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Abstract Normal segmentation of geometric range data has been a common
practice integrated in the building blocks of point cloud registration. Most well-
known point to plane and plane to plane state-of-the-art registration techniques
make use of normal features to ensure a better alignment. However, the latter is
influenced by noise, pattern scanning and difference in densities. Consequently,
the resulting normals in both a source point cloud and a target point cloud will
not be perfectly adapted, thereby influencing the alignment process, due to weak
inter surface correspondences. In this paper, a novel approach is introduced, ex-
ploiting normals differently, by clustering points of the same surface into one
topological pattern and replacing all the points held by this model by one rep-
resentative point. These particular points are then used for the association step
of registration instead of directly injecting all the points with their extracted nor-
mals. In our work, normals are only used to distinguish different local surfaces
and are ignored for later stages of point cloud alignment. This approach enables
us to overcome two major shortcomings; the problem of correspondences in dif-
ferent point cloud densities, noise inherent in sensors leading to noisy normals. In
so doing, improvement on the convergence domain between two reference frames
tethered to two dissimilar depth sensors is considerably improved leading to ro-
bust localization. Moreover, our approach increases the precision as well as the
computation time of the alignment since matching is performed on a reduced set
of points. Finally, these claims are backed up by experimental proofs on real data
to demonstrate the robustness and the efficiency of the proposed approach.
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1 Introduction
In a generic representation of the environment, point clouds can be viewed as a col-
lection of 3D point entities bearing a color or intensity information depending on the
acquisition sensor (LiDAR, RGBD or time of flight cameras). To obtain a more mean-
ingful information about the semantic structure of the environment, it is more instructive
to rather consider a collective set of points representing the same surface. From there,
several surface indices can be extracted such as their normals, curvatures and region
bounds for example. Moreover, due to limitation of the field of view of 3D sensors,



coupled with the complex geometry of the scanned surrounding, registration methods
are required to be more robust in order to deal with data taken from large viewpoints as
well as different sensor resolution.

Extraction of surface normals is a double-edged tool, which guarantees good re-
sults if accurately exploited, but can also lead to divergence of the alignment process
if badly used. Since normal features are based essentially on the estimation of neigh-
bouring points attributed to the same surface in general, they are however subjected to
sensor noise, resolution and scanning patterns. Consequently, this reverberates on the
alignment process due to weak inter surface correspondences between the source and
the target point cloud. Furthermore, with the advancement of 3D sensors in the market,
the problematic of sparse to dense registration has emerged out [1]. In this trend, soft-
ware packages such as PCL [25] has made the identification and the treatment of the
above mentioned problem more accessible. Eventually, an elegant solution provided by
a successful sparse to dense point cloud alignment, results in interesting robotics ap-
plications such as the case of a monocular camera localization in a 3D model [33,7] or
augmenting the environment with more consistent data as in [17].

In order to support the claims stated above, an illustration of sparse to dense regis-
tration is given in Fig. 1. A dense point cloud is obtained from a 3D LiDAR Leica P20 3

scanner, whilst the sparser one is extracted from an HDL-32E Velodyne 4. Figures 1 (g),
(h), (i), (j) are samples of various places in a scene. The 3D points of the source and
target clouds are represented in blue and green respectively, whilst their normals are
in white and red. Because of the large discrepancies in density between the two point
clouds, registration methods based on the classical point-to-point ICP metrics fail to
provide a good pose estimate. The difficulty lies in the fact that there are no direct cor-
respondences between the source and the target point clouds. Moreover, these figures
also depict the dissimilarity between normals pertaining to the same surface, which the-
oretically should have the same orientations. This change is due mainly to the presence
of wide amount of noise, pattern scanning, distortion and varying resolutions. This is
the major problem of the methods that use geometric features according to [28,13].

In this paper, a novel registration method is introduced, exploiting normals differ-
ently. It does not seek for each point its nearest neighbor sharing the same normal, nor
introducing normals in the error function or in the minimization process. To remediate
for the disturbances in the registration framework, hence inaccuracies in the final result,
a voxelization is performed on both clouds to maintain the topological details of the
scene. Then for each voxel, a normal-based classification of points is done. Thereafter,
only one point of each local surface is maintained for the association step. This pro-
cess results into points which offers better compatibility in terms of surface represent-
ation between the source and the target point clouds. This approach is not about points
sampling, but rather an improved selection of points is achieved for the matching stage.
Thereon, the process evolves in a classical ICP like framework for pose estimation.

