The school population

consists of 709 children and 65 teachers divided into thirty classes.

For all three datasets we use a window size of 5minutes and discard

span-cores of |∆| = 1, i.e., having span of 5 minutes, since they

represent extremely short group interactions, not significant for

our purposes. On these datasets we show three types of interest-

ing temporal patterns, i.e., social activities of groups of students

within a school day, mixing of gender and class, and length of social

interactions in groups.

7.1 Temporal patterns
Temporal activity.We first show how span-cores yield a simple

temporal analysis of social activities of groups of people within

a school day. The left side of Figure 4 reports colormaps of the

order k of the span-cores as a function of their starting time ts (x
axis) and of the size of their temporal span |∆| (y axis), for a school

day of the PrimarySchool and HighSchool datasets. Darker gray
indicates span-cores of high order and slots located in the upper

part of the plots refer to span-cores of long span. In both datasets,

fluctuations of k and |∆| are observed along the day, which can be

2
Available at sociopatterns.org.
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Figure 4: Temporal activity of a school day of the PrimarySchool
and HighSchool datasets: the x axis reports the hour of the day at
which the span of a span-core starts, the y axis specifies the size of
the span (in minutes), and the color scale shows the order k . At a
glance, it can be observed that the temporal structure of the span-
core decomposition detects time-evolving community structures in
the original datasets (left plots) that completely disappears in the
reshuffled datasets (right plots).

related to school events. Around 10 a.m., the size of the span |∆|
reaches a local maximum in correspondence to the morning break,

which means that students establish long-lasting interactions that

hold beyond the break itself. Moreover, when classes gather for the

lunch break, the order k reaches its maximum value since students

tend to form larger and more cohesive groups.

In order to verify that these results are not trivially derived from

the general temporal activity, as simply given by the number of

interactions in each timestamp, we compare our findings to a null

model. At each timestamp of the temporal graphs, we reshuffle

the edges by repeating the following operations, up to when all

edges have been processed: select at random two edges with no

common vertices, e.g., (u,v ) and (w, z), and transform them into

(u, z) and (w,v ). This reshuffling preserves degree of each vertex

in each timestamp and global activity (i.e., number of contacts per

timestamp), but destroys correlations between edges of successive

timestamps. In the right side of Figure 4 we show the results of the

temporal analysis described above for the reshuffled datasets. In

both, the values of |∆| and k reached are much smaller than in the

original datasets. The size of the span |∆| is always shorter than
20 minutes, while in the original datasets it is much longer, up to

170 minutes, and the order k is always equal to 1, compared to the

original maximum of 5. The time-evolving communities detected in

the original datasets are completely lost after the reshuffling, where

no temporal structure of the span-cores is observed. This proves

that the temporal schema of span-core decomposition is not simply

a consequence of the overall activity but that span-cores represent

a concrete method to detect complex structures evolving in time.

http://www.sociopatterns.org


Figure 5: Temporal evolution (time on the x axis) of average gender
purity and average class purity (y axis) of the maximal span-cores
of the PrimarySchool dataset. Original data on the left, reshuffled
data on the right.

Mixing patterns. We now show analysis of mixing patterns of

students with respect to gender and class. Such metadata is indeed

available for the individuals of the PrimarySchool dataset. We de-

fine as gender purity of a span-core the fraction of individuals of

the most represented gender within the span-core. Class purity is

analogously defined. The left plot of Figure 5 reports the temporal

evolution of gender and class purity during the first school day

of the PrimarySchool dataset: at each timestamp t , the curves rep-
resent the average purities of the maximal span-cores spanning t .
During lessons, when students are in their own classes, class purity

has naturally very high values, very close to 1. Gender purity is

instead rather low. On the other hand, when students are gathered

together, during the morning break at 10 a.m. and the lunch break

between 12 a.m. and 2 p.m., the situation is overturned: gender

purity reaches large values while class purity drastically decreases.

This shows that primary school students group with individuals of

the same class, disregarding the gender, only when they are forced

by the schedule of the lessons, but prefer to interact with students

of the same gender during breaks, in agreement with a previous

study of the same dataset [38].

The right plot of Figure 5 shows the temporal evolution of gender

and class purity with gender and class randomly reshuffled among

individuals. The two curves are more flat and the anti-correlation

between them completely vanishes. This testifies that the results on

the original dataset are not simply due to the relative abundance of

individuals of each type interacting at each time, but reflect genuine

mixing patterns over time.