The contributions of this paper are threefold. The first main contribution is to per-
form an efficient voxelization method operating on top of a clustering technique for
electing one representative point for each local surface. This process aims to establish

3 Leica P20: http://leica-geosystems.com/
4 Velodyne LiDAR: http://velodynelidar.com/
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Figure 1. Dense to sparse registration: (a) point cloud obtained from the Leica P20 LiDAR with
88556380 points; (f) point cloud obtained from an HDL-32E Velodyne with 69984 points; (b)
and (g) are their corresponding point clouds with normal vectors; (c) registration result of point
cloud (a) and (f) using our proposed method; (h) normal vectors corresponding to (c); (d), (e) and
(i) are exploded views of places indicated in (a); (j) is a close up view of (i).

two sets of points which are most likely to be matched, hence providing good corres-
pondences. It consists of three stages: voxelization, clustering and matching. As a result,
it:

1. reduces the amount of data to be processed during the matching phase,
2. improves the matching robustness by allowing only the association of compatible

points,
3. avoids wrong associations that decrease alignment accuracy,
4. does not use unnecessary points that do not provide further information more than

the ones used,
5. improves convergence and accuracy simultaneously.

The second contribution is that the proposed method is totally independent of the
density (number of points, scanning resolution) of the two clouds, scanning patterns
(nature of sensors). It takes as input point clouds of different resolution, gathered by
different sensors, or with the same sensor. It is also based only on the geometric charac-
teristics of the points, which makes it independent of weather and illumination condi-
tions. Thirdly, normals are computed once before starting the process and are used only
to distinguish the different local surfaces. They are not used in the alignment process.

The rest of this paper is organized as follows: in Section 2, an overview of the state
of the art of registration methods is given. Section 3 details the proposed method. This
is followed by experiments and a comparison with the state-of-the art methods in order
to evaluate the proposed approach. Finally,conclusions and suggestions of future works
are discussed in Section 5.

2 Related Work
Registration algorithms assemble two representations of an environment in a single
reference frame. The problem of registration has been dealt with extensively in several



studies over the last 25 years. This started with geometric approaches leading to the
appearance of the Iterative Closest Point (ICP) algorithm [4,8]. ICP is used to calculate
the optimal transformation fitting two point clouds by a two-step process: matching
of points and minimizing a metric describing the misalignment [19]. These two-steps
iterate to minimize the matching error and thus improve alignment. In the literature,
two main groups of registration methods are identified:

– feature-based methods (approaches based on features extraction);
– dense methods (approaches exploit all the points in the cloud).

2.1 Feature-based Approaches

Feature-based methods are generally used in outdoor environments [17]. They are based
on the use of features, which may be points that are easily identified by their apparent
character (position, local information contents, mathematical definition, etc.) with re-
spect to the other points. A good feature requires stability and distinctiveness [28]. In
other words, detected features should be consistent in all the frames. They should be ro-
bust to noise and invariant to rotation, perspective distortion and changes of scale [28,9]
[11].

Features extraction from point cloud representation is well documented literature.
One can find the 3D Scale Invariant Feature Transform (3DSIFT), which is an extension
of the 2D version proposed by Lowe in 1999 [15]. The 3D version was adapted by the
PCL [25] community using the curvature of points instead of the intensity of pixels [12].
The method uses a pyramidal approach to reach the scale invariance characteristic of
features. To achieve invariance against rotation, it assigns orientations to keypoints.
This adds to an incomplete list of features such as FPFH [23], VFH (Viewpoint Feature
Histogram) [24], CVFH (clustered viewpoint feature histogram) [2] to name a few.

However, feature extraction techniques are often cumbersome to determine and pose
a problem to real-time applications [9], making them unsuitable for applications that
require efficiency. Furthermore, the necessity of very dense clouds are required in order
to obtain good features, which compromises with the use of sparse clouds [1,28,34,31].
More importantly, these methods are environment specific [6], which may result in the
rejection of good data [20].

2.2 Dense Approaches

Dense approaches make use of all the points from both clouds, and require an initial
guess (transformation) between the two clouds, which makes them sensitive to wrong
initialization [35,27,9]. Despite the use of all the points, these methods are generally
faster than feature-based approaches [27].

Dense techniques are however well adapted to a classical ICP framework. As poin-
ted out by Pomerleau [21], its easy implementation and simplicity, are both its strength
and its weakness. This led to the emergence of many variants of the original solution,
adapted in many ways, throughout the years. At the very outset, Chen [8], improved
the standard ICP by using point-to-plane metric instead of the Euclidean distance er-
ror. This approach takes advantage of surface normal information to reject wrong pair-
ing. However, this approach fails when dealing with clouds of different densities, since



normals computation are affected by the change in resolution, presence of noise and
distortion [10,13].

The Normal Distributions Transform (3D-NDT) [18] discretizes the 3D points with
their normals in cells, where each one is modeled by a matrix, representing the probab-
ility of occupation of its points (linear, planar and spherical). Then, a non-linear optim-
ization is performed to calculate the transformation between the two clouds. However,
according to [10], the NDT is not suitable for systems with low computing power cap-
ability.

An efficient approach for dense 3D data registration was presented in [26]. This
probabilistic version of ICP called Generalized ICP (GICP) is based on a Maximum
Likelihood Estimation (MLE) probabilistic model. It exploits local planar patches in
both point clouds, which leads to plane-to-plane concept. Since this algorithm is point-
to-plane variant of ICP, it has similar drawbacks, especially those related to normals
computation. For instance in [13], it is shown that the non-uniform point densities cause
inaccurate estimates, which degrade the performance of the algorithm. Moreover, Aga-
mennoni [1] affirmed that the GICP does not work well in outdoor unstructured envir-
onment.

Serafin [27] extended the GICP algorithm by using the normals in the error function
and in the selection of correspondences, which according to the authors, increases the
robustness of the registration.

Our approach, called CICP for Cluster Iterative Closest Point, uses an (NDT and
NICP)-like representation, however, it is different from the NDT in the way it uses
the points of each voxel to determine local surfaces and get one representative point
from each local surface to the matching process. In contrast, NDT computes a Gaussian
distribution in points of each voxel using the vicinity of each point. Whereas, NICP uses
an image projection of the voxel grid representation to compute statistics, and considers
each point with the local features of the surrounding surface. These features, namely
normal and curvature, are calculated for each point from its neighboring points, with
a computational complexity of O(K×N), where K is the number of the neighboring
points used to compute each normal and N the total number of points. Additionally,
these features are used later in the process of point matching between the two clouds,
as opposed to our method, that does not use normals in the matching process. Because
of the difference in density, pattern scanning, and presence of noise, will lead to noisy
normals and, hence, inaccurate results.

3 Proposed Method
In this paper, a novel registration method exploiting normals is introduced. We adopt
the Rusinkiewicz [22] decomposition and propose a new selection strategy, which aims
to improve the pairing process. Figure 2 illustrates the pipeline of the proposed method.

3.1 Surface Normal Segmentation

CICP starts with the estimation of normals of the source and target point clouds using
Principal Component Analysis (PCA) [14] follows:

C =
1
k

Σ
k
i=1(pi− p̄)T (pi− p̄), (1)



where, C is the covariance matrix of the nearest neighbors (NNs), k is the number of
considered nearest neighbours pi, and p̄ is its corresponding centroid along the tangent
plane.

Thereafter, the target cloud is subdivided into small voxels. Points belonging to
each voxel are subjected to a classification process based on their normals, giving rise
to different groups of points, according to the geometric variation of each voxel. Each
group of points represents a local surface since they share the same normal vector. A
single point is chosen from a local surface extract to be used for the matching process.
The closest point to the centroid of each local surface is elected a winner.

Similarly, the source point cloud is first transformed into the reference frame of
the target cloud using a pose estimate before undergoing a similar process; voxeliza-
tion, normals-based classification, designation of point’s representatives. At the end of
these steps, the method results into two improved sets of points from the correspon-
ding clouds. Each set contains the most probable points to match with the points of
the second set (this is more particularly in the overlapping area of the two clouds, as it
reflects the same geometry seen from two different viewpoints).