Interaction length. Finally, we analyze the duration of interac-

tions of social groups in schools by studying the distribution of the

size of the span of the maximal span-cores of the three datasets (Fig-

ure 6). All distributions are extremely skewed with broad tails: most

maximal span-cores have duration less than 1 hour, but durations

much larger than the average can also be observed. Interestingly,

similar functional shapes are shown by the three datasets, confirm-

ing a robust statistical behavior. We also note that similar robust

broad distributions have been observed for simpler characteristics

of human interactions such as the statistics of contact durations

[30, 39]. Outliers appear also at very large durations, especially for

the HongKong dataset that has maximal span-cores lasting up to 83

hours. Group interactions of such long span are clearly abnormal

and represent outliers in the distributions. We will show, in the
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Figure 6: Distribution of the size of the span |∆ | of the maximal
span-cores. The x axis reports the size of the span (in minutes),
while the y axis the percentage of maximal span-cores having a
given size of the span.

following of this section, how to exploit such outliers to detect both

irregular contacts and anomalous temporal intervals.

7.2 Anomaly detection
The identification of anomalous behaviors in temporal networks

has been the focus of several studies in the last few years [32, 35].

Based on the above findings, we devise an extremely simple proce-

dure to detect anomalous contacts and intervals of the HongKong
dataset that exploits maximal span-cores. The topmost plot of Fig-

ure 7 reports the number of contacts, i.e., edges, for each timestamp

of the original HongKong dataset. It is easy to notice that there is a

lot of constant anomalous activity between school days and during

the weekend, i.e., days six and seven. Unexpectedly, the number of

contacts per timestamp does not drop to zero because proximity

sensors were left in each class, close to each other, at the end of

the lessons. In order to automatically detect these steady activity

patterns, we apply the following procedure: (i ) find a set of anoma-

lously long temporal intervals supporting maximal span-cores, (ii )
identify anomalous vertices, and, (iii ) filter out anomalous contacts.

The first step of this procedure requires to find the set of temporal

intervals I = {∆ ⊑ T | Ck,∆ ∈ CM ∧ |∆| > tr } that are the span of

a maximal span-coreCk,∆ with size longer than a certain threshold

tr . Then, for each timestamp t ∈ T , select as anomalous all those

vertices that appear in the span-cores {C1,∆ | ∆ ∈ I ∧ t ∈ ∆}, i.e.,
the span-cores of k = 1 whose span is in I and contains t . Finally,
at each timestamp t ∈ T , filter out the contacts having at least an
anomalous endpoint at time t . Coherently to the distribution of the

size of the span of the maximal span-cores, we select the threshold

tr = 22 (110 minutes). The results of this filtering procedure are

shown in the middle plot of Figure 7. The number of contacts

during school days remains substantially unchanged, while the

activity noticeably decreases in-between. Identifying as positives

the contacts occurring when the school is closed and as negatives

all the others (i.e., when the school is open), this approach achieves

a precision of 0.91 and a recall of 0.64.

We can refine this anomaly detection process by identifying, in

addition to anomalous contacts, also anomalous temporal intervals.

We define a timestamp t ∈ T as anomalous if the ratio between the

number of original contacts (top plot of Figure 7) and the number of

filtered contacts (middle plot of Figure 7) exceeds a given threshold.

We apply this further filtering to the HongKong dataset with a

threshold of 1.5 and report the results in the bottommost plot of



Figure 7: HongKong dataset: number of contacts (y axis) per times-
tamp (x axis) in the original data (top), after filtering anomalous
contacts (middle), and after filtering anomalous contacts and inter-
vals (bottom).

Figure 7. The number of contacts when the school is closed drops to

zero, while the activity during school days is not modified, except

for the last one, which is affected by the proximity to the end of the

time domain. The overall procedure yields a slightly higher value

of precision, 0.93, and substantially improves the recall to 0.99.

8 CONCLUSIONS
In this paper we introduced a notion of temporal core decompo-

sition where each core is associated with its span, and developed

efficient algorithms for computing all the span-cores, and only the

maximal ones. In our future work we will exploit span-cores for

the computation of related notions, such as community search or

densest subgraph in temporal networks. We will also study the role

of maximal span-cores with large ∆ in spreading processes on tem-

poral networks. Furthermore, span-cores represent features that

can be used for network finger-printing and classification, model

validation, and could provide support for new ways of visualizing

large-scale time-varying graphs.
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