3.2 CICP Matching Pipeline

The main contribution of this paper is the proposal of a new selection strategy. As men-
tioned above, instead of matching point-to-point as the classical ICP variants, points
pass through an election process, which gives rise to one representative point for each
small region. These representatives appear as the most likely points to be matched
between each other. These good matches ultimately result in an accurate motion between
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Figure 2. Overview of the CICP pipeline. Given two point clouds, CICP starts by computing
the surface normals of the two clouds. It looks for points sharing the same local properties, and
then elects one representative point from each local cluster. This election process is based on
3D position of points and their normals. It consists of three sub-tasks: (1) Voxelization: a set of
3D cubic regions (voxels) is generated where all voxel points have very close spatial positions.
(2) Clustering: classify all points of each voxel according to their normals. (3) Matching: once this
grouping step is completed, the last task consists in selecting one point from each cluster (local
surface) in each voxel. Representative points serve as candidates for correspondence process. As
a result, few points are used in the matching process, but which are most likely to be associated,
thereby, improving on convergence and accuracy simultaneously.



the two clouds (shown in the results section). This election process is based on 3D posi-
tion of points and their normals. It consists of three sub-tasks: (1) voxelization, (2) clus-
tering and (3) representative election. The first task performs a spatial grouping which
attempts to preserve the topological information based on the 3D position of the points.
A set of 3D cubic regions (voxels) is generated where all points within the voxel have
very close spatial positions. The second task bundles all points of each voxel based on
their normals. Once this grouping is done, we perform the last task, which selects one
point for each cluster (local surface) in the voxel for the matching process. Algorithm 1
depicts the workflow of CICP.

Voxelization It is applied in order to maintain the topological details of the scrutinized
surface. As normal computation depends on the number of neighbouring points and as
the resolution of points of the two clouds is different, voxelization with the same voxel
size aims to generate equivalent local regions in the two clouds. A common criterion of
comparison now becomes feasible. Therefore, the voxel size parameter is of paramount
importance for our technique and it should be chosen carefully in order to keep the
fundamental characteristics of both point clouds; be it dense or sparse with topological
details. A voxel grid with cell size d is generated, where the following set of rules are
verified:

Definition 1 (Sparse Cloud). A sparse cloud is a cloud C = (V,P) in which:
|P|= O(|V |).

Definition 2 (Dense Cloud). A dense cloud is a cloud C = (V,P) in which:
|P|= O(k ∗ |V |), with k > 2.

whereby,
V : set of voxels, P: set of points, O: proportionality operator.

Definitions 1 and 2 are proposed to frame the notions of sparsity and density of point
clouds. The voxel size is set according to the number of points in the sparse cloud, so
that each voxel contains at least one point. This choice ensures a significant difference
in density between the two clouds. A dense cloud, in our case, contains at least twice as
many points as the sparse cloud. Otherwise, they are considered as equivalent.

At the beginning, the procedure applies a bounding box to the entire sparse cloud by
finding the minimum and maximum positions of points along the three axes X , Y and
Z. The number of voxels for this bounding box is determined by the number of points
and the voxel size is deduced. The same procedure is applied to the dense cloud.

1. Voxel assignment: each voxel is identified by a unique linear index. If i, j, k repres-
ent the voxel indices in the X , Y , Z dimensions, respectively, numDivX , numDivY
are the number of voxels along X and Y axes, the formula to encode the linear index
is [29]:

idx = i+ j×numDivX + k×numDivX×numDivY (2)

According to (2), we assign an index idx to each point. This relationship allows
direct access to the desired voxel, thereby avoiding a linear search as in [32].



2. Voxel suppression: as the shape of the point cloud is arbitrary, the step of delimiting
points by a bounding box creates many empty voxels which are later pruned out.
Eventually, voxelization helps to filter noise from voxels where there is insufficient
occupational evidence. An illustration of the described approach is given in Fig. 3.

(a) Voxelized and clusterized point cloud (b) Electing one point from each cluster
for the matching phase

Figure 3. Voxelized/normal-based clustering for matching process.

Clustering The process of electing one point from each local surface makes them
good candidates for point correspondence searching, thereby rejecting wrong matches
impacting alignment accuracy. At first, all the “voxelized” points are taken and a clas-
sification method is applied to identify points belonging to the same surface. In our
work, k-means clustering [3] is used as the classification technique based on the normal
of each point. The appropriate number of clusters (local surfaces) within each voxel is
determined using the Elbow method [29,30]. An illustration of the described approach
is given in Figure 3.

Grouping the point clouds using their normal aims at:
– improving the robustness of the matching step by only allowing the pairing of com-

patible points,
– reducing the amount of data to be processed during the matching stage.

Matching The clustering process generates a reduced, but different number of points
in both clouds. These two sets of points are used for matching. To boost up the matching
process, an off shelf PCL [25] implementation of the k-d trees is used, whereby match-
ing is achieved using L2 norm. Outliers between the dense and sparse sets are handled
using a suitable threshold.

3.3 Optimization Framework

In the case of a point-to-point metric, the error function to be minimized is given by:

E (x) =
N

∑
i=1
‖T (x̃) pi−qi‖2 (3)



The localization problem of a sparse to a dense point cloud (or vice-versa) resolves
to estimating the relative transformation T (x̃) between point clouds {p,q} : ∀{pi,qi} ∈
R3. The principle of rigid body motion is applied where the transformation of a point
tethered to a coordinate frame represent the whole compact body motion. For any point
pair lying on the body, metric properties such as distances and orientation are preserved.
This kind of body motion, discussed subsequently forms part of the special euclidean
group SE(3).

Inter-frame incremental displacement is further defined as an element of the Lie
groups applied on the smooth differential manifold of SE(3) [5], also known as the
group of direct affine isometries. Motion is parametrized as a twist (a velocity screw
motion around an axis in space), denoted as x = {[ω,υ ]|υ ∈ R3, ω̂ ∈ so(3)} ∈ se(3):
ω =

[
ωx ωy ωz

]
, υ =

[
υx υy υz

]
, with so(3) = {ω̂ ∈ R3×3|ω̂ =−ω̂>, where ω and υ

are the angular and linear velocities respectively. The reconstruction of a group action
T̂ ∈ SE(3) from the twist consists of applying the exponential map using Rodriguez
formula [16].

Equation (3) is solved iteratively in a Gauss Newton fashion, where at each iteration,
a new error E and a new Jacobian matrix J(0) are computed in order to obtain the update
x by:

x =−
(

J(0)T J(0)
)−1

J(0)T e(x) (4)

and the rigid transformation is updated as follows:

T̂ ←− T̂ T (x) (5)

Minimization is stopped when the error: ‖ e ‖2< α occurs, or when the calculated
increment becomes too small: ‖x‖2 < ε , where α and ε are predefined stop criteria.

4 Results

Our CICP approach is implemented in C++ without code optimization and our al-
gorithm is thoroughly evaluated by conducting multiple experiments. The computa-
tional efficiency of the algorithm is beyond the scope of this paper. We rather focus
on the methodology. The proposed method does not require any knowledge about the
external orientation of the sensors at the time of acquisition, their position and orienta-
tion are estimated by the algorithm, the only requirement is that the two clouds share a
tolerable overlap.

The experimental is set up as shown in Fig. 4. The centre of the two sensors; Ve-
lodyne HDL32 and that of the Leica P20 are perfectly superimposed with the help of
the STANLEY Cubix cross line laser. The velodyne is then physically displaced and ro-
tated by known translations and rotations from the graduated set up in order to perturb
the 6 degrees of freedom (dof) transformation. Data acquisition is then performed un-
der different scenarios in order to exert our CICP algorithm. Table 1 below summarizes
the various experiments performed in a controlled environment. For each experiment,
CICP is initialized at Identity, i.e. x = [0,0,0,0,0,0].



Algorithm 1: CICP Algorithm.
Input: targetCloud, sourceCloud ; voxelSize, T̂
Output: Optimal T

1 Intialize: NormalXYZ T normals, S normals; PointXYZ T match, S match
2 begin
3 T normals = normalComputing (targetCloud)
4 S normals = normalComputing (sourceCloud)
5 T match = normalClustering (targetCloud, T normals, voxelSize)
6 while (iteration < iter max‖|x|> ε) do
7 sourceCloud = transform (sourceCloud, S normals, T̂ )
8 S match = normalClustering (sourceCloud, S normals, voxelSize)
9 EstablishCorrespondences (T match, S match)

10 distanceRejection (distThreshold)
11 compute the Jacobian J
12 compute the error vector e(x) (3)
13 compute the increment x (4)
14 update the pose T (5)
15 iteration← iteration + 1
16 end
17 return T
18 end

Figure 4. Experimental set up for data collection from Velodyne HDL32 (left) and Leica P20
(right) sensors.

4.1 Dense-Sparse Registration with CICP

Two clouds are acquired with different sensors; the denser cloud produced by a 3D
LiDAR Leica P20 laser scanner and the sparser cloud with an HDL-32E Velodyne
LiDAR sensor. A Leica P20 generates very detailed and dense point clouds. Depending
on the resolution chosen during the scanning process, these clouds can exceed 100 mil-
lions of points for a single scan. All computations are performed on a laptop with the
following specifications; Intel Core i74800MQ processor, 2.7 GHz, and 32 GB of RAM.
For reasons of computational resources, we perform a sampling process using [29] in
order to reduce the number of points to the order of few millions without losing use-



ful information. Figures 5(a), 5(d) illustrate the output of the sampling process with
986344 and 2732783 points for the office and PAVIN 5 scenes, respectively.On the
other hand, the HDL-32E Velodyne sensor generates sparse point clouds that do not
exceed 70000 points. This represents a ratio of 14 times between the two clouds from
the first environment and a ratio of 40 times, for clouds of the second environment.

Fig. 5 shows the registration process of such point clouds using the CICP method.
On the left, the green cloud is from a LiDAR Leica P20 and the blue cloud is from an
HDL32-E Velodyne. The corresponding results are shown on the right.

(a) Indoor point cloud delivered
by the LiDAR Leica P20 (after
sampling [29])

(b) Clouds before registration (c) Clouds after registration

(d) Outdoor point cloud delivered
by the LiDAR Leica P20 (after
sampling [29])

(e) Clouds before registration (f) Clouds after registration

Figure 5. Registration results with CICP algorithm.

In order to verify the convergence of the optimization, a comparison between the
two clouds at the start and the end of the registration process is recorded together with
the convergence profile obtained from the evolution of the RMSE error as a function of
the number of iterations to convergence (see Fig. 6). An exit loop condition is imposed
on the translation (10−3) and rotation rates (10−4). We run the algorithm for several
indoor and outdoor scenes, with different viewpoints, as depicted in Table 1 and shown
in Fig. 6. Each experiment is performed more than 20 times. For instance, for the ex-
periment 1 (Expt 1), the displacement between the two clouds is [150,170,35,5,0,0],
where the first three values correspond to the translation in millimeters and the last
three to the rotation in degrees. As for the fourth experiment, the displacement is
[65,45,200,0,7,5], which took 34 iterations for the algorithm to converge. From this
table, three elements are identified that influence the registration results; inter-frame
displacement, difference in density between the two clouds, as well as the nature of

5 PAVIN: http://www.institutpascal.uca.fr/index.php/en/the-institut-pascal/equipments



Table 1. CICP registration applied to mainly two compiled data sets; OFFICE and PAVIN. The
resolutions of corresponding dense and sparse cloud are given along with the initial physical
measured transformation from our set up given by the first row of each experiment, whilst the
second row depicts the results output by our algorithm. Convergence is evaluated from the RMSE
and the number of iterations required for full registration.

Expt Envir # dense # sparse tx ty tz θx θy θz RMSE # iter.
-onment cloud cloud (mm) (mm) (mm) (◦) (◦) (◦) (m)

1 Office 1 411924 69952
150.0 170.0 35.0 5.0 0.0 0.0 - -
155.0 172.9 34.8 4.7 0.4 0.1 0.0198 40

2 PAVIN 1 665260 67488
0.0 30.0 200.0 5.0 5.0 0.0 - -
0.2 29.8 191.9 4.8 4.8 0.1 0.0188 36

3 Office 2 986344 69984
350.0 350.0 0.0 0.0 0.0 0.0 - -
357.3 342.8 0.3 0.3 0.1 0.8 0.0199 39

4 PAVIN 2 1364245 67768
65.0 45.0 200.0 0.0 7.0 5.0 - -
64.1 45.7 200.9 0.3 6.9 4.9 0.0184 34

5 Office 3 2550564 69728
20.0 110.0 70.0 10.0 5.0 0.0 - -
21.7 111.1 66.9 10.1 4.2 0.1 0.0191 39

6 PAVIN 3 3218879 67936
0.0 0.0 0.0 10.0 10.0 0.0 - -
0.5 0.1 0.3 9.4 9.8 0.2 0.0184 55

7 Office 4 4490859 69996
30.0 470.0 300.0 20.0 0.0 0.0 - -
27.8 470.3 307.3 19.6 0.1 0.1 0.0190 57

8 PAVIN 4 5025457 67904
50.0 50.0 50.0 5.0 5.0 5.0 - -
52.1 48.2 53.3 5.3 7.5 5.3 0.0152 56

9 Office 5 7076192 69760
50.0 50.0 50.0 5.0 5.0 5.0 - -
55.2 50.6 53.9 5.5 4.2 4.6 0.0190 35

10 PAVIN 5 19615433 67488
0.0 50.0 200.0 10.0 0.0 5.0 - -
0.1 49.8 200.3 9.7 0.1 5.2 0.0169 48

environment (indoor or outdoor). Overall, we would like to highlight the fact that dis-
placement between two viewing angles are quite consequent keeping in mind that dense
techniques generally require an inter frame displacement since the cost function is lin-
earized around x = 0.

Continuing with our discussion on the influence of initial displacement, and let us
take the case of experiments Expt 3 and Expt 6, which represent a pure translation
and a pure rotation, respectively. These two experiments as a sample of several exper-
iments that we carry out, show that generally, the pure rotation requires more energy
to reach the convergence with respect to the case of pure translation. Regarding the
influence of density, a quick look shows that the denser the clouds becomes, the more
the RMSE decreases, leading to better registration. Finally, we observe that CICP per-
formance depends on the scene. In fact, the impact of scene affects the performance of
registration as observed by the difference of the number of iterations required to reach
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Figure 6. CICP results applied to different data sets from various environments.

the convergence domain between PAVIN’s and office data sets. It is clear that the in-
door environment performs better registration than the outdoor scene. This is possibly
caused by the richness in planar regions of the former. It should not be overlooked that
the outdoor environment contains a large amount of noise and outliers. This can be seen
on Expt 8 and Expt 9, in which the initial displacement is the same in both experi-
ments. However, the alignment for the office dataset requires 34 iterations to converge
instead of 56 for the PAVIN data set.

For the sake of illustration, we take four experiments arbitrarily (Expt 3, Expt 4,
Expt 7, Expt 8), and showe their state before and after registration with their conver-
gence profile in Fig. 6. A closer look to the RMSE curves in the third row of this figure
reveals that the residues which are far away are successfully minimized. However, the
convergence begins very quickly and then stabilizes for a while before it reaches its
minimum. This is mainly due to the fact that there is not a perfect point-to-point equi-
valence in the two pairing sets. This is quite logical and it can be explained by the large
difference in density between the two clouds, the noise, and the clustering defects on
the two clouds.

4.2 Comparison with Existing Methods

In order to compare our method with the existing state-of-the-art methods, we use im-
plemented routines of PCL [25] library for the NDT algorithm, GICP, point-to-plane
ICP and simple ICP for dense methods. For the case of feature-based methods (me-
thods based on features extraction) we also use PCL implementations of SIFT3D and
FPFH to extract characteristic points from the two clouds, and use simple ICP to per-
form matching. The performance of each method is evaluated using three metrics: the



accuracy, the relative translational error and the relative rotational error. The former
describes the evolution of the root-mean-square point-to-point distance; this can be ex-
pressed mathematically as:

RMSE =

√
1
n

Σ n
i=1 ‖ Ei ‖2 (6)

where n is the number of points and Ei is the distance error between the source points
and its correspondent in the target cloud in each iteration. This can be expressed as
follows:

Ei = Σ
m
i=0 pi−qi (7)

where m is the total number of points in the sparse cloud. pi and qi which represent two
points of the source and target cloud, respectively.

The second metric is the Relative Translational Error (RTE), which measures the
translation gap between the ground truth (tGT ) and the estimated (tE ) translation vectors.

RT E = ‖tGT − tE‖2 (8)

The Relative Rotational Error (RRE) is the sum of the absolute differences of the
three Euler angles, calculated from the two rotation matrices RGT (ground truth rotation
matrix) and RE (estimated rotation matrix). RRE is calculated by the equation 9 as:

RRE = |Roll
(

R−1
GT RE

)
|+ |Pitch

(
R−1

GT RE

)
|+ |Yaw

(
R−1

GT RE

)
| (9)

Table 2 presents the results gathered in processing two indoor and outdoor scenes
with the state-of-the-art methods. Bold values show the best result. Quantitatively, the
RMSE value of the indoor scene reaches 6 cm in the case of point-to-point, 6.2 cm
point-to-plane ICP, 6.3 cm for the NDT and the GICP, more than 5 cm for SIFT3D and
less than 3 cm for the proposed method. The maximum number of iterations for each
test is fixed at 500 beyond which the algorithm is considered as not having converged
if it reaches that ceiling, as is the case of the FPFH method.

Figure 7 shows comparison of convergences between different registration methods.
Again CICP outperforms the state of the art. In addition to that, it is shown that CICP
is robust against scene variation.

Table 2. Comparison with the state-of-the-art methods.

Dense Feature-based

ICP pt2pl NDT GICP CICP SIFT FPFH
ICP 3D+ICP +ICP

Office RMSE (m) 0.0602 0.0620 0.0636 0.0636 0.0299 0.0516 failed

[m,m,m,◦ ,◦ ,◦ ] RTE (m) 0.2811 0.2482 0.2019 0.2178 0.0169 0.0191 failed

[0,0.5,0.5,20,0,10] RRE (◦) 1.8476 0.5243 1.0517 0.0978 0.0144 0.7660 failed

PAVIN RMSE (m) 0.0836 0.0804 0.0824 0.0860 0.0347 0.0678 failed

[m,m,m,◦ ,◦ ,◦ ] RTE (m) 0.0365 0.0253 0.0315 0.0642 0.0092 0.021 failed

[0,0.5,0.3,0,0,10] RRE (◦) 0.1919 0.1747 0.2048 0.3211 0.1198 0.1989 failed



(a) Comparison of RMSE results of the
different registration methods

(b) Comparison of number of iterations
achieved at convergence of different regis-
tration methods

Figure 7. Convergence comparison between different registration methods.

Figure 8. Registration of two dense clouds of indoor scene captured by Leica P20 sensor.

4.3 Dense-to-Dense Data

Figure 8 shows the state of the two dense clouds before and after the registration. Des-
pite the large number of points, the final result is correctly aligned. Here is another
benefit of our approach, the fact of not considering the entire set of points for matching,
but only a collected set of points from each local surface, which improves the conver-
gence speed.

5 Conclusion

In this paper, a novel selection technique is introduced on the forefront of an ICP frame-
work. Throughout the experimental section, the performance of the algorithm has been
demonstrated where otherwise classical state-of-the art techniques fails or performs
poorly. The main highlight of this work is the way 3D surfaces are segmented in a point
cloud representation using voxelization and clustering approaches. The advantages are
multifold; both sparse and dense point clouds are subsampled by maintaining the geo-
metry of the surface. Moreover, better point estimates obtained are used for later stages
of matching and registration. In so doing, the convergence domain of the cost function
is greatly improved leading to faster convergence of the algorithm where again, clas-
sical techniques fails. Additionally, our method of normal based segmentation not only
improves on the weakness of the heterogeneous problem of sparse to dense registration
but also deals with sensor noise leading to noisy normal extraction. Finally, our CICP
approach improves on the precision of registration and outperforms the state of the art.
This work can also be viewed as a direct solution to localization problems of a mobile



robot in an a priori map constructed with different depth sensors. Further work includes
an extension of our approach to vast scale outdoor mapping and localization as well as
optimizing the computational time on the CPU for real time applications.
